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The Universe, rather than being homogeneous, displays an almost infinite topological genus, because it is punctured with 

a countless number of gravitational vortexes, i.e., black holes.  Starting from this view, we aim to show that the occurrence 

of black holes is constrained by geometric random walks taking place during cosmic inflationary expansion.  At first, we 

introduce a visual model, based on the Pascal’s triangle and linear and nonlinear arithmetic octahedrons, which describes 

three-dimensional cosmic random walks.  In case of nonlinear 3D paths, trajectories in an expanding Universe can be 

depicted as the operation of filling the numbers of the octahedrons in the form of “islands of numbers”: this leads to 

separate cosmic structures (standing for matter/energy), spaced out by empty areas (constituted by black holes and dark 

matter).  These procedures allow us to describe the topology of an universe of infinite genus, to assess black hole formation 

in terms of infinite Betti numbers, to highlight how non-linear random walks might provoke gravitational effects also in 

absence of mass/energy, and to propose a novel interpretation of Beckenstein-Hawking entropy: it is proportional to the 

surface, rather than the volume, of a black hole, because the latter does not contain information.  

 

 

Keywords: arithmetic figures, black hole, deterministic model, geometrization of physics, random walk.   

 

 

In this paper, we will tackle the issue of a scarcely observed cosmic topological property.  The most successful accounts, 

including Einstein’s (1905), implicitly assume that the Universe is a Riemannian manifold with genus zero. Genus is a 

particular topological invariant, generally used for classification of 2D manifolds, linked to the Euler characteristic, which 

generalizes to higher dimensions. However, the Universe displays countless holes, i.e., the spacetime punctures of its own 

structure called black holes.  This means that the Universe is equipped a countless, or at least very high, number of holes, 

and, assuming that it is isotropic and homogeneous at very large scales, the cosmic displacement of black holes might be 

regular.  To make a trivial example, we might think to the spacetime fabric as a sponge equipped with countless, uniformly 

placed, holes.   

Therefore, we ask: what are, and how are cosmic vortexes produced, within the geometric dynamics on a 3D manifold of 

infinite genus? What are the topological features, peculiarities and predictable physical consequences of a Universe 

described in terms of a Riemannian manifold with very high, almost infinite, genus?  To answer these questions, we 

introduce a deterministic geometric model that permits visual constructions of linear (without any acceleration) and 

nonlinear (with the simplest uniformly acceleration) random walks in three-dimensional spaces.  Our model is derived 

from the Pascal’s triangle, an array of the binomial coefficients widely used in numerous contexts.  Its applications in 

mathematics extend to algebra, calculus, trigonometry, plane and solid geometry.  Two major areas where Pascal’s 

Triangle is used, are algebra and probability/combinatorics (Edwards 2013). It is a useful tool in finding, without tedious 

computations, the number of subsets of r elements that can be formed from a set with n distinct elements (Brothers 2012). 

In the real world, this leads into the complex topic of graph theory (turning mapping information into structures such as 
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shortest paths, Dijkstra’s algorithm, airplane routes and airport control, computer graphics, engineering, data management 

and search algorithms).  In a triangular portion of a grid, the number of shortest grid paths from a given node to the top 

node of the triangle is the corresponding entry in Pascal’s triangle. The pattern produced by an elementary cellular 

automaton using rule 60 is exactly the Pascal’s triangle of binomial coefficients reduced modulo 2.  Further, to provide a 

last example, Proton Nuclear Magnetic Resonance displays an inherent geometry in which Pascal’s triangles have a 

prominent role (Hore 1983).   

In the following, we will show how Pascal’s triangle-derived models are able to describe the paths of random walks in an 

expanding universe and to explain the formation of black holes.  Also, we calculate pure mathematics models without 

gravitation, considering that non-linear random walks may stand for motion with acceleration able to give rise to the the 

effect of cosmic gravity.  

 

GEOMETRIC MODEL OF RANDOM WALKS  

Simple and visual geometric models are needed to to substantiate the consistency in describing complex phenomena 

(Klein 1956; Sommerfeld 1973).  Here we propose various recursive formulas for calculating the step-shaped Pascal’s 

triangle at various initial conditions, to assess cosmic random walks processes.   

