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Abstract: A convenient practical model for accurately estimating the total entropy (ΣSi) of 

atmospheric gases based on physical action is proposed. This realistic approach is fully consistent 

with statistical mechanics, but reinterprets its partition functions as measures of translational, 

rotational and vibrational action or quantum states, to estimate the entropy. With all kinds of 

molecular action expressed as logarithmic functions, the total heat required for warming a chemical 

system from 0o K (ΣSiT) to a given temperature and pressure can be computed, yielding results 

identical with published experimental third law values of entropy. All thermodynamic properties 

of gases including entropy, enthalpy, Gibbs energy and Helmholtz energy are directly estimated 

using simple algorithms based on simple molecular and physical properties, without resource to 

tables of standard values; both free energies are measures of quantum field states and of minimal 

statistical degeneracy, decreasing with temperature and declining density. We propose that this 

more realistic approach has heuristic value for thermodynamic computation of atmospheric 

profiles, based on steady state heat flows equilibrating with gravity. Potentially, this application of 

an action principle can provide better understanding of emergent properties of many natural or 

evolving complex systems, including modelling of predictions for global warming. 

Keywords: statistical mechanics, partition functions, translational entropy, rotational entropy, 
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1. Introduction 

As defined by Clausius [1], entropy can be considered as measuring the “self reservoir of heat required to 

raise the temperature of a system of ideal gas molecules to the temperature T”.  Thus, in agreement with the 

third law of thermodynamics, at the absolute zero of temperature Kelvin (K) the entropy should also be zero.   

Clausius named entropy using the Greek word for ‘in-turning’ or transformation, a dynamic definition that this 

paper will show is highly apt. As a property of state (pressure, temperature and volume), irrespective of the path 

a system of molecules has arrived at that condition, entropy is therefore an important feature of atmospheric 

gases. Indeed, its capacity to explain how thermal radiation may be absorbed and partitioned into different 

degrees of freedom of motion is key information in explaining the warming potential of greenhouse gases.   

The total entropy of an ideal gas molecule can be calculated as the sum of terms, 

 

STotal = St + Sr + Sv + Se + Sn + …. 
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where the subscripts refer to translational, rotational, vibrational, electronic and nuclear entropy terms 

respectively. To estimate the total thermal energy needed to reversibly heat (i.e. without doing other work) a 

system of gas molecules we need only multiply by the temperature T.  This thermal energy can be thought of 

as both kinetic and potential energy contained in the field of the molecular system [2,3]. Furthermore, this 

thermal energy input is physically required to sustain the physical action of the system [4].     

This paper seeks to place thermodynamics within easier reach of non-specialists by giving a key role to 

action, a physical property that is realistically the focus of our interest. Action is related to the vector, angular 

momentum, with similar dimensions of mass by velocity by inertial radius (mvr), but is a distinct scalar quantity 

independent of direction. Like entropy, it is an extensive or cumulative property, but with physical dimensions 

of the integral of energy with time, or of the instantaneous angular momentum with respect to angular motion; 

classically, action was considered as the integral of momentum with distance.  As a variable property of 

conservative systems, action has been considered to take stationary values, a result sometimes referred to as the 

principle of least action.  In fact, all these viewpoints of action are equivalent. Note that angular motion is the 

ratio of circumference to radius and thus is physically dimensionless, although we still measure it in degrees or 

radians.   

In illustration of the utility of action theory, we advance a unified model that we will show is valid for 

calculating the entropy of atmospheric gases. In the range of ambient temperatures relevant to the Earth’s 

atmosphere, this realistic model gives results for absolute entropy closely consistent with previous experimental 

data. This action model may help provide an approach to prediction of the rate of global warming based on 

causal responses to the increasing greenhouse gas content of the atmosphere, rather than statistical correlations. 

In particular, this aid to exploring a direct relationship between thermodynamics and gravity may provide a 

dynamic view of how the thermal properties of the atmosphere have significance for warming and climate 

change. 

2. Materials and Methods  

Here we show how the classical formulae for estimating translational, rotational and vibrational entropy using 

partition functions may be reviewed as physical action. Although entropy data for atmospheric gases are readily 

available in standard tables, the methods developed here illustrate how easily such data can be manipulated to 

account for real environmental conditions. 

    Because of their relevance to the following methods, we state here the partition functions for ideal gases 

that have been used to calculate the entropies for molecular translation, rotation and vibration [5]. These 

functions are given in all standard texts (e.g. Moore [6]) on modern statistical mechanics, the discipline founded 

jointly by Ludwig Boltzmann [7] and J. Willard Gibbs [8].  The factors governing these functions include 

absolute temperature (T in oK), Boltzmann’s constant (k = 1.3806x10-23 J K-1), Planck’s quantum of action (h = 

6.626x10-34 J. sec) and the system volume (V).  For ease of use and consistency in dimensions, all modelling 

and calculations have been performed in cgs units, before conversion to SI units where required.  

 

Translational partition function 

Qt =  (2πmkT/h2)3/2V        

Here V is taken as the system volume occupied by the molecules [5]. 

 

Rotational partition function (linear molecule) 

Qr = 8πIkT/h2 

Rotational partition function (non-linear molecule) 
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Qr = 8π2(8π3IAIBIC)1/2(kT/h2)3/2 

Vibrational partition function (polyatomic molecules) 

Qvi = Пi [1 – exp-hνi/kT]-1 

where  Пi  indicates a product of i functions, for each mode of vibration. 

 

It will be shown that these functions can all be considered as dimensionless statistical measures of relative 

molecular action, using Planck’s quantum h or its reduced form per radian, ħ, as a natural reference unit. Note 

that there are only three sources of variation in the partition functions – inertial mass, temperature or the root 

mean square velocity and pressure or density. Even the exponential partitions for vibrational function can 

rendered as action ratios when elevated energy states are recognized as inversely proportional to number 

density, a surrogate for probability. Then a vibrational state of low probability also has an equivalent low 

number density, giving it a high action value with large inertial radius.    

 

Translational entropy and the Sackur-Tetrode equation 

The Sackur-Tetrode equation was published early in the 20th century [5], based on Gibbs’ theory of statistical 

mechanics [8]. 

 

  St   =  R[ln(2πmkT)3/2V/h3N + 2.5]            (1) 

 

This equation allows calculation of the translational entropy of N molecules of an ideal monatomic gas. This is 

derived from the relationship from the calculus of total entropy including translational St and internal Sint parts 

as follows [5]. 

 

S  = RT(∂lnQ/∂T)V + RlnQ - klnN! = St  + Sint      

 = RT[(∂lnQtr/∂T) + (dlnQint/dT)]  + R[lnQtr + lnQin] –  klnN!      (2)  

 

Here the factor klnN! allows for the inability to distinguish between N identical molecules.   

For ideal monatomic gases, no internal entropy (from rotation or vibration) at normal temperatures exists, 

so the differential of the internal partition function Qint in the above equation can be ignored. 

 

 St  = RT[(∂lnQtr/∂T)]  + R[lnQtr] –  klnN!          (3) 

 

Using a solution from the Schrodinger equation that Qt= (2πmkT/h2)3/2V 

and the Stirling approximation for lnN! as effectively NlnN - N we have from [5]. 

 

St   = 3/2R + Rln[(2πmkT/h2)3/2V] –  Rln(N- 1) 

=  R[ln(2πmkT)3/2V/(h3N)  + 2.5]         (4) 

  

Note the close similarity of equation (4) to the translational partition function. This is a well-known result of 

statistical mechanics, with h being the constant introduced by Planck as the quantum of action for radiation. 

Despite their lack of rest mass, all energy quanta possess an action of magnitude h and their energy is given by 

hν, where ν is their frequency. 

    Here we introduce a revised approach, based on the use of the property of state, action (@= mrv [2,3]).  

This allows the establishment of the relative action, a ratio or pure number suitable for logarithmic expression. 
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Some expressions of entropy in text books include isolated terms such as the logarithm of the temperature lnT. 

Strictly, this is invalid, as logarithms can only be taken of pure numbers or dimensionless ratios and never of 

quantities with physical dimensions.   

For each of the three translational degrees of freedom, the translational action can be derived from the 

kinetic energy, given each has ½kT of kinetic energy. For three degrees of freedom we can estimate the action, 

mvr or Itωt, as follows. The three-dimensional kinetic energy ½mv2 is 3/2kT which equals ½mrt
2ωt

2 or ½Itωt
2, 

for motion with polar coordinates; here the translational angular velocity ωt  or dӨ/dt  is given in radians per 

sec.  Thus, Itωt
2 is equal to 3kT and so Itωt is equal to 3kTIt/ωt or (3kTIt)1/2.  The mean translational action @’t 

is thus defined as equal to (3kTIt)1/2, although a correction factor indicated by the prime and discussed below is 

required because 3kT is a statistical result from the three-dimensional Maxwell distribution, equal to twice the 

most probable kinetic energy ½mv2 for the root mean square velocity v in three dimensions. Moreover, 50% of 

molecules have speeds greater than the root-mean square velocity, which is about 1.085 times the mean speed 

of the ideal gas molecules [9, Table 8].  In the Maxwell distribution, the most probable velocity is slightly less 

than either of these speeds.    

