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Abstract  

This paper describes a novel methodology of data management in materials characterisation, which 

has as starting point the creation and usage of Data Management Plan (DMP) for scientific data in 

the field of materials science and engineering, followed by the development and exploitation of 

ontologies for the harnessing of data created through experimental techniques. The case study that is 

discussed here is nanoindentation, a widely used method for the determination and/or modelling of 

mechanical properties on a small scale. 

The same methodology can be applicable to a large number of techniques that produce big amount of 

raw data, while at the same time it can be invaluable tool for big data analysis and for the creation of 

an open innovation environment, where data can be accessed freely and efficiently. 
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Aspects covered include the taxonomy and curation of data, the creation of ontology and classification 

about characterization techniques, the harnessing of data in open innovation environments via 

database construction along with the retrieval of information via algorithms. The issues of 

harmonization and standardization of such novel approaches are also critically discussed. 

Finally, the possible implications for nanomaterial design and the potential industrial impact of the 

new approach are described and a critical outlook is given. 
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1. Introduction  

Nowadays, the challenge of digital innovation is to connect fast growing and emerging 

technologies to the market needs and society demands, while it is commonly accepted that innovation 

is a significant determinant of business competitiveness in markets [1].  The outcome of investment 

in research and innovation process is shifting, leading stakeholders to get connected into aggregates 

that have the characteristics of 'living' ecosystems, where information can be exchanged openly. In 

that way, massive amounts of data can be handled and analysed simultaneously, as a result 

stakeholders can get clearer and wider insights towards new horizons in productivity growth [2].  

As an overall practice, data management is strongly connected with the entire lifecycle of big 

data implementations, including the primary steps of data creation, growth, variations and final 

storage. Data Management Plans (DMP) could facilitate the above aspects, as they play a major role 

in data organization, traceability, accessibility, interoperability, reusability and finally long-term and 

secure storage [3]. As data can be of different types (numerical, nominal, categorical, Boolean -true 

or false-, structured), a common vocabulary for every aspect promotes the sharing of information in 

specific domains. The above practices in combination with the use of ontologies as tools for bridging 

datasets across domains as well as fast and efficient data extraction, can contribute to simplify big 

data’s representation and promote the development of efficient computing models for advanced 

materials design. 

Experimental material science sees today a unique opportunity for a groundbreaking 

innovation through materials digitalization, as confirmed by the relevant investment plans that have 

been recently established in the worldwide leading economies.[4,5] 

In this framework, as materials science is a multi-stakeholder field, a Materials “Entity” 

Initiative for Competitiveness (shortly called as “entity”) is needed, in order to will reduce 

development time providing infrastructure and training to parties for optimal discovering, 

development, manufacturing and deployment of innovative materials. This initiative could boost 

production and commercialization of materials in a more expeditious and economical way, increasing 
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competitiveness. In this way, the whole cycle from research to manufacturing must operate both faster 

and at lower cost. Main pillars of the initiative should be data sharing and analysis (e.g. computational 

capabilities, data management, standards), that will generate a knowledgebase for better leverage and 

complement of investments. 

 

Barriers until now are briefly described below [4]: 

1) The lengthy time frame for materials to move from discovery to market. As much of the 

design and testing is currently performed through time-consuming experiment and characterization 

loops. Some of these experiments could potentially be performed virtually, through materials 

digitalization, with powerful and accurate computational tools. 

2) Several discrete stages are present during the path from conception to market deployment. 

A connection among stages is needed, to facilitate continuum processes. 

3) Data transparency, communication and integration. There is currently no standard method 

for researchers to share data, as well as predictive algorithms and computational methods.  

4) Recyclability and sustainability of new materials. Recyclability must become a design 

parameter during the whole manufacturing cycle in order to deal with sustainability. 

To overcome the aforementioned barriers the “entity” must embrace open innovation and act 

as a data exchange system- Hub (index, search, and compare data). It could help replace lengthy and 

costly empirical studies with mathematical models and computational simulations, reducing costs and 

time. Such modification is expected to shorten materials deployment cycle from its current 10-20 

years to 2-3 years [6]. To work for the benefit of stakeholders and community, the “entity” requires 

contribution in three critical areas, namely computational tools, experimental tools and digital data. 