Pascal’s arithmetic triangle, its analogues, generalizations and possible applications of visual geometric models have been 

thoroughly carried out (Yurkin, 2013, 2016, 2018; Yurkin et al., 2018).  Novel, stepwise form for Pascal’s triangle (1D), 

two-sided (2D) and multidimensional generalizations can be achieved, both in linear and nonlinear random walks’ models 

(Kolmogorov et al., 1995).  Yurkin (1995) proposed an optical laser scheme that is a nonlinear 1D walk in a system of 

rays; further, a real laser nonlinear 2D random walk in a system of rays was carried out. Nonlinear and non-Markovian 

random walks were described by Fedotov and Korabel (2015). Sarkar an Maiti (2017) described a symmetric random 

walk on a regular tetrahedron, an octahedron and a cube. In the 1D case (along a straight line) (Kolmogorov et al., 1995), 

a random walk (linear and nonlinear) can occur along two mutually perpendicular directions (right, left) inside an 

arithmetic triangle (the triangle has two corners on his base and one on his top).  In the 2D case (Yurkin 2019), a random 

walk (linear and nonlinear) can be carried out in four different directions (forward, back, right, left) inside an arithmetic 

square (the square has four corners).  

In this paper, we aim to assess visual linear and nonlinear 3D models in form of arithmetic octahedrons to describe linear 

and nonlinear 3D random walks.   In the 3D case of a Pascal’s triangle, a random walk (linear and nonlinear) can be 

carried out in six  different directions (forward, backward, right, left, up, down) inside an octahedron equipped with six 

vertices. 

 

Linear random 3D walk in the octahedron.  A 3D linear random walk or a walk in a volume can be described using a 

3D model in the form of an arithmetic regular octahedron. We achieve the linear binomial coefficients in the computed 

cell of the octahedron 𝑛 by summing the numbers from the six cells adjacent to the computed cell. 

Figures 1-4 show sequentially, for the first four iterations, images of linear arithmetic octahedrons composed of small 

cubes.  The parts of the Figures 1-4 termed with (a) show images of the arithmetic octahedrons themselves, while (b) 

show images of layers of octahedrons composed of small cubes containing numbers. These numbers correspond to the 

number of walks from the initial cell (initial cube) to the final cell (final cube). 

 

 

 
Figure 1. The zero linear arithmetic octahedron (zero iteration 𝑛 = 0) consists of 1 cube. 
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Figure 2. The first linear arithmetic octahedron (the first iteration 𝑛 = 1) consists of 6 cubes. 

 

 

 

 
Figure 3. The second linear arithmetic octahedron (second iteration 𝑛 = 2) consists of 19 cubes. 
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Figure 4. The third linear arithmetic octahedron (the third iteration 𝑛 = 3) consists of 44 cubes. 

 

 

 

 

 

The sequence of numbers of octahedrons in the example is denoted by𝑛: = 0, 1, 2, …. The total sum of numbers in 

octahedrons is 6𝑛. The numbers characterizing the octahedron (which describe the location of the cubes composing the 

octahedron) are denoted 𝑝, 𝑞 and 𝑟: 

  𝑝 = 0, ±1, ±2, … , ±𝑛; 𝑞 = 0, ±1, ±2, … , ±𝑛:𝑟 = 0, ±1, ±2, … , ±𝑛.           (1)  

Denote a number located in the 𝑛 – octahedron as (

𝑛
𝑝
𝑞
𝑟

), then specify the number of the zero octahedron(𝑛 = 0),  or, in 

other words, the initial conditions: 

   (

0
𝑝
𝑞
𝑟

) = 1for 𝑝 = 0, 𝑞 = 0, 𝑟 = 0 and (

0
𝑝
𝑞
𝑟

) = 0             (2)  

 

for the other values 𝑝, 𝑞 and 𝑟. 

