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Abstract: Indoor scene recognition has great significance for intelligent applications such as mobile 

robots, location-based services (LBS) and so on. Wherever we are or whatever we do, we are under 

a specific scene. The human brain can easily discern a scene with a quick glance. However, for a 

machine to achieve this purpose, on one hand, it often requires plenty of well-annotated data which 

is time-consuming and labor-intensive. On the other hand, it is hard to learn effective visual 

representations due to large intra-category variation and inter-categories similarity of indoor scenes. 

To solve these problems, in this paper, we adopted an unsupervised visual representation learning 

method which can learn from unlabeled data with a Siamese Convolutional Neural Network 

(Siamese ConvNet) and graph-based constraints. Specifically, we first mined relationships between 

unlabeled samples with a graph structure. And then, these relationships can be used as supervision 

for representation learning with a Siamese network. In this method, firstly, a k-NN graph would be 

constructed by taking each image as a node in the graph and its k nearest neighbors are linked to 

form the edges. Then, with this graph, cycle consistency and geodesic distance would be considered 

as criteria for positive and negative pairs mining respectively. In other words, by detecting cycles 

in the graph, images with large differences but in the same cycle can be considered as same category 

(positive pairs). By computing geodesic distance instead of Euclidean distance from one node to 

another, two nodes with large geodesic distance can be regarded as in different categories (negative 

pairs). After that, visual representations of indoor scenes can be learned by a Siamese network in an 

unsupervised manner with the mined pairs as inputs. In order to evaluate the proposed method, 

we tested it on two scene-centric datasets, MIT67 and Places365. Experiments with different number 

of categories have been conducted to excavate the potential of proposed method. The results 

demonstrated that semantic visual representations for indoor scenes can be learned in this 

unsupervised manner. In addition, with the learned visual representations, indoor scene recognition 

models trained with the learned representations and a few of labeled samples can achieve 

competitive performance compared to the state-of-the-art approaches. 

Keywords: indoor scene recognition; unsupervised representation learning; Siamese network; 

graph constraints 

 

1. Introduction 

Scene recognition is a well-known task in computer vision field. It can be divided as outdoor 

scenario and indoor scenario. Comparing to outdoor scenario, indoor scene recognition is far more 

difficult due to the diversity of intra-categories and similarity of inter-categories [1]. Despite of the 

challenges in indoor scene recognition, it is still extremely important since recognizing an indoor 
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scene efficiently and appropriately is a significant perception ability for indoor-based applications 

such as indoor pedestrian localization / navigation [2-6], indoor mobile robot [7-9] and human activity 

analysis [10-12], etc. In recent years, deep convolutional neural networks (DCNNs) have achieved 

vast success on different computer vision tasks including scene recognition. Even there are no indoor 

scene recognition model trained from scratch with labeled image data, this task still benefits a lot 

from pre-trained models in a transfer learning way [13,14]. A trained model on ImageNet with 

DCNNs [15-17] still can act as a feature extractor in an indoor scene recognition task. Or by fine-

tuning, the weights of the trained model can be adapt to suit for the goal task.  

 

Figure 1. Comparison of training samples which labeled as “airport terminal” in Places365. In this 

figure, (a) demonstrates samples with good annotations and (b) illustrates samples that are hard to 

be confirmed. (c) is recognition results and class activation map (CAM) [25] of samples in (b). None 

of them have a right prediction with the trained model. 

However, most of previous practices rely on large-scale and well-annotated datasets. Even 

image data can be obtained easily with web-crawling, the labeling process is extremely time-

consuming and labor-intensive. Datasets such as ImageNet [15] and Places365 [19] used a 

crowdsourcing platform named Amazon Mechanical Turk (AMT) [20] which requires manual 

verification and the quality of annotations cannot be guaranteed. As shown in Figure 1, although all 

of these images belong to “airport terminal” in Places365, it is still arduously to discriminate that they 

are in same category even with human brain. With the trained model provided by [19,21], Figure 1(c) 

has illustrated the recognition results and class activation map (CAM) [25] of poor samples in Figure 

1(b). It is obvious that none of them give a correct recognition result. Although, effective features for 

indoor scene recognition can be learned through hierarchical nonlinear mappings with DCNNs. It is 

still hard to apply features extracted from unlabeled data to a recognition model directly.  

The goal of representation learning is to transform the input data into representations that are 

more suitable for a given task [22]. Therefore, in this paper, we thought about learning the visual 

representations from unlabeled data to facilitate the indoor scene recognition task. The main idea of 

this method is to mine the relationships between unlabeled data and find positive pairs and negative 

pairs with a graph structure. Then, these learned verification signals can be used to learn visual 

representations which will facilitate the target task. The unsupervised representation learning 
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process in this work also can be taken as a pre-training stage which adopted by many deep neural 

network training practices. The difference between this work and others is that our goal is to consider 

more about semantic-level relationships between indoor scene images. To this end, we adopted a 

graph structure and then using constraints of this graph to mine relationships between unlabeled 

data. In this method, each node in the graph represents an image in dataset, and each edge denotes a 

high similarity of two images. The weight of an edge is determined by the value of similarity. In this 

paper, Euclidean distance or 𝐿2 distance is utilized to measure the similarity. The reason of using a 

graph structure instead of others is that images in same category with large difference can be 

distinguished by cycle detection in the graph, while images in different categories with small 𝐿2 

distance can be figured out by computing the weighted path length between them. Therefore, the 

proposed method can effectively overcome the large intra-categories diversity and small inter-

categories diversity problems of indoor scenes.  

After mining the relationships between unlabeled data and obtaining positive and negative 

pairs, a Siamese network [23] are taken into consideration for following training. A Siamese network 

often contains two identical sub-networks (like twins) which share the weights among them. 

Different structures of sub-networks can be chosen to form a Siamese network. However, our goal is 

to learn visual representations. For this purpose, a CNN structure is adopted in this work. The 

advantage of using this architecture is that the goal of a Siamese network is to distinguish whether 

two inputs are of the same class or not. It will give results about how similar or different between the 

two inputs. This matched well with the positive and negative pairs we mined in previous procedures, 

since the mined pairs can be used as supervisions in training process. After training the Siamese 

network, a binary classification model can be acquired to measure the similarity of two inputs. 

