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Abstract: The vibration feature of weak gear fault is often covered in strong background noise, 

which makes it necessary to establish weak feature enhancement methods. Among the enhancement 

methods, stochastic resonance (SR) has the unique advantage of transferring noise energy to weak 

signals and has a great application prospection in weak signal extraction. But the traditional SR 

potential model cannot form a richer potential structure and may lead to system instability when the 

noise is too great. To overcome these shortcomings, the article presents a periodic potential 

underdamping stochastic resonance (PPUSR) method after investigating the potential function and 

system signal-to-noise ratio (SNR). In addition, system parameters are further optimized by using 

ant colony algorithm. Through simulation and gear experiments, the effectiveness of the proposed 

method was verified. We concluded that compared with the traditional underdamped stochastic 

resonance (TUSR) method, the PPUSR method had a higher recognition degree and better 

frequency response capability. 

Keywords: fault diagnosis, stochastic resonance, periodic potential, underdamped, weak 

signal 

1. Introduction 

Gearboxes are widely used in mechanical equipment transmission, which health 

working can effectively reduce costs and energy consumption. However, gearboxes are 

often affected by the component failures, which reduce the transmission efficiency of 

the equipment, thereby increasing energy consumption and possibly even fatal effects. 

[1]. Therefore, timely detection and accurate extraction of fault characteristics are 

particularly important [2, 3]. Vibration signal detection is usually used to extract fault 
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characteristics, but machinery gearboxes often work coupled with other components 

amid a strong background noise. Therefore, extracting early faults amid strong noise is 

very difficult [4, 5]. 

To obtain important characteristics information from the vibration signals of 

mechanical equipment, many scholars have done much research on such signal 

processing methods such as local mean decomposition [6, 7], singular value 

decomposition [8, 9], ensemble empirical mode decomposition [10, 11], and wavelet 

transform [12, 13]. Those methods are widely used in the fault diagnosis of mechanical 

equipment and have achieved fruitful results, but they all improve detection by filtering 

noise. When using those methods to reduce noise, a useful signal may be reduced or 

even destroyed. However, stochastic resonance (SR) is a recent noise-assisted data 

processing method. Compared with the traditional weak signal detection method, SR 

does not eliminate noise to detect weak signals, but transfers noise energy to weak 

signals and improves weak signal while eliminating noise. SR was first proposed in the 

study of paleometeorological glaciers by Benzi [14]. Then with increasing research by 

experts, SR began in physics [15], chemistry [16], and biology [17], and has been 

applied in many engineering and technical fields. To overcome the limitation of small 

parameters under the condition of adiabatic approximation, Tan et al. proposed an 

adaptive frequency-shifted and rescaling transform SR method for a time-frequency 

index to detect high-frequency signals in actual engineering [18]. Leng et al. studied 

the SR of a two-dimensional Duffing oscillator with large parameters [19]. 

Subsequently, Lei et al. proposed an adaptive overdamped SR weak fault diagnosis 

method based on an ant colony algorithm [20]. Li et al. used a chaotic ant colony 

algorithm to optimize system parameters and applied it to planetary gearbox fault 

diagnosis [21]. Liu et al. proposed an adaptive SR detection method based on an 

improved artificial fish swarm algorithm, the numerical simulation and bearing 

experiments show that this method can effectively extract weak fault signals [22]. Then, 

Li et al. proposed a multicomponent population average SR of singular value 

decomposition and ensemble empirical mode decomposition; the effective components 

were selected to be SR one by one, and then the overall average reached the goal of 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 March 2019                   doi:10.20944/preprints201903.0250.v1

http://dx.doi.org/10.20944/preprints201903.0250.v1


extracting weak signals [23, 24]. Qiao et al. proposed a piecewise linear SR weak fault 

diagnosis method, which solved the output saturation characteristics of bistable SR by 

establishing a piecewise potential model [25]. Han et al. proposed an adaptive variable-

scale frequency-shifted band-pass SR denoising method based on empirical mode 

decomposition to detect multifrequency weak signals [26]. 

