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Abstract: The vibration feature of weak gear fault is often covered in strong background noise,
which makes it necessary to establish weak feature enhancement methods. Among the enhancement
methods, stochastic resonance (SR) has the unique advantage of transferring noise energy to weak
signals and has a great application prospection in weak signal extraction. But the traditional SR
potential model cannot form a richer potential structure and may lead to system instability when the
noise is too great. To overcome these shortcomings, the article presents a periodic potential
underdamping stochastic resonance (PPUSR) method after investigating the potential function and
system signal-to-noise ratio (SNR). In addition, system parameters are further optimized by using
ant colony algorithm. Through simulation and gear experiments, the effectiveness of the proposed
method was verified. We concluded that compared with the traditional underdamped stochastic
resonance (TUSR) method, the PPUSR method had a higher recognition degree and better
frequency response capability.
Keywords: fault diagnosis, stochastic resonance, periodic potential, underdamped, weak
signal
1. Introduction

Gearboxes are widely used in mechanical equipment transmission, which health
working can effectively reduce costs and energy consumption. However, gearboxes are
often affected by the component failures, which reduce the transmission efficiency of
the equipment, thereby increasing energy consumption and possibly even fatal effects.
[1]. Therefore, timely detection and accurate extraction of fault characteristics are

particularly important [2, 3]. Vibration signal detection is usually used to extract fault
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characteristics, but machinery gearboxes often work coupled with other components
amid a strong background noise. Therefore, extracting early faults amid strong noise is
very difficult [4, 5].

To obtain important characteristics information from the vibration signals of
mechanical equipment, many scholars have done much research on such signal
processing methods such as local mean decomposition [6, 7], singular value
decomposition [8, 9], ensemble empirical mode decomposition [10, 11], and wavelet
transform [12, 13]. Those methods are widely used in the fault diagnosis of mechanical
equipment and have achieved fruitful results, but they all improve detection by filtering
noise. When using those methods to reduce noise, a useful signal may be reduced or
even destroyed. However, stochastic resonance (SR) is a recent noise-assisted data
processing method. Compared with the traditional weak signal detection method, SR
does not eliminate noise to detect weak signals, but transfers noise energy to weak
signals and improves weak signal while eliminating noise. SR was first proposed in the
study of paleometeorological glaciers by Benzi [14]. Then with increasing research by
experts, SR began in physics [15], chemistry [16], and biology [17], and has been
applied in many engineering and technical fields. To overcome the limitation of small
parameters under the condition of adiabatic approximation, Tan et al. proposed an
adaptive frequency-shifted and rescaling transform SR method for a time-frequency
index to detect high-frequency signals in actual engineering [18]. Leng et al. studied
the SR of a two-dimensional Duffing oscillator with large parameters [19].
Subsequently, Lei etal. proposed an adaptive overdamped SR weak fault diagnosis
method based on an ant colony algorithm [20]. Li etal. used a chaotic ant colony
algorithm to optimize system parameters and applied it to planetary gearbox fault
diagnosis [21]. Liu etal. proposed an adaptive SR detection method based on an
improved artificial fish swarm algorithm, the numerical simulation and bearing
experiments show that this method can effectively extract weak fault signals [22]. Then,
Li etal. proposed a multicomponent population average SR of singular value
decomposition and ensemble empirical mode decomposition; the effective components

were selected to be SR one by one, and then the overall average reached the goal of
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extracting weak signals [23, 24]. Qiao et al. proposed a piecewise linear SR weak fault
diagnosis method, which solved the output saturation characteristics of bistable SR by
establishing a piecewise potential model [25]. Han et al. proposed an adaptive variable-
scale frequency-shifted band-pass SR denoising method based on empirical mode
decomposition to detect multifrequency weak signals [26].

However, the above studies were based on overdamped SR. In the overdamped SR,
the inertia and damping factor are neglected. When considering the system inertia and
damping factor, the SR model becomes a second-order differential equation, which is
equivalent to secondary filtering and has better signal output effect. Therefore,
researchers have further studied underdamped SR. In terms of underdamped SR, Lu
etal. proposed a bistable underdamped SR method, which adjusted the system
parameters by variable step size to achieve the maximum SNR output [27]. Lopez
proposed underdamped SR based on the FitzHugh—Nagumo potential and used an
improved particle swarm optimization algorithm to achieve optimal parameter
matching, the effectiveness of that method was verified by simulation and bearing
experiments [28]. Lei et al. used the synergistic effect of the vibration signal, potential
structure, and damping factor and used the weighted SNR as the evaluation index of
the output signal to achieve weak signal extraction [29]. The above studies achieved
certain research results in underdamped SR but were limited to a bistable SR system.
The potential structure adjustment was too singular and it was difficult to form a rich
potential structure, so the optimal match between potential structure, noise, and the
periodic signal could not be achieved. In addition, a bistable SR system achieves noise
energy consumption by adjusting the barrier height and the well depth. However,
excessive adjustment of a nonlinear potential system not only increases the response
time of the system but also increases its instability.