We can regard the system volume V as containing N cubic cells of volume a3, a cell for each gas molecule. 

Then, for rt arbitrarily taken as the mean value of the half-distance between the centres of any two nearest 

neighbour gas molecules, a3 is equal to (2rt)3 or 8rt
3.  Considering a mole of gas at standard temperature and 1 

atmosphere pressure (N=6.022169x1023 molecules in 24465.1 mL at STP), then rt or (V/N)1/3/2 is equal to 

1.7188x10-7 cm.  

    We can then substitute into the Sackur-Tetrode equation (St = Rln[8e5/2rt
3(2πmkT)3/2/h3]).  Taking the rt

3 

term inside the brackets, we have St equal to Rln[8e5/2(2πmrt
2kT)3/2/h3].   

 

Then, taking mrt
2kT equal to kTIt and @’t an uncorrected version of the translational action, equal to (3kTI)1/2   

 

St  = Rln[8(2π/3)3/2e5/2(@’t/h)3]        

 

For ħ equal to h/2π, the reduced quantum of action, we have, 

  

St  =  Rln[e5/2(2/3π)3/2(@’t/ħ)3]            (5) 

      

If the factor of (2/3π)3/2 were to be incorporated into the action term, the inertial radius would be decreased to 

7.92287x10-8 cm rather than 1.7188x10-7 cm. However, for computation we initially assumed a translational 

resonance symmetry factor zt of 1/10.22967, replacing (2/3π)3/2.  In a preprint lodged in Cornell’s arXiv [10] a 

zt factor was retained; more recently, we have identified this zt constant as equal exactly to the inverse of 

(2x1.0854)3 providing two corrections to prevent double counting in neighboring molecular couples and for the 

ratio of the root-mean-square velocity to the mean velocity respectively [11], noted above. This allows 

calculation of a mean translational action value, n, corresponding to a quantum field state for the molecule, 

equilibrated with gravity. 

 

St  =  Rln[e5/2(@’t/ħ)3/zt] = Rln[e5/2(@t/ħ)3] =  Rln[e5/2(n)3]      (6) 

 

Given the disorderly nature of the spatial distribution of the translating particles (see Fig. 1), the translational 

quantum state factor n cannot have a precise continuous value, but should be statistically distributed and 

fluctuating with time for each molecule (see Figure 1). With real gases having varying degrees of interaction or 
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binding, the most probable radius may vary from one gas to another. To maintain consistency with Sackur-

Tetrode theory, all calculations in this paper have employed the geometric result of 1.7188x10-7 cm for rt at 

STP, or 1.6994x10-7 cm at the Earth’s global average surface temperature of 288.15 K. However, it may be 

possible to make experimental determinations of the dynamic structure, allowing more accurate estimates of 

the action.  In any case, the sensitivity to variations is low given its logarithmic nature and any errors will only 

be a slight displacement in the entropy value. Initially, the absolute value of the translational symmetry factor 

zt was rarely of importance because in nearly all cases, differences in entropy of free energy were taken, or the 

system is isothermal.  In such cases, the zt factor disappeared.  

    As a result, with suitable choices of the action radius and incorporating the translational correction factor 

(zt), we can write the following concise relationship for translational action @t and entropy. 

 

St   =  Rln[e5/2(@t/ħ)3]   

= 2.5R + 3Rln(@t/ħ)            (7) 

 

Rotational action and entropy 

From statistical mechanics (see Moore [6], the rotational contribution to the molar entropy of a diatomic or 

linear molecule with two-dimensional inertia is given by 

 

Sr =  R + Rln(8π2kTIr/σrh2), or Rln[e(8π2kTIr/σrh2)] = Rln[e(2kTIr/ħ)2/σr]    (8)   

 

Equation (8) is two-dimensional only, because there is no significant inertia around the longitudinal axis of a 

diatomic or linear molecule like N2 or CO2. The rotational partition function is 8π2kTIr/h2; clearly, this can also 

be recast as an action ratio.  Here the moment of inertia Ir is given by (m1m2/m1+m2)rr
2 and rr is the average 

bond length, σr is the rotational resonance symmetry number (e.g. σr = 2 for O2 and σr = 1 for NO). In this 

equation we can recognize the rotational action of a gas molecule, @r equal to (2kTI)1/2 –derived from the 

rotational energy equal to ½mrr
2ωr

2 or Irωr
2/2.  So Irωr

2 equals 2kT and Irωr
  is given by (2kTI)1/2 equal to @r, 

by definition. As a result, using similar notation as for translational action and entropy, we have 

 

Sr = Rln[e(@r/ħ)2/σr] = R +  Rln[(@r/ħ)2/σr] 
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Fig. 1   Calculation of translational and rotational action (@). Mean translational action @t (A) is estimated as explained 

in the text from average separation of a = 2r  by allocating each molecule space of  a3 = V/N where V is total volume and 

N is total number of diatomic molecules like dinitrogen (N2). Relative angular motion dӨ/dt = ω is estimated for molecules 

exhibiting the root-mean-square velocity, taking 3kT = mv2 = mr2ω2. Then translational action @t is equal to 

[(3kTIt)1/2/2.170806]. Rotational action @r (B) for linear molecules such as N2, O2 and CO2 is estimated similarly, equated 

to (2kTIr)1/2. 

 

Thus, just as in the case of translational entropy, the rotational entropy can also be expressed as a variable of 

action alone, given that the symmetry factor σr is a constant.  It is shown elsewhere that action is a function of 

volume and temperature [3] but volume or pressure changes have little or no effect on rotational entropy as long 

as the temperature is not too high.  All other terms in this equation are constant for a given gas molecule.  

    For non-linear gas molecules with more than two atoms such as the greenhouse gases, other than the linear 

carbon dioxide and nitrous oxide, the rotational entropy Sr is given from statistical mechanics as, 
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Sr  =  Rln[{8π2(8π3IAIBIC)1/2(kT)3/2}/σrh3] + 3/2R         (9)   

where IA, IB and IC in equation (9) correspond to the three principal moments of rotational inertia with respect 

to three perpendicular axes (see Glasstone [5]). In terms of action ratios analogous to those used above, we 

rearrange this equation to read, 

 

Sr  =  Rln[π1/2{(8π2kTIA/h2)1/2(8π2kTIB/h2)1/2
 (8π2kTIC/h2)1/2}/σr] + 3/2R      (10) 

 

Recalling our previous definition of rotational action @r of a diatomic molecule as (2kTIr)1/2 for each inertial 

axis of a linear molecule with more than one atom, we can express the rotational entropy contribution of a non-

linear molecule as, 

 

 Sr  =  Rln[{π1/2(@A/ħ)(@B/ħ)(@C/ħ)}/σr] + 3/2R 

 

=  Rln[{π1/2e3/2(@A@ B@C/ħ3)}/σr]           (11) 

 

where @A, @ B, and @C are the three principal rotational actions for non-linear molecules. So once again, it is 

possible to express changes in entropy as a simple function of action alone, as all other terms in the equation 

are constant for a given gas molecule. Given that the product of entropy and temperature ST indicates the 

thermal energy required, there is obviously an exact logarithmic relationship between the total energy required 

to sustain a system of molecules at a given temperature and the action of each mode of rotation.     

    The rotational symmetry number σr for polyatomic molecules depends on the point group of the molecule 

as defined by the Nobel laureate Herzberg [12], by “A possible combination of symmetry operations that leaves 

at least one point unchanged is called a point group”. This is a term derived from crystallography and the 

characteristic symmetry number σ of each point group can be shown to be equal to “the number of 

indistinguishable positions into which the molecule can be turned by simple rigid rotations”.  Table 1 adapted 

from Herzberg [13] gives the symmetry number for the more important point groups. Note that methane in the 

T point group has a rotational symmetry of 12, indicating how its quantum field indicated by its rotational 

entropy is economical for energy in view of its indistinguishable structure regarding its orientation in space.  

This situation for methane can be contrasted with a similar tetrahedral carbon molecule having only one 

hydrogen atom in its structure, together with three different halogens such as fluorine, chlorine and bromine. In 

this case the symmetry is unity (1.0), so that the energy field has a 12-fold lower frequency of encountering an 

identical structure in action space.           

 

 

Table 1.  Symmetry numbers for various point groups 

Point group Symmetry No. 

σr 

Point group Symmetry 

No. σr 

Point group Symmetry No. 

σr 

      

C1, Ci, Cs 1 D2, D2d, D2h  Vh 4 C∞ 1 

C2, C2v, C2h 2 D3, D3d, D3h 6 D∞h 2 

C3, C3v, C3h 3 D4, D4d, D4h 8 T, Td 12 

C4, C4v, C4h 4 D6, D6d, D6h 12 Oh 24 
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C6, C6v, C6h 6 S6 3   

Modified from Herzberg [13], p. 508 

 

Quite naturally this 3-dimensional relationship we will see later is related to chemical potential rather than 

kinetics, must be exponential. So more energy per molecule is required to convey information in a molecular 

field of greater probe-ability,with greater radial separation of identical molecules. 

