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In this paper, we analyze the Hawking radiation phenomenon for types of Banados-Teitelboim-
Zanelli-like (BTZ-like) black holes. For this purpose, using the Hamilton-Jacobi method, we consider
semi-classical WKB approximation to calculate the tunneling probabilities of massive boson particles.
For these particles, we use the equation of motion for the Glashow-Weinberg-Salam model. Using
quantum tunneling process of charged massive bossons, we compute the corresponding Hawking
temperatures. Furthermore, we discuss the effects of rotation parameter on tunneling probability and
temperature.
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I. INTRODUCTION

The hypothesis of general relativity (GR) suggested that a sufficiently compact mass can change the shape of
spacetime fabric for configuration of a black hole (BH). Hawking established that quantum events reserved BH to
emit radiation. These radiation emit from a BH are just like a black body radiation and known as Hawking radiation
[1]. The Hawking radiation process is studied by creation of a couple of positive and negative charged energy
particles in the vicinity of the horizon of BH. The positive-energy particle escape out from horizon, causes Hawking
radiation while the negative-energy particle of this pair falls inside the BH. The rate at which particles overcome
the horizon can be calculated by quantum tunneling phenomenon. According to this technique particles have finite
tunneling probability denoted by I to cross the event horizon, which depends upon the imaginary part of particle’s
action [2, 3]. The probability I" for emitted particles can be defined as

[ ocexp [—21m£] , 1)

where £ denotes the semi-classical particle’s action and 7 denotes the Planck’s constant.

The study of Hawking temperature by utilizing quantum tunneling process from various BHs has attracted lots
of researchers. Different efforts have been made to calculate this radiation spectrum by considering quantum me-
chanics of fermions, bosons, scalars, Dirac and photon particles etc. Various authors [4-30] analyzed vector particles,
fermionic particles, spin-2 and spin-3/2 particles tunneling to study the Hawking radiation phenomenon for differ-
ent BHs and wormholes. The tunneling probabilities for Kerr-Newman BH [31] and charged black string [32] have
also been investigated. In order to study Hawking temperature by using Kerner and Mann’s formulation, Sharif and
Javed [33] studied the fermions tunneling phenomenon through the horizons of charged anti-de Sitter BHs, charged
torus-like BHs, Plebafiski — Demiariski family of BHs, regular BHs and and traversable wormholes. The same au-
thors [34] discussed the Hawking radiation phenomenon as fermions tunneling for a pair of charged accelerating
and rotating BHs with NUT parameter. They have calculated the corresponding Hawking temperature. Sharif and
Javed [35] have also investigated the quantum corrections for regular BHs, i.e., Bardeen and ABGB. Javed, Abbas
and Ali discussed charged vector particles tunneling process for a pair of accelerating and rotating BHs as well as for
5D gauged super-gravity BHs [36]. The Hawking radiation for charged NUT (Newman-Unti-Tamburino) BH having
rotation and acceleration parameters has been viewed in Ref.[37].
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The tunneling rate for outgoing particles is found by utilizing the imaginary component of particle’s action.
Ovgiin, Javed and Ali [38] found the tunneling rate of charged massive bosons for various types of BHs surrounded
by the perfect fluid in Rastall theory. Several efforts [39]-[43] have been made to analyze the tunneling process of

charged and uncharged scalar and Dirac particles for different BHs. The tunneling rate of spin-% particles through
horizon of Rindler spacetime was discussed as well as the Unruh temperature was analyzed [44]. Kraus and Wilczek
[45, 46] visualized the semi-classical method to study the Hawking radiation as a tunneling through the horizon. This
method contains the calculation for the process of s-wave emission across the horizon.