To solve the above problems, we propose a weak fault diagnosis method for a
periodic potential underdamped stochastic resonance (PPUSR) system. This method
can not only independently adjust the barrier height, depth and width of the potential
well, but also achieve a more abundant potential structure and can achieve coordinated

matching of the potential structure, periodic signal, and noise based on ant colony
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algorithm. At the same time, the continuous potential well can consume excessive noise
energy, thereby reducing noise interference, improving the stability of the system, and
enhancing weak signal detection ability.

The rest of the paper is as follows: Section 2 describes the PPUSR model, SNR of
the PPUSR model, and parameters optimization based on ant colony algorithm. Section
3 proposes a weak fault diagnosis method for PPUSR and simulates the method. Section
4 describes the verification of the effectiveness of the proposed method through gear
experiments in the lab and rolling mill gearbox engineering practice. Section 6 is the
conclusion.

2. PPUSR method
2.1. The introduction of PPUSR model

SR uses the synergy of the input signal and noise in a nonlinear system to enhance
the signal energy and identify weak signals. The three conditions generated by SR are
nonlinear systems, input signals, and noise. When the three all achieve optimal
matching relations, SR has the most obvious amplification effect on the signal. The
traditional SR is bistable or tristable, affecting the enhancement of weak signals, in
order to improve the weak signal enhancement ability for SR. In this paper, PPUSR
potential model is studied, the nonlinear system that is potential function [30]

introduced is
U (x) =U, cos®(kx) (1)

The periodic potential model curve is shown in Fig. 1.

(a)

_U0=0.5
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Fig. 1. Potential function U (x) versus X . (a) Different parameter K with fixed U, =1. (b)
Different parameter k with fixed U, = 2. (c) Three-dimensional potential function U (X)
versus U, and x with fixed k =1. (d) Three-dimensional potential function U (x) versus

k and x withfixed U, =0.5.

The potential model changes with the parameters, as shown in Fig. 1. Fig. 1a and 1c

show that as the potential system parameter U, increases, the bottom position of the

potential well is fixed, and the barrier height and well depth increase continuously. In
Fig. 1b and 1d, when the potential system is adjusted with the increase of k , the barrier

height and well depth are unchanged, but the width of the potential well gradually

increases. As the parameters U, and k increase, the potential depth, the barrier

height, and the width increase, and vice versa. Therefore, the change of the barrier

height and the well depth can be achieved by adjusting U, , and the adjustment k can

independently adjust the potential well width. When the noise and periodic signals are
small, the particles oscillate inside a potential well; at this time the nonlinear system is
a monostable system. As the noise increases, the particles break through the barrier and
oscillate between two or more potential wells; at this time the nonlinear system is a
multistable system. Therefore, when the external driving signal is constant, the
synergistic effect of the parameters enables the particles to acquire an optimal motion

form, thereby producing a better SR effect.
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To further analyze the PPUSR mechanism, and the SNR of the PPUSR potential
model is analyzed here. In accordance with the potential model, we considered particle

motion in a PPUSR system to get

__du( S %esmen(y @

where U(x) is the periodic potential function. » is the damping factor.
S(t):ACOSZﬂ'fdt is a periodic signal, where A is amplitude, f, is frequency.
N(t)=«/ﬁ§(t) is the Gauss white noise with zero mean satisfies
E[N(t)n(t—7)]=2Do(r) , D is noise intensity. Combining Eq. (1) with Eq. (2)

yields

2
%=2kuocos(kx)sin(kx)—7%+ACOSZ”de\/ZD?(t) )

The PPUSR system model is shown in Fig. 2.

