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Abstract: Appropriate estimation of soil settlement is of significant importance since it directly 

influences the performance of building and infrastructures that are built on soil. In particular, the 

settlement of fine-grained soils is critical because of low permeability and continuous settlement 

with time. Coefficient of consolidation (Cc) is a key parameter to estimate settlement of fine-grained 

soil layers. However, estimation of this parameter is time consuming, needs skilled technicians, and 

specific equipment. In this study, Cc was estimated using several soil parameters such as liquid limit 

(LL), plastic limit (PL), and initial void ratio (e0). Estimating such parameters in laboratory is straight 

forward and needs substantially less time and cost compared to conventional tests to estimate Cc 

such as Oedometer test. This study presents a novel prediction model for Cc of fine-grained soils 

using gene-expression programming (GEP). GEP is a biologically inspired technique capable of 

offering closed-form solution for the optimal solution. A database consisted of 108 different data 

points was used to develop the model. A closed-form equation solution was derived to estimate Cc 

based on LL, PL, and e0. The performance of developed GEP-based model was evaluated through 

coefficient of determination (R2), root mean squared error (RMSE), and mean average error (MAE). 

High R2 and low error values indicated the descent performance of the model. Furthermore, the 

model was evaluated using the additional performance measures and met all the suggested criteria. 

Furthermore, the model had a better performance in terms of R2, RMSE, and MAE compared to most 

of existing models. It is expected that the developed model will decrease the time and cost associate 

with determining Cc of fine-grained soils. 

Keywords: evolutionary model, gene-expression programming (GEP), prediction, soil 

compression index, estimation, soil engineering, soil informatics, civil engineering, machine 

learning, data science, big data, soft computing, deep learning, forecasting, subject classification 
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1. Introduction 

Soil compressibility is considered as a volume reduction under load of pore water drainage. 

Precise estimation of this property is critical for calculating settlement of soil layers [1]. This problem 

has become more critical for fine-grained soils due to their low permeability, resulting in compression 
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index (Cc) to be the most accepted parameter to date to represent soil compressibility [2]. This 

parameter is often utilized for measuring the individual soil layer settlement. Different empirical 

equations have been particularly developed to predict Cc [3-9]. These equations were mainly 

developed based on traditional statistical analyses. Nevertheless, they include a number of 

drawbacks such as low correlation of input and output parameters [10]. Thus, it is essential to develop 

a comprehensive model to analyze the complex behaviour of Cc. This model should significantly 

eliminate the shortcomings of the previous models like practicality and low correlation between 

input and output parameters. 

Soft computing techniques such as artificial neural networks (ANN) are widely accepted and 

popular along the conventional statistical methods (e.g., regression) [11-21] . These techniques were 

successfully applied to different geotechnical problems such as Cc prediction [7, 22-27]. However, a 

major limitation of common soft computing techniques is that no closed-form prediction equation is 

provided by them. With the introduction of artificial intelligence (AI) techniques and particularly 

genetic program (GP), researchers in the field of soft computing attempted to solve this issue (i.e., 

obtaining closed-form solution). AI includes various techniques of ANN, neuro-fuzzy and support 

vector machines (SVM) with a great record of successful applications in wide range of problems [28, 

29]. Considering AI, a learning mechanism is often embedded the techniques to construct the 

intelligent structure of the estimation model (i.e., solution of the problem). In this between, ANN is a 

robust artificial tool which is widely used to predict Cc [7, 22-26]. Though ANN, FIS, and other AI 

techniques have a good statistical performance in terms of correlation, these techniques are often 

known as black-box models in soft computing terms, mainly due to lack of the capability to offer 

close-form estimation formulas. This, however, is reported to be a drawback for AI techniques that 

limits their practicality [10, 28]. It worth mentioning that the runtime for most of soft computing 

techniques could be efficiently decreased by using parallel processing methods [30]. 

Genetic programming (GP) is based on individual computational programming and it is 

classified as a major family of soft computing techniques. GP can empower and enable the complex 

and highly nonlinear estimation modelling tasks [31]. While classical GP nominates only a single 

program, the gene expression programming (GEP) includes several genes of programming for 

reaching the optimal solutions [32]. Application of GEP is growing significantly compared to GP in 

the engineering domain mainly due to the accuracy of its predictions [28, 29]. The current study 

investigates the use of GEP to develop a prediction equation for Cc of fine-grained soils existing in 

northeast Iran. The objective of this study was developing a GEP-based prediction equation for Cc of 

fine-grained soil with simple tests such as Atterberg LL and PL. Since conventional consolidation tests 

of fine-grained soil (e.g., oedometer test) are time consuming and costly, the application of such a 

prediction equation will lead to substantial savings for Cc estimation in terms of cost and time. 