The numbers in the linear arithmetic octahedron are linear binomial coefficients (

𝑛
𝑝
𝑞
𝑟

).  They can be can be calculatedusing 

the recursive 3D linear expression: 

 

(

𝑛
𝑝
𝑞
𝑟

) = (

𝑛 − 1
𝑝

𝑞 − 1
𝑟

) + (

𝑛 − 1
𝑝
𝑞

𝑟 + 1

) + (

𝑛 − 1
𝑝 − 1

𝑞
𝑟

) + (

𝑛 − 1
𝑝 + 1

𝑞
𝑟

) + (

𝑛 − 1
𝑝
𝑞

𝑟 − 1

) + (

𝑛 − 1
𝑝

𝑞 + 1
𝑟

).            (3) 

 

Example 1: 𝑛 = 3, 𝑝 = 1, 𝑞 = 2, 𝑟 = 0. 

(

3
1
2
0

) = (

2
1
1
0

) + (

2
1
2
1

) + (

2
0
2
0

) + (

2
2
2
0

) + (

2
1
2

−1

) + (

2
1
3
0

) = 3, 

as 

(

2
1
1
0

) = 2, (

2
1
2
1

) = 0, (

2
0
2
0

) = 1, (

2
2
2
0

) = 0, (

2
1
2

−1

) = 0, (

2
1
3
0

) = 0. 
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In Figures 3 and 4, these numbers are circled in red circle, except for the number (

2
1
3
0

) = 0, which goes beyond the square 

in Figure 3 in accordance with the expression (13); for this number: 𝑞 = 3 > 𝑛 = 2. 

 

Figures 2-4 show that the octahedrons are densely filled with green cubes (branching cells). Neighboring empty cells 

inside octahedrons (white cubes or gaps) will be filled with green cubes at the next iteration. We can say that numbers 

densely (without spaces) fill the linear arithmetic octahedrons). 

 

Nonlinear random 3D walk in the octahedron.  To describe a nonlinear 3D random walk, we calculate nonlinear 

coefficients using the recursion formula given below and check it in the Figures.  A 3D nonlinear random walk or a walk 

in a volume can also be described, like a linear one, using a 3D model in the form of a nonlinear arithmetic regular 

octahedron. Nonlinear binomial coefficients in the computed cell of the octahedron 𝑛 = 1 are obtained by summing the 

numbers of six cells adjacent to the computed cell; nonlinear binomial coefficients in the cell of the octahedron 𝑛 = 2 we 

get by summing the numbers of six cells located one through the calculated cell; nonlinear binomial coefficients in the 

cell of the octahedron 𝑛 = 3 we get by summing the numbers of six cells located two through the calculated cell; etc.  

Figures  5-8 show sequentially (for the first four iterations) images of the nonlinear arithmetic octahedrons composed of 

small cubes.  Figures  5-8 termed with (a) show images of the arithmetic octahedrons themselves, while (b) show images 

of layers of octahedrons composed of cubes containing numbers. These numbers correspond to the number of walks from 

the initial cell (initial cube) to the final cell (final cube).  

 

 

 

 
Figure 5. The zero nonlinear arithmetic octahedron (zero iteration 𝑛 = 0) consists of 1 cube. 

 

 

 

 

 
Figure 6. The first nonlinear arithmetic octahedron (the first iteration 𝑛 = 1) consists of 6 cubes. 
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Figure 7. The second nonlinear arithmetic octahedron (the second iteration 𝑛 = 2) consists of 36 cubes. The Figures 

𝑞 = ±1 clearly show the formation of separate structures of numbers (“islands of numbers”). 
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Figure 8. The third nonlinear arithmetic octahedron (the third iteration 𝑛 = 3) consists of 175 cubes. The Figures 𝑞 =
±1, 𝑞 = ±2, 𝑞 = ±4 clearly show the formation of separate structures of numbers (“islands of numbers”).  The image of 

the corresponding octahedron is not dispalyed. 
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The sequence of numbers of octahedrons (rows of numbers in the octahedron) for the 3D case in this example is denoted 

by 𝑛: 𝑛 = 0, 1, 2, …. The total sum of numbers in octahedron is 6𝑛. 

The numbers characterizing the nonlinear octahedron  (the numbers illustrating the position of the cubes of which the 

octahedron is composed) are denoted by 𝑝, 𝑞 and 𝑟: 

𝑝 = 0, ±1, ±2, … , ±𝑛(𝑛 + 1)/2; 
  𝑞 = 0, ±1, ±2, … , ±𝑛(𝑛 + 1)/2;     (4) 

𝑟 = 0, ±1, ±2, … , ±𝑛(𝑛 + 1)/2.  