2kU cos (kx)sin (kx)

@6 s

-y (t)

Fig. 2. PPUSR system model

2.2. SNR analysis of PPUSR potential model

To analyze the output SNR of the PPUSR model under small parameters, first let

y=0, =0, and dx/dt=y.Eq. (3) then becomes
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(4)
3—{ = 2kU ,cos (kx) sin (kx) +Acos (Qt ) +v2D&(t)

In addition, let A=0, D=0, and %zo.lntherange (O,%),Eq. (4) can get the two

singular points as follows: (xl,yl):(%,oj and (X, yz):(%,oj. The Jacobian

0 1
matrix obtained by linearizing Eq. (4) at the singularity (X1 yl) iIs R ={ K2 O}
o 0

, and its corresponding singular value is g, =i«/—2k2U0 . Similarly, the Jacobian

0 1
matrix obtained by linearizing Eq. (4) at the singularity (XZ, y2) is R, = [ZkZU O}
0

, and its corresponding singular value is A, =J_r1/2k2U0 . Then the steady-state

probability density function p(x,y,t) of the particle motion can be derived by using

the Fokker—Planck equation [31]

%p(x, y,t):—g[yp(x, y,t)]—%[(Zkacos(kX)sin(kx)+Acoth)p(x, v.0)]

0 0 ©
+D(y+yjp(x, y,t)

According to the adiabatic approximation theory, the SPD function corresponding to

Eq. (5) can be further derived as

palx ¥, = Nexpl-2=U V) (6)

where N is the normalized constant and U.(x,y,t) is the generalized potential

energy function [27] obtained by the small parameter expression
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U, (x, y,t):%yz+Uocosz(kx)—Axcoth (7

To further analyze the mechanism of the SR potential model, we concluded that the

escape rate of particles is

\/@\/*e p[ xz,yz,i) e(Xilyvt)J ®)

Eq. (7) is substituted into Eq. (8) to get

“Blﬁz / M xp exp —Akcothj 9

The Taylor expansion of Eq. (9) can be obtained by

, 2
BlBZ exp 1+ —_— cos Qt+= ! (”—Aj cos’Qt (10)
X, 2Dk 2\ 2Dk

Let R, = m \/: exp| — . Due to the output power spectrum of the system is
S(w)=S,(0)+S, (o) (12)

where let RS =R, % SO we can get
sF%[s(m—g)m(mg)] (12)
%2 = {1_ Z(RR;EZQZ)] 4k2igi§’iggz) 13)

Finally, we get the SNR
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-1

U
”, U, A? exp(—oJ
S, (o)dw 22 0
SNRJS0 1(—)9 232A|<sz exp(_%] - % 2D 49
(0=9) 16D2£ 2U2° exp(— gojﬂz?
(L

To show the advantage of using the proposed method to process the signal, under the
same noise intensity, the SNRs with a change of the potential parameter are shown in
Fig. 3. The SNR curve of the PPUSR method is also obtained, and the SNR is much
higher than that of the traditional underdamped stochastic resonance (TUSR) method
in [27]. Therefore, it can be concluded that for the same noise intensity and parameters,

the ability of PPUSR to extract weak faults is much better than that of TUSR method.

4.5

0 1 2 3 4 5 6 7 8 9 10
D

Fig. 3. Comparison of SNR between PPUSR method and TUSR method

2.3. Parameters optimization based on ant colony algorithm
According to the above analysis, the parameters can be optimally matched by

adjusting the parameters U, and k. This paper optimizes the system parameter

adjustment potential model based on the ant colony algorithm to achieve the best match
between the potential model, the input signal and noise, thus obtaining the best SNR
output. The ant colony system was first proposed by the Italian scholars Dorigo and
Maniezzo [32]. The basic idea of applying the ant colony algorithm to solve the
optimization problem is that the ants with shorter paths release more pheromone. With
the advancement of time, the concentration of pheromone accumulated on the shorter

path is gradually increasing, and the number of ants selecting the path is increasing. In
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the end, the whole ants will concentrate on the best path under the action of positive
feedback, and the corresponding solution is the optimal solution to be optimized.
In order to compare the SNR output of PPUSR method and TUSR method, the ant

colony algorithm is used to optimize the parameters of two SR systems. Simulate a

small parameter signal, S(t) = Acos(2x f.t), where the sampling frequency f, =5,

signal amplitude A=0.01, signal frequency f,=0.008, noise intensity D=0.5,
data length N =5000, number of ants m=100, pheromone evaporation coefficient

o =0.9, maximum iteration number n =20, pheromone increase intensity coefficient

Q =200, pheromone concentration q =200, damping factor y =1. The parameters

optimization range are [0, 10], the matching parameters and SNR are obtained by the
ant colony algorithm optimization system parameters of PPUSR method and TUSR
method in Fig. 3. Comparing Figs. 3a and 3b, the output SNR of PPUSR method is
23.19 dB, and the output SNR of TUSR method is 21.15 dB. Therefore, it can be judged
that the PPUSR method has a better SNR output under the same conditions, that is, has
better SR effect.
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3. The weak fault diagnosis strategy based on PPUSR model
3.1. PPUSR weak fault diagnosis method