2. Gene Expression Programming (GEP) 

There are several variants of GP based on optimization technique used by them. Gene expression 

programming (GEP) is the latest variant of GP which is a powerful tool to approximate optimized 

solution of a problem in a closed-form format. The conventional GP generates computer models 

through mimicking the biological evolution of living organisms providing a tree-like form of 

solution, which leads to closed-form solution for the optimization problem of interest [28, 29, 31-33]. 

The main objective of GP is obtaining programs that connect inputs to output for each data point 

creating a population of programs. The population of programs like shape of branches of tree created 

by GP include functions and terminals which are randomly generated. The final solution of the 

problem is determined based on the tree-like programs.  

Fundamentals of GEP was first developed by Ferreira in 2002 consisting a number of 

components i.e. terminal set, function set, control parameters, fitness function, and termination 

function [34]. GEP employs a fixed length of character strings to model the problem, unlike the 

conventional GP. These characters will further turn into parse trees in various sizes and shapes 

known as expression trees (ETs). The benefit of GEP over conventional GP is that genetic diversity is 

represented as genetic operators of chromosome. GEP, in fact, evolves a number of genes (sub-
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programs)[34] which are individual tree-like programs [10, 34]. Furthermore, GEP has a flexible multi 

genetic nature suitable for the construction and evolution of complex networks of genes. In the GEP 

framework, the genes in a chromosome may consist of two types of information stored in either tail 

or head of genes i.e. information to generate the overall GEP model, and the information of terminals 

for producing subsequent GEP models. Specific details about GEP can be found elsewhere [10, 31, 32, 

34, 35].   

Fig 1 presents a sample program illustration of evolving GEP. d1, d2, and d3 are the model inputs. 

furthermore the process evolution functions are +, -, ×, /, exponential function (exp()), natural 

logarithm function (ln()), and Inv. The presented model is linear with coefficients of c0, c1, and c2 while 

utilizing the nonlinear terms [31, 32]. For obtaining c0, c1, and c2, a simple least square was applied to 

the training data. A partial least squares method could also employ for this objective (18, 22). The 

important GEP parameters that need to select carefully are the tree depth and the quantity of genes. 

However minimizing the tree depth generally results in shorter closed-form equations with fewer 

number of terms [29, 34]. 

1.  
2.  

Fig 1. Sample GEP Model. 

3. Modeling of Cc for Fine-Grained Soils  

3.1. Data Collection  

 

A set of 108 individual consolidation test results obtained from laboratory tests were used to 

develop the GEP-based prediction equation. As mentioned earlier, the objective of this study was to 

predict Cc using conventional parameters of fine-grained soils, namely PL, LL, and e0. 101 out of 108 

data points were corresponding to test results conducted on soil samples collected from different 

locations in Mashhad, Iran. Soil samples were classified as silty-clayey sand (SC–SM), gravelly lean 

clay with sand (CL) and silty clay with sand (CL–ML) based on unified soil classification system. 

These samples were cored from a depth of 0.5 m to 1.0 m. LL, PL, and e0 were measured for these 

samples in laboratory based on ASTM  D4318-17 and ASTM D854-14 [36, 37]. Furthermore, Cc was 

measured using oedometer test based on ASTM D2435-11 [38]. In addition, seven consolidation test 

results conducted by Malih was integrated into the laboratory database to make it more robust [39]. 

The descriptive statistics of influential input parameters (i.e., LL, PL, and e0) and the output parameter 

(Cc) based on the database utilized for our study is presented in Table 1. Furthermore, Figs 2-5 

illustrates the distribution of these parameters using histograms. 
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Table 1. Descriptive statistics for input and output parameters used in the GEP-based developed 

model. 

Parameter LL (%) PL (%) e0 Cc 

Mean 36.16 22.61 0.75 0.17 

Standard Deviation 
12.79 5.64 0.12 0.05 

Minimum 19.40 14.80 0.51 0.08 

Maximum 72.00 44.00 1.03 0.025 

Range 52.60 29.20 0.52 0.18 

     

 

 
 

Fig 2. Distribution of liquid limit (LL). 

 
Fig 3. Distribution of PL. 
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Fig 4. Distribution of eo. 

 

 
Fig 5. Distribution of coefficient of consolidation (Cc). 

3.2. Model Structure and Performance 

Prediction equations for Cc developed by previous studies clearly indicated that LL, PL, and 

e0 are three main parameters that influence Cc [3-9]. Thus, these parameters were considered in the 

current study to develop a simplified prediction equation for Cc. The main motivation of developing 

such equation was that determination of LL, PL and eo is straight forward compared to performing 

any consolidation tests that directly determines Cc. Therefore, the developed model is anticipated to 

result in considerable savings in terms of testing time, technician cost, and laboratory equipment. It 

should be noted that LL, PL, and e0 are influenced by natural water content of partially saturated 

soils, thus making the developed equation applicable to any saturated find-grained soils [28, 40, 41]. 