However, the above studies were based on overdamped SR. In the overdamped SR, 

the inertia and damping factor are neglected. When considering the system inertia and 

damping factor, the SR model becomes a second-order differential equation, which is 

equivalent to secondary filtering and has better signal output effect. Therefore, 

researchers have further studied underdamped SR. In terms of underdamped SR, Lu 

et al. proposed a bistable underdamped SR method, which adjusted the system 

parameters by variable step size to achieve the maximum SNR output [27]. López 

proposed underdamped SR based on the FitzHugh–Nagumo potential and used an 

improved particle swarm optimization algorithm to achieve optimal parameter 

matching, the effectiveness of that method was verified by simulation and bearing 

experiments [28]. Lei et al. used the synergistic effect of the vibration signal, potential 

structure, and damping factor and used the weighted SNR as the evaluation index of 

the output signal to achieve weak signal extraction [29]. The above studies achieved 

certain research results in underdamped SR but were limited to a bistable SR system. 

The potential structure adjustment was too singular and it was difficult to form a rich 

potential structure, so the optimal match between potential structure, noise, and the 

periodic signal could not be achieved. In addition, a bistable SR system achieves noise 

energy consumption by adjusting the barrier height and the well depth. However, 

excessive adjustment of a nonlinear potential system not only increases the response 

time of the system but also increases its instability. 

To solve the above problems, we propose a weak fault diagnosis method for a 

periodic potential underdamped stochastic resonance (PPUSR) system. This method 

can not only independently adjust the barrier height, depth and width of the potential 

well, but also achieve a more abundant potential structure and can achieve coordinated 

matching of the potential structure, periodic signal, and noise based on ant colony 
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algorithm. At the same time, the continuous potential well can consume excessive noise 

energy, thereby reducing noise interference, improving the stability of the system, and 

enhancing weak signal detection ability. 

The rest of the paper is as follows: Section 2 describes the PPUSR model, SNR of 

the PPUSR model, and parameters optimization based on ant colony algorithm. Section 

3 proposes a weak fault diagnosis method for PPUSR and simulates the method. Section 

4 describes the verification of the effectiveness of the proposed method through gear 

experiments in the lab and rolling mill gearbox engineering practice. Section 6 is the 

conclusion. 

2. PPUSR method 

2.1. The introduction of PPUSR model 

SR uses the synergy of the input signal and noise in a nonlinear system to enhance 

the signal energy and identify weak signals. The three conditions generated by SR are 

nonlinear systems, input signals, and noise. When the three all achieve optimal 

matching relations, SR has the most obvious amplification effect on the signal. The 

traditional SR is bistable or tristable, affecting the enhancement of weak signals, in 

order to improve the weak signal enhancement ability for SR. In this paper, PPUSR 

potential model is studied， the nonlinear system that is potential function [30] 

introduced is  

 2

0( ) cos ( )U x U kx=
                        

 (1) 

The periodic potential model curve is shown in Fig. 1. 
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Fig. 1. Potential function ( )U x  versus x . (a) Different parameter k  with fixed 0 1U = . (b) 

Different parameter k  with fixed 0 2U = . (c) Three-dimensional potential function ( )U x  

versus 0U  and x  with fixed 1k = . (d) Three-dimensional potential function ( )U x  versus 

k  and x  with fixed 0 0.5U = . 

The potential model changes with the parameters, as shown in Fig. 1. Fig. 1a and 1c 

show that as the potential system parameter 0U  increases, the bottom position of the 

potential well is fixed, and the barrier height and well depth increase continuously. In 

Fig. 1b and 1d, when the potential system is adjusted with the increase of k , the barrier 

height and well depth are unchanged, but the width of the potential well gradually 

increases. As the parameters 0U  and k  increase, the potential depth, the barrier 

height, and the width increase, and vice versa. Therefore, the change of the barrier 

height and the well depth can be achieved by adjusting 0U , and the adjustment k  can 

independently adjust the potential well width. When the noise and periodic signals are 

small, the particles oscillate inside a potential well; at this time the nonlinear system is 

a monostable system. As the noise increases, the particles break through the barrier and 

oscillate between two or more potential wells; at this time the nonlinear system is a 

multistable system. Therefore, when the external driving signal is constant, the 

synergistic effect of the parameters enables the particles to acquire an optimal motion 

form, thereby producing a better SR effect. 
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To further analyze the PPUSR mechanism, and the SNR of the PPUSR potential 

model is analyzed here. In accordance with the potential model, we considered particle 

motion in a PPUSR system to get 

 
( )

( ) ( )
2

2

dU xdx dx
S t N t

dt dt dt
= − − + +

                  
 (2) 

where ( )U x  is the periodic potential function.   is the damping factor. 