In continuation of previous work, in this paper we calculate the electromagnetic boson particles radiation, emit-
ted by BTZ-like BHs. For this analysis, we study the tunneling of massive vector bosons through event horizons of
higher dimensional charged BTZ-like BHs by using semi-classical approximation, also we calculate the correspond-
ing Hawking temperatures. Charged vector particles (spin-1) such as charged W*-bosons having much importance
in Standard Model. In the background of BHs geometries; the behavior of the bosons particles can be traced out by
using Proca equation. Here, we analyze the field equations of charged W*-bosons by applying the Lagrangian of
Glashow-Weinberg-Salam model [47].

This paper is organized as follows: In Section II, we analyze the tunneling probability I' of boson particles and
the corresponding Hawking temperature Ty for charged BTZ magnetic static BH, by calculating the radial part
of particle’s action for massive bosons W*. Section III presents the vector particles tunneling for rotating BTZ
magnetic BH. Section IV provides the results of I and Ty for (n + 1)-dimensional BTZ magnetic BHs with rotation
parameter. Section V contains the results of tunneling probability and Hawking temperature for (# 4+ 1)-dimensional
BTZ magnetic BHs with more than one rotation parameters. Section VI summarizes all the results of the paper.

II. CHARGED BTZ MAGNETIC STATIC BLACK HOLE

Black holes play a very essential part in the field of General Relativity. After the discovery of first Schwarzschild
BH many extensions have been made by introducing the rotation, charge, acceleration, cosmological, quintessen-
tial and many other parameters. All these extensions of BHs are associated with D-branes. The BTZ solution in
(2 + 1)—dimensional space presents a valuable template to guide people in order to analyze concepts of quantum
gravitational problems and AdS/CFT conjecture. In a charged BH the electric field is related to the temporal factor
Ay of gauged potential whereas the magnetic field is related to the angular component Ay. As a result, one can expect
the magnetic solution to be written in a metric gauge, in which the g+ and g4y components are relatively exchanged
for their effects to those used in electric gauge to describe BH solutions [48]. The motivation of our work is that we
are looking for a charged BH with magnetic field instead of BH interpretation with the electrical field.

The background geometry of BTZ BH can be studied for more generalized, i.e., n and (n + 1) —dimensional spaces
and it can be used to explain the effects of more rotation parameters involve in BH to investigate either they will
effect or not the tunneling spectrum of Hawking radiation. There have been a lot of work on quantum tunneling
spectrum for charged BTZ BH but this form of BTZ-like BH is more generalized than the BTZ BH. The line-element
of this BH is given by [49]

2

2 "2 L 2 p 292
= ——dt*+ ——d I“R 2
ds lzd +R(r) r° 4+ 1°R(r)y“d¢~, (2)
where 7 is radial coordinate, [ denotes the curvature radius associated with negative cosmological constant A = — llZ’

R(r) represents the metric function which is given by
2
_"_ 22,21 (1

R(r) = 5 [M+8q171n(l)}, 3)

where M and g indicate the mass and charge of BTZ solution, while v is arbitrary parameter.

It is to be noted that the above metric (2) after applying local transformation ¢ — ily¢ and ¢ — it /[ will convert to
the static 3D Schwarzschild metric. So, we can change the role of t and ¢ co-ordinates by using given transformation.
The Eq.(2) can be rewritten as

ds? = X(r)dt* + Y (r)dr® + Z(r)d¢?, (4)
where the radial functions X(r), Y(r) and Z(r) are expressed as

r? 1 2 2
— Y(1) = g, Z(n) = PR(r)7". ®)

= RO’
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The gauge potential of this BH can be defined as
Ay = —quz'yzh(r)éﬁ, (6)

where the only non-zero component is Ay due to magnetic field and /(r) is an arbitrary function of r.