Meanwhile, effective data descriptors or visual representations are learned which can be used for 

further applications such as indoor scene recognition. Taking the trained model as a feature extractor 

and followed by a simple classifier can train an effective indoor scene recognition model.   

As described above, the main contributions of this paper can be concluded as follows. 

(1) Supervisory signals, which are positive and negative pairs, are mined from unlabeled samples 

with graph constraints in this work, which can effectively solve the intra-diversity and inter-

similarity problems in indoor circumstances. 

(2) A Siamese ConvNet is adopted to learn visual representations in an unsupervised manner, 

which reduces the requirements for large amounts of well-annotated data compare to other deep 

learning practices. 

(3) With visual representations learned from unlabeled data, we show how indoor scene based 

applications can benefit from these. We evaluate the performance of indoor scene recognition 

model which trained with the learned representations and a few of labeled data. 

(4) Larger indoor scene datasets extracted from two scene-centric datasets have been adopted to 

investigate properties of indoor scenes. While, other works only consider indoor scene problems 

in a relatively smaller dataset such as MIT67. 

The rest of this paper is organized as follows. Related work of indoor scenes and unsupervised 

visual representation learning are reviewed in Section 2. Overview and methodology are given in 

Section 3, which including graph construction, positive / negative pairs mining and Siamese network 

training. Experiments and results are presented in Section 4. Section 5 discusses the results and is 

followed by Section 6 to conclude the whole work. 

2. Related Work 

Scene recognition is a valuable research topic and recent years have witnessed a rapid growth 

of related works on it. Before deep learning technique became prevailing in computer vision field, 

most of these works are based on handcraft features. For instance, [26] proposed to use GIST 

descriptors to recognize over 60 places both in indoor and outdoor scenarios. While [27] adopted 

probability density response maps (PDRMs) and bagged LDA classifier to build a model for 10-scenes 

recognition. [28] designed a color descriptors for images and [29] used objects as scene attributes 

directly. In addition, [30] use a multispectral SIFT to classify scenes with RGB and near-infrared 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 March 2019                   



 

images. [31] proposed a latent variable model for scene recognition which represented a scene as a 

collection of regions while [32] proposed a discriminative latent topic model for scene recognition 

based on spatial layout and scene elements. [33] proposed a SPMSM model for scene recognition 

which was augmented an image representation on semantic probability simplex with a rough 

encoding of spatial information. [34] also has developed an image representation for scene 

recognition with the response maps of objects part filters. From these works, it can be found that local 

and global feature descriptors have been designed to learn scene representations. However, for one 

hand, they still cannot achieve fair performance in indoor scenes. For another hand, they need full-

supervisions in training process, which are unable to make good use of large amount unlabeled data 

acquired from internet and our daily life. Thus, it is necessary to design an unsupervised 

representation learning method for indoor scenes. Hence, in this paper, we focus on learning 

semantic representations for indoor scenes in an unsupervised manner. Previous research related to 

the proposed method can be divided into two parts. Indoor scene recognition and unsupervised 

representation learning. 

For indoor scene recognition, one of the most representative work is the creation of indoor 

dataset MIT67 [35]. It contains 67 categories in 5 big scene groups including store, home, public 

spaces, leisure and working place. In following research of indoor scene recognition, this dataset has 

been widely adopted as a benchmark for it is well annotated and contains a wide range of indoor 

categories. They also proposed a method to combine GIST descriptors and ROIs (Regions of Interest) 

to solve the recognition problem which has considered the mechanism of how human beings 

recognize indoor scenes. However, this method required manually annotated positions of ROIs and 

need to create a visual vocabulary in advance. In later research, Kaerwong et.al. [36] considered a 

different situation which scene images were gradually obtained during long-term operation. They 

designed an incremental learning framework which based on n-value self-organizing and 

incremental neural network (n-SOINN). Other works including [37-40] also aimed to exploit real 

world attributions of indoor scenes and apply them to classify cluttered indoor scenes. [37] proposed 

a method using common objects as an intermediate semantic representation. In this work, they 

enhanced the performance of indoor scene recognition with contextual relations of objects in a scene. 

[38] adopted a BoW(Bag-of-Words) scheme to learn representations and then utilize Nearest-

Neighbor (NN) classifiers based on metric functions. [39] used dense-SIFT descriptors and an 

encoding method which combine saliency-driven perceptual pooling with simple spatial pooling. 

And [40] adopted weighted hypergraph to represent the connectivity among images according to 

statistics of objects appearing in the same image. However, all these works are based on handcraft 

features. As deep networks become an overwhelming technique in the field of computer vision, 

automatically feature extraction methods with CNN models were adopted by more and more 

researchers. It is an end-to-end representation learning method for many vision task. Thus, methods 

with deep features for indoor scene tasks became prevalent [21,41-42]. Among them, Zhou et al. [21] 

trained deep models with a large-scale scene dataset which including both indoor and outdoor 

scenes. They demonstrated that they can achieve higher accuracy with Places-CNN features (68.24%) 

compared to ImageNet-CNN features (56.79%) on MIT67 dataset. Khan et al. [41] also applied CNN 

features to categorize indoor scenes. The difference between their work and others is they proposed 

a method to encode the features into a number of multiple codebooks to overcome large variations 

in scene layouts. Although they achieved an accuracy with 71.8%, large amount of semantically 

labeled elements were needed in this work. In [42], CNN features and a sparse coding method was 

adopted to recognize indoor scenes. They replaced the traditional feature extraction method with 

CNNs and get better performance on MIT67 dataset. Although these works show a great progress on 

indoor scene recognition problems, they still need a large amount of human-labeled data. Whereas, 

in this paper, we focus on learning visual representations for indoor scenes in an unsupervised way. 

Based on previous work, we combined the local feature inction methods with a graph structure to 

mine latent relationships between unlabeled samples. Then a Siamese network [24] was adopted for 

visual representation learning with the mined formation. 