 

 

Denote a number located in the 𝑛 - octahedron as (

𝑛
𝑝
𝑞
𝑟

) then specifies the number of the zero octahedron (𝑛 = 0), or in 

other words, the initial conditions: 

   (

0
𝑝
𝑞
𝑟

) = 1for 𝑝 = 0, 𝑞 = 0, 𝑟 = 0 and (

0
𝑝
𝑞
𝑟

) = 0             (5)  

for the other values of 𝑝, 𝑞 and 𝑟. 

The numbers in the nonlinear arithmetic octahedron are nonlinear binomial coefficients (

𝑛
𝑝
𝑞
𝑟

) , 𝑤ℎ𝑖𝑐ℎ can be found using 

the recursive 3D nonlinear expression: 

 

(

𝑛
𝑝
𝑞
𝑟

) = (

𝑛 − 1
𝑝

𝑞 − 𝑛
𝑟

) + (

𝑛 − 1
𝑝
𝑞

𝑟 + 𝑛

) + (

𝑛 − 1
𝑝 − 𝑛

𝑞
𝑟

) + (

𝑛 − 1
𝑝 + 𝑛

𝑞
𝑟

) + (

𝑛 − 1
𝑝
𝑞

𝑟 − 𝑛

) + (

𝑛 − 1
𝑝

𝑞 + 𝑛
𝑟

).           (6) 

Example 2: 𝑛 = 3, 𝑝 = 0, 𝑞 = 0, 𝑟 = 0. 

(

3
0
0
0

) = (

2
0

−3
0

) + (

2
0
0
3

) + (

2
−3
0
0

) + (

2
3
0
0

) + (

2
0
0

−3

) + (

2
0
3
0

) = 6, 

as 

(

2
0

−3
0

) = 1, (

2
0
0
3

) = 1, (

2
−3
0
0

) = 1, (

2
3
0
0

) = 1, (

2
0
0

−3

) = 1, (

2
0
3
0

) = 1. 

In Figures 7-8, these numbers are circled in blue. 

 

Figures 6-8 illustrate that the octahedrons are not tightly filled with yellow cubes (branching cells). Some empty cells 

inside the octahedrons (white cubes or gaps) will be filled with yellow cubes at the next iteration, and some empty cells 

will be filled after several iterations, and some empty cells will be filled after many iterations, and so on. Our numerical 

calculations show that for big 𝑛 numbers the relative quantity of the empty cells or gaps (relative to the general quantity 

of cells in nonlinear octahedron) decreases with 𝑛 increasing.    
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COSMIC RANDOM WALKS 

 

The results achieved in the previous paragraphs allow the classification of different types of random walks in the form of 

the following table:    

 

 Linear random walk (one unit steps, perpendicular 

each others) 

Nonlinear random walk (first one unit steps, second 

two units steps, third three unit steps, ets., 

perpendicular each others) 

 

 

3D 

case 

 

• Steps of constant length along six perpendicular 

directions in octahedron. 

• Gaps and “islands of numbers” are absent in a 

linear arithmetic octahedron. 

 

• Steps of increasing length along six perpendicular 

directions in octahedron.  

• Gaps and “islands of numbers” appear and 

disappear in different areas in a nonlinear arithmetic 

octahedron after several or many iterations. The 

relative quantity of the empty cells or gaps decreases 

with 𝑛 increasing. 

 

 

The above-described Pascal’s triangle-framed geometric linear and nonlinear constructions and recursive formulas may 

find application to understand the development of black holes and dark matter in an expanding universe, starting from 3D 

random walks.  The filled cells stand for matter/energy progressively expanding in an inflated universe, while the empty 

cells progressively produced inside the octahedrons stand for newly-generated black holes and dark matter, which number 

progressively increases (Figure 9).  At the next iterations, the empty cells will be progressively filled with yellow cubes: 

this means that black holes continuosly appear and disappear, when further iterations take place during the expansion of 

the Universe.   