Moreover, tools to simplify and promote data discovery, data reuse, and development of 

advanced materials informatics, is critical to transforming a research-to-market adoption pipeline [7]. 
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 Digital data can be transferred efficiently, kept safe and reach worldwide stakeholders at high 

speeds, while also acquire value and significance far beyond their original purpose. This is one driving 

force that leads information science practitioners to provide data curation services. As the necessary 

information coming from computational and experimental data is available in a machine-readable 

format, data curation is a fundamental practice. Some factors that influence actions to provide data 

curation services include incentives from the funding bodies and the scholarly publishing entities, 

while other factors are associated with the research communities themselves, which demand higher 

transparency in research [8]. 

Increasingly, in recent years, there has been a strong recognition for the critical need of a third 

component of data science. This component deals with the online tools designed specifically to seed 

and nurture cross-disciplinary research collaborations between application domain experts and data 

scientists. Taking into consideration the vast amount of data that are spread over various libraries it 

is impossible for any single research group or single organization to assemble all this information. 

For that reason, e-collaboration platforms are created which can enhance such forms of data sharing 

by providing the relevant context, discussions, and annotations of the data in ways that add 

tremendous value to the end user. This can be considered as another strategy towards the acceleration 

of the rate at which new materials can be designed, manufactured, and deployed.  

As a result, there is a need for the development and implementation of data-driven materials 

design protocols for objective decision support at various stages of materials development [9]. 

Another effort in similar direction can be considered the Materials Data Facility service that 

provides intuitive interfaces through which any researcher can access a growing set of advanced 

capabilities. The focus is on two services, data publication and data discovery, with features to 

promote open data sharing, self-service data publication and curation, and encourage data reuse, 

layered with powerful data discovery tools [10]. 
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Figure 1: Interrelations between Digital Innovation – Technology – Market Needs [8] 

For the above-mentioned reasons, materials science domain is on the verge of adopting data-

driven discovery. Under this context, the goal of this paper is to present a novel approach for 

development of a systematic and holistic approach in order to collect, process and analyse trends in 

data and big data. In a future work, these trends can be used as a basis for predictions about materials 

properties, which can have significant impact on new materials’ design.  

In this work, a novel possible approach for classification (ontology) of materials characterization 

methods, based on the centrality of the measurement “probe” as a classification criterion, is presented. 

Within Metadata and Ontology in materials characterization, a novel concept and structure for data 

structuring in experimental materials characterization (called CHADA) is introduced, providing also 

a study case of Data Management Plan (DMP) for advanced (nanoscale) materials characterization 

and a specific nanoscale characterization method (nanoindentation testing). These can be integrated 

into an Open Innovation Environment, a digital platform that is being designed within the European 

Materials Characterisation Council (EMCC). Finally, we give our vision and opinion on how novel 
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approaches for characterisation data handling will bring innovation in the frame of big data towards 

realization of the “fourth paradigm” in materials science. 

 

2. Classification of materials characterization methods (ontology) 

Many definitions of ontologies exist [11, 12], but one that seems to be the best is based on the 

definition of Gruber [13]: An ontology is a formal, explicit specification of a shared 

conceptualization, where: conceptualization refers to an abstract model of some phenomenon in the 

world and to the relevant concepts of that phenomenon, explicit because the type of concepts used 

and the constraints on their use are explicitly defined and formal for machine readability.  

The purpose of ontology is interrelated with its characteristics. First of all, they are comprised by 

vocabularies, which not only describe terms but also the relationships among the terms. One 

difference that can be mentioned between taxonomy and ontology is the set of relationships that are 

developed within the ontology and the fact that due to these relationships questions and queries can 

be answered. For example, if a material is a member of alloys and these alloys are members of a 

family with specific range of Young’s modulus, then that alloy will share that range as well.  

The ontology can be expanded to more characterization methods accordingly. As a result, it will be a 

domain ontology and not an upper ontology [14]. The concept will be to describe both data and 

metadata (data about data) of the experimental technique, thus being a subset of the domain 

knowledge about materials characterization. 

For this paper, an ontology was created, having as the main basic classification criterion the 

physical probe that is used for the measurement. This is assumed to provide the most general 

framework for classification of experimental characterisation techniques, independently of the 

complexity of the material being tested. In this way, the class can be separated in three different 

sibling classes, which correspond to different experimental probing techniques: Mechanical Analysis, 

Chemical Analysis and Materials Structure Analysis. Our focus was on the Nanoindentation process, 

which is considered a subcategory of Mechanical Analysis. Furthermore, the material under 
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consideration was the PMAA. For that taxonomy, Figures 2 and 3 show the ontology class hierarchy 

and ontology diagram. The program Protégé, Versions 4.3.3 – 5.2.0 were used [15].  