 

Vibrational action and entropy 

Vibration in molecules between their atoms occurs at a rate usually much more frequent than rotation, clearly 

adding to the action of molecules by increasing the length of the trajectory of their atoms in a given time interval. 

Vibration is characterized by its frequency, which does not change appreciably as more energy is added to a 

system. On the contrary, the amplitude of vibration increases affecting the mean kinetic and potential energies 

and the inertial trajectory of the molecular angular motion.  In collision processes, a higher non-equilibrium 

vibrational energy state resulting from absorption of a quantum of energy in the infrared will act to equilibrate 

with its rotational and translational energies in the micro-wave and radio-wave bands, effectively dissipating 

vibrational energy into these modes. This concept will be revisited later when we consider greenhouse gases 

and how they can affect the gravitational distribution of the atmosphere. 

    Related to the point groups and numbers of atoms in the gas molecule are the number of vibrational modes; 

also, the question arises of how many of these modes are degenerate, that is some different vibrations have 

identical frequencies because of similarities in molecular structure.  For a non-linear molecule the number of 

vibrational modes is equal to 3n-6 where n is the number of atoms. For a linear molecule, the number of possible 

modes is one less or 3n-5. In either case, 3n is the total degrees of freedom for motion.  The number 6 in the 

case of non-linear molecules is the sum of 3 translational and 3 rotational degrees of freedom. The number 5 in 

the case of linear molecules refers to 3 translational and 2 rotational degrees of freedom.  

    For both non-degenerate and degenerate modes, the vibrational entropy Svi is given by Glasstone [5],  

 

Svi =  Rx/(ex – 1) – Rln(1 – e-x), where x = hν/kT       (12) 

 

Here νi is the wave number equals the number of vibration per sec divided by the velocity of light in cm per 

sec. It therefore has the physical dimensions of cm-1.  Ultimately, the total contribution to the vibrational 

entropy is the sum for all vibrations, taking into account any degeneracy where more than one mode of vibration 

has the same frequency.   

    This equation is derived as follows. According to Moore [6], the vibrational energy E is given as, 

 

E = RT2∂lnQvib/∂T  = Lhν/2 +  Lhνe-hν/kT/(1 - e-hν/kT)        (13) 

 

Here Lhν/2 is the zero point vibrational energy Eo remaining at absolute zero Kelvin, where L is Avogradro’s 

number for the number of molecules in a mole.  Thus, taking hν/kT equal to x, as used above, 

   (E –Eo)/T = Rxe-x/(1 -  e-x)  
 (Avib – Eo)/T = Rln(1 – e-x)  since Avib = -kTlnQvib = Gvib      (14) 

 

Here A and G refer to Helmholtz and Gibbs energies. 

    So Svib = (E – G)/T =  Rxe-x/(1 –  e-x) - Rln(1 –  e-x),  as given above. 
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Furthermore, the vibrational heat capacity is given as 

 

 ∂E/∂T = Cvib  =  Rx2e-x /(1 –  e-x)2 = Rx2 /(ex + e-x –2)  

=  Rx2/2(coshx – 1), given  (ex + e-x)/2 = coshx     (15) 

 

At moderate temperatures the vibrational entropic energy SvibT is contributed mainly as the enthalpy calculated 

with Cvib, giving both kinetic and potential vibrational energy but with the negative Gibbs energy relatively 

smaller. It is only at elevated temperatures when the ratio hν/kT is less than 1.0, as Cvib approaches 2.0, that -G 

reflecting positive change in the ‘sum of states’ exceeds CvibT. Then the statistical Gibbs energy of higher 

quantum states emerges as more dominant, so that heat is consumed doing quantum work without raising the 

temperature.  

 

Despite this, it is clear that each vibration of frequency νi contributes its own entropy. 

 

Sν = ΣSνi 

 

An alternative approach is one with emphasis on the relationship of vibrational quantum states to their 

translational action. 

 

The probability (P) of a quantum microstate is given in equation (16). 

 

P (microstate r) = e-Er/kT/Σie-Er/kT  = Nr/ΣiN = Nr/N          (16) 

 

So the likelihood of a particle being in microstate r is given by the number density Nr divided by the total number 

density of all microstates.  This implies that the ratio of the probable number of particles in any two microstates 

is (neglecting degeneracy) 

 

    Nr/Ns =   e-Er/kT/ e-Es/kT  = e-δE/kT  

 

The work done in lifting the molecule from microstate r to microstate s at the same temperature is given as 

follows. 

 

 -δE = -kTln(Nr/Ns)  = -kTln(rs/rr)3 = -kTln(@s/@r)3         (17) 

 

Thus, the higher vibrational energy of an elevated quantum microstate is matched by a similar elevation in the 

translational Gibbs energy of the vibrationally activated molecule, as given in equation (17).  At a given 

temperature, an orderly progression of vibrational quantum states of exponentially increasing radii occurs, 

shown in Results.The greater inertial radius of these activated states and their ability to cause chemically 

reactive conditions is of particular interest for some molecules with weaker bonding.  In principle, the greater 

space-filling property of higher action states with greater radius must have some feature implying added 
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potency. This can be considered as the effective linearity of molecule’s motion and its efficiency in transferring 

momentum in collisions. The higher the energy state, the greater the action radius and the more effective the 

impulse because of its greater inertia caused by its higher energised amplitude reflecting their lower frequency.     

    It is often possible to measure the energy differences between the different quantum states spectrally and 

from this derive the relative number density of the different states as exponential functions of the translational 

entropy; known as the Boltzmann or canonical distribution [14]. 

 

This form of distribution applies to all variations in quantum states, whether translational, rotational or 

vibrational that become entangled.  At ambient temperature in the atmosphere, most of the variation in quantum 

state between molecules is translational, with rotational also varying but less frequently. Elevated vibrational 

states are even less frequent, reflecting the relative stability of bonds in many organic molecules. Energy 

differences in translational states are very small, so we find an almost continuous distribution of energy states 

established around a mean velocity as expressed by the Maxwell-Boltzmann equation.  

 

In Figure 2, a flow diagram for computing total entropy and Gibbs energy is given.    

 

3. Results  

Data on molar action, entropies and absorption wavelengths of greenhouse gases 

We have established several concise relationships expressing entropy as a logarithmic function of an action 

ratio for translation, rotation and vibration, using overlays of equivalent excited translational states. 

 

St  = Rln[e5/2(@t/ħ)3]        (translation) 

Sr = Rln[e(@r/ħ)2/σr]   (rotation – diatomic or linear molecule) 

 Sr = Rln[π1/2e3/2(@A@ B@C/ ħ3)/σr] (rotation- polyatomic molecule) 

Svi = Rx/(ex – 1) – Rln(1 – e-x), where x = hν/kT  (for each vibrational  mode) 
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Temperature 
Mass of  each atom

Bond length (s) for linear molecules
Moments of inertia  for non-linear

Vibrational frequencies & degeneracy

Compute entropy and free 
energy

Compute molecular entropy 

and 

free energy

Find translational entropy
If monatomic Goto Outputs 

If linear
find rotational 

moment of 
inertia 

Find rotational entropy

Find vibrational entropy

Outputs
Total entropy ΣS

Entropic energy  ST
Gibbs energy G

 

Fig. 2: Flow diagram for computing absolute entropy and Gibbs energy. Ia, Ib and Ic refer to the inertial moments 

of inertia. A fully annotated description of the relevant algorithms and subroutines to compute entropy and free 

energy is available on-line at the Entropy site or on request to the corresponding author.    

 

It is clear that the translational action ratio @t/ħ will vary as a function of temperature affecting velocity, but 

also with volume. Thus, action acts as a surrogate for the effects of both temperature and volume or density for 

translational entropy. Normally, these variables are considered separately. At extremely low temperatures near 

absolute zero, the action ratio will tend to a minimum and the entropy will tend to zero, as required by the third 

law of thermodynamics. Near zero, only vibrational energy remains significant, expressed as the zero point 

vibrational energy of hν/2 per bond proposed as essential by Planck and Einstein.  In Table 2, the variation in 

vibrational energy above the ground state at absolute zero that contributes to molecular entropy is shown for 

the first three energised modes for carbon dioxide. The exponentially increasing radii of each state in action 

phase space. Given that action (mrv) at a given temperature is proportional to radius, the ratios of the probable 

If non-linear 

use Ia, Ib, Ic 

non-linear,  
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volumes from the number density (Nn) can be expressed one-dimensionally in terms of the inertial radius r and 

then to the relative action compared to the ground state.  