In accordance with the above analysis, we propose a weak fault diagnosis method for

the PPUSR model. The main process is described as follows:

— - Ant colony
original signal algorithm

‘ Solving envelope signal ‘ ‘ Initialize system parameters ‘

‘ Frequency - shifted and scaling transform ‘ W>
v No Yes
‘ Parametes optimization }—> max SNR=SNR

maxugz=u,; maxk=k

PPUSR - max =y varyu, k

U,, k » 7 exceed
value range

Yes

End Optimal parameters

Fig. 5. PPUSR weak fault diagnosis process

‘ Runge- Kuta calculation ‘

!

‘ Weak fault diagnosis result ‘

(1) Signal preprocessing. The collected vibration signal is processed to obtain an
envelope signal. Then the input signal is initially processed by using a shifting-
frequency and rescaling transform to meet small parameter requirements under
approximate adiabatic conditions.

(2) Initializing of the parameters of the system. The parameters include ant colony size,
step size, optimization range, maximum iteration number, pheromone evaporation
coefficient, and the pheromone increasing intensity coefficient.

(3) Parameter optimization. Calculate the corresponding probability according to the

prior knowledge and pheromone concentration, and find the optimal path of the ant;
that is, find the optimal combination of parameters U, and k.
(4) Output signal calculation. Input the optimized parameters into the PPUSR system,

calculate the system output using the Runge—Kutta equation for Eq. (15), and use the

SNR as the evaluation index of the output signal for Eq. (16).
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y.=y[n); i =-U (x(n]) -7y, +S[n]+ N[n];
Y, =y[n]+xhi2 % =-U(x[n])+y,h/ 27y, +S[n]+Nn];
Y=Y+ %012 % =-U " (x[n])+y,n-py, +S[n+1]+ N[n+1]
Yy =y[0J+h 2% == (x[n])+ yh-py, + S[n+1]+ N[n+1]
X[n+1)=x[n]+(y, +2y,+2y,+Y,)h/6;
y[n+1]=y[n]+ (% +2%,+ 2%, +x,)h/6;

(15)

where f(t,x) isthe two derivatives of the potential function,and h is the calculated

interval.

SNR =10l0g,, (¥ ) (16)

N/2

;A—Aj

where N is the data length, A, is amplitude of the fault characteristic frequency in

the power spectrum, % A — A, is amplitude of the power spectrum for sum noise.

i=1
(5) Evaluation of output results. Find the optimal SNR and the corresponding optimal
parameter match. If the optimal parameter is within the optimization range, expand the
range of the corresponding parameter and return to step 3; otherwise, go to step 6.
(6) Signal post processing. Substituting the obtained optimal parameters into the
PPUSR system, the fault characteristic frequency of the vibration signal is finally

extracted.

3.2. Simulation verification

The parameters of PPUSR method and the TUSR method were set to U, =k =1,

a=b=1 respectively, and the frequency response curves were obtained in Fig. 6. We
can get the SNR curves of both methods decreasing with increasing frequency.
However, the high-frequency SNR of PPUSR method was better than that of the TUSR
method, and the SNR was more stable under different frequency conditions, indicating

that the stability of the PPUSR potential model is better.
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Fig. 6. Frequency response of PPUSR and TUSR methods
To verify the effectiveness of the proposed method, we processed the simulated gear
fault signal by the PPUSR weak fault diagnosis method. The noise was added as signal

interference. The simulated gear fault signal was expressed by
S(t) = Asin(2r ft) -exp {—d [t—n(t)T, ]2} ++/2Dg(t) a7
The PPUSR equation for the simulated gear fault signal was

2
3%:2kU0cos(kx)sin(kx)—7%+S(t) (18)

where A =1 isthe signal strength, f =1KHz isthe modulation frequency, d =6f,

( f, =10KHz is the sampling frequency) is the attenuation rate, n(t)=[t/T,] is the

control pulse, &(t) is the Gaussian white noise, +2D =1 is the noise intensity,
T, =0.01786 is the interval pulse ( f, =1/T, =56 Hz is the drive frequency), and the

sampling time is 0.5 s. Figs. 7a and 7b show the simulated gear fault signals without

and with noise respectively.
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Fig. 8. PPUSR and TUSR methods to extract simulated gear faults. (a) PPUSR method waveform.
(b) PPUSR method spectrum. (c) TUSR method waveform. (d) TUSR method spectrum.