For unsupervised representation learning, related work can be found in [45-54]. The goal of 

representation learning is to reconstruct distribution of input data to facilitate following learning 
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processes [44]. In other words, good representations can make a task easier and vice versa. Earlier 

works can be traced back to greedy layerwise unsupervised pre-training with Restricted Boltzmann 

Machines (RBM) [45] and autoencoders [46]. The pretraining procedure acted as an initial learning 

step which overcame the difficulties when learning a deep network. After that, Vincent et al. [47] 

enhanced these works by making the learned representations robust to partial corruption of the input 

pattern. Different from them, Bosch et al. [48] proposed a latent generative model while Srivastava et 

al. [49] extended representation learning to multi-modal inputs. Nevertheless, these works relied on 

a single representation learning method may only learn the low-level features of inputs. To learn 

high-level features, Le et al. [50] adopted a locally connected sparse autoencoder network to learn 

from large-scale unlabeled data and showed that class-specific feature detectors can be learned from 

this method. Other works related to visual representation learning including [51-56]. They advocated 

that learning visual representations with very few labeled data or unlabeled data like humans. Jeff et 

al. [51] investigated and visualized the semantic clustering of deep convolutional features of different 

tasks and proposed a method to transfer visual representations from one task to a related one with 

few training samples. [52] learned visual representations with unlabeled videos from web. Their idea 

was to utilize relationships of two patches in adjacent frames and use a Siamese-triplet network to 

train CNN representations. While [53] learned visual representations with an algorithm driven by 

context-based pixel prediction and proposed context encoders to generate the contents of an arbitrary 

image region conditioned on its surroundings. [54] also adopted spatial context as supervisory signal 

to learn visual representations. They extracted random pairs of patches from each image and train a 

CNN to predict relative position of the patches. [55] proposed graph-based consistent constraints to 

learn the visual representation in an unsupervised manner with mining positive and negative image 

pairs. However, this work put more emphasis on simple object-centric datasets. Fabio et al. [56] 

discussed the invariant representations from unsupervised learning and sample complexity related 

to good representations. Furthermore, unsupervised visual representation learning also was widely 

used in remote sensing area for image classification or object detection [57-60]. Cheriyadat et al. [57] 

adopted sparse encoding method for dense low-level feature descriptors, and then learned the visual 

representations with statistics of the sparse features. Zhang et al. [58] proposed a learning method 

with saliency detection. While Hu et al. [59] presented an improved unsupervised feature learning 

method with spectral clustering. In [60], Tao et al. learned the feature representations adaptively from 

unlabeled data with stacked sparse autoencoder. 

Previous works have laid a solid foundation for the proposed method in both theory and 

practice. Comparing to them, firstly, we focus on indoor scene problems instead of objects, which is 

extremely challenging but meaningful. Secondly, to exploit the real-world pattern, we not only 

evaluated the proposed method on MIT67 but also extracted the indoor part of Places365 which has 

far more samples and categories then MIT67. Thirdly, we adopted a graph structure to organize the 

unlabeled sample and then mined positive pairs and negative pairs for Siamese network training to 

learn the indoor scene representations. 

3. Overview and Methodology 

In this section, an overview contains key procedures of the proposed method will be illustrated 

first. Then, details and related methods of these procedures will be described comprehensively. There 

are three parts in methodology, including graph construction, positive and negative pairs mining 

and Siamese network training. 

3.1. Overview 

An overview of proposed method has been illustrated in Figure 2. The main target of this work 

is to learn indoor scene representations in an unsupervised way. To achieve that, mining supervisory 

information from unlabeled images is demanded. Thus, in this paper, a graph structure is adopted to 

represent unlabeled data for mining the relationships between them. This process consists of three 

parts. The first is graph construction. The second is mining the positive pairs of images (two images 

in same category), and the third is mining the negative pairs (two images in different categories). 
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After that, these pairs will be utilized as inputs for a Siamese network training. The training goal of 

a Siamese network is to discriminate whether two images are in same categories or not. The whole 

learning process does not need any image labels of categories but do need labels which indicate 

whether two inputs are in same class or not. 

 

Figure 2. Overview of proposed method. The most import module of this method is pairs mining and 

Siamese network training. To mine positive and negative pairs, a k-NN graph need to be built first. 

The outputs of pairs mining is the inputs of Siamese network training. 

3.2. Graph Construction 

To mine information from unlabeled data, a k-NN graph is adopted. In this graph, each node 

represents an image and the edges formed by connections of their k nearest neighbors. The weights 

of edges are determined by Euclidean distance of original features extracted from images. Thus, in 

order to form the graph, original feature extraction methods will be briefly described first. Then 

followed by an illustration about the graph structure. 

3.2.1. Original Feature Extraction 

The whole procedure for original feature extraction has been depicted in Figure 3. It includes 

two steps, local feature extraction and feature encoding. Whereas, there are a wide range of methods 

to accomplish both of these two steps. 

 

Figure 3. Procedure of local feature extraction and encoding for computing original features of 

images. SIFT-based method and CNN-based method are given for comparison. In practice, one of 

these two methods will be adopted for local feature extraction. 

For local feature extraction, as discussed in [64], the most prevailing methods in recent years can 

be divided as SIFT-based and CNN-based. 

• SIFT-based features: SIFT is a widely used local feature descriptor for vision tasks such as image 

matching. A standard version of SIFT descriptor is 128-dim. Dense SIFT is proposed to simplify 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 March 2019                   



 

the computation of SIFT. Instead of computing SIFT descriptors at detected key points, dense 

SIFT computes SIFT with dense patches. With such a computing process, dense SIFT can be 

faster than SIFT. 

• CNN-based features: CNN features are intermediate outputs of pre-trained convolutional 

neural networks including outputs from both fully-connected layers (FC-layers) and 

convolutional layers (Conv-layers). Taking AlexNet [16] as an example, features from FC6 or 

FC7 is 4096-dim. Since FC-layers have a global receptive field, it often can be taken as global 

features. Whereas, outputs of Conv-layers are computed by convolutional filters which have 

smaller receptive fields but densely applied on the whole image. Thus, feature maps are 

produced by a Conv-layer can be seen as dense local features. 

For feature encoding, it is used to to aggregate dense local features to global features to represent 

an image. Classical coding methods include Bag of Words (BoW) [61], Fisher Vector (FV) [62], Vector 

of Locally Aggregated Descriptors (VLAD) [63] and so on. 