 

Table 2. Translational action of activated vibrational states 

εvib
Nn/No rn /ro Action phase space @n /@o

3kTln(@n /@o)

7hv/2 e-3hv/kT 24.996 24.996 =3hv

5hv/2 e-3hv/kT 8.549 8.549 =2hv

3hv/2 e-3hv/kT 2.924 2.924 = hv

hv/2 e-3hv/kT 1.000 1.000 0

 

 

In Table 2, the translational action of successive vibrational quantum states are computed for any infrared 

resonance of CO2 or water molecules. Each successive state of increasing energy occurs with 25-fold decreasing 

frequency, therefore having a declining number density and increasing inertial radius. Trajectories of increasing 

radius may therefore have greater impact in collisions corresponding to greater translational action. Then the 

entropy for the activated states can be computed from the equation 

   

Svi = Rx/(ex – 1) – Rln(1 – e-x)  

   

    Table 2 confirms the co-variation of vibrational entropy with action, accepting that this equation for entropy 

contains terms related to both the  kinetic energy or enthalpy as well as for configurational symmetry. Causally, 

this must be based on the need for specific quantities of latent field energy to sustain action at a statistically 

stationary value, as appropriate for a particular kinetic environment and temperature. The statistical nature of 

entropy implicit in Boltzmann’s and Gibbs’ theories must also correspond with the relationship with action, 

discussed in Kennedy [3].   

    In Tables 3-5 calculations using these equations are indicated for individual contributions to the molar 

entropy of some common atmospheric and greenhouse gases. The computed entropy values at standard 

temperature and pressure compare very well with the rounded standard values [15]) obtained experimentally 

according to the third law of thermodynamics. This statistical correspondence can be found in the space-

filling dynamic nature of molecules subject to collisions, so that any complexion of high frequency or 

pressure involves chemical species occupying a comparatively small volume per molecule with low 

translational action at a given temperature; those complexions of higher molecular entropy occupy a 

comparatively large volume per molecule with higher translational action. This is also consistent with 

Shannon’s information version of entropy, considering information as uncertainty and the capacity of a 

message to surprise [16]. When an encounter is less frequent with greater diversity of chemical species, 

surprise is more likely. 
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Table 3a. Entropy of linear gas molecules – translational, rotational, vibrational and 

electronic 

Gas MW It x1040 

g.cm2 

@t/ħ= nt St=Rlne5/2

x(nt)
3/zt] 

J K-1 

Radius  

x1010 

cm 

Ir    

x1040 

g.cm2 

@r/ħ= nr
 Sr= 

Rlne(nr)
2/σ 

J K-1 

1/λ  

cm-1 

x =  

h ν/kT 

Sv Qe Se ΣS 

H2  2.0000   98.83 104.7569 117.48  74 0.4580    1.8413  12.70 - - - 1 0 130.18 

N2 28.0134 139.02 392.9013 150.45 110 14.235 10.2654 41.27 - - - 1 0 191.73 

O2 31.9988 158.12 419.0198 152.06 121 19.590 12.0426 43.93 1580 7.63 0.04 3 9.13 205.16 

CO 28.0110 138.33 391.9225 150.39 113 14.643 10.4115 47.27 2170 10.47 0.00 1 0 197.67 

NO 30.0061 148.54 406.1341 151.28 115 16.555 11.0706 48.29 1904 9.188 0.01 4 11.5 211.12 

CO2 44.0099 217.42 491.3535 156.03 244 79.665 24.2846 54.72 See  below 2.99 1 0 214.61 

N2O 44.0134 215.90 489.6496 155.94  66.9 22.2550 59.90 See below 3.05  0 218.89 

Data obtained from Herzberg (1945, 1950) and Aylward and Findlay (1974) 

Table 3b.  Triatomic gases translational and rotational entropy 

Gas  MW It x10-40 

g.cm2 

@t/ħ St 

JK-1 

IrA  

x10-40 

IrB
 

g.cm2 

IrC 

x1040
 

@rA/ħ @rB/ħ @rC/ħ σr Sr 

JK-1 

Point group 

H2O  18.0154 88.372 313.2678 144.80 1.024 1.920 2.947 2.7533 3.7699 4.6709 2 43.74 C2v 

H2S  34.080 167.18 430.8673 152.75 2.667 3.076 5.845 4.4435 4.7721 6.5779 2 52.52 C2v 

O3  47.9982 235.45 511.3358 157.02 7.877 62.865 70.900 7.6366 21.5796 22.9104 2 79.94 C2v 

SO2  64.0628 314.25 590.7399 160.62 13.807 81.328 95.356 10.110

3 

24.5377 26.5697 2 84.58 C2v 

 

Table 3c. Triatomic gases vibrational entropy 

H2O Wave 

number 

x= 

hcνi/kT 

Svi  CO2 Wave 

number 

x= 

hcνi/kT 

Svi Degen ∑Svi   

A1 3652 17.6235 <0.0001  σg
+ 1388 6.6981 0.0790 1 0.0790   

A1 1595 7.6970 0.0329  Π 667 3.2188 1.4547 2 2.9093   

B2 3756 18.1254 <0.0001  σu
+ 2349 11.3356 0.0012 1 0.0012   

Total  Total 0.033      Total 2.9895   

             

H2S Wave 

number 

x= 

hcνi/kT 

Sv  N2O Wave 

number 

x= 

hcνi/kT 

Sv     

A1 2615 12.6193 0.004  ∑ 2224 10.7324 0.0002     

A1 1183 5.7088 0.1856  ∑ 1285 6.2011 0.1216     

B2 2626 12.6723 <0.0001  Π 589 2.8423 1.4627     

  Total 0.1860  Π 589 2.8423 1.4627     

       Total 3.0473     

O3  x= 

hcνi/kT 

  SO2  x= 

hcνi/kT 

     

A1 1110 5.3565 0.2504  A1 1151 5.5544 0.2117     

A1 705 3.4021 1.2561  A1 518 2.4997 2.5715     

B2 1042 5.0284 0.3301  B2 1352 6.5244 0.0919     
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   1.8367     2.8751     

Table 4a. Polyatomic molecules 

Gas MW Itx1040 

g.cm2 

@t/ħ St 

J K-1 

IrA 

x1040 

IrB
 

g.cm2 

IrC 

x1040
 

@rA/ħ @rB/ħ @rC/ħ σ Sr 

J K-1 

Point 

group 

NH3 17.031 83.543 27.9881 144.10 2.9638 2.9638 4.5176 4.6841 4.6841 5.7830 3 48.36 C3v 

              

Species Wave 

number 

x= 

hcνi/kT 

Sv           

A1 3337 16.1034 0.0001           

A1 950 4.5844 0.4785           

E 3447 16.6343 0.0001           

E 1627 7.8514 0.0287           

   0.5074           

Table 4b. Polyatomics 

Gas MW 

Daltons 

It x1040 

g.cm2 

@t/ħ St 

JK-1 

IrA 

x1040 

IrB
 

g.cm2 

IrC 

x1040
 

@rA/ħ @rB/ħ @rC/ħ Σ Sr 

JK-1 

Point 

group 

CH4 16.401 78.678 295.6225 143.35 5.27 5.27 5.27 6.2461 6.2461 6.2461 12 42.263 Td 

CFCl3 137.37 673.84 865.0408 170.13 340.35 340.35 799.71 50.1970 50.1970 62.433 3 107.59 C3v 

CF2Cl2 120.91 593.12 811.5780 168.54 203.73 318.00 375.66 38.8364 48.5206 52.737 2 107.13 C2v 

CF3Cl 104.46 512.41 754.3356 166.71 146.32 251.58 251.58 32.9126 43.1566 43.156 3 99.745 C∞v 

 

CH4 

Wave 

number 

x= 

hcνi/kT 

Sv Degen. Sv  CFCl3 Wave 

Number 

x= 

hcνi/kT 

Sv Degen. Sv  

A 2914 14.063 0.0001 1 0.0001  A 1085 5.2359 0.2773 1 0.2733  

E 1526 7.3640 0.0441 2 0.0882  A 535 2.5818 2.4105 1 2.4105  

T 3020 14.575 0.0001 3 0.0002  A 350 1.6890 4.8792 1 4.8792  

T 1306 6.3034 0.1113 3 0.3340  E 847 4.0874 0.7208 2 1.4416  

    Total 0.4225  E 394 1.9013 4.1210 2 8.2420  

       E 241 1.1630 7.5121 2 15.024  

           Total 32.275  

CF2Cl2 cm-1 x= 

hcνi/kT 

Sv CF3Cl Band cm-1 x= 

hcνi/kT 

Sv Degen. Sv    

A 1101 5.3131 0.2598  A 1105 5.3324 0.2556 1 0.2556    

A 667 3.2188 1.4547  A 781 3.7689 0.9344 1 0.9344    

A 458 2.2108 3.2297  A 476 2.2970 3.0163 1 3.0163    

A 262 1.2643 6.8968  E 1212 5.8488 0.1646 2 0.3293    

A 322 1.5539 5.4387  E 563 2.7169 2.1667 2 4.3334    

B 902 4.3528 0.5796  E 350 1.6890 4.8792 2 9.7584    

B 437 2.1088 3.4981      Total S 18.627    

B 1159 5.5930 0.2048           

B 446 2.1523 3.3804           

  Total S 24.945           
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    An interesting feature of the data calculated for Tables 3 and 4, but rarely mechanistically considered, is the 

significantly greater entropy related to translational action compared to rotational and vibrational action for all 

gas molecules at 298 K. The lower the pressure of a particular gas the greater is this discrepancy. Indeed, most 

of the heat required to raise the temperature of the gas from zero to 298 Kelvin under standard conditions is 

devoted to sustaining translational action, with only a small proportion of molecules exhibiting any vibrational 

action and entropy at all. If we consider that the relative action states @/ħ for carbon dioxide at standard 

temperature and pressure calculated here are 491 for translation, 24 for rotation and a much lower number for 

excited vibration, indicating a very low proportion of molecules excited with infra-red quanta, it is reasonable 

to conclude that the size of the quanta associated with rotation and translational action states have 

correspondingly lower frequencies. This would appear to place them in the microwave and the radio-wave range 

of the electromagnetic spectrum – relatively cold or dark energy.   