We can be seen from Fig. 7c that the simulated gear fault signal does not detect any
fault information in the spectrum due to strong noise interference. In Fig. 7d, the target
signal is also completely covered by the strong noise, so the fault frequency of the
simulated gear signal is not recognized. To verify the effectiveness of the proposed
method, the envelope signal was processed by the PPUSR system. To meet the
requirements of small parameters, the envelope signal was a shifting-frequency and
rescaling transform, and then the ant colony algorithm was used to adaptively optimize

the system parameters and damping factor; the parameter combination was

U=04723, k=12, and y=0.06. When the parameters were put into the PPUSR

system, the time domain waveform and spectrum were as shown in Figs. 8a and 8b. As
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can be seen from Fig. 8a, the time domain waveform exhibited a periodic variation. In
Fig. 8D, it can be seen that the simulated fault characteristic frequency was prominent,
and its amplitude was 0.16736 higher than the surrounding noise. As a comparison with
the proposed method, we used the TUSR method to process the simulated gear signals.

The ant colony algorithm was also used to optimize the system parameters and damping

factors to obtain a=1.102, b=4.96, and y =0.0075. The parameters were put into

the TUSR system, and the time domain and spectrum were obtained, as shown in Figs.
8c and 8d. The fault characteristic frequency could also have been extracted by the
TUSR method, but the characteristic frequency peak was seriously interfered with by
the surrounding noise, and its amplitude was only 0.03971 higher than that of the
surrounding noise. The above analysis shows that when the noise was too large, the
periodic potential could consume too much noise interference through multiple
potential wells, and the bistable system was singular due to the adjustment of the system
potential structure. When the noise was driven too much, the instability of the bistable
system was enhanced, which affected the enhancement of the weak signal.
4. Experimental verification
4.1. Gear experimental verification

To further verify the effectiveness of the proposed method, we detected a gear fault
characteristic frequency using the power transmission fault diagnosis test bench shown
in Fig. 9. We cut a crack 1 mm deep and 0.15 mm wide in the root of the gear in the

root direction to simulate an early failure. The modulus of the gear was 1.5. The
parameters of the gear were Z, =100, Z,=29, Z,=90, and Z, =36. The motor
speed was 840 r/min, the sampling frequency was 5120 Hz, and the data length was
4,096 points. Because the speed of the motor was reduced by a planetary gearbox, the
transmission ratio was 4.571, so the input shaft speed of the parallel shaft gearbox was
183.767 r/min; that is, the rotation frequency was 3.063 Hz. According to vibration

analysis theory, the fault characteristic frequency of the faulty tooth was

f, =10.561 Hz. The time domain waveform and spectrum of the vibration data

collected by the acceleration sensor were as shown in Fig. 10. It can be seen from the
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time domain waveform that although multiple impacts can be seen, the target frequency
could not be determined due to noise interference, and there were multiple low-
frequency and high-frequency noises in the spectrum; the fault characteristic frequency
components were completely covered by noise. In Fig. 10c, the fault characteristic
frequency can be seen, but the interference frequency was too high. The fault
characteristic frequency could not be accurately judged. The fault characteristic
frequency was extracted by the PPUSR method and the TUSR method. To meet the

small parameter requirement, by using the ant colony algorithm to optimize the

parameters and damping factors of the two systems, we got U, =1.627, k=0.684,

y=0.019, and a=1275, b=2064, y=0.0021. The parameters and damping

factors were substituted into the SR system. The time domain waveforms and spectrum
are shown in Fig. 11. Comparing Fig. 11a with 11c, the PPUSR method clearly had
greater periodicity than did the TUSR method. Comparing Fig. 11b with 11d, it can be
seen that the fault characteristic frequency extracted by the PPUSR method was
obviously manifested, the doubling frequency component appeared, and the
fundamental frequency amplitude was 1.0217 higher than that of the surrounding noise.
The TUSR method also extracted the fault characteristic frequency, but it was seriously
interfered with by the surrounding noise. The fundamental frequency amplitude was
only 0.1054 higher than the surrounding noise, and the doubling frequency was also
interfered with by the noise. Therefore, the gear failure experiment demonstrated again

that the proposed method was superior to the TUSR method and had better recognition.