Mathematically, the developed equation had the following structure. 

( )
0

,, ePLLLfC
c
=

           (1) 

showing that Cc was considered to be a function of LL, PL, and e0. In order to develop the GEP-based 

prediction equation for Cc, a database containing 108 data points was developed. Each data point 

corresponded to LL, PL, and eo, as well as Cc for a particular fine-grained soil sample. The 

GeneXproTools 5.0 was used to develop the GEP-based prediction equation in MATLAB [42]. The 

performance of developed GEP models was evaluated using coefficient of determination (R2), root 

mean squared error (RMSE), and mean average error (MAE) (21-23), applying the following 

equations: 
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In these equations, hi and ti are measured and predicted output (Cc) values, respectively, for the 

i-th data point. Furthermore, ih
and it  are average of the measured and predicted values, 

respectively, and n is number of samples [28, 29] 

3.3. Model Development 

The database was divided into two subsets in order to avoid the over fitting issue: training 

subset and validation subset. The GEP-based model was trained using the training subset while 

validation subset was used for validating purposes and avoiding over fitting [34]. The final model 

(prediction equation) was selected based on model simplicity and performance of training and 

validation subsets. Performance criteria was based on highest R2 and lowest RMSE and MAE, for 

training and validation subsets. After training, the candidate models were applied on un-seen 

validation subset to ensure their good performance. The proportion of training and validation 

subset size with respect to the whole data is commonly selected as 60%-75% and 25%-40%, 

respectively. In the current study, 75% (81 data points) and 25% (27 data points) of total data points 

were assigned to training subset and validation subset, respectively. 

GEP algorithm was executed several times with a variety combination of influential 

parameters in order to identify the best model. This process was based on values suggested by 

previous works [31, 32, 34]. Table 2 includes the parameters of various runs. Reasonably large 

numbers were considered for size of population and generations to guarantee that optimal models 

are achieved. In the developed GEP-based model, individuals were identified and transferred into 

further generation based on the fitness evaluation carried out with roulette wheel sampling 

considering elitism. Such evaluation can guarantee successful cloning of best individual. 

Furthermore, the variation in the population was carried out through genetic operators on the chosen 

chromosomes including crossover, mutation, and rotation [10]. 

In every GEP-based model, values of setting parameters have significant impact on the model 

performance. These parameters include the quantity of genes and chromosomes, in addition to gene’s 

head size, and rate of genetic operators. Since minor information was available about GEP parameters 

in the literature, appropriate settings were selected based on a trial and error scheme (see Table 2). 

 

Table 2. Parameters used for implementation of GEP-based model. 

Parameter Setting 

Number of Chromosomes 50 to 1000 

Number of Genes 3 
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Head Size 8 

Tail Size 17 

Dc Size 17 

Gene Size 42 

Gene Recombination Rate 0.277 

Gene Transportation Rate 0.277 

Function Set +, -, ×, /, exp, ln, and Inv 

 

Furthermore, to facilitate developing GEP-based model, the following closed-form equation 

has been developed and utilized: 
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Figs 6-8 presents the measured values of Cc obtained from laboratory experiments versus 

predicted values. Figs 6, 7, and 8 present measured values versus predicted values for training subset, 

validation subset, and entire set, respectively. Furthermore, Table 3 summarizes GEP-based model 

performance in terms of R2, RMSE, and MAE for these sets. Smith states that for a coefficient of 

determination of |R|> 0.8, a strong correlation exist between measured and predicted values [43]. 

Based on Table 3, the developed GEP-based model has a high R2 for training subset, validation 

subset, and entire data set. In addition, the model exhibited a relatively low RMSE and MAE for all 

these sets. 

 

Fig 6. Predicted versus measured Cc for training subset. 
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Fig 7. Predicted versus measured Cc for validation subset. 

 

Fig 8. Predicted versus measured Cc for entire data set (training + validation).  

 

Table 3. Model performance. 

Set 
Number of  

Data Points 
R2 RMSE MAE 

Training Subset 81 0.8231 0.0269 0.0213 

Validation Subset 27 0.8603 0.0237 0.0189 

Entire Data Set 108 0.8320 0.0262 0.0207 
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3.4. Additional evaluation of model performance 

In this section, performance of the developed GEP-based model is evaluated based on various 

statistical parameters found in the literature. These statistical parameters along with their acceptance 

criteria is presented in Table 4. Parameters used in this table are all as previously defined. 