    Thus, although heat is required to generate translational entropy, could its actual form be considered as 

gravitational work, although for sub-orbital molecules with quanta of relatively high frequency. If so, we could 

consider translational action and entropy as indicating the quantity of heat required to reach T degrees Kelvin 

in the gravitational field, including that normally regarded as pressure-volume work.   

 

 

Table 5.  Summary of total entropy terms 

Gas St  JK-

1 

Sr   

JK-1
 

Sv  

JK-1
 

S 

JK-1 

(A&F) 

JK-1 

IR spectrum Wavelength m   (3n-6) 

H2O 144.80  43.74  0.033 188.6 189 2.662, 2.738, 6.270  

CO2 155.94  54.715  2.99 213.6 214 4.257, 7.2046, 14.993 

H2S 152.81  52.54  0.19 205.5 206 3.808, 3.824, 8.453 

N2O 155.94  59.80  3.05 218.9 220 4.446, 7.782, 16.978 

O3 157.02  79.94  1.84 238.8 239 9.009, 9.597, 14.184 

SO2 160.62  84.58  2.875 248.1 248 7.396, 8.688, 19.305 

NH3 144.10  48.36  0.507 193.0 192 2.901, 2.997, 6.146, 10.526 

CH4 143.36  42.26  0.423 186.0 186 3.311 (2), 3.432 (3), 6.553 , 7.657 (3) 

CFCl3 170.14 107.59 32.275 310.0 310 9.217, 11.806(2), 18.692, 25.381(2), 28.571, 41.494(2) 

CF2Cl2 168.545 107.137 24.945 300.6 301 8.628, 9.083, 11.086, 14.999, 21.834, 22.421, 22.883, 31.056, 38.168 

CF3Cl 166.721  99.749 18.627 285.1 286 8.251(2), 9.050, 12.804, 17.762(2), 21.008, 28.571(2)  

O2 162.07  43.93  0.035 206.0 205   6.329 

CO 150.31  47.19 0.0025 197.5 198 4.608 

NO 162.69  48.39 0.0087 211.6 211 5.252 

H2 117.48  12.70 - 130.2 131 - 

N2 150.45  41.27 - 191.7 192 - 

A 154.84 - - 154.8 -  

 

We must regard the heat that was required to melt and vapourise the carbon dioxide molecules as having 

performed configurational work, either on separating the molecules or pressure-volume gravitational work of 

lifting the atmosphere. This work-heat consumption identified by Clausius [1] in 1875 explains the fact that not 

all the heating included in the entropy function contributes to sensible heat just raising the temperature as 
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increased kinetic energy, consistent with the heat capacity of each molecule. Similar conclusions can be drawn 

for the melting of ice to water and its subsequent vaporization. Such interpretations regarding inter-conversions 

of heat and work require further investigation and this may be facilitated using the quantum features of the 

action approach.      

 

Considering water’s phase changes  

Of all the atmospheric gases considered here, only water exists in the atmosphere on Earth as gas, liquid and 

solid. This erratic cycle is very apt for illustrating significant changes in entropy states associated with changes 

in phase. Most of the permanent gases in the atmosphere only exist as vapors. As a result, their changes in 

entropy refer only to changes in kinetic and potential energy corresponding to changes in enthalpy and in free 

energy as a response to changes in temperature and pressure respectively. However, water has highly significant 

changes in action and entropy in the atmospheric weather cycle, with corresponding consumption or release of 

heat.   

    The total thermal capacity to bring a mole of water to vapor at 298.15 K and 1 atmosphere pressure (were 

this possible) is 56.2 kJ.  Of this, only 7.4 kJ can be attributed to its heat capacity as increased kinetic energy 

per mole over the temperature range, with 5.8 kJ required for melting and 44.0 kJ to vaporisation at 298 K. 

Almost 90% of the solar heat absorbed by water as vapor in the atmosphere is available for release in the two 

phase transitions of forming snow or hail. Although these facts are well known and the major warming possible 

during atmospheric condensation of water vapor is understood, this could also be a fruitful area for further 

investigation using the action-entropy theory.      

    It is of interest from Table 4 that water has only minor vibrational entropy at ambient temperatures – lower 

even than that of oxygen, mainly at a very similar short infrared wavelength (6.270 and 6.329 μm) – potentially 

allowing overlap for emission or absorption. On this basis, there might seem to be only a weak case to consider 

water a major greenhouse gas, although this is customary. In fact, the converse is true as water’s  low actual 

excitation of vibration to a higher quantum state, particularly by the two shorter wavelengths for water, is that 

there remains a high population of water molecules in the ground state able to be excited by radiation from the 

Earth’s surface.  However, the reversible latent heat of vaporisation of water released as infrared quanta around 

6 μm when it condenses in clouds or at dewpoint [17] is also an important factor for radiative heat transfer in 

the atmosphere.  

    It is also apparent that the actual vibrational entropy of methane is only about one-sixth that exhibited by 

carbon dioxide and nitrous oxide. Presumably the low vibrational entropy can also be related to a higher residual 

absorptivity of methane, but it is only slightly statistically enhanced by being poorly excited at this temperature.  

Only a 5-6 very low proportion of methane as well as water molecules are excited by infrared radiation at 

equilibrium under ambient temperature conditions, as shown by their low vibrational entropies at 298.15 K.     

    Shown in Tables 3a,3b and 4, the organo-halogens such as Freon 11 (CFCl3) that have been withdrawn from 

use under the Montreal Protocol have an exceptionally large vibrational contribution to entropy. Replacing the 

hydrogen atoms of methane with these two halogen atoms also significantly increases both the rotational and 

vibrational entropy; this should lessen absorptivity in the longer infrared region significantly since this is 

relatively excited at 298 K as a result of longer bond lengths and greater ease of dissociation of atoms. According 

to Glasstone [5], the formula for calculating vibrational entropy strictly applies only to divalent molecules. 

However, this cautionary note may not be required for polyatomic molecules after all.  By applying the formula 

to each bond separately and summating as shown in Table 3b, including any degeneracy, the agreement with 

experimentally determined entropies using the third law approach is just as good as for other molecules where 

only translational and rotational contributions are significant.  
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    Nitric oxide (NO), although not a greenhouse gas with only one vibrational line in the short-wave infrared 

(5.252μm), is included for comparison, as are CO (4.608 μm) and O2 (6.329 μm) (Tables 2, 4). For nitric oxide 

(NO) a large discrepancy in total entropy between the data calculated here from translation, rotation and 

vibration would occur if the electronic (Qe = 4) term was neglected, a result of its free radical nature containing 

unpaired electrons; these add Rln22 or 11.53 extra entropy units per mole, giving a total value of 211.1, in 

agreement with the Aylward and Findlay value [15].      

    The Sackur-Tetrode equation includes a term for the electronic partition function (Qe). In the case of O2, 

the ground state electronic partition function Qe is 3 at STP because this molecule has two unpaired electrons 

that can have their two spins oriented three ways with respect to the nuclear spin –  both up, both down and 

oppositely.  Because they can be distinguished, the three different oxygen species have three times the volume 

per particle, affecting their action because of the greater radial separation than if only a single species existed. 

This gives an additional electronic entropy contribution of Se = RlnQe or Rln3.  

    However, the fact that a mole of oxygen will contain one-third of a mole of each species must be also be 

considered in estimating the total entropy.  This Qe factor is included in the Sackur-Tetrode equation as 

St=Rln[Qee5/2(V/N)(2πmkT)3/2/(h3)], or in the action form of the equation as Rln[e5/2(@t/ħ)3Qe/zt],  which is 

equal to RlnQe – Rlnzt + 2.5R + 3Rln(@t/ħ). Thus asymmetry (Qe) increases entropy by increasing spatial 

distance between molecular interactions and symmetry decreases it by reducing spatial distances– less field 

energy is needed to sustain a symmetrical molecule than an asymmetrical one.    

    Because of the statistical variation in quanta for rotational and translational fine structure, the actual 

vibrational spectra are not confined to these spectral lines but distributed around these wavelengths. The spectra 

may be sharpened by cooling the gas and this is usually done when testing the theory with data. 

    The data in Tables 3-4 were calculated for standard conditions of temperature and pressure.  To adjust 

these results to the actual gas pressures in the atmosphere at the same temperature, only the translational action 

and entropy will vary. In terms of centimeter-gram-second (cgs) units, the pressure, is equal to kTa-3 or kT/8r3 

at 1.013x105 pascals, being the product of the mass of air per square cm of the earth’s surface (ca. 1 kg) and the 

acceleration of gravity (9.807 m.sec-2).   