The characterisation techniques and the way they were categorized follow the analysis from the 

references [16] and [17], where the first one focuses on microscopic and spectroscopic methods, 

whereas the second one focuses on mechanical analysis. What it interests the most is the instances of 

the class raw metadata and that of the class property, where information about the experimental data 

of Nanoindentation and the results of Young’s modulus and Hardness can be found.  The same graph 

can be expanded in order to include more data and/or metadata related to the experimental data, either 

for different experimental techniques or for the same technique, yet for different materials.  

 

Figure 2: Ontology class hierarchy 
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Figure 3: Ontology indicative example diagram for materials characterization methods. 
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3. Metadata and ontology in materials characterisation 

Once published, scientific data should remain available on the cloud and be used long after 

their publication. In that approach, the format and structure that is used for data storage is the critical 

factor to ensure traceability and reproducibility. To understand completely the data, the readers need 

the metadata, where information including the instruments used, the experimental protocols, the post-

processing and finally the way and time that data were gathered, becomes available [18].  

In relation to this, it is clear that storage and sharing of large amount of data requires strictly the 

definition of a standardized vocabulary and a standardized structure for the metadata.  

The concept of this paper is that having a data management plan as a provision step, and 

utilizing its concepts in a specific experimental domain, this domain can be mapped using an 

ontology, which, in turn, can be utilized for extraction of accumulated knowledge, via 

discoverability and reuse [19]. 

With an initial data management plan, one can identify the different naming patterns of the 

files and in turn can homogenize this pattern. As a result, problems that may arise from ontology may 

be eliminated due to the avoidance of using spaces in-between string names of files. The whole 

concept, presented here, is to enhance the extraction of data in a fast and efficient way. Concepts like 

tuples, which are encountered in both databases and ontologies, will not be of primary concern, 

because this paper focuses on basic aggregation and accumulation of data, which can be thought of 

as a subdomain of an ontology about materials characterization, which as we are aware of, is in the 

process of creation. As an example, an n-tuple can be a set of n-objects in a specified order: material, 

alloy, specific combination of metals.  

Here, we present a novel approach for the definition of terminology, classification and 

metadata for materials characterization methods, where the main purpose is to arrive to a standard 

structure (that we will call CHADA) for representing materials characterization data. 

The first step towards this goal is the definition of the terminology associated to material 

characterization methods. 
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We propose that only four types of concepts are used for the classifications of the different 

steps of an entire characterisation workflow (which can be simply called “characterisation”): 

1. Sample (or “user case”), which represents volume of material, and the information on 

the surrounding environment, which interacts with the probe and generate a detectable 

(measurable) signal (information); 

2. Method, which represent the process (or the sequence of processes) by which the 

metrological chain is defined; within a single method, the following fundamental 

elements are identified : user, probe, signal, detector, noise; 

3. Raw data, Is the set of data that is given directly as output from the metrological chain, 

usually expressed as a function of time; 

Data processing, which represents any process (or sequence of processes) by which the 

data are analysed to arrive to the final shape. 

By using this simplified approach, a generic characterization method can be presented by the 

following scheme (Figure 4), which can be used for the construction of the metadata structure of any 

material characterisation process. 

 

Figure 4. Visual representation of a characterisation experiment with keywords and colors 
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Since all standardised characterization methodologies consists, in practice, of a well-defined 

sequence of items and actions, the same approach can be used to develop a generic workflow program 

(Figure 5), where a sequence of multiple-samples, multiple actions and multiple data processing steps 

could happen: 

 

Figure 5. Visual representation of sequence of multiple-samples, multiple actions and 

multiple data processing steps 

 

This scheme is also based on a similar concept developed within the European Materials Modelling 

Council (MODA, https://emmc.info/moda/ ), where the data from a generic model are represented 

according to the representations of User Case, Model, raw outputs and processed outputs. 

To give an example, in the chapter n. 5 the CHADA workflow for nanoindentation testing is 

presented. 
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4. Data Management for materials characterisation 

4.1 Workflow management systems 

Over the last few years, various workflow management systems have been formed in order to manage 

the accomplishment of different workflows on complex and heterogeneous computing resources. 