In order to calculate the tunneling rate for massive vector particles through the BH’s event horizon r, we will
consider the relativistic wave equation, i.e., Proca equation with electromagnetic effects. The motion of charged
massive spin-1 fields is traced out by the given Proca equation in the background of electromagnetic field ¥, [36]

1 m? L l
ﬁay(\/ 7g1{ﬂ/‘u) + ﬁqﬂ/ + EEAFTV‘II + ﬁ@FVﬂl{IF = 0, (7)

here g indicates the determinant of the coefficient matrix, e is particle charge and Y#" is anti-symmetric tensor which
can be defined as

L

h

2

Yo = 0¥y — 0¥y + .

eA)Y, — -eA, Y, and F =dlAY —d" A¥,
where, A, is the electromagnetic vector potential related to BH and d¥ refers to the geometrical covariant derivative,
m represents the particle’s mass. The non-zero components of ¥# and ¥"# are given as follows

g0 _ Yo 1_ 11 2 Yo
X(r)’ Y(r)’ Z(r)’

wor _ _Tor g Yo 12_ _ Yo
X(r)Y(r)’ X(r)Z(r)’ Y(r)Z(r)

Using Hamilton-Jacobi ansatz, the wave function in terms of semi-classical particle’s action £ by applying the WKB
approximation can be defined as [36, 37], [50]-[52]

Y, =cyexp %£0(t, r,¢) + ZhiEi(t, r,¢)| . (8)
i=1

Using Eq.(8) in the wave Eq.(7) fori = 1,2, 3, ... and by neglecting the higher order terms, we get the following set of
equations

L[Cl@oﬁo)(alio) — co(1£0)%] + L[02(30750)(32£0) — co(92£0)?

Y(r) Z(r)

—eAgco(92£0)] + ;’?rf’;[cz(aoﬁo) —eApco — co(d2£)] — m*co =0, )
X}r) [c0(90£0) (91£0) — c1(30£0)?] + er) [2(91£0) (92£0) — €1(92£0)?

—eAgc(ako)] + ;?:;[Cz((aﬁo) —eAy)er — c1(92£0)] — mPer =0, (10)
X](Lr) |0(@00) (32£0) — c2(D0£0)? + eAp(Dofo)co| + Ygr)[cl(alﬁo)

(92£0) — c2(91£0)* + eApc1(91£9)] — mPcy = 0. (11)

Using separation of variables technique, one can write the particle’s action in the following form
£y = —(E — jw)t + G(r) + k¢, (12)

where E, w and j represent particle’s energy, angular velocity and angular momentum, respectively. Using Egs.(9)-
(11), the matrix equation can be written as

E‘(COI Cc1,C2, C3)T = O/
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where E is a 3 x 3 ordered matrix and its components are given below

2 = O L2 —eagk k+eA
0 = 57y~ g A 0 = g ey
EOl = Yj(lr)G(E—jw),
S = - 5 (E - jlk - G (E - jo),
1o = _X}r)(E jw)G,
S = - (E— jw)? — o (K + eAgk) — m —i(k+eA)
=11 X(T) ) Z( ) ¢ Z( ) )
_ 1 . eA
=2 = 7k 76
Ha = —X}r) [(E — jw)k + eAg(E — jw)],
321 = er) [Gk+€A¢G]
Eyp = —X}r) [(E—jw)2+eA¢(E—jw)} —Y(lr)c’z—mZ

where G = 9,£) and k = 9y£. For the non-trivial solution, we take | & |= 0 and get

(E—edy — jw)* + X

G (r) = ) : (13)
Y(r)

where

X = (E — jw)k + k* + m* — eApk.
Integrating around the pole at the horizon, Eq.(13) provides

E—jw—eA
ImG*(r) = imw (14)
2Ry

where G* and G~ represent radial function for the outgoing and incoming particles, respectively following the
radial path. Therefore, particle’s action £ is reduce to its radial part G. The surface gravity &(r.) of this BH is given

as follows
/rgr — 4g2924 5

K(T‘Jr) = lz
Using Eq.(1), the tunneling probability I for boson particles can be defined as ratio of probabilities of emission and
absorption, i.e.,
(ImG*)]
(ImG—)]

1~—‘(emission) __ e&Xp [_
1—‘(ubsorption) exp [_

—
I
SINIESINY

= exp [— :ImGJF]

I2(E — jw — eAy)

= —2
R 42 2]
L=ty

Using Boltzmann factor 'y = exp [(E — jw — eAg)/ Th|, the corresponding Hawking temperature can be calculated

as
/12 — 4g24214
Ty=L* 17)

47]?