    It should be understood that entropy is a dimensionless number corresponding to its role in probability, 

given that it expresses a total thermal capacity per degree of temperature – a ratio of extensive and intensive 

measures of energy. It is also instructive to be aware that the product of entropy and absolute temperature (ST) 

is always a significant multiple of the kinetic energy since that is merely one of its components – to its kinetic 

energy must be added the sustaining field energy corresponding to decreases in free energy from absolute zero 

while heating the molecules, absorbing any heat that becomes latent during this process and in doing any work 

such as breaking H-bonded aggregated structures or pressure-volume work against the atmosphere. In this 

connection, much of the magnitude of ST is generated together with increased enthalpy during phase changes 

when parent solid or liquid matter is melting or vaporizing. Gibbs energy does not change when these reversible 

processes occur isothermally. The chemical potential of the liquid water is equilibrated with that of the vapour 

at the boiling temperature, the increase in the enthalpy on vaporization being effectively an increase in internal 

entropies associated with increasing the internal vibration and rotation of the de-clustered water molecules. 

Such increases in internal action and entropy are actually increases in enthalpy.  

    Any decrease in the density of a chemical substance such as the expansion of a solid, liquid or gas will also 

increase ST as its Gibbs free energy decreases. For example, liquid water gradually changes its state during 

heating from large H-bonded clusters of about 30 water molecules just above freezing to fewer than half that 

number per cluster just below boiling temperature [18], above which the clusters completely dissociate. The 
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variable action of these flickering clusters between zero Celsius and 100 C could be calculated and the changes 

in entropy estimated.  

    Some results calculated for the actual sea level pressures (ppmv) of all atmospheric gases at the standard 

temperature of 298.15 K are given in Table 5.  Entropy values are given per mole of each substance, using 

Boltzmann’s constant k multiplied by Avogadro’s number N as the unit value and the product [entropy x 

temperature, ST] estimated for each as a proportion of the total.    

    The total entropic energy as ΣST in air at sea level is about 2.4 MJ per cubic metre. It is obvious that the 

very dilute gases like nitrous oxide and methane have a relatively large translational entropy compared to the 

major gases and therefore need more heat per molecule to bring them to this temperature and pressure. The 

majority of the heat required (ST) to raise the atmosphere is absorbed into the fields of only three different 

molecules – nitrogen, oxygen and water. Given the reversible phase changes available to water, most of its 

maximum entropic energy is made available during condensation as part of the hydrological cycle.  Roderick 

et al. [19] have estimated that for a warming of 2.8 K, the atmospheric content of water would increase from an 

equivalent liquid column of 30 mm to 35.9 mm, or 7% per degree K of warming.  According to Table 6, by 

proportion alone, this would amount to 4,241 J per cubic metre of air at the surface of extra heat required.  

However, an exact calculation would need to consider the diminution of the translational entropy per molecule 

as a result of its increased concentration.  

 

Table 6.  Summary of total entropy and entropy-temperature terms in the real atmosphere at 298.15 K 

Gas Pressure (atm) St Sr Sv S 

Total 

S/ 

mole 

STP 

J/Mole of 

air/K 

J per m3 

H2O 0.00775 185.29 43.74 0.033 229.1 188.6 529.37278 21,637.477187 

CO2 0.000397 215.51 54.72 2.99 273.2 213.6 32.337468   1,321.755203 

H2S 0.0000000002 338.49 52.52 0.19 391.2 205.5 0.0000023 0.000003 

N2O 0.000000325 280.24 59.90 3.05 342.2 218.9 0.0331588    1.355326 

O3 0.0000000266 302.13 79.94 1.84 383.9 238.8 0.0032865      0.134332 

SO2 3 x 10-10 343.01 84.58 2.875 430.5 248.1 0.0000039      0.000159 

NH3 5x10-10 322.23 48.36 0.507 371.1 193.0 0.0000553      0.002260 

CH4 0.0000017 272.21 42.26 0.423 314.9 186.0 0.1596086 |    6.523810 

CFCl3 0.00000000026 350.00 107.59 32.28 489.9 310.0 0.0000380 0.000006 

CF2Cl2 0.00000000055 345.90 107.14 24.945 478.0 300.6 0.0000784 0.000001 

CF3Cl 0.0000000001 353.08 99.75 18.627 471.5 285.1 0.0000141 0.000002 

O2 0.2095 165.05 43.93 0.035 209.0 205.1 13,054.6468 533,593.023660 

CO 0.00000015 279.58 47.19 0.0025 326.8 197.5 0.0146153      0.597382 

NO 3x10-10 333.56 48.39 0.0087 382.0 199.6 0.0000034      0.000139 

H2 0.0000005 238.11  12.70 - 250.8 130.2 0.0373880      1.528190 

N2 0.78084 152.45 41.27 - 193.7 191.7 45,094.8022 1,843,195.930604 

Ar 0.00934 193.70 - - 193.7 154.8 539.400466 0.0442339 

       Total 2,399,758.372498 
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In Table 6, this operation is illustrated for the densest surface layer of the atmosphere only. If the temperature 

and pressure of the gas is known, a similar calculation can easily be repeated at all altitudes in the troposphere 

or the stratosphere and the results integrated to give the total heat capacity of the atmosphere, a task that others 

are invited to perform. For such calculations of action and entropy it is convenient to use suitable computer 

programs. A fully annotated outline of such a program is given as supplementary material or on request to the 

corresponding author 

 

Phase space as action space  

As shown in the equations above, the mean molecular free energy can always be expressed as a variable of the 

relative action ratio @/ħ alone.  Entropic energy (sT) also includes kinetic energy and the capability for 

pressure-volume work.  This extends to vibrational and electronic states although their contribution to 

atmospheric gases near the surface of the Earth at ambient temperatures is usually relatively small, as shown in 

the tables. Using the action model, the negative relationship between free energy and the entropy is more clearly 

revealed. Paradoxically, “free energy” is not real energy, but actually denotes its absence; it is better viewed as 

a system’s potential for action or higher quantum states showing its capacity to accept thermal energy by 

increasing its action and sustaining field energy, building more complex and diverse internal structures whilst 

doing external work such as expanding the atmosphere or lifting weights in a gravitational field. To the extent 

that cooling gravitational work is done that increases the free energy, heat may re-emerge later if reverse work 

is done on the molecules of the system. This reversibility is the essence of the second law of thermodynamics 

in action theory.      

    Given that the relative action or mean quantum number @/ħ can be expressed simply as a function of the 

particle’s mass, its radial separation and the square root of the temperature affecting velocity, all of the 

paradoxes regarding entropy such as its lack of change during the mixing of equal volumes of identical gases 

versus the change when two distinguishable gases are mixed at the same final pressure and temperature are 

easily resolved. Each of the distinguishable molecules now occupy twice the space as formerly, increasing their 

action accordingly, whereas identical gases must remain in the same space with the same action as before 

mixing.    

    In principle, the suggestion to calculate entropy from the logarithm of the translational and rotational action 

(including its modification by vibration) is far from new. Gibbs identified the significance of action in his 

classical text of 1902 [8], describing it as the extension in phase (Vpq), claiming that “the quantity …. which 

corresponds to entropy is log V, the quantity V (not volume) being defined as the extension in phase”. So we 

can conclude that according to Gibbs, even before Planck identified his quantum of action, any equi-potential 

contour in phase space of equal translational action (Vp x Vq = mv x r) would also correspond to states of equal 

translational entropy. In effect, changes in the momentum mv and a linear coordinate r would lead to no change 

in their product action and its logarithm, entropy. We can now recognise such contours as adiabatics differing 

by a minimum of Planck’s quantum of action h, giving a scale for estimating maximum uncertainty in 

momentum or position. So this paper can be considered as a 21st century quantum revision of Gibbs’ 19th century 

suggestion. 

    No claim is made here that the action model is inherently more accurate than the classical methods of 

statistical mechanics or that the formulae given here for ideal gases apply without corrections under all 

conditions of temperature or pressure. But the results are easily obtained from primary data and are surprisingly 

accurate, even for vibrational entropy. This suggests that the action method will have strong heuristic value –   

not only for climate science but also for theoretical and experimental purposes in all branches of chemistry and 

physics. For example, this action revision of the nature of entropy and free energy and the interaction between 
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internal and translational action states has the potential to advance reaction rate theory and many other processes 

occurring in the liquid state, including those of life systems. In this area, the translational action will play a 

special role, since it is closely related to changes in Gibbs energy for molecular trajectories from the chemical 

potential of free reactants through reversibly activated transition states to the chemical potential of products 

(see Kennedy [3] chapters 4, 6).   