Scientific workflows are considered an important concept that controls data processing for the 

calculation of extended and complicated scientific applications. A number of workflow management 

systems have been developed with the main focus to automate the data management responsibilities 

and plans as well as the supply of the required resources 20]. 

4.2 Data Management  

Data Management will ensure the accessibility of the created data from other users thus enabling data 

sharing. In addition, data protection will be enhanced because data will be preserved and curated at 

specific databases, which will reduce the risk of storage. Data Management is especially useful for 

increasing the work organization and productivity and enabling the easy retrieval of data, avoiding 

extra costs since duplication of data can be reduced or even eliminated. Finally, the creation of an 

open innovation environment the impact of publications can be increased due to the easy access not 

only to data but also to published work [21,22,23]. 

In this context lies the concept of making data FAIR, which means Findable, Accessible, Interoperable 

and Reusable. These principles were established in order to satisfy the need to improve the 

infrastructure supporting the reuse of scholarly data and should be applied not only to ‘data’ in the 

conventional sense, but also to algorithms, tools, and workflows that led to that data [3]. The data 

created can be of specific types and can be curated at specific repositories [24], however, not all 

datasets or even data types can be captured by, or submitted to these repositories. In response to this, 

there is the emergence of numerous general-purpose data repositories, at scales ranging from 

institutional, to open globally-scoped repositories such as Zenodo [25].  

Humans and machines often face distinct barriers when attempting to find and process data on the 

Web, that both can be ineffective when big data are created and stored. On one hand, humans have 
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an intuitive sense of ‘semantics’ (the meaning or intent of a digital object) and are unable to operate 

at the scope, scale, and speed necessitated by the scale of contemporary scientific data and complexity 

of e-Science. On the other hand, computational agents can undertake the discovery and integration 

tasks, to be capable of autonomously and appropriately acting when faced with big and different types 

of data [3].  

4.3 Data Management Plan 

A Data Management Plan (DMP) should include information about the handling of data 

during and after the end of the project. It is responsible for all the data created, collected and 

processed, providing information about which methodologies and standards will be applied, further 

information about how data will be shared and how they will be preserved and curated.  

Towards the direction of data management both E.U. and U.S.A. have made progress. E.U. 

with the Horizon 2020 initiative requires a DMP for all projects, which participate under that 

framework, while The National Science Foundation in the United States now requires an explicit data 

management plan in all proposals [26]. In the UK the Jisc-funded Digital Curation Centre (DCC), in 

order to assist UK HEIs in improving their capacity for research data management and sharing, 

produced DMP online, which is the first tool to assist in the data management planning process [27].  

Research Data Management (RDM) offers opportunities and challenges at the interface of 

library support and researcher needs. Libraries are in a position of balancing the capacity to provide 

support at the point of need while also implementing training for subject liaison librarians grounded 

in the practical issues and realities facing researchers and their institutions. The North Carolina State 

University (NCSU) Libraries has deployed a DMP Review service managed by a committee of 

librarians. A training ground model is established, which aims to develop needed competencies and 

support researchers through relevant services and partnerships. Library support for data management 

is attractive because it offers an avenue for building collaborative networks, integrating library 

support into the research process, and supporting open access to research data [28]. 
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Along with this initiative, the European Commission released a document providing general 

guidelines about the creation of DMP [29]. Another attempt is the DMP plan created for the OYSTER 

project of Horizon 2020 program (www.oyster-project.eu ). The steps followed for the creation of a 

spreadsheet version of DMP were the following:  

1) the E.U. DMP guidelines were transferred to a spreadsheet adjusted accordingly for the 

OYSTER project.  

2) Then there was an effort to reduce unnecessary writing from partners by providing lists 

with options for them to select.  

3) In case the lists provided were not exhaustive, the partners had the option to add information 

– the information added was adjusted accordingly and finally implemented to the new version of 

DMP, something that is a characteristic of a living document, which is constantly updated.  

4) The information gathered can be easily handled, since the information provided is specific, 

in part strictly organized, and not written in free format compared to a document form. In this paper, 

we present the section of DMP, which is suitable for the experimental technique of nanoindentation 

of materials, which can be seen in Figure 6.  

The entire DMP is dsgined to be fully compliant with the new CHADA schemes that were 

presented in the chapter 3. In the following figure, the DMP section corresponding to “method” 

description in the CHADA are shown, as an example. 