( ) cos2 dS t A f t=  is a periodic signal, where A  is amplitude, df  is frequency. 

( ) 2 ( )N t D t=  is the Gauss white noise with zero mean satisfies 

[ ( ) ( )] 2 ( )E N t n t D  − = , D  is noise intensity. Combining Eq. (1) with Eq. (2) 

yields 

 ( ) ( )
2

02
2 cos sin cos 2 2 ( )d

dx dx
kU kx kx A f t D t

dt dt
  = − + +              (3) 

The PPUSR system model is shown in Fig. 2. 

( ) ( )S t N t+

( ) ( )02 cos sinkU kx kx

' ( )x t−

  ( )x t

 

Fig. 2. PPUSR system model 

2.2. SNR analysis of PPUSR potential model 

To analyze the output SNR of the PPUSR model under small parameters, first let 

=0 ， =0 ，and /dx dt y= . Eq. (3) then becomes 
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( ) ( ) ( ) ( )02 +Acos Ω 2

dx
y

dt

dy
kU cos kx sin kx t D t

dt



=


 = +
               

 (4) 

In addition, let 0A= , 0D = , and 0
 

dy

dt
= . In the range (0, )

2


, Eq. (4) can get the two 

singular points as follows: ( )1 1, ,0
2

x y
k

 
=  
 

 and ( )2 2, , 0x y
k

 
=  
 

. The Jacobian 

matrix obtained by linearizing Eq. (4) at the singularity ( )1 1,x y  is 1 2

0

0 1

2 0
R

k U

 
=  

− 

, and its corresponding singular value is 2

1 2 02k U =  −， . Similarly, the Jacobian 

matrix obtained by linearizing Eq. (4) at the singularity ( )2 2,x y  is 2 2

0

0 1

2 0
R

k U

 
=  
 

, and its corresponding singular value is 2

1 2 0λ 2k U= ， . Then the steady-state 

probability density function ( , , )x y t  of the particle motion can be derived by using 

the Fokker–Planck equation [31] 

 

( ) ( ) ( ) ( )( ) ( )

( )

0

2 2

ρ , , yρ , , 2 cos sin AcosΩt , ,
x

ρ , ,

x y t x y t kU kx kx x y t
t y

D x y t
x y


  

 = − − +      

  
+ + 

  

   (5) 

According to the adiabatic approximation theory, the SPD function corresponding to 

Eq. (5) can be further derived as 

  
( , , )

( , , ) exp[ ]e
st

U x y t
x y t N

D
 = −                         (6) 

where N  is the normalized constant and ( , , )eU x y t  is the generalized potential 

energy function [27] obtained by the small parameter expression 
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 ( ) ( )2 2

0

1
, , cosΩ

2
eU x y t y U co k Ax txs= + −

                  
 (7) 

To further analyze the mechanism of the SR potential model, we concluded that the 

escape rate of particles is 

 ( )
( ) ( )21 12 11 2

2

, , t , ,β β λ
R exp

2π λ D

e eU y Ux x
t

y t


− + 
= −  

 
              (8) 

Eq. (7) is substituted into Eq. (8) to get 

 ( ) 1 2 01

2

β β λ
exp exp cosΩ

2π λ 2

U A
R t

D Dk
t




   
= − −   

                   

 (9) 

The Taylor expansion of Eq. (9) can be obtained by 

 ( )
2

1 2 201

2

β β λ 1
exp 1 cosΩ cos Ω

2π λ 2 2 2

U A A
R t t

D Dk Dk
t

 


    
= − − + +   

     

     (10) 

Let 
1 2 01

0

2

β β λ
exp

2π λ

U
R

D

 
= − − 

 
. Due to the output power spectrum of the system is 

 ( ) ( ) ( )1 2S ω S ω S ω= +                         (11) 

where let 1 0
2

A
R R

Dk


 = , so we can get 

 
( )