• BoW: The main idea of BoW is to create a codebook of visual words, which records number of 

occurrences of these visual words, but not positions. The visual words can be obtained by 

clustering method such as k-Means, which the center of a cluster is a visual word and k is the 

number of visual words. 

• FV: Different from BoW, FV is a statistics capturing the distribution of local descriptors. Suppose 

that the local descriptors are independent and identically distributed, FV of an image can be 

computed as Equation (1), which stands for the sum of normalized gradient statistic of local 

descriptors. 

𝐼𝐹𝑉 = ∑ 𝐹
𝜆

−
1

2𝐺𝜆
𝑋𝑇

𝑡=1 = ∑ 𝐹𝜆
−1/2

∇𝜆𝑙𝑜𝑔𝑢𝜆(𝑋) = ∑ 𝐹𝜆
−1/2𝑇

𝑡=1
𝑇
𝑡=1 ∇𝜆𝑙𝑜𝑔𝑢𝜆(𝑥𝑡)           (1) 

 

Among them, X = {𝑥𝑡 , t = 1, … T} is a sample contains T descriptors. 𝐺𝜆
𝑋 =  ∇𝜆𝑙𝑜𝑔𝑢𝜆(𝑥𝑡) is the 

gradient vector of likelihood function, and 𝐹𝜆 denotes the Fisher information matrix, which can 

be computed as 𝐹𝜆 =  𝐸𝑥~𝑢𝜆
[𝐺𝜆

𝑋𝐺𝜆
𝑋′

]. When the distribution obeys a Gaussian Mixture Model 

(GMM) and the parameters are λ =  {𝜔𝑘 , 𝜇𝑘, Σ𝑘 , k = 1, … , K}, 𝑢𝜆(𝑥) = P(𝑥|𝜆) can be computed 

as Equation (2). 

𝑢𝜆(𝑥) =  ∑ 𝜔𝑘
1

(2𝜋)𝐷/2|Σ𝑘|1/2 exp {−
1

2
(𝑥 − 𝜇𝑘)′ ∑ (𝑥 − 𝜇𝑘)−1

𝑘 }𝐾
𝑘=1                (2) 

• VLAD: VLAD can be seen as a simplified version of FV. Similar to BoW, it quantized local 

descriptors to its nearest visual word, and then records cumulative residuals of all descriptors 

with this visual word. Suppose set {𝜇1, 𝜇2, . . . , 𝜇𝐾} of centroids is learned with k-Means, VLAD 

descriptor V from a set of descriptors {𝑥1, 𝑥2, … , 𝑥𝑇} can be computed as follows. 

𝒾 =  arg 𝑚𝑖𝑛𝑗 ‖𝑥𝑡 −  𝜇𝑗‖                                 (3) 

𝑣𝑖 ∶=  𝑣𝑖 +  𝑥𝑡 − 𝜇𝑖                                   (4) 

𝑉 =  [𝑣1
𝑇 , … , 𝑣𝐾

𝑇 ]                                   (5) 

In a nutshell, the main idea of these three encoding methods is to create codebooks for visual 

words. BoW encodes the 0-order statistics of the descriptors. FV extends the BoW by encoding high-

order statistics and VLAD is a simplified version of FV. 

3.2.2. Graph Structure 

As mentioned in previous part, a k-NN graph has been adopted in this paper to represent 

relationships of unlabeled data. Supposed that a k-NN graph is denoted as 𝐺 = (𝑉, 𝐸), then each node 

in this graph represents an image sample and can be denoted as 𝑣 ∈ 𝑉 = {𝐼1, 𝐼2, … , 𝐼𝑁}. Each edge 

represents a link between images and 𝐼𝑖 →  𝐼𝑗 represents 𝐼𝑗 is one of k nearest neighbors of 𝐼𝑖 . Then, 

the graph structure can be determined by the value of k in procedure of finding the k nearest 

neighbors. Here, we use Euclidean distance as a measurement to find the k nearest neighbors of a 
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sample and also represent the weight of an edge. For two N-dim vectors 𝑋 =  {𝑥1, 𝑥2, … , 𝑥𝑁} and 𝑌 =

 {𝑦1, 𝑦2, … , 𝑦𝑁}, Euclidean distance is computed as Equation (6). Then we take the top k samples with 

the smallest distance as nearest neighbors of a sample and connect them with each other. 

𝑑𝑥𝑦 =  √∑ (𝑥𝑘 −  𝑦𝑘)2𝑁
𝑘=1                                   (6) 

An example of the structure for k-NN graph with a 5-length circle can be illustrated as Figure 

4(a). In this graph, value of k is set to 4 and 𝐼1~𝐼5 represents image samples. Besides, Figure 4(b) is 

an example to demonstrate different kinds of distances in the graph, which 𝑑12, 𝑑23, 𝑑34, 𝑑45, 𝑑15 

denotes Euclidean distances between two nodes and the weighted path 𝐼1 → 𝐼2 → 𝐼3 → 𝐼4 → 𝐼5  is 

geodesic distance. The Euclidean distance and geodesic distance for 𝐼1  to 𝐼5  are 𝑑15  and 𝑔15 =

 𝑑12 + 𝑑23 + 𝑑34 + 𝑑45 respectively. 

 

Figure 4. k-NN graph structure. (a) is an example when k = 3, and there is a 5-length circle in this 

graph. (b) is a demonstration for Geodesic distance and Euclidean distance, which 𝑑12, 𝑑23, 𝑑34, 𝑑45, 

𝑑15 are Euclidean distance between two nodes. The weighted path from 𝐼1 to 𝐼5 is geodesic distance 

between 𝐼1 and 𝐼5. 

3.3 Pairs Mining 

After organizing samples as a graph, properties of this graph can be applied to mine positive 

and negative pairs for future training. Based on methods proposed in [55], cycle consistency criterion 

and geodesic distance are adopted to mine positive and negative pairs in this paper.  