 
 

Figure 9.  Cosmic expansion and black holes/dark matter formation in terms of random walks taking place inside a 3D 

lattice.  It is noteworthy that dark matter can also contain its black holes, which in our octahedron model look like gaps 

too. 

 

 

Vortex cycles.  A punctured manifold is analogous to a cosmic physical space with holes.   This means that we need to 

work on a manifold that is Riemannian.  Briefly, a manifold is a topological space that is locally Euclidean (i.e., around 
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every point, there is a neighborhood that is topologically the same as the open unit ball in Rn).  A Riemann surface is a 

surface-like configuration that covers the complex plane with several, and in general infinitely many, “sheets”.  A sample 

Riemannian surface is shown in Figure 10.  It is easy to notice that the center of the surface is punctured with a hole, 

which stands, in our framework, for a spacetime rupture due to a black hole.   

With a black hole, we need to consider gravitational pull, which is quite a bit more than a Riemann surface offers.  A 

black hole can be modelled as a vortex cycle (Peters, 2018; Peters, 2019) with induced order proximity of spiraling hole 

vortexes (Ahmad and Peters, 2019).  The rim of a cosmic vortex cycle represents the edge of a black hole. The inner 

cycles for a vortex reaching inward represent gravitational pull.  Therefore, cosmos can be depited as nesting, non-

concentric vortex cycles embedded in a punctured Riemann surface (Weyl, 1955). 

 

In this context, a novel formulation of the Borsuk Ulam theorem might be of great help: the Vortex-BUT, which works 

on a manifold with holes.  There are three forms of vortexBUT: 

• physical geometry vortex BUT (pevBUT): each pair of antipodal vortex surface points map to Rn. 

• region-based vortex BUT (revBUT): each pair of antipodal vortex region points map to Rn. 

• descriptive vortex BUT (phivBUT): each pair of anitipodal vortex surface points OR regions maps to Rk, k >= 

1. 

 

Each black hole is an example of a massive vortex cycle. A punctured physical surface is a surface populated by vortices: 

this allows us to start viewing punctured cosmos surfaces using vortexBUT.  The one very different thing about the new 

form of BUT is that we replace the Borsuk-Ulam use of Sn with Vn, a vortex in n-dimensional space.  Then the simplest 

form of vortexBUT is defined by a continuous function 

 

f: Vn → Rn 

 

so that f(x) = f(-x) for antipodal points x,-x on Vn. 

 

 

 

 

 

 
 

Figure 10.  A Riemannian surface with the center of the surface punctured with a hole.   
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CONCLUSIONS  

 

Our studies of deterministic models and visual constructions of linear (without any acceleration) and nonlinear (with the 

simplest uniformly acceleration) 3D random walks through arithmetic figures show various interesting geometric 

properties.  In 3D spaces encompassing linear random walks, the achieved arithmetic octahedron is densely filled with 

numbers (Figures 2 – 4).  In 3D spaces encompassing nonlinear random walks, the achieved arithmetic octahedron is not 

completely filled with numbers, i.e., it contains gaps.  Indeed, some neighboring regions inside the nonlinear octahedron 

remain empty until either the very next iteration, or during several or many iterations. Gaps and “islands of numbers” or 

separate structures of numbers consistently appear and disappear after several or many iterations in the nonlinear 3D case 

(Figures 6–8).  For  high 𝑛 numbers, the relative quantity of the empty cells or gaps (relative to the general quantity of 

cells in nonlinear octahedron) decreases with 𝑛 increasing.   In sum, for nonlinear 3D cases, we can speak of filling the 

numbers of the arithmetic octahedron in the form of “islands of numbers” or separate structures of numbers: this leads us 

into the realm of an homogeneous universe punctured with black holes that break the topological structure of the 

spacetime.  In our framework, the combinatorial properties of the Pascal’s triangle are the mathermatical operations that 

lead to cosmic expansion, through iterated random walk patterns.   The occurrence of black holes in terms of “hollows” 

in the very structure of the spacetime allows us to consider the topological features of a high-genus manifold, compared 

with genus-zero manifolds. What does the occurrence of a cosmic manifold of very high genus physically  mean? The 

Universe is a dynamical system where the genus changes continuously, because black holes are created or evaporate.  If 

the Universe displays high genus, the big crunch cannot occur, because the squeezing of the spacetime leaves always 

holes, that cannot be reduced to a single point.  The occurrence of high genus might help to draw other theoretical 

previsions.  Our numerical calculations show that, for big 𝑛 numbers, the relative quantity of the empty cells or gaps 

(relative to the general quantity of cells in nonlinear octahedron) decreases with 𝑛 increasing.   This means that the number 

of black holes, in cosmic timescales, will tend to decrease.   