Fig. 9. Power transmission fault diagnosis test bench
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Fig. 10. Gearbox faults: (a) Waveform. (b) Spectrum. (c) Envelope spectrum.
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Fig. 11. PPUSR and TUSR methods to extract gearbox faults: (a) PPUSR waveform. (b) PPUSR
spectrum. (c) TUSR waveform. (d) TUSR spectrum.

4.2. Rolling mill Gear experimental verification

When the rolling mill was inspected, it was found that the gearbox had slight
abnormal vibration, but the equipment failure detection system did not issue an alarm,
and the equipment was still in normal operation. The rolling mill gearbox is shown in
Fig. 12a. In order to detect and prevent fault in the early stage, the measuring point of
the acceleration sensor was arranged in the axial position of the input shaft of the rolling
mill gearbox. The ZonicBook/618E tester was used to collect the vibration signal of the
measuring point. The sampling frequency is 2560 Hz. The numbers of sampling points
were 2048 points, the motor speed was 1300r/min, and the corresponding input shaft
frequency was 21.67Hz. The time domain waveform, spectrum, and envelope spectrum

were shown in Fig. 13. In Fig. 13a, the original signal was completely covered by the
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surrounding noise, and the impact signal cannot be seen. In Fig. 13b, the frequency of
715 Hz is the maximum energy, and a dense sideband occurs. According to Table 2,
the fault may appear on the transmission axis Il, but the energy of the sideband is small,
and the interval of the sideband cannot be determined. In Fig.13c, although we can see
the fault characteristic frequency of the gear, the surrounding noise is seriously
disturbed. Therefore, we cannot judge the specific faulty gear. The gear signals were
processed by the proposed method and the TUSR method. The ant colony algorithm is

used to optimize the system parameters and damping ratio, and the combination of

parameters were U,=0.25, k=1423, r=0.197 and a=2.7, b=0.0109,

r=0.402, respectively. Comparing with Fig. 14a and Fig. 14c, the time domain
waveform curve has better periodicity in Fig. 14a. In Fig. 14b and 14d, both methods
yield a characteristic frequency of 19.2 Hz. According to Table 1, it can be judged that
the gear on the transmission shaft Il is faulty. Through disassembly, we find that the
gear on the transmission shaft 1l has broken tooth in Fig. 12b, which was consistent
with the actual situation. Comparing Fig. 14b and 14d, Fig. 14b not only has the
characteristic frequency but also the frequency multiplication was seen, and the
recognition degree of the gear fault characteristic frequency was better. Therefore, the
effectiveness of the proposed method was proved again by the gear fault, and it had

better effect than the TUSR method.

s : 5o NS ;\‘i.
Fig. 12 Rolling mill gearbox faults: (a) Fault detection site. (b) Gear broken tooth

Table 1. Frequency conversion of each axis and meshing frequency of each gear pair

Transmission Rotating speed Rotation Meshing
Tooth ratio
shaft (r/min) frequency(Hz) frequency(Hz)

| - 1300 21.67 -
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I 33/38 1129 18.82 715
i 42/89 533 8.89 790
v 21/74 151 2.52 186
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Fig. 13. Rolling mill gearbox faults: (a) Waveform. (b) Spectrum. (c) Envelope spectrum.
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Fig. 14. PPUSR and TUSR methods to extract rolling mill gearbox faults: (a) PPUSR waveform.
(b) PPUSR spectrum. (c) TUSR waveform. (d) TUSR spectrum.

5. Conclusion

To overcome disadvantage of TUSR fault detection method, this paper proposes a
PPUSR method and studies the potential function, and SNR of the simulated system
based on the PPUSR phenomenon. After presented method was validated by theoretical
and experimental, the following conclusions can be drawn:

(1) The PPUSR model can not only adjust the potential well width independently by

parameter k but can also synchronously adjust the barrier height and the depth of the
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well by adjusting the parameter U, . Therefore, it has a richer potential model structure

and can achieve the best match between potential structure, periodic signal, and noise.

(2) When the noise is too great, the oscillation of the particles between potential wells
in the TUSR system is too fast due to the limitation of the potential model. The
excessive noise will cause noise interference in a finite bistable system, which will
easily lead to instability of the system. PPUSR can make the particles transition through
multiple potential wells, thus consuming excessive noise energy and improving the
stability of the system.

(3) According to experimental and engineering application verification results, the
PPUSR weak fault diagnosis method can obtain larger fault characteristic frequency
amplitude than can the TUSR method. In addition, PPUSR method had a better SNR

for extracting high-frequency signals than the TUSR method.
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