3.3.1. Positive Pairs Mining with Cycle Consistency 

Positive pairs are images which supposed in same categories. Although clustering or matching 

algorithms can be used to find similar image samples in an unlabeled dataset, it is still a great 

challenge in indoor scene circumstances due to large intra-diversity. Therefore, it is important to find 

a method that not only can mined image pairs with similar appearance, but also pairs in same 

category but with large variations. In this paper, cycle consistency criterion is adopted to achieve this 

goal. This process can be depicted as follows.  

Supposed that k-nearest neighbors of an image 𝐼𝑥 were denoted as 𝑁𝑘
1(𝐼𝑥). If image 𝐼𝑦 ∈ 𝑁𝑘

1(𝐼𝑥) 

and its k-nearest neighbors is 𝑁𝑘
1(𝐼𝑦) = {𝐼𝑦

𝑖 , 𝑖 = 1, … 𝑘}, then we take 𝑁𝑘
2(𝐼𝑥) = 𝑁𝑘

1(𝐼𝑦) as 2-order of k-

nearest neighbors of 𝐼𝑥. Therefore, t-order of k-nearest neighbors of 𝐼𝑥 can be represented as 𝑁𝑘
𝑡(𝐼𝑥) 

. Then, 𝐼𝑥 can be identified in a t-length cycle if 𝐼𝑥 belongs to its own t-order of k-nearest neighbors, 

which can be represented as follows. 

𝐼𝑥 ∈ 𝑁𝑘
𝑡(𝐼𝑥)                                     (7) 

Figure 5 has shown examples for detected cycles with 6-length. From this figure, it can be found 

that images even with large difference (such as 𝐼1 and 𝐼4) still can be matched as positive pairs by 

detecting cycles in a graph. 
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Figure 5. Example of detected cycles for indoor scenes. (a) are samples both from “classroom” and (b) 

are samples from living room. It is easy to see that even images in same category may have large 

appearance difference and they can be mined by a cycle detection approach. 

3.3.2. Negative Pairs Mining by Geodesic Distance 

Negative pairs represent images in different scene categories. Generally, images with large 

distance are taken as negative pairs. However, for indoor scene images, samples in different 

categories may have small Euclidean distance in feature space. Especially when two scenes share 

some of objects they contained (such as computer room and office). This phenomenon is so-called 

large inter-similarity. It makes these images easy to be omitted in negative mining process. Whereas, 

to learn an effective visual representations for indoor scenes, images in different classes but have 

similar appearance are significantly in following training process. To solve this problem, geodesic 

distance is adopted to mine the negative pairs. Different from Euclidean distance which represents 

distance between two nodes, geodesic distance is the distance of shortest path between two nodes. 

As demonstrated in Figure 4(b), given a shortest path from node 𝐼𝑖  to 𝐼𝑗, the geodesic distance 𝑔𝑖𝑗 

between them can be computed as sum of edge weights along this path. To detect shortest paths 

between any two nodes, Dijkstra [67] or Floyd-Warshall Algorithm [43] can be employed. 

3.4. Siamese Network Training 

After mining positive and negative pairs from unlabeled data, they can be acted as supervisory 

information to learn indoor scene representations. Since the training goal of a Siamese network is to 

guess whether the inputs are in same category or not, which is consistent with the mined image pairs. 

Thus, a Siamese architecture will be used to learn the visual representations in this paper. 

3.4.1. Siamese Architecture 

The original design of Siamese architecture [23] is shown as Figure 6. It consists of two 

subnetworks which has same architectures but accept different inputs. The weights W will shared by 

these two subnetworks. The training goal of a Siamese network is to guess whether the inputs are in 

same category or not. Let 𝑋1 and 𝑋2 represent two inputs, 𝑦 ∈ {0, 1} denotes whether they are in 

same category. If they belong to same category ( 𝑦 = 1 ), the training process will make 

||𝐺𝑤(𝑋1) −  𝐺𝑤(𝑋2)|| small and if the inputs belong to different category (𝑦 = 0), the training process 

will make ||𝐺𝑤(𝑋1) − 𝐺𝑤(𝑋2)|| large in turn. 

When use 𝑃(𝑋1 𝜊 𝑋2) denotes the possibility that 𝑋1  and 𝑋2  share the same class. The loss 

function for general network training can be denoted as Equation 8, where 𝜆‖𝑊‖2 is the weight 

decay term which is used to reduce noise and improve the generalization of model. 

 𝐿(𝑋1, 𝑋2, 𝑦) = 𝑦 ∙ 𝑙𝑜𝑔(𝑃(𝑋1 𝜊 𝑋2)) + (1 − 𝑦) ∙ 𝑙𝑜𝑔(1 − 𝑃(𝑋1 𝜊 𝑋2)) +  𝜆‖𝑊‖2            (8) 
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Figure 6. Siamese architecture. 𝑋1 and 𝑋2 are two different inputs. The purpose of this architecture 

is to detect whether the inputs is in same category or not. The goal of training is to find appropriate 

parameters W for mapping functions 𝐺𝑤. 

3.4.2. Siamese ConvNet 

In order to train Siamese network with image data, two convolutional networks (ConvNets) 

with same architectures are used to be the subnetworks. For simplify, a two-stream AlexNet [16] is 

adopted to implement the twin networks in this paper. The data flow of this Siamese ConvNet is 

demonstrated in Figure 7. The labels of inputs contain 0 and 1 representing two images are in same 

category or not respectively. For the specification of ConvNet, the dimension of inputs is 

3 × 227 × 227 and followed by conv1 (96 × 55 × 55), pool1 (96 × 27 × 27), norm1 (96 × 27 × 27), 

conv2 (256 × 27 × 27), pool2 (256 × 13 × 13), norm2 (256 × 13 × 13), conv3 (384 × 13 × 13), conv4 

(384 × 13 × 13), conv5 (256 × 13 × 13), pool5 (384 × 6 × 6), fc6 (4096 × 1) and fc7 (4096 × 1). The 

weights will be shared by the two ConvNets and the outputs of fc7 will be concatenated. Then two 

fully-connected layers fc8 (64×1) and fc9 (2×1) are followed. 

 

Figure 7. Data flow diagram of Siamese-AlexNet (Siamese with ConvNets). The twin networks share 

weights between convolutional layers and the outputs of fc7 is concatenated as fc7_concat. Then two 

fully-connected layers fc8 (64 × 1) and fc9 (2 × 1) are followed. 