 

Figure 6: Part of DMP corresponding to “method” description . 
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5. Case study: High-Speed Nanoindentation 

Nanoindentation is a widely used technique for the measurement of hardness and elastic modulus and 

which has become ubiquitous for mechanical properties at surfaces [30]. 

The method that was first introduced in 1992 [31] has widely been adopted and used in the 

characterization of mechanical behavior, in particular hardness and elastic modulus, of materials at 

small scales [32].  

The experimental procedure always involve the realization, in parallel with the main sample, of a 

series of calibration experiments on a fused Quartz reference sample to quantify the frame stiffness 

and the area function of the adopted indenter. Then, the Oliver-Pharr method is usually adopted to 

analyse the loading and unloading curves to extract hardness and elastic modulus as the main outputs 

of the method [31]. 

The procedure has become a primary technique for determining the mechanical properties of thin 

films and small structural features. Films with characteristic dimensions of the order of 1 μm are now 

routinely measured, and with good technique, the method can be used to characterize, at least in a 

comparative sense, the properties of films as thin as a few nanometers. 

The main features of this method, including hardware description and a typical load-displacement 

curve, are shown in Figure 7: 

  

(a) (b) 

Figure 7. Basic instrumentation and output of nanoindentation technique. 
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Recently, high-speed nanoindentation is emerging, as testing real time and in-line / online is employed 

to obtain massive data sets (i.e., big data) on the load-depth response of materials, samples and (also 

intermediate) products towards quality assurance and rapid manufacturing characterisation of test 

specimens. 

An example is reported in Figure 8, where a highly-heterogeneous Li-ion battery cathode composite, 

where some thousands of nanoindentation experiments were realized over a relevant area. In this way, 

original and richer information can be gained on the nanomechanical property distributions, as a 

function of the state-of-charge of the battery. 

This is a clear example on how large amount of data (acquired at higher acquisition speed with high-

throughput characterisation methods) can be extremely relevant to gain further insights into the 

process-structure-property correlations of highly heterogeneous materials. 

Advanced statistical analysis of such data can, therefore, enable to develop novel design rules for the 

production of innovative materials with improved performance and enhanced lifetime. 

 

Figure 8. Example of the overlap between the microstructure of a battery composite (SEM image) 

and the corresponding high-speed nanoindentation map of the elastic modulus. 

 

By using the concepts and basic structure of CHADA described in the previous chapter, the following 

scheme can be developed for this specific technique (Figure 9).  
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Using this approach, each of the block in the workflow represents a set of information that is stored 

in the metadata, and can be retrieved at any time to ensure traceability of the data. 

In this way, and in addition to the traditional approach of storing only the calibrated load-displacement 

curve, the metadata will contain all the information on the sample, user, environmental conditions, 

calibration procedure and related data, raw data, analysis process and finally the analysed data. 

The adopted classification by only four main classes (user case, method, raw data, post-processing) 

ensures that any characterisation technique can be represented by a simple sequence of standardized 

elements. 

 

 

Figure 9. CHADA workflow for nanoindentation 

Then, a much more detailed metadata can be built up, if needed, by filling each of the CHADA 

element with internal information and attributes (e.g. a full description of the adopted calibration 

recipe, or a full description of the sample preparation procedure, etc. etc.). 

An example of compiled metadata, again from nanoindentation, is reported in the following table: 
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Table 1. Compiled metadata for nanoindentation, according to the new CHADA classifications 

Keyword Description 

User (operator) Human Operator (different levels of automation are available) 

User case (sample 

specifications) 

Sample dimensions (example: 1-inch diam. – 5 mm thick.). 

Surface flat and polished. Sample embedding on sample-holder 

(hot glue or acrylic glue). Optical sample surface alignment with 

reference sample (SiO2) surface. 

Specimen Bulk material, coatings, heterogeneous materials, and 

biomaterial. 

Medium (environment) Equipment Box: Air, Temperature, Pressure, Humidity, Noise, 

Vibrations (Acoustic or mechanical). 

Sample/Probe Physics of 

interaction 

Detection of the surface by the tip (stiffness triggering value 

based) – Penetration of the tip inside the sample using a 

prescribed load function – Hold of the maximum load (or the 

load for the prescribed depth – unloading of the tip by steps – tip 

removal from the sample. 