 

The canonical account of black holes’s formation describes contracting stars, which give rise to mass accretion able to 

bend  spacetime, until a black hole is produced.  Our model provides another way to generate black holes: the progressive 

iterations of random walks in an expanding universe lead to the production of hollows, standing for places where an 

estreme spacetime curvature occurs as first event.  Reversing the standard account, the curvature deformation attracts 

matter, and not viceversa.  Therefore, according to our account, black hole formation migth occur in absence of  

gravitational effects provoked by mass/energy concentration which deform spacetime’s curvatures.  Indeed, the same 

gravitational effects can be gained through another mechanism, i.e., movements equipped with acceleration.  To make an 

example, pilots performing maneuvers receive very strong overloads: 5 – 10 g,  where g is acceleration of gravity to Earth. 

But pilots receive overloads  5 – 10 times higher than Earth attraction not because Earth suddenly began to attract them 

stronger, rather because they move with very high acceleration caused by the planes.  In Figure 9, we preferred to illustrate 

the nonlinear case of random walk instead of the linear, because the former allows the comparison between gravitation 

and the movement with acceleration.  Indeed, nonlinear random walk stands for a movement equipped with an  

acceleration which gives the effect of gravitation, though in absence of  attraction to cosmic bodies’ matter.   Therefore, 

black holes might appear when starting from nonlinear cosmic random walks.  Because such acceleration leading to black 

holes’formation was stronger during the first phases of cosmic expansion, it is feasible to hypothesize that  these 

puzzling cosmic bodies occurred already in the first phases of Universe’s development.  In touch with this theoretical 

claim, a newly discovered black hole sits 13.1 billion light years away from us.  This means this black hole formed just 

690 million years after the Big Bang, 60 million years earlier than the previously oldest-known quasar (Venemans et al., 

2017; Bañados et al., 2018).  Our approach might also explain what led to the formation of such Universe’s most ancient 

supermassive black holes.  Indeed, recent reaserch suggest, in touch with our framework, that those supermassive black 

holes could have been formed in huge clumps of dark matter  that serve as “gravitational glue” for galaxies (Hosokawa 

et al., 2006; Wise et al., 2019).  In this account, the dark matter creates most of the gravity, and then the gas falls into that 

gravitational potential, where it can form stars or massive black holes.   

 

There are, actually, many ways to generalize the notion of genus to higher dimensions, e.g., Heegaard genus in algebraic 

topology, arithmetic and geometric genus in algebraic geometry (Almgren and Thurston, 1977).  Feldman et al. (1996) 

tackle the issue of the topological properties of infinite genus Riemann surfaces.  They introduce a class of infinite genus 

Riemann surfaces, specified by means of a number of geometric axioms, to which the classical theory of compact 

Riemann surfaces up to and including the Torelli Theorem extends. The axioms are flexible enough to encompass many 

interesting examples, such as the heat curve and a connection to the periodic Kadomcev-Petviashvilli equation.  Apart 

from the mentioned accounts, our results suggest the feasibility of another intriguing operational approach, which allows 

us to generalize the notion of genus to higher dimensions through another powerful weapon: the Betti number.  The 4D 

Universe might stand for a manifold equipped with a Betti number corresponding  to the number of black holes.  Betti 

numbers are topological objects proved to be invariants by Poincaré, and used to extend the polyhedral formula to higher 

dimensional spaces.  Informally, the kth Betti number refers to the number of path-connected edges (Kaczynski et al., 

2004) embedded in surface holes.  For a black hole with n vortex cycles and k edges attached between each of the cycles, 
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the Betti number = n + k.  Ii is noteworthy that Betti numbers play an important role in recent studies of black holes 

(Manschot et al., 2012). 