( ) ( )
3 2 2

1
1 2 2 2

0

β
δ ω Ω δ ω Ω

8 Ω

R

R
S

k


= − + +  

+
                  (12) 

 
( ) ( )

2 22 2

01
2 2 2 2 2 2

0 0

2 RR β
1

2 R Ω 4 R Ω
S

k

 
 = −

+ +  

                    (13) 

Finally, we get the SNR 
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( )

( )

1

2 0
02 2

1
0 0

2 2 2
2 22 0 0

2

2
expS ω dω Uπ

exp 1
S ω Ω 32 2

16 exp Ω
2π

U
U A

A D
SNR

k D D k U U
D

D



−

  
−  

    = = − −   =     
− +   
   

   (14) 

To show the advantage of using the proposed method to process the signal, under the 

same noise intensity, the SNRs with a change of the potential parameter are shown in 

Fig. 3. The SNR curve of the PPUSR method is also obtained, and the SNR is much 

higher than that of the traditional underdamped stochastic resonance (TUSR) method 

in [27]. Therefore, it can be concluded that for the same noise intensity and parameters, 

the ability of PPUSR to extract weak faults is much better than that of TUSR method. 

 

Fig. 3. Comparison of SNR between PPUSR method and TUSR method 

2.3. Parameters optimization based on ant colony algorithm 

According to the above analysis, the parameters can be optimally matched by 

adjusting the parameters 0U  and k . This paper optimizes the system parameter 

adjustment potential model based on the ant colony algorithm to achieve the best match 

between the potential model, the input signal and noise, thus obtaining the best SNR 

output. The ant colony system was first proposed by the Italian scholars Dorigo and 

Maniezzo [32]. The basic idea of applying the ant colony algorithm to solve the 

optimization problem is that the ants with shorter paths release more pheromone. With 

the advancement of time, the concentration of pheromone accumulated on the shorter 

path is gradually increasing, and the number of ants selecting the path is increasing. In 
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the end, the whole ants will concentrate on the best path under the action of positive 

feedback, and the corresponding solution is the optimal solution to be optimized. 

In order to compare the SNR output of PPUSR method and TUSR method, the ant 

colony algorithm is used to optimize the parameters of two SR systems. Simulate a 

small parameter signal, 0( ) cos(2 )S t A f t= , where the sampling frequency 5sf = , 

signal amplitude 0.01A= , signal frequency 0 0.008f = , noise intensity 0.5D = , 

data length 5000N = , number of ants 100m= , pheromone evaporation coefficient 

0.9 = , maximum iteration number 20n = , pheromone increase intensity coefficient 

200Q = , pheromone concentration 200q = , damping factor 1 = . The parameters 

optimization range are [0, 10], the matching parameters and SNR are obtained by the 

ant colony algorithm optimization system parameters of PPUSR method and TUSR 

method in Fig. 3. Comparing Figs. 3a and 3b, the output SNR of PPUSR method is 

23.19 dB, and the output SNR of TUSR method is 21.15 dB. Therefore, it can be judged 

that the PPUSR method has a better SNR output under the same conditions, that is, has 

better SR effect. 

 

Fig. 4. Output SNR of PPUSR and TUSR method for ant colony 
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3. The weak fault diagnosis strategy based on PPUSR model 

3.1. PPUSR weak fault diagnosis method 

In accordance with the above analysis, we propose a weak fault diagnosis method for 

the PPUSR model. The main process is described as follows: 

Parameters  optimization

Runge- Kuta calculation

End

Yes

Initialize system parameters

SNR > max SNR

max SNR = SNR

max  = ；max =

 max 

  exceed 

value range 

Vary , 

No

No

Yes

=



 

Solving  envelope signal

PPUSR 

original signal

Frequency-shifted and scaling transform

= 

, , 

Ant colony 

algorithm

Weak fault diagnosis result

Optimal parameters

0U

0U

0U 0U

k

k, 

k k

 

Fig. 5. PPUSR weak fault diagnosis process 

(1) Signal preprocessing. The collected vibration signal is processed to obtain an 

envelope signal. Then the input signal is initially processed by using a shifting-

frequency and rescaling transform to meet small parameter requirements under 

approximate adiabatic conditions. 

(2) Initializing of the parameters of the system. The parameters include ant colony size, 

step size, optimization range, maximum iteration number, pheromone evaporation 

coefficient, and the pheromone increasing intensity coefficient. 