(for i = 1). (16)
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The tunneling probability of boson particles depending upon charged potential of BH, particle’s charge, energy and
angular momentum, the curvature radius ¢ and BH radius. While, the Hawking temperature is depending upon
charge of BH, the curvature radius and BH radius.

III. ROTATING BTZ MAGNETIC BLACK HOLE

In this section, we analyze the metric by using co-ordinate transformation suchast — At —agand ¢ — Ap — 7t.
One can obtain the BTZ BH with rotation parameter as well as magnetic charge. The line-element of this BH is given

by [49]
ds* = —ﬁ()&dt —ade)? + Ldr2 + lzR(r)'yz(Edt — Adg)?
12 R(r) 12 ’
where A = /1 + ‘l‘—; and a is a rotation parameter. The gauge potential A, for this BH is given by
a
Ay = —2q17*h(r) (75; - )ué;f) . (18)

The non-zero components are A; and A,.
Following the procedure given in the preceding Section II, we can obtain the surface gravity #(r) of rotating
BTZ-like magnetic BH in the following form

2242 2 ~242 A4N2422 1612g4~642
j(ry) = I+ e tageytr a2 — T L gppaa  2TTTE (19)
13 12 12 T4
The tunneling probability I for this case of BTZ BH can be obtained as
- —271(E — jw —eA; —eA
I'=exp ( J : v) (20)
2,2 2 ~242
\//\l;+ _ r+72 T 4g2v4r a? — 74/\2?272 + 4g21y*a? — 16ZZZ4+76“2
Using Boltzmann factor, we can obtained the corresponding Hawking temperature Ty for boson particles as
_ 1 [A22 24222 A2g22 41244542
Ty = | — + _ + 24 2 _ 2120402 . 21
H \l 2 [ 43 4]2 +tqoyiria 2 +q°ler*a - (21)

Thus, the surface gravity &(r4 ), tunneling rate I' and Hawking temperature Ty, all are depending upon rotation
parameter.

IV. (n+1)-DIMENSIONAL CHARGED BTZ BLACK HOLE

In this section, we calculate the massive boson particles tunneling probability at the outer horizon of the (1 + 1)-
dimensional BTZ magnetic BH with rotation parameter. The line-element of this BH is given by [49]

2
1
ds? = —;—Z(Adt —adg)? + Wdrz + IZR(r)fyz(lﬁzdt — Mdg)? + rdg?
2n=3
+ % Z dx'. (22)
i=1

It is to be noted that the x’ is the dimension length of BH and the angular parameter ¢ and ¢ are dimensionless for
[0, 27t]. For this case, the metric function R(7) is defined as

12 1 _ _ T
R(r) = 73 = 5 | M+2 02209 'in (7) ] (23)
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Using the same formalism as defined earlier in preceding Section II for this line-element, the surface gravity z(r;.)
can be obtained as

3 _ [ ARR(r)re | R3(ry)a?q?
K(rJr) - \/ 2[2 + 4 s (24)
where R(r) is defined as
. 2r M3 —d 3—d _ r
i = 2 MO0 O ()
+

2<d71)/2<2q17>d71
-2

(25)

The tunneling rate I of boson particles at horizon can be calculated as follows

_ _27l(E — jw —eA
[ =exp ml(E — jw — eAy) . (26)

\/ZAzR T+)T+ —+ lsz (r+)a2,-},2

The corresponding Hawking temperature Ty is given by

\/ZAzR(m)m + R2(ry ) 22292
4l

Ty = (27)

The tunneling rate I' and Hawking temperature Ty of a boson particles depend on rotation parameter, mass and BH
radius.