Equipment setup Optical alignment of the sample. Method selection and Input 

parameters for the test (Sample Poisson’s Ratio, Prescribed 

Depth or Load, number of tests, locations of the tests, Engage 

options). 

Calibration Standard CSM tests on reference sample. 

Probe Selected Tip for the test (Berkovich, Cube Corner, Flat Punch..). 
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Detector Electronic controllers and capacitive gauges. 

Signal Electrical current in a coil -> Force (Load) 

Raw Data Raw channels plots (Raw Load, Raw displacement, Dynamic 

Stiffness,…). 

Data Analysis Check of the surface detection, check of the Load vs depth 

quadratic curve trend, check of the slope of the unloading curve, 

removal of the not relevant tests. 

Raw Data Analysis Application of the Oliver-Pharr method (or other data analysis 

methods) 

Post-processing Raw data calibration using tests on reference sample, check of 

the results (see data analysis), Selection of the load (or depth) 

range to evaluate the mechanical properties, Graphs or 

histograms of interest. 

Properties (elaborated data) Elastic Modulus, Hardness, Yield Stress, Residual Stress, Creep 

parameters, Fracture toughness, mechanical maps, etc. 

 

6. Open Innovation Environment as Materials’ Ecosystem 

According to the innovation system’s theory, ideas, devices or processes are the carriers of 

innovation, because of multiple sets of relationships among participants in a system, such as 

companies, universities and research institutes [33]. The efficient combination of professional 

experience and the exchange of technology and knowledge among stakeholders is a dominant 

decisive factor of whether the methods tend to be innovative [34]. The challenge of innovation drives 

technology towards market's needs more quickly. Innovation necessitates not only experimentation, 
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coming from a wide variety of technologies, but also access to a wide spectrum of possible service 

providers and users, even from the early stages of its development. The challenge of bringing 

innovative partners together is to exceed the potential of each partner coming from singular sector of 

firms. As a result, the scientific community and European policymakers are interested to establish, 

maintain or strengthen experimentation facilities and platforms as fundamental means and tools to 

support broadband innovation [35]; a schematic figure of Open Innovation Environment function is 

provided below (Figure 10). 

 

Figure 10: a schematic figure of Open Innovation Environment function is provided below 

Based on the foregoing, it becomes evident that in today’s rapidly growing business 

ecosystem, SME's (Small Medium Enterprise), large enterprises, and institutes need to merge their 

expertise and knowledge with others. An Open Innovative System (Figure 8) appears to be a candidate 

approach for this, as it supports the innovation capabilities of its members. In order to support the 

objective to establish a transnational Open Innovation Environment (OIE), for specific 

characterisation methods, some steps for innovative developed technologies are followed, such as 
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data and meta-data management, the use of ontologies and advanced analysis, sharing, interpretation 

of experiments and proposed models. The OIE stores information about data, including their 

corresponding metadata. The handling of metadata is of crucial importance in order to facilitate the 

access to the real data. The effective management of data and metadata is one of the most important 

activities of data scientists, within a governance practice, enabling data management policy and 

access to information. 

 

7. Big data towards realization of the “fourth paradigm” in materials science 

In recent years, the scale of data generated and shared by academia, industry, businesses and 

public administrations has vastly increased. Handling and mining big data opens new horizons in 

productivity growth and consumer impetus, indicating that the era of big data has already been started, 

a phenomenon also referred to as the Data Deluge [2]. The fact that big data has entered into every 

area of today’s industry and business functions and has become an important factor in production 

becomes obvious if we consider that every day the world produces around 2.5 billion gigabytes of 

data [36]. Gantz and Reinsel [37] assert that by 2020, over 40 trillion gigabytes of complex and 

heterogeneous data will be generated. Big data analytics is the process of researching into massive 

amounts of data and revealing hidden patterns and possible correlations [38].  

With the coming of ''big data'' era,  numerous efforts have been made, in the field of materials 

science, in order (a) to develop new methods to overcome the deficiencies of these two common 

methods and (b) to collect large datasets of materials properties in order to provide a powerful impetus 

to accelerate materials discovery and design.  