(3) Parameter optimization. Calculate the corresponding probability according to the 

prior knowledge and pheromone concentration, and find the optimal path of the ant; 

that is, find the optimal combination of parameters 0U  and k . 

(4) Output signal calculation. Input the optimized parameters into the PPUSR system, 

calculate the system output using the Runge–Kutta equation for Eq. (15), and use the 

SNR as the evaluation index of the output signal for Eq. (16). 
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 
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'
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'
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





= − − + + =
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 = − + − + + + += +


= + = − − + − + + + +


+ = + + + +
 + = + + + + 6;













               (15) 

where ( , )f t x  is the two derivatives of the potential function, and h  is the calculated 

interval. 

10 /2

1

10log ( )d

N

i d

i

A
SNR

A A
=

=

−
                      (16) 

where N  is the data length, dA  is amplitude of the fault characteristic frequency in 

the power spectrum, 
/2

1

N

i d

i

A A
=

− is amplitude of the power spectrum for sum noise. 

(5) Evaluation of output results. Find the optimal SNR and the corresponding optimal 

parameter match. If the optimal parameter is within the optimization range, expand the 

range of the corresponding parameter and return to step 3; otherwise, go to step 6. 

(6) Signal post processing. Substituting the obtained optimal parameters into the 

PPUSR system, the fault characteristic frequency of the vibration signal is finally 

extracted. 

3.2. Simulation verification 

The parameters of PPUSR method and the TUSR method were set to 0 1U k= = ,

1a b= =  respectively, and the frequency response curves were obtained in Fig. 6. We 

can get the SNR curves of both methods decreasing with increasing frequency. 

However, the high-frequency SNR of PPUSR method was better than that of the TUSR 

method, and the SNR was more stable under different frequency conditions, indicating 

that the stability of the PPUSR potential model is better. 
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Fig. 6. Frequency response of PPUSR and TUSR methods 

To verify the effectiveness of the proposed method, we processed the simulated gear 

fault signal by the PPUSR weak fault diagnosis method. The noise was added as signal 

interference. The simulated gear fault signal was expressed by 

  2( ) sin(2 ) exp [ ( ) ] 2 ( )dS t A ft d t n t T D t =  − − +
          

(17) 

The PPUSR equation for the simulated gear fault signal was 

 ( ) ( ) ( )
2

02
2 cos sin

dx dx
kU kx kx S t

dt dt
= − +                 (18) 

where 1=A  is the signal strength, 1=f KHz is the modulation frequency, sfd 6=  

( 10=sf KHz is the sampling frequency) is the attenuation rate, ( ) ]/[ dTttn =
 
is the 

control pulse, ( )t  is the Gaussian white noise, 12 =D  is the noise intensity, 

0.01786dT =  is the interval pulse ( 1/ 56d df T= = Hz is the drive frequency), and the 

sampling time is 0.5 s. Figs. 7a and 7b show the simulated gear fault signals without 

and with noise respectively. 
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Fig. 7. Simulated gear signals. (a) Periodic signal without noise. (b) Periodic signal with noise. (c) 

Spectrum. (d) Envelope spectrum. 

 

Fig. 8. PPUSR and TUSR methods to extract simulated gear faults. (a) PPUSR method waveform. 

(b) PPUSR method spectrum. (c) TUSR method waveform. (d) TUSR method spectrum. 

We can be seen from Fig. 7c that the simulated gear fault signal does not detect any 

fault information in the spectrum due to strong noise interference. In Fig. 7d, the target 

signal is also completely covered by the strong noise, so the fault frequency of the 

simulated gear signal is not recognized. To verify the effectiveness of the proposed 

method, the envelope signal was processed by the PPUSR system. To meet the 

requirements of small parameters, the envelope signal was a shifting-frequency and 

rescaling transform, and then the ant colony algorithm was used to adaptively optimize 

the system parameters and damping factor; the parameter combination was 

0.4723U = , 1.2k = , and 0.06 = . When the parameters were put into the PPUSR 

system, the time domain waveform and spectrum were as shown in Figs. 8a and 8b. As 
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can be seen from Fig. 8a, the time domain waveform exhibited a periodic variation. In 

Fig. 8b, it can be seen that the simulated fault characteristic frequency was prominent, 

and its amplitude was 0.16736 higher than the surrounding noise. As a comparison with 

the proposed method, we used the TUSR method to process the simulated gear signals. 