For other components of Siamese ConvNet is as follows. 

• Loss function: Softmax is adopted to computer the probabilities of outputs by Equation (9). In 

this circumstance, softmax loss is equivalent to cross-entropy since calculation of cross-entropy 

can be denoted as Equation (10). Combined with Equation (8), the form of final objective on 

binary classifier can be expressed as Equation (11). 

𝑆𝑖 =  
𝑒𝑎𝑖

∑ 𝑒𝑎𝑘𝑇
𝑘=1

 (9) 
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𝐿 = − ∑ 𝑦𝑖𝑙𝑜𝑔𝑃𝑖

𝑇

𝑖=1

 (10) 

𝐿(𝑋1
(𝑖), 𝑋2

(𝑖)) = 𝑦𝑖 ∙ 𝑙𝑜𝑔 𝑆𝑖 + (1 − 𝑦𝑖) ∙ 𝑙𝑜𝑔(1 − 𝑆𝑖) +  𝜆‖𝑊‖2 (11) 

• Optimization: The optimization method is stochastic gradient descent (SGD) which is combined 

with a standard backpropagation algorithm. The gradient is accumulative across the two-stream 

networks with shared weights. A fixed mini-batch size is used with a learning rate 𝜂  and 

momentum 𝜇. Then the optimization process can be denoted as (12). 

𝜃 ←  𝜃 − 𝜂(∇𝜃𝐿(𝑥; 𝜃) − 𝜆𝜃) +  𝜇𝜃′ (12) 

Where 𝑥 is input vector, 𝜃 is parameter vector need to be updated, 𝜃′ is update of last epoch, 

𝜆 is regularization strength and 𝐿(𝑥; 𝜃) is loss function need to be minimized. 

4. Experiments and Results 

In this section, experiments for the proposed method have be demonstrated. Different subsets 

of MIT67 [34] and Places365 [19] were adopted to evaluate the performance of positive and negative 

pairs mining, visual representation learning and indoor scene recognition. A brief introduction of 

datasets and setup of experiments will been described first. Then, results and corresponding analysis 

will be presented respectively. 

4.1. Experiment Setup 

4.1.1. Datasets 

We evaluated the performance of proposed method in two scene-centric datasets, MIT67 and 

the indoor part of Places365. For MIT67, there are 67 indoor scene categories in this dataset, which 

distribute in 5 macro-categories including stores, home, public, leisure and working place. The total 

number of samples is 15620. For Places365, the original dataset contains scenes both from indoor, 

nature and urban scenario. Our task is to recognize indoor scenes. To this end, only indoor part of 

this dataset was considered in our experiments. There are 160 categories of indoor scenes in this 

dataset and we named it as Places160. In addition, there are two versions for this dataset, challenge 

version and standard version. For challenge version, the size of each category range from 3,068 to 

40,000. For standard version, the range is 3,068 to 5,000. 

To better evaluate the performance of proposed method, the experiments are conducted in three 

settings. Considering the overlapping of the two datasets and their potential benefits for geolocation-

based services, we evaluated data with 10, 35 and 67 categories respectively. And there are 7 groups 

of subset for comparison experiments in total. 

(1) 10 categories. In this setting, there are 10 overlapped categories of MIT67 and Places160 and 

three groups of data would be considered, MIT-10, Places-10 and MIT-Places-10. MIT-10 and Places-

10 only contains samples in corresponding dataset, while MIT-Places-10 is a mixed one. 

(2) 35 categories. There are 35 overlapped categories of MIT67 and Places160. Similar to (1), three 

groups of data would be evaluated, MIT-35, Places-35 and MIT-Places-35. 

(3) 67 categories. In order to compare with the-state-of-art methods, we also considered MIT67 

which is a standard dataset has been adopted by a lot of previous works. 

To be noted that, for overlapping datasets that contain both samples form MIT67 and Places365 

(such as MIT-Places-10 and MIT-Places-35), some of scene names may different. We combined them 

by the names used in MIT67 in our experiments. For dataset with 10 categories, they are subsets of 

35 categories. Indoor scene categories in these datasets including airport inside, bedroom, bookstore, 

classroom, computer room, corridor, living room, office, mall and restaurant. For 35 categories, 

Figure 8 has illustrated samples from each category in both MIT-35 and Places-35. Generally speaking, 
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data in Places-35 are more cluttered than MIT-35. Besides, the size of sample in Places-35 is also far 

more large than MIT-35. Figure 9 has shown a comparison for size of these two dataset.  

 

Figure 8. Example of image samples. (a) is samples from MIT-35 and (b) is samples from Places-35. 

 

Figure 9. Comparison of data size for MIT-35 and Places-35. For better illustration, only standard 

version of Places365 are considered. 

4.1.2. Experiment Setup 

The experiments in this paper were conducted on Ubuntu 16.04 system with two NVIDIA Titan 

X GPUs (12GB RAM for each). Deep learning framework Caffe [66] was adopted to train the Siamese-

AlexNet. All images were resized to 256 by 256 pixels for convenience. As mentioned before, in order 

to construct the k-NN graph, original features need to be extracted from images. There are two ways 

to accomplish this: SIFT-based and CNN-based methods. In order to decrease influence by a pre-

trained model and well prove the effectiveness of proposed method, dense SIFT was adopted to 

extract the local features in this period. VLFeat [65] is adopted for this process. After that, Fisher-

Vector (FV) followed by [62] is used for feature encoding. Then Euclidean distances are used to find 

k-nearest neighbors of an image sample and weight the edges of constructed graph. For cycle 

detection in weighted direct graph, a shortest path algorithm named Floyd-Warshall [43] is 

employed. In order to validate the effectiveness of the trained Siamese network, CNN features were 

extracted to train an indoor scene recognition model with a simple SVM classifier. 
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4.2. Results of Pairs Mining 

In this part, positive and negative pairs were mined respectively. Before constructing the graph, 

dataset for training would be randomly disrupted.  