The term big data implies escalation relevant increase in the amount of data, but it also results 

in a qualitative conversion regarding the way that we store and analyze such data. The exact definition 

about ‘‘big data’ is not universally accepted, as there is still a lot of confusion about what it actually 

means, while its size is only one of several dimensions of big data. The concept is constantly evolving 

and reconsidered, but it remains the driving force behind many forms of digital transformation, 
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artificial intelligence, data science and the Internet of Things [38]. Big data can be regarded as a 

connection and integration of the physical world, the human society, and cyberspace.[40] They can 

be classified into two categories; the first one includes data which is usually obtained from scientific 

experiments, simulations, algorithms or mathematical modeling techniques and observations, and the 

second one includes data from human society coming from domains such as social networks, health, 

economics etc..  

In order to identify a common framework to describe big data, Laney suggested that Volume, 

Variety, and Velocity (or the Three V’s – Figure 9) are the three dimensions of challenges in data 

management [41]. We describe the Three V’s below (Figure 11). 

 

Figure 11: The Three V’s 

Volume: Defines the size of data and is relative and varies by factors, such as time and the type of 

data.  

Velocity: This factor deals with the frequency that data are generated, for example, every millisecond, 

second, minute, hour, day, week, month or year. We can identify three main categories regarding data 

procession: occasional, frequent, and real-time [42]. 
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Variety: With increasing volume and velocity comes increasing variety. Variety relates to the types 

of data, for example photos, videos and audio recordings, text documents books, email messages, 

presentations, e.t.c..  

Data scientists always describe “big data” as having at least the three dimensions, analyzed above: 

volume, velocity, and variety. In addition, there are two more Vs completing the list, which include 

variability and value [43].  

 

Additional Vs 

Variability: Big data velocity is not consistent and has periodic peaks or troughs. In that way, 

variability refers to the variation in the data flow rates.  

Value: It is of crucial importance to Value is introduced as a defining attribute of big data, to ensure 

that the outcomes that are generated are based on accurate data and can lead to measurable 

enhancements. 

The scale and complexity of big data necessitate a change in computing paradigm, regarding data’s 

structure procession. Along with the growth of big data, an evolution of databases has turned them 

into a “non-relational” form.  Nowadays, big data typically contains data sets with sizes beyond the 

ability of commonly used software tools to capture, curate, manage, and process data within a 

reasonable time. 

In order to fully take advantage of the potential of big data, the challenges concern the characteristics 

of big data, the existing analytical methods and proposed models or the limitations coming from 

current data processing systems [44]. Many studies concerning big data challenges have been focused 

on the difficulties of understanding the notion of big data, on deciding the kind of data that will be 

generated and collected, on privacy issues and ethical considerations as far as the mining process is 

concerned [45].  
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7.1 Challenges on data complexity 

The complexity of big data that include complex types and structures makes its understanding, mining 

tasks, representation and computation more and more challenging. One of the major challenges is to 

understand, establish and then predict the relationships between data complexity and computational 

complexity, in the frame of domain-oriented processing methods. It is of high importance to design 

and evaluate computational models in order to quantitatively define data’s complexity, in an efficient 

way and to develop the principles for dealing with big data into a solid foundation. As a result, in 

order to simplify big data’s representation and facilitate the design of complex computing models and 

algorithms, it is needed to establish models of data sharing via multi modal interrelationships [45].  

7.2 Challenges on computational complexity   

In order to lever large amounts of data, new approaches will be needed, while customary 

computational methods do not successfully support processing, analysis and mining techniques. 

These approaches and techniques should be based on: 

• an independent distribution of the data produced 

• new procedures for creating statistical rates 

• reviewing the reliability and complexity of the data 

• reviewing of data algorithms by proposing new theoretical bases 

• Supporting value-based applications in specific areas. 

The challenge is to address the computational complexity of big data, with focus not only on 

developing novel algorithms for continuous computing but also on the development of a large data-

driven computing framework with the aim to optimize communication, storage and sharing. Hence, 

there is a need for further exploration and expansion of modeling methods for categorization and 

reduction of large data, satisfying the demand on data’s high value and velocity [46].   
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7.3 Challenges on communication 

Machine learning techniques should be developed with a focus on the communication costs, while 

sometimes these costs are a major concern compared to the processing cost of big data. The goal is 

to minimize that communication cost while satisfying the additional data storage requirements..   