The ant colony algorithm was also used to optimize the system parameters and damping 

factors to obtain 1.102a = , 4.96b = , and 0.0075 = . The parameters were put into 

the TUSR system, and the time domain and spectrum were obtained, as shown in Figs. 

8c and 8d. The fault characteristic frequency could also have been extracted by the 

TUSR method, but the characteristic frequency peak was seriously interfered with by 

the surrounding noise, and its amplitude was only 0.03971 higher than that of the 

surrounding noise. The above analysis shows that when the noise was too large, the 

periodic potential could consume too much noise interference through multiple 

potential wells, and the bistable system was singular due to the adjustment of the system 

potential structure. When the noise was driven too much, the instability of the bistable 

system was enhanced, which affected the enhancement of the weak signal. 

4. Experimental verification 

4.1. Gear experimental verification 

To further verify the effectiveness of the proposed method, we detected a gear fault 

characteristic frequency using the power transmission fault diagnosis test bench shown 

in Fig. 9. We cut a crack 1 mm deep and 0.15 mm wide in the root of the gear in the 

root direction to simulate an early failure. The modulus of the gear was 1.5. The 

parameters of the gear were 1 100Z = , 2 29Z = , 3 90Z = , and 4 36Z = . The motor 

speed was 840 r/min, the sampling frequency was 5120 Hz, and the data length was 

4,096 points. Because the speed of the motor was reduced by a planetary gearbox, the 

transmission ratio was 4.571, so the input shaft speed of the parallel shaft gearbox was 

183.767 r/min; that is, the rotation frequency was 3.063 Hz. According to vibration 

analysis theory, the fault characteristic frequency of the faulty tooth was 

10.561df =  Hz. The time domain waveform and spectrum of the vibration data 

collected by the acceleration sensor were as shown in Fig. 10. It can be seen from the 
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time domain waveform that although multiple impacts can be seen, the target frequency 

could not be determined due to noise interference, and there were multiple low-

frequency and high-frequency noises in the spectrum; the fault characteristic frequency 

components were completely covered by noise. In Fig. 10c, the fault characteristic 

frequency can be seen, but the interference frequency was too high. The fault 

characteristic frequency could not be accurately judged. The fault characteristic 

frequency was extracted by the PPUSR method and the TUSR method. To meet the 

small parameter requirement, by using the ant colony algorithm to optimize the 

parameters and damping factors of the two systems, we got 0 1.627U = , 0.684k = , 

0.019 = , and 1.275a = , 2.064b = , 0.0021 = . The parameters and damping 

factors were substituted into the SR system. The time domain waveforms and spectrum 

are shown in Fig. 11. Comparing Fig. 11a with 11c, the PPUSR method clearly had 

greater periodicity than did the TUSR method. Comparing Fig. 11b with 11d, it can be 

seen that the fault characteristic frequency extracted by the PPUSR method was 

obviously manifested, the doubling frequency component appeared, and the 

fundamental frequency amplitude was 1.0217 higher than that of the surrounding noise. 

The TUSR method also extracted the fault characteristic frequency, but it was seriously 

interfered with by the surrounding noise. The fundamental frequency amplitude was 

only 0.1054 higher than the surrounding noise, and the doubling frequency was also 

interfered with by the noise. Therefore, the gear failure experiment demonstrated again 

that the proposed method was superior to the TUSR method and had better recognition. 

 

Fig. 9. Power transmission fault diagnosis test bench 
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Fig. 10. Gearbox faults: (a) Waveform. (b) Spectrum. (c) Envelope spectrum. 

 

Fig. 11. PPUSR and TUSR methods to extract gearbox faults: (a) PPUSR waveform. (b) PPUSR 

spectrum. (c) TUSR waveform. (d) TUSR spectrum. 