4.2.1. Positive Pairs Mining 

In order to find best k value for graph construction, experiments were conducted with different 

data and mining results were demonstrated with different cycle lengths. Firstly, experiments on 

standard benchmark dataset MIT-67 was conducted to investigate the relationships between k value 

and pair amounts. As shown in Figure 10(a), for a fixed cycle length, when k increased, the number 

of mined positive pairs also increased. It is easy to understand because the links of k-NN graph would 

be increased when k increased. However, in Figure 10(b), it can be found that for most values of cycle 

length, the accuracy of positive pairs mining were decreased as k grown up. This phenomena is 

caused by redundant links between images in different categories when increasing the value of k. 

Therefore, the value of k cannot be too small or too large. If too small, there would be no enough pairs 

mined from the graph. On the contrary, if too large, noises will be brought in which may lead to a 

lower mining accuracy. 

 

Figure 10. Results of positive pairs mining for MIT-67 with different k and cycle length. (a) Numbers 

of mined positive pairs; (b) Accuracy of mined positive pairs. 

Furtherly, results for other groups of data also has been demonstrated to discover which k value 

and cycle length can achieve best performance for positive pairs mining. As illustrated in Figure 11, 

it is obvious that 4-Cycle (in red line) can achieve higher accuracy in most circumstances. The reason 

for this phenomenon is that noise may be bought in when circle length is too large. And when circle 

length is too small, samples in same categories may be omitted, especially for those images which 

have large appearance variations. Besides, it can be found that when k = 2, data except MIT-10 can 

achieve highest accuracy. However, number of mined positive pairs are too small in this circumstance. 

Relatively, when k = 3, no matter the amount of mined pairs or accuracy can achieve favorable 

performance. Thus, k = 3 and cycle length = 4 would be selected for following experiments. For 

comparison between different data groups, accuracy for positive pairs mining with different data has 

been illustrated in Table 1 with parameters selected.  

Beyond this, it is also can be found in Figure 11 that when cycle length was set to 2 (2-Cycle in 

the figure), this method became a direct matching process. In this circumstance, mining accuracy 

would be lower than most cases with longer cycle length. Thus, it can be seen that positive pair 

mining method utilized in this paper is superior to a directed matching method from these 

experiments.  
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Figure 11. Accuracy of positive pairs mining for different groups of data. Subgraphs from (a) to (f) 

are mining accuracy for MIT-10, MIT-35, Places-10, Places-35, MIT-Places-10 and MIT-Places-35, 

respectively. 

Table 1. Comparisons of accuracy (%) for positive pairs mining when k = 3 and cycle length = 4. 

Number of Categories MIT Places MIT-Places 

10 93.4932 52.0602 77.0240 

35 73.2836 68.2141 69.5983 

67 70.8526 / / 

4.2.2. Negative Pairs Mining 

For negative pairs mining, in order to evaluate performance of geodesic distance adopted in this 

paper, two other methods random sampling and Euclidean distance have been investigated for 

comparison. For random sampling, two samples were supposed to chosen from a dataset, then we 
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computed the probability that they are not in same categories. For Euclidean distance and geodesic 

distance based methods, a same threshold was set to measure whether two samples in same category 

or not. In order to decrease computation, a batch size with 1000 was set to mine the negative pairs. 

Table 2 has demonstrated the accuracy for these three methods and 7 groups of data. In this 

table, it can be found that even with random selecting, accuracy of negative pairs mining was still 

high. Since for a multi-categories dataset, most samples are in different categories. Therefore, with a 

specific data size, the more kinds of categories, the higher probability of sampling two images as a 

negative pair. While, with certain kinds of categories, if there are more samples in each categories, 

the higher accuracy can be achieved for negative pairs mining. Comparing three kinds of methods, it 

can be seen that the differences between their accuracy are subtle. For most circumstance, geodesic 

distance can achieve a slightly higher accuracy comparing to random sampling and Euclidean 

distance. Except for Places-35, both Euclidean distance and geodesic distance got lower accuracy 

comparing to random sampling. And for MIT-Places-35, geodesic distance was less accurate than 

Euclidean distance by 0.03%.  

Even though, geodesic distance still can be taken as a better choice for negative mining for it has 

considered images pairs with similar appearance but belongs to different categories. It is easy to find 

negative pairs in a dataset with lots of categories. However, it cannot guarantee significant 

information has been obtained which may play an important role in indoor scene circumstances. 

Without negative pairs which have similar appearance but in same categories, the following learning 

process still cannot learn good representations for indoor scenes. 

Table 2. Comparisons of accuracy (%) for different negative pairs mining methods. 

Data Random Sampling Euclidean Distance Geodesic Distance 

MIT-10 85.8745 86.6667 87.0667 

Places-10 89.9273 89.9417 90.0625 

MIT-Places-10 89.8917 90.1519 90.6885 

MIT-35 95.3423 95.5125 95.9875 

Places-35 97.1358 97.0814 97.1140 

MIT-Places-35 97.1309 97.2818 97.2497 

MIT-67 97.5768 97.7429 98.0643 

In general, due to the complexity of indoor scene data, mining positive and negative pairs from 

a graph structure is a feasible method. High-level semantic information for unlabeled scene data can 

facilitate following visual representation process. Figure 12 has shown some examples of mined pairs. 

it also can be found that challenge pairs such as classroom and shopping mall can be mined as 

positive pairs. And computer-room and office can be distinguished in different classes even they 

share same objects such as chair and computer. 

 

Figure 12. Examples of mined pairs. (a) are positive pairs and it can be seen that some of them have 

large variations. (b) are negative pairs while some of them have a similar appearance. 

4.3. Results of Unsupervised Visual Representation Learning 

As depicted in previous part, mined pairs would be used as inputs for indoor scene 

representation learning. In this experiment, AlexNet was adopted as architecture of subnetwork. A 
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whole structure and data flow of Siamese-AlexNet has been illustrated in Figure 7. In order to 

decrease training time and avoid over fitting, a trained model of AlexNet which provided by Caffe 

has been adopted for initialization. In this case, datasets including MIT-10, Places-10, MIT-Places-10, 

MIT-35 and MIT-67 can quickly converge with 5k iterations. Whereas, due to the complexity of 

Places-35 and MIT-Places-35, iterations for these two datasets were set to 20k. 

 

Figure 13. Comparison of feature embedding. (a) is embedding result of model trained with MIT-10. 