 

 

Our framework might also help to elucidate a puzzling theory: the holographic principle.  First proposed by ‘t Hooft and 

Susskind, the paradigm is inspired by Bekenstein's and Hawking’s account of black hole thermodynamics: the maximal 

entropy in any region scales with the radius squared, and not cubed. This means that the informational content of objects 

fallen into a black hole is entirely encompassed in surface fluctuations of the event horizon. The entropy inside the black 

hole is proportional to the area of the event horizon: in particular, if a black hole’s horizon encompasses a number A of 

Planck areas, its entropy is A/4 units, so that every bit stands for four Planck areas.  We ask whether it exists an alternative 

scenario to the puzzling tenet of the holographic principle, i.e., that the information encompassed in a given volume is 

endowed in its lower-dimensional surface.  Indeed, in the case of a black hole, we might hypothesize that the information 

is fully located on the 2D surface, while there is no information at all inside the black hole’s 3D volume. When an object 

falls inside a black hole, its information could not cross the horizon reaching the 3D volume inside, rather could be fully 

retained on the 2D horizon.  This means that the proposition “the maximum content of information in cosmic region 

depends on its area” might not hold true, because, if our hypothesis is confirmed, a black hole’s volume might not contain 

information.  This is in touch of our account of empty cells located inside the octahedron produced by nonlinear random 

walks.   

 

In touch with the experimental data achieved from the Cosmic Background  Radiation, our account  points  towards  our  

Universe  as  strongly  isotropic  and  homogeneous  at  cosmic macroscales.  According to the current paradigm, 

inflationary  expansion explains why the primeval 1090 causally-disconnected quantum “seeds” led to the currently-

detected homogeneity and isotropy (Veneziano 21998).  Still, inflation would have amplified minute quantum fluctuations 

(pre-inflation) into slight density ripples of over- and under-density (post-inflation).  Is it feasible to correlate our 

mathematical Pascal’s triangles approach to cosmic expansion with the detected isotropy and homogeneity?  Here  the  

concept  of  hyperuniformity comes  into  play,  i.e.,  the  anomalous  suppression  of  density fluctuations on large length 

scales occurring in amorphous cellular structures of ordered and disordered materials (Klatt  et  al.,  2019).  The evolution 

of a given set of initial points takes place when, through Lloyd iterations, each point is replaced by the centre mass  of  its  

Voronoi  cell.    This  corresponds  to  a  gradient  descent  algorithm  which  allows  a  progressive,  general convergence  

to  a  random  minimum  in  the  potential  energy  surface.    Klatt  et  al. (2019) report  that  systems  equipped  with 

different  initial  configurations  (such  as,  e.g.,  either  hyperfluctuating,  or  anisotropic,  or  relatively  homogeneous  

pointsets),  converge  towards  the  same  high  degree  of  uniformity  after  a  relatively  small  number  of  Lloyd  

iterations  (about 105).    This  means  that,  in  the  systems’  final  states,  independent  of  the  initial  conditions,  the  

cell  volumes  become uniform  and  the  dimensionless  total  energy  converges  towards  values  comparable  to  the  

optimal  lattice’s  deep  local energy minima.  Therefore, we are allowed to describe the cosmic evolution suddenly after 

the Big Bang in terms of Lloyd iterations, where the initial quantum seeds stand for initial point sets, progressively 

converted  to  point  sets  with  a  centroidal  Voronoi  diagram.      In  other  words,  the  tiny  perturbations  in  the  

primordial universe which seed the later formation of cosmic macro-structures might stand for the starting points of the 

subsequent processes  described  by Klatt  et  al. (2019) in  terms  of  Voronoi  cells, and by us in terms of Pascal’s triangle 

models.   This  would  permit  us observers  to  achieve,  starting  from  countless  different possible  conformations  of  

the  primeval  Universe,  the  currenlty detected isotropic  and  homogeneous  Cosmic  Background Radiation.  Indeed, 

after just 105 iterations, every possible initial system must converge towards an hyperuniform state, where the observers 

perceive energy as very low and the degree of uniformity as very high. 
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