 

Boltzmann’s realistic collision model of entropy 

Strongly relevant to the equations for entropy based on logarithmic functions of action given in this paper is the 

approach used by Ludwig Boltzmann [7]; he derived an equation for entropy using his H-theorem by 

considering the mathematical behavior of a collision integral using a realistic model. This theorem was based 

on integrating the average effect on a single molecule of collisions with all the other molecules of the gas, 

spontaneously increasing its entropy whenever commencing with a more ordered state.  This led him to 

essentially the same equations for entropy as those of Gibbs, while claiming “that the mechanical basis is 

necessary to illustrate the abstract equations”, despite the current of opinion at the time from Mach and others 

directed against the existence of molecules. For example, Boltzmann [7] gives an expression for the integral of 

the sum of the entropies of the masses in the volume elements as [Rln(ρ-1T3/2) + const.], where ρ is the number 

density of gas molecules.  We can observe that this result only lacks the quantum of action h as a suitable 

divisor in the logarithmic term to remove the physical dimensions of action per unit mass.  

    In general, only differences in action and entropy between alternate states are of thermodynamic interest 

since the absolute entropy is not required. We have shown that for translation the entropy change per mole say 

for elevation in the atmosphere given a change of state (1=>2) can be expressed as a function shown in equation 

(16). 

 

ΔSt2-t1  =   Rln[(e5/2@t2/ħ)3] - Rln[e5/2(@t1/ħ)3] =  3Rln[(@t2/(@t1)]      (16) 

 

Therefore, the precise choices of the symmetry factor or of the translational radius are only of significance for 

estimating the absolute entropy.  Because of the statistical nature of momentum and position in phase or action 

space, assigning an exact value to the most probable radius or symmetry factor to each molecule is impossible 

since they will fluctuate around statistical mean values. However, the amplitude of the fluctuations is of interest, 

since these will control rates of transition.    

 

Under isothermal conditions Gibbs energy varies with translational action and entropy 

Given that the third law of thermodynamics states that the entropy at the temperature of absolute zero is zero, 

this would require that the action ratio @t/ħ for a gas at this minimum temperature must be slightly less than 

one, if it could exist as such, since the translational entropy can then be considered as equal to 5/2R + 

Rln[(@t/ħ)3], equivalent to the Gibbs expression for entropy of  ST = H – G where G is the free energy or work 

potential of a monatomic gas at constant pressure. This suggests that the magnitude of the function 

RTln[(@t/ħ)3] has the same value as the free energy, although opposite in sign, so that G = -RTln[(@t/ħ)3] or 

RTln[(ħ/@t)3] and ΔG = 3RTln[(@tr/(@tp)] for changes in action state at constant temperature.  

    Incidentally, the total entropy change during an isothermal chemical reaction includes contributions from 

changes in translational action and entropy at T – δ(StT) is equal to the change in Gibbs energy – as well as 

changes in the internal action and entropy representing changes in enthalpy as a result of revised bonding 

energies.  It is important to understand that the enthalpy term designated H refers to the sensible heat that tends 

to change temperature. Thus, if a chemical reaction results in products where atoms or electrons are more firmly 
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bound with shorter radii, the reduced potential energy will be compensated by increased internal kinetic energy 

and equal quantities of emitted quanta, resulting in a release of heat as a reduction in Gibbs energy and an 

increase in entropy of the surrounding system. In the absence of such chemical reactions, the enthalpy change 

can be measured by the changes in kinetic energy and pressure-volume work alone. This is also true with 

monatomic noble gases like argon.  

    It is important to note that, within limits, the internal entropy for rotational and vibrational states is a 

function of temperature only. It is unaffected by changes in concentration, except at very high densities, in 

contrast to translational states. A low concentration or pressure corresponds to a high action state of greater 

entropy.  So at constant temperature, changes in free energy are purely a function of changes in translational 

action states, since internal entropy or enthalpy remains constant, or fluctuate around a stable mean value though 

variations in internal states by absorption or emission of radiation and re-equilibration with translational states. 

This is entirely consistent with chemical work processes being directly mediated by translational inertia and 

pressure, such as pressure-volume work.       

     

    We can then write that  

 

G  =  H  – ST     = H – (StT + SrT + SviT)        (17) 

 

The enthalpy (H) is a term always referring to the sensible heat in a system that can be sensed with a 

thermometer and related to the kinetic energy of its molecules. The entropic energy ST differs in that it is only 

partly indicative of sensible heat, but includes the potential energy stored in work such as thermodynamic work 

in molecular systems, or gravitational work. According to the Carnot principle, in a reversible system this work 

can reappear as sensible heat, raising the temperature. This potential source of extra warming certainly applies 

to gases in the Earth’s atmosphere.  Indeed, it is responsible for much of the heat transfer to higher latitudes, 

released by frictional processes on the Earth’s surface.      

    For monatomic gases we can rewrite this classic equation taught to all students using the algorithms 

developed here as follows. 

 

G  =  H  - ST 

 

-RTln[(@t/ħ)3] =  1.5RT + RT – RTln[e5/2(@t/ħ)3]         (18) 

  

For the main diatomic gases in the atmosphere nitrogen and oxygen at ambient temperatures by including 

rotational entropy but where we can neglect vibrational entropy, we will have the following.  

 

-RTln{[(@t/ħ)3Qe][(@r/ħ)2/σr]} =  2.5RT + RT – RTln{[e7/2(@t/ħ)3Qe] [(@r/ħ)2/σr]} 

 

Disallowing a role for the enthalpy of chemical reactions at ambient temperatures in the troposphere we have, 

  

G  = H – ST  = 3.5RT – ST          (19) 

 

Alternatively, we can write for Helmholtz energy in constant volume conditions a modified equation, varying 

only slightly in the  RT or PV term. 
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-RTln{[e(@t/ħ)3Qe][(@r/ħ)2/σr]} =  2.5RT – RTln{[e5/2(@t/ħ)3Qe] [(@r/ħ)2/σr]}    (20) 

 

A  = E – ST   =  2.5RT – ST  = G - RT  

 

For polyatomic molecules or at temperatures where vibrational entropy and energy are more relevant, it is 

simple to add the vibrational entropy terms to both sides of the equation 

    In his engaging book on statistical mechanics, Schrödinger [19] derived the relationship nklnζ = U + PV – 

TS, by calculating from the ‘sum over states’ ΣNi/N =        e-ε1/kT + e-ε2/kT + e-ε3/kT+ e- ε4/kT ……+ e-εn/kT……… ;  

nkTlnζ is the thermodynamic potential (or free energy) for n molecules, a function of an inversed action ratio ζ.  

He defined the factor 1/ζ as a function of the translational partition function (2πmkT/h2)3/2V, divided by the 

number of particles (n) – that is, as a translational action ratio as defined in this paper. By contrast its inverse ζ 

is an ‘inaction’ ratio indicating the free energy and Schrödinger’s insightful equation precedes by at least 70 

years the action potential theory of free energy given here. For a perfect monatomic gas, PV is equal to RT and 

so U + PV is equal to the enthalpy H, which does not change for individual molecules of a chemical species – 

unless the temperature changes. 

    In contrast to translation and rotation, vibrational action states higher than the ground state are largely 

unoccupied at ambient temperatures and most greenhouse molecules in the atmosphere are still in their coldest 

vibrational states, despite them radiating as required by the temperature but falling away by the fourth power 

of the temperature in Kelvin. Thus, vibrational action and entropy are minimal. This ordered state of low 

vibrational entropy is fortunate for life on Earth, otherwise stable molecules and structures would be impossible. 

In kinetic theory it has usually been assumed that molecular trajectories are linear, with no interaction between 

molecules.  

    Whether the translational trajectory of the molecules is considered as curved or straight is irrelevant, given 

that the speed of energy transfer vastly exceeds that of the molecules; relatively to the speed of transmission of 

the thermal field energy bath referred to by Clausius in 1875, molecules are almost stationary.             

    

Greenhouse gases and temperature equilibration in the gravitational field 

When individual molecules are heated internally by absorption of infrared radiation, increasing their vibrational 

action and entropy, rotational and translational modes of action will almost immediately respond, mediated in 

microseconds through subsequent collisions [21]. The absorption of a quantum will decrease their internal free 

energy whilst increasing their inertia and capacity to exert pressure, potentially doing gravitational work while 

moving to higher altitude and thus lowering the local temperature as kinetic energy declines. This may seem 

paradoxical but it is consistent with the virial theorem [3] and this idea was developed further in a companion 

paper [22]. 

 on action mechanics on assessing the possible role of greenhouse gases on temperature gradients with altitude.  

    Such dissipation processes for absorption and emission of radiant energy may give a special role for 

greenhouse gases in the atmosphere, since the major gases nitrogen and oxygen have little if any such absorptive 

activity. Their presence enhances the rate of transfer of radiant energy from the Earth’s surface to non-

absorptive molecules at higher altitudes. Indeed, this is an important role of polyatomic gases like water and 

carbon dioxide.  On the whole, greenhouse gases are regarded negatively because of their proposed role as 

agents in global warming; but it is important to also consider for experimental testing their possible benefits, 

such as enabling elevation of the atmosphere and cooling the surface of the Earth.  Once heated, gases with 

higher heat capacities (including nitrogen and oxygen) also tend to cause the atmosphere to be more elevated, 

because the natural temperature lapse rate with altitude is less than for monatomic gases of similar mass. Thus 
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an atmosphere of carbon dioxide of mass 44 Daltons would be more elevated than one of argon of mass 40, 

despite its greater weight. 