(b) is embedding with benchmark model bvlc_alexnet. 

 

Figure 14. t-SNE visualization with images based on features extracted from the model trained with 

MIT-10. 4096-dimensional features has been utilized for this illustration. 

In order to validate representations learned with the proposed method, examples of feature 

embedding with t-SNE [68] have been demonstrated in Figure 13. With dimension reduction, learned 
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features can be visualized in two dimension. Figure 13(a) is embedding result with model trained on 

MIT-10, while Figure 13(b) is based on benchmark model provided by Caffe (bvlc_alexnet). From this 

comparison, it can be found that our model has a considerable effect with benchmark even it was 

trained in an unsupervised manner. For a more intuitive illustration, an embedding with images 

which were rearranged by similarity of fc7 outputs has been shown in Figure 14. 

4.4. Results of Indoor Scene Recognition 

To further evaluate the learned representations, experiments for indoor scene recognition have 

been conducted with CNN features extracted from trained Siamese ConvNet. Along with a few of 

labeled data as supervision, an indoor scene recognition model can be trained with CNN features 

and a simple SVM classifier. Recognition accuracy of 10-categories and 35-categories datasets have 

been shown in Table 3, and related confusion matrices have been demonstrated in Figure 15. While 

results for MIT-67 have been illustrated separately in Figure 16 for a closer look. 

Table 3. Accuracy for indoor scene recognition with different datasets. 

Dataset MIT-10 Places-10 MIT-Places-10 MIT-35 Places-35 MIT-Places-35 

Accuracy (%) 75.10 61.30 64.00 56.71 44.14 53.60 

In Table 3 and Figure 15, it can be seen that models trained with data from Places365 got poor 

performance than MIT67. This phenomenon was caused by the diversity and complexity of Places365. 

Thus, a mixed dataset achieved a higher accuracy than data from Places365 and lower accuracy than 

data from MIT67. Moreover, by comparing results form 10-classes and 35-classes indoor scenes, it is 

also can be found that when number of categories increased, it would be more difficult to 

distinguished an indoor scene from others.  

 

Figure 15. Confusion matrices for 10-categories datasets and 35 categories datasets. (a)-(c) are results 

of 10-categories while (d)-(f) are results of 35-categories.  

For MIT-67, in Figure 16, it can be seen that scenes with similar-looking are prone to obtain lower 

classification accuracy, such as “library” vs “bookstore “, “dining room” vs ”living room" and “fast 

food restaurant” vs “bakery”. 
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Figure 16. Confusion matrix for MIT-67. Examples of indoor scenes that are easy to confuse have been 

annotated, such as fastfood_restaurant with bakery, dining room with living room and library with 

bookstore. 

Furthermore, in order to compare indoor scene recognition performance with methods of state-

of-the-art, Table 4 has illustrated accuracy of different methods with MIT-67 dataset. In this table, it 

can be seen that, even without labeled data for representation learning, our methods still can achieve 

a 52.61% accuracy which is higher than traditional methods with manual features and supervision 

methods. Although, CNN features based methods can obtain higher accuracy than other methods, 

they require large scale well-annotated datasets which may contain at least millions of instances. This 

may restrict their utilization potential for indoor scene related applications. 

Table 4. Comparison of indoor scene recognition accuracy on MIT-67. 

Method Accuracy (%) Method Accuracy (%) 

ROI+GIST (09’) [35] 26.10 Embedding+Hypergraph (14’) [40] 39.05 

Object Banks (10') [29] 37.60 GGM (14’) [39] 41.15 

NN+BoW (11’) [38] 47.01 Places-CNN features (14’) [21] 68.24 

RBoW (12’) [31] 37.93 CNNaug-SVM (14’) [13] 69.00 

Hybrid-Parts+GIST+SP (12') [34] 47.20 SRP+Encoding(16’) [41] 71.80 

n-SOINN (13’) [36] 33.73 CNN+Sparse-Coding(17’) [42] 87.22 

Ours: MIT67-CNN features 1 + SVM   52.61   
1 CNN features were from unsupervised learning, while others’ were from supervised learning. 

5. Discussion 

With experiments on cluttered indoor scene data, it can be found that visual representations of 

indoor scenes can be learned even without large scale well-labeled data. In this paper, a graph-based 

pairs mining approach has been adopted to obtain semantic relationships between unlabeled data. 

Then, a Siamese ConvNet was employed to learn indoor scene representations with mined pairs as 
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supervisory information. Besides, more challenge indoor scene circumstances, which combined 

MIT67 and indoor parts of Places365, have been taken into consideration and results on them have 

proved the effectiveness of proposed method.  

For pairs mining, comprehensive experiments on positive and negative pairs were conducted 

respectively. By comparing results on different datasets with different parameters for k-NN graph, 

appropriate value of k and cycle length have been determined for indoor scene data, which are 3 and 

4 respectively. The highest accuracy for positive mining is 93.49% and for negative mining is 98.06%. 

For representation learning, comparison of embedding results have been demonstrated to validate 

the learning effectiveness. At last, experiments of indoor scene recognition have been conducted to 

verify the learned representations further. Although, recognition results on MIT-67 achieve lower 

accuracy than other CNN feature based methods. The proposed method are based on unlabeled data 

setting and it can still achieve an accuracy with 52.61%, which is higher than most manual feature 

based methods in similar setting. 

6. Conclusions 

The main purpose of this paper is to investigate whether visual representations can be learned 

with a setting that there is no enough well-labeled indoor scene data. Considering application related 

to indoor circumstances and complexity of indoor scenes, learning effective indoor scene 

representations is a meaningful research area for future work. Although deep learning based 

methods have won great success in past years, most of them require massive manually annotating 

data to train the model, which is expensive and labor-intensive. Therefore, research on unsupervised 

representation learning for indoor scenes have great significance. Based on these, this paper proposed 

an unsupervised representation learning for indoor scenes to solve challenges both for indoor scene 

recognition and data annotations. Due to the ability of learning semantic relationships between 

unlabeled data, the proposed method has a great potential in automatic sample annotation and data 

cleaning for indoor scene. In future work, more flexible and end-to-end unsupervised learning 

methods can be considered for indoor scene representation learning.  
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