 

7.4 Challenges on system complexity 

Main request is the design, implementation, testing, and optimization of big data processing systems 

and computing frameworks with a high data recovery throughput, low energy consumption, and 

highly practical computing. These demands pose new challenges to the configuration of system 

structures, computing frameworks, and processing systems, while their possible solutions will pose 

an essential basis for developing hardware and software system constructions with energy optimized 

and efficient allocated storage. A fundamental research has to be conducted regarding the correlation 

between complexity and computability of big data demands. Also, there is a need for a measurement 

of the variety of energy efficiency factors such as system performance and processing capabilities at 

the same time [47]. 
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8. Conclusion and Future direction 

Materials discovery lies at the heart of human progress and milestones of human progress are 

related with materials: new materials with high and unprecedented functions and properties, along 

with understanding their relationship with chemical constitution. There are continued efforts to 

deploy a minimum amount of materials for a given function, which leads concentrating on 

nanostructured materials. In addition, there is an increasing effort of reducing costs, risks of 

experiments and the ability to create better materials for specific purposes in shorter amount of time. 

The first steps towards these directions were the experimental techniques along with theory. Then, 

simulation advancements reduced the number of unnecessary experiments and costs, yet, at the same 

time, the over increasing creation of data was posing an issue.  

Materials data management eases the efficient mining and potential for further processing of 

large materials data sets, resulting in the extraction and identification of high-value materials 

knowledge, towards design and manufacturing. This is accomplished by using linkages of process-

structure-property (PSP) information, with the main focus of data transformations to be in the forward 

direction (process → structure → properties). As therefore high-value information requires to be 

linked with the manufacturing and product design routes, the main challenge is, starting from a proper 

data management plan, to design and build the needed databases stems (tackling challenging issues 

such as rich internal materials structures that span multiple length scales). 

Data Management foresight in materials’ advanced characterisation mitigates the inherent risk 

largely, not only by making decisions more concrete (e.g. in design and manufacturing), but also by 

capturing failures and successes; information from this is then useful and processable to and from 

other disciplines. For an effective mitigation plan based on data management is strongly based on the 

availability of data and the use of data-driven protocols, as the uncertainty associated with the 

information and knowledge used in making decisions (in materials development workflows) is then 

quantifiable.  
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Despite the difficulties appearing due to highly localization (in terms of specialization) 

distributed in terms of organizations and/or geography, data management and data science build upon 

cross-disciplinary expertise (e.g. multimodal measurements, multiphysics simulations and materials 

phenomena descriptors) and provide the essential tools to ignite and boost such collaborations. 

Standards, terminology, digitization and automation are few of the requirements to reach 

process scalability (digital workflow recording, based on standardization and automation). Overall, 

in order to achieve the desired acceleration of materials development of proper design and at an 

affordable cost, data management foresight in materials’ advanced characterisation is the first and 

crucial step to begin identification of best practices and implementation. 

Within this complex framework, we have shown in this paper how data management, 

materials informatics and digitalization for advanced materials characterization can be a Key 

Enabling Technology for introducing groundbreaking innovations in the manufacturing industry. 

Yet, the prime factors contributing are the time required to switch the materials research 

practice to new paradigms, expertise on big data analytics and development of machine learning 

algorithms [48]. Information industry is directly related to big data and big data is a strong impetus 

to the next generation of IT industry. An emerging discipline, which is data science, employs various 

techniques and theories from many fields, including signal processing, probability theory, machine 

learning, statistical learning, computer programming, data engineering, pattern recognition, 

visualization, uncertainty modeling, data warehousing, and high performance computing.  

Traditional data analysis and mining tasks, such as retrieval, topic discovery, semantic analysis, and 

sentiment analysis, become extremely difficult when using big data. At present, we do not have a 

good understanding on addressing the complexity of big data [49]. A step towards the handling of 

such big amount of information can be the creation of ontologies for specific domains. 
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Figure 12: Interaction among Data, Ontologies, DMP and OIE – specific example for 

nanoindentation testing as main adopted characterization method 

In this paper, we have shown hot the application of such innovations to materials characterisation is 

deeply underpinned with a series of required international cooperative actions, (schematic 

representation Figure 12) namely:  

(1) A coordinated action for development of an ontology and a classification for materials 

characterization methods;  

(2) A novel concept and structure for data structuring in experimental materials characterization 

(called CHADA);  

(3) Advanced and standardized Data Management Plans (DMP) for each method and project; and  

(4) Open Innovation Environment (OIE) platforms to behave and the engine for the integration and 

harmonization of all relevant aspects into one single-entry-point for driving innovation of large 

industries and SME’s. 

Coordination and Support actions in Europe (as well as worldwide) are needed to pursue such goals 

in the most efficient and effective way. 
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