Furthermore, the developed model was evaluated based on these statistical parameters and results 

are presented in this tale. As can be seen in Table 4, the developed model met all the criteria for 

additional statistical parameters revealing the descent performance of the developed model. 

 

Table 4. Evaluating the developed GEP-Based model using additional statistical parameters. 

Statistical Parameter Source Criteria 
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Table 5 presents the comparison of the developed GEP-based model with previous models found in 

the literature. The previous model consisted of either regression-based equations or robust AI 

methods such as multi-expression programming (MEP), artificial neural network (ANN), and multi-

gene genetic programming (MGGP). It worth mentioning that these AI methods do not provide any 

closed-form solution. AI methods had relatively high R2 mainly due to their black-box nature of 

connecting inputs and outputs. Nevertheless, the developed GEP-based model had a higher R2 

compared to existing AI methods. However, MEP, ANN, and MGGP had a lower error in terms of 

RMSE and MAE. 

Based on Table 5, the developed GEP-based model outperforms regression models since regression 

models considers only a small quantity of base functions. Therefore, such models cannot be used to 

complex interactions of soil parameters (i.e., LL, PL, and e0) and Cc. However, the developed GEP-

based model considers a variety of base functions and their combination in order to achieve a closed-

form equation with high performance. The developed GEP-based model directly considers the 

experimental data with no prior assumptions. In other words, contrary to traditional regression 

models, GEP does not assume any pre-defined shape for the solution equation. High values of R2 

presented in Table 5 indicates that the developed GEP-based model was very successful in fitting the 

measured Cc to the input parameters of LL, PL, and e0. 
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Table 5. Performance comparison of current developed GEP-based model with existing models. 

Source Model Description 
Performance Measure 

R2 RMSE MAE 

Skempton [8] Regression Equation 0.367 0.072 0.056 

Nishida [6] Regression Equation 0.752 0.301 0.285 

Cozzolino [4] Regression Equation 0.752 0.105 0.103 

Terzaghi  and Peck [9] Regression Equation 0.367 0.110 0.077 

Azzouz et al. [3] Regression Equation 0.752 0.036 0.032 

Mayhe [5] Regression Equation 0.367 0.102 0.073 

Park and Lee [7] ANN 0.752 0.089 0.085 

Mohammadzade et al. [28] MEP 0.811 0.019 0.016 

Mohammadzade et al. [29]  ANN 0.859 0.017 0.014 

Current Study GEP 0.832 0.026 0.021 

 

 

5. Conclusions 

Coefficient of consolidation (Cc) is a significant parameter for determining settlement of fine-

grained soil layers subjected to loads such as that of buildings, vehicles, and infrastructures. If Cc is 

not estimated accurately, soil settlement is under- or over-estimated, which both cases are not 

desirable from technical prospective. Thus, determining Cc is of significance importance in settlement 

calculations. However, measuring Cc using the traditional oedometer test method is time-consuming, 

needs skilled technicians, and requires special laboratory equipment. Therefore, estimation of Cc 

using other parameters of fine-grained soils such as LL, PL, and e0 would eliminate the time and 

costliness associated with oedometer test. In this study, gene-expression programming (GEP) was 

employed to develop a model for estimating Cc using LL, PL, and e0. 108 data points containing Cc, 

LL, PL, and e0 were used to train and validate the model. The model was developed based on tuned 

calibration parameters using trial and error. A closed-form solution was derived from the developed 

GEP-based model which is anticipated to aid geotechnical researchers in determining Cc with 

considerable saving in associated time and costs. This closed-form equation for predicting Cc was 

employed to develop surface charts to predict Cc based on LL and PL for a certain e0. 

 The performance of developed GEP-based model was evaluated using coefficient of 

determination (R2) and two error measures, namely root mean square error (RMSE) and mean 

average error (MAE). R2 values were 0.8231, 0.8603, and 0.8320 for training subset, validation subset, 

and entire data set, respectively. In addition, RMSE was 0.0269, 0.0237, and 0.0262 for training subset, 

validation subset, and entire data set, respectively. High R2 and low error indicates the highly 

acceptable performance of the GEP-based model. Additional performance measures found in the 

literature were employed to further evaluate the performance of developed GEP-based model. This 

evaluation revealed that the model has a descent performance based on additional performance 

measures. 

Contrary to the classical models for estimating Cc such as regression models, the developed GEP-

based model reveals a highly nonlinear behavior and includes complex combination of influential 

input parameters (i.e., LL, PL, and e0,). In general, Cc was positively correlated with e0. Furthermore, 

LL and e0 had a higher influence on estimation of Cc compared to PL. Comparison of the developed 

model with previous models in the literature revealed its good performance, which guarantees the 

use of GEP-based model in practical applications. 
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