    We can examine the relative absorptivity of the greenhouse gases and the existence of absorptive-emissive 

lines in the infrared (Tables 3, 4), recalling that the earth’s surface has a maximum emission range of around 5-

30 μm wavelength (10000 cm-1=1 μm, 1000 cm-1=10 μm; 100 cm-1 = 100 μm) whereas sunlight is confined to 

the 0.3-5 μm range.  The longer wavelength of terrestrial radiation compared to sunlight is a result of absorption 

of sunlight by surface materials and re-equilibration of the quanta with the much cooler surface of the Earth, 

compared to the boiling ocean of hydrogen atoms of the Sun. Obviously, polyatomic molecules absorb in the 

5-30 μm wavelength band of the infrared and the more complex the molecules are, the greater the number of 

absorptions.    

    The quanta associated with changes in rotational and translational action must be of longer wavelength, in 

the microwave and radiowave range of frequencies not resonant with the earth’s major energy primary 

emissions from sunlight. But the infrared radiation absorbed by greenhouse molecules will be converted to these 

lower frequencies as a result of work done in subsequent molecular collisions during temperature equilibration 

in the atmosphere – the process known as equipartition. It is of interest that the quanta able to promote equality 

of kinetic temperature with equilibrated molecules range from infrared for vibrational freedom to microwaves 

for rotation and radiowaves for translation, thus broadening the spectrum of the energy involved. Changes in 

such radiation fields during dissipation of such radiation from Earth should already be detectable using suitable 

spectrometers on satellite systems. 

    According to Clausius [1] and the second law, to heat the Earth’s surface as a net process the atmosphere 

would need to be hotter than the surface. Consistent with this principle, most of the temperature increase at the 

surface of the Earth from energy fed back from the atmosphere must be a result of the reversal of convective 

processes in high pressure zones, when air is descending. The fall of atmospheric gases from higher gravitational 

energy is a work process generating heat, all air molecules simultaneously gaining kinetic energy and radiating 

equivalent heat quanta as required by the virial theorem of Clausius [11]. Clearly, this process can heat the 

surface, as occurs in high pressure zones or anticyclones.  However, this transfer of heat from the atmosphere 

must be balanced by compensating transfers of radiant heat into the atmosphere in low pressure zones as 

gravitational work is performed using heat. These reversible processes demonstrate the Carnot principle that so 

impressed Clausius. Surprisingly, in climate science little attention is paid to the reversible transfers between 

heat and work that are implied in Lagrange’s earlier identity relating the second derivative of the inertia of a 

system of particles  (I=Σmr2) with respect to time and its kinetic (T) and potential energy (V);  these can be 

considered as surrogates for heat and work in a gravitational or central force system. 

 

½d2I/dt2  =  2T +  V              (21) 

 

On this basis, inertial effects can be considered as sources of heating or cooling as seen in convection and 

advection near the Earth’s surface (Kennedy [2] chapter 5). In fact, this equation should be considered as the 

basis for the whole of climatology, a contention we begin to explore elsewhere [11, 21]. A simplifying aspect 

of the virial theorem for conservative systems is that changes in action state involve equality of variations in 

total energy and kinetic energy though opposite in sign. Thus, the absorption or the emission of energy quanta 

as changes of state require instantaneously equal decreases or increases in kinetic energy respectively.  This is 

the basis for the conclusion that variations in potential energy shown in equation (21) are twice the magnitude 

of variations in kinetic energy.  
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    Table 4, 5 also shows the specific frequencies of infrared radiation from the Earth that different gases such 

as CO2, N2O and CH4 will absorb. But a CO2 molecule activated by IR-absorption to vibrate more vigorously 

will transfer most of this energy to other air molecules in the next collisions, thus increasing their action and 

entropy while dissipating the activated internal state and increasing their Gibbs energy. Furthermore, the more 

dilute the gas (e.g. N2O and CH4), the greater its translational entropy – although its vibrational and rotational 

entropies will be purely a function of temperature.  Thus, on absorbing a specific quantum of IR-radiation 

(exciting molecular vibration) such a dilute gas will have a larger disequilibrium between its vibrational action 

and its translational action.  In a subsequent collision, the greater inertia and amplitude of the vibrating atom 

should cause a more efficient transfer of momentum to surrounding air molecules, irrespective of whether they 

are greenhouse gases or not.                   

    In the action theory, emphasis is placed on the fact that the greenhouse gases act to capture the earth’s 

radiant energy and the momentum associated with these quanta; the greenhouse gases are then accelerated in 

their vibrational, rotational and translational energy as a result, all tending to increase the temperature and all 

atmospheric molecules responding with increased action and entropy. Since the quanta from the Earth are 

directed towards outer space, there is even a small radiant force (Σhνi/cδt) tending to selectively elevate the 

greenhouse gases, compared to the non-absorbing gases, N2 (78%), O2 (21%) and Ar (1%) – but the 

thermodynamic action potential to elevate greenhouse gases outlined here as a result of the opposite function 

of internal and external translational action and entropy is much greater.  

    So this thermodynamic force and heating effect is transferred to N2 and O2 as a result of collisions and the 

heated gases expand to higher altitude, exchanging their increased kinetic energy for increased gravitational 

energy and cooling as a result. Perhaps it is more apt to consider that the greenhouse gases such as water play 

an important role in holding up the sky, enabling reversible gravitational work, thereby cooling the atmosphere.  

These adjustments of temperature of the troposphere allow the outgoing longwave radiation to balance the 

incoming solar shortwave radiation, providing temperature equilibrium.  The average temperature at the 

surface is automatically adjusted to ensure this balance, fluctuating according the rate of heat flow from the 

Earth.  

 

Adiabatic processes 

    Adiabatic changes may occur at constant gravitational potential, as when a parcel of air moves laterally by 

advection, doing electrical work on a wind farm. When a parcel of air moves reversibly by adiabatic convection 

to a higher gravitational potential we have to consider the cooling effect of doing gravitational work in addition 

to changes in the atmospheric pressure. The lower the pressure exerted by the weight of the atmosphere above 

the parcel of air, the less pressure-volume work and heat is needed for expansion. However, almost the same 

amount of heat is required to raise the gravitational potential of the same parcel of air no matter what the altitude.         

    By contrast, a descending parcel of air may be adiabatically compressed and spontaneously heats as 

gravitational potential declines causing kinetic work and internal heat-work varying free energy to be done on 

the air as it falls. We will show elsewhere that the increase in kinetic heat shown by the temperature increase at 

the expense of gravitational potential energy is matched by the decrease in free energy of the thermodynamic 

field, also consistent with the virial theorem. Furthermore, the capacity to do work of the air parcel declines as 

the atmospheric pressure increases and pressure-volume work becomes more costly.    

    As appropriate for statistical thermodynamics, these calculations of entropy and free energy relate only to 

the scale of randomized molecular motions of canonical ensembles. Neither the kinetic energy nor the “work-

heat” or potential energy involved in convective and advective motions of parcels of air has been considered 

here. The thermal energy required to initiate these higher order motions (i.e. neither vibrational, rotational nor 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 March 2019                   

Peer-reviewed version available at Entropy 2019, 21, 454; doi:10.3390/e21050454

https://doi.org/10.3390/e21050454


 

translational) is substantial, even though the kinetic energy generated is relatively minor compared to that of 

the randomized molecular motions. But the “work-heat” required for anticyclones and cyclones generated by 

thermal gradients in the gravitational field is substantial. The observation here that the major part of the heat 

required per molecule (sT) from absolute zero to 298 K relates to the latent or “work-heat” compared to the 

sensible kinetic heat is a striking observation rarely made.  For example, for argon the total entropy (18.6k per 

molecule or 154 J/C/mole) shown in Table 4 at 1 atm, is 12.4 times the increase in entropy from 0 K for kinetic 

motion alone (1.5k). At 0.01 atm in the atmosphere, the ratio for configurational energy is even greater. For all 

the molecules in a rotating parcel of air, the potential energy or “work-heat” of motion in these coherent “fly-

wheels” is orders of magnitude greater than the kinetic energy of their circulation. Even though the dissipation 

of this “work-heat” as frictional heat at higher latitudes is a major mechanism for the dispersal of solar energy 

from the equator towards the poles, this source of warming is rarely properly considered in climate models. 

This should change. 

            

Conclusion 

 

Unfortunately, in recent years thermodynamics and statistical mechanics have largely fallen into disuse, except 

by specialists. However, this need not continue, given the ease of calculating accurate values of entropy and 

free energy of gases displayed in this paper. Furthermore, interpreting thermodynamics in terms of action states 

provides a realistic modelling approach that can simplify the study of the links between heat, work and 

morphogenesis [2]. Linking vibrational quantum states to translational quantum states as shown in Table 2 

provides a new dimension for establishment of reactive morphology. We have commenced applying this action 

approach to modelling the troposphere [11, 22] also applying the virial theorem to generating temperature 

gradients with altitude, yielding a steady state lapse rate between –6.5 C and –6.9 C per km depending on water 

vapour content, with a profile of increasing entropy vertically. We recommend widespread application of this 

explanatory approach.    
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