V. (n-+1)-DIMENSIONAL CHARGED BTZ BLACK HOLE WITH [n/2] ROTATION PARAMETERS

This section is devoted to analyze the massive boson particles tunneling probability at the outer horizon of the
metric of (1 4 1)-dimension BH with more rotation parameters and charge. The line-element of this BH is given by

[49]
2 2
ds? = Adt — Y a;d + —dr + R(r {\/ 1dt — ——
l Z 4 R(r) ) \/ -1
12 2 k 2 2.,
i=1 i<j

There are [1/2] independent rotation parameters. It is to be noted that A = /1 + Zl 1 12 and dX? is the Euclidean

metric on the (n — k — 2)-dimensional subspace. The function R(r) is defined as

21
R(r) = 5 = =5 [M+200202q00)" 1 in (7)) (29)

Following the same procedure given in the preceding sections, the surface gravity #(r) of (n 4 1)-dimensional
BTZ-like BH with more rotation parameter can be calculated as

_ AR(ro)re | R2(ri)(A2 —1)9?
®(ry) = \/ P + 1 . (30)
The tunneling rate I of boson particles at event horizon can be calculated as
N —21tl(E — jw —eA
I'=exp T(E — jo — eAy) @31
V2R (s )y + PR(r2) (A2 — 1)92
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The corresponding Hawking temperature Ty can be deduced as

2R+ R )2(A2 - 1)92

T, 2
H i , (32)
where

. 2r MB—-d) (3—4d),,_ _ r

R(ry) = l—; R + s 20=1D72(2g14)# 1 In (%)

+ +
(d—1)/2 d-1
T iy (33)
pa—2
+
2

It is to be noted that A = {/1+ Z;‘:l ‘l% depends upon more rotation parameters. Hence, the surface gravity, tun-

neling probability and the Hawking temperature for vector particles are depending upon more rotation parameters.
The Hawking temperature increases due to rotation parameter.

VI. CONCLUSIONS

In this work, we have studied the massive boson particles tunneling phenomenon from 3-dimensional static
charged BTZ magnetic as well as rotating BH and (n + 1)-dimensional charged BTZ BH with rotation parameter.
We extended our analysis to higher-dimensional rotating charged BTZ-like BHs. For this purpose, initially we have
utilized the equation of motion for massive bosons by generalizing the Proca wave equation of charged particles
in curved spacetime in the background of electromagnetic field. We have applied the WKB approximation to the
Proca equation and in result we have obtained a set of field equations, then we have used the separation of variables
technique to solve these equations. We have obtained the radial function of semi-classical particle’s action by putting
the determinant of coefficient matrix equals to zero. By utilizing the obtained surface gravity, we have calculated the
tunneling probability and Hawking temperature for all types of given BTZ-like BHs.

The tunneling probabilities and Hawking temperatures are depending upon the parameters on which BHs are
dependent. It is interesting to specify here that the back-reaction impacts of the radiated particles on the BH geometry
and self-gravitating effects have been ignored and the determined Hawking temperature is just a main term and
turned out to be reliable with BH universality.

Our analysis expressed that if the effect of rotation parameter is viewed, the action of the tunneling boson particles
on the event horizon will be different from the real particle’s action and the calculated tunneling probabilities are not
just depending on the boson particles’s energy E, angular momentum j and particle’s charge e but it is also depending
upon the gauge potential A, of BH, rotation parameter a, curvature radius £ and BH event horizon . Moreover, the
corresponding Hawking temperature depending upon the charge g, rotation parameter, curvature radius and event
horizon of BHs. Moreover, the Hawking temperature of BH increases due to the rotation parameter. Furthermore,
our analysis is similar to the analysis for charged scalar and fermion particles tunneling from these BHs. The charged
scalar and fermion particles radiate through the BHs horizons with the same energy.
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