4.2. Rolling mill Gear experimental verification 

When the rolling mill was inspected, it was found that the gearbox had slight 

abnormal vibration, but the equipment failure detection system did not issue an alarm, 

and the equipment was still in normal operation. The rolling mill gearbox is shown in 

Fig. 12a. In order to detect and prevent fault in the early stage, the measuring point of 

the acceleration sensor was arranged in the axial position of the input shaft of the rolling 

mill gearbox. The ZonicBook/618E tester was used to collect the vibration signal of the 

measuring point. The sampling frequency is 2560 Hz. The numbers of sampling points 

were 2048 points, the motor speed was 1300r/min, and the corresponding input shaft 

frequency was 21.67Hz. The time domain waveform, spectrum, and envelope spectrum 

were shown in Fig. 13. In Fig. 13a, the original signal was completely covered by the 
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surrounding noise, and the impact signal cannot be seen. In Fig. 13b, the frequency of 

715 Hz is the maximum energy, and a dense sideband occurs. According to Table 2, 

the fault may appear on the transmission axis II, but the energy of the sideband is small, 

and the interval of the sideband cannot be determined. In Fig.13c, although we can see 

the fault characteristic frequency of the gear, the surrounding noise is seriously 

disturbed. Therefore, we cannot judge the specific faulty gear. The gear signals were 

processed by the proposed method and the TUSR method. The ant colony algorithm is 

used to optimize the system parameters and damping ratio, and the combination of 

parameters were 0 0.25U = , 1.423k = , 0.197r =  and 2.7a = , 0.0109b = , 

0.402r = ，respectively. Comparing with Fig. 14a and Fig. 14c, the time domain 

waveform curve has better periodicity in Fig. 14a. In Fig. 14b and 14d, both methods 

yield a characteristic frequency of 19.2 Hz. According to Table 1, it can be judged that 

the gear on the transmission shaft II is faulty. Through disassembly, we find that the 

gear on the transmission shaft II has broken tooth in Fig. 12b, which was consistent 

with the actual situation. Comparing Fig. 14b and 14d, Fig. 14b not only has the 

characteristic frequency but also the frequency multiplication was seen, and the 

recognition degree of the gear fault characteristic frequency was better. Therefore, the 

effectiveness of the proposed method was proved again by the gear fault, and it had 

better effect than the TUSR method. 

  

Fig. 12 Rolling mill gearbox faults: (a) Fault detection site. (b) Gear broken tooth 

Table 1. Frequency conversion of each axis and meshing frequency of each gear pair 

Transmission 

shaft 
Tooth ratio 

Rotating speed 

(r/min) 

Rotation 

frequency(Hz) 

Meshing 

frequency(Hz) 

I -- 1300 21.67 -- 
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II 33/38 1129 18.82 715 

III 42/89 533 8.89 790 

IV 21/74 151 2.52 186 

V 24/85 43 0.72 61 

VI 38/38 43 0.72 27 

 

Fig. 13. Rolling mill gearbox faults: (a) Waveform. (b) Spectrum. (c) Envelope spectrum. 

 

Fig. 14. PPUSR and TUSR methods to extract rolling mill gearbox faults: (a) PPUSR waveform. 

(b) PPUSR spectrum. (c) TUSR waveform. (d) TUSR spectrum. 

5. Conclusion 

To overcome disadvantage of TUSR fault detection method, this paper proposes a 

PPUSR method and studies the potential function, and SNR of the simulated system 

based on the PPUSR phenomenon. After presented method was validated by theoretical 

and experimental, the following conclusions can be drawn: 

(1) The PPUSR model can not only adjust the potential well width independently by 

parameter k  but can also synchronously adjust the barrier height and the depth of the 
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well by adjusting the parameter 0U . Therefore, it has a richer potential model structure 

and can achieve the best match between potential structure, periodic signal, and noise. 

(2) When the noise is too great, the oscillation of the particles between potential wells 

in the TUSR system is too fast due to the limitation of the potential model. The 

excessive noise will cause noise interference in a finite bistable system, which will 

easily lead to instability of the system. PPUSR can make the particles transition through 

multiple potential wells, thus consuming excessive noise energy and improving the 

stability of the system. 

(3) According to experimental and engineering application verification results, the 

PPUSR weak fault diagnosis method can obtain larger fault characteristic frequency 

amplitude than can the TUSR method. In addition, PPUSR method had a better SNR 

for extracting high-frequency signals than the TUSR method. 
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