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Abstract. We present smooth approximations to |x| using sigmoid func-
tions. In particular x erf(x/µ) is proved to be better smooth approximation
for |x| than x tanh(x/µ) and

√
x2 + µ with respect to accuracy. To accom-

plish our goal we also provide sharp hyperbolic bounds for error function.

1 Introduction

An S - shaped function which usually monotonically increases on R (the set
of all real numbers) and has finite limits as x → ±∞ is known as sigmoid
function. Sigmoid functions have many applications including the one in
artificial neural networks.

Rigorously, a sigmoid function is bounded and differentiable real function
that is defined for all real input values and has a non-negative derivative
at each point [6]. It has bell shaped first derivative. A sigmoid function
is constrained by two parallel and horizontal asymptotes. Some examples of
sigmoid functions include logistic function, i.e. 1/(1 + e−x), tanh(x), tan−1x,
Gudermannian function, i.e. gd(x), error function, i.e. erf(x), x(1 + x2)−1/2

etc. Some of them are described below.
The Gudermannian function is defined as follows:

gd(x) =

∫ x

0

1

cosh(t)
dt.

Alternatively,

gd(x) = sin−1(tanh(x)) = tan−1(sinh(x)).
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The error function or Gaussian error function is defined as follows:

erf(x) =
2√
π

∫ x

0

e−t
2

dt.

The Gudermannian and error functions are special functions and they have
many applications in mathematics and applied sciences. All the above men-
tioned sigmoid functions are differentiable and their limits as x → ±∞ are
listed below:

lim
x→−∞

2

[
1

1 + e−x
− 1

2

]
= −1, lim

x→+∞
2

[
1

1 + e−x
− 1

2

]
= 1

lim
x→−∞

tanh(x) = −1, lim
x→+∞

tanh(x) = 1

lim
x→−∞

tan−1(x) = −π
2
, lim
x→+∞

tan−1(x) =
π

2

lim
x→−∞

gd(x) = −π
2
, lim
x→+∞

gd(x) =
π

2

lim
x→−∞

erf(x) = −1, lim
x→+∞

erf(x) = 1

lim
x→−∞

x√
1 + x2

= −1, lim
x→+∞

x√
1 + x2

= 1.

Due to these properties it is easy to see that the functions x tanh(x/µ),
2x
[
1/(1 + e−x/µ)− 1/2

]
, (2/π)x tan−1(x/µ), (2/π)x gd(x/µ), x erf(x/µ)

and x2(x2 + µ2)−1/2 as µ→ 0 can be used as smooth approximations for |x|.
In [3],

√
x2 + µ is proved to be computationally efficient smooth approxima-

tion of |x|, since it involves less number of algebraic operations. In spite of
being this, as far as accuracy is concerned some of the above mentioned func-
tions are better transcendental approximations to |x|. In [1] x tanh(x/µ) was
proposed by first author and it is recently proved [2] that this approximation
is better than

√
x2 + µ in terms of accuracy by Yogesh J. Bagul and Bhavna

K. Khairnar. One of the users of Mathematics Stack Exchange [7] suggested
x erf(x/µ) as a smooth approximation to |x|. However that user did not give
the logical proof or did not compare this approximation with existing ones.
In fact, it is better than

√
x2 + µ or

√
x2 + µ2 in terms of accuracy; but it is

not proved in [7]. To prove this fact is the main goal of this paper. We shall
prove this thing by showing x erf(x/µ) to be better than x tanh(x/µ). We
avoid logical proofs for other approximations presented above, since they are

2

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2019                   doi:10.20944/preprints201903.0140.v1

http://dx.doi.org/10.20944/preprints201903.0140.v1


not as good as x tanh(x/µ) or x erf(x/µ) for accuracy which can be seen in
the figures given at the end of this article.

The rest of the paper is organized in the following manner. Section 2
presents the main results, with proofs. Two tight approximations are then
compared numerically and graphically in Section 3. A conclusion is given in
Section 4.

2 Main Results with Proofs

We need the following lemmas to prove our main result.

Lemma 1. (l’Hôpital’s Rule of Monotonicity [4]): Let f, g : [c, d] → R be
two continuous functions which are differentiable on (c, d) and g′ 6= 0 in
(c, d). If f ′(x)/g′(x) is increasing (or decreasing) on (c, d), then the func-
tions (f(x)− f(c))/(g(x)− g(c)) and (f(x)− f(d))/(g(x)− g(d)) are also
increasing (or decreasing) on (c, d). If f ′(x)/g′(x) is strictly monotone, then
the monotonicity in the conclusion is also strict.

Lemma 2. For x ∈ R, the following inequality holds:

x2 e−x
2

6
1

e
.

Proof: Suppose that
h(x) = x2 e−x

2

.

By differentiation we get

h′(x) = 2x e−x
2

(1− x2).

This implies x = 0, ±1 are the critical points for h(x). Again differentiation
gives

h′′(x) = 2e−x
2

(1− x2)− 4x2 e−x
2

(2− x2)
Hence,

h′′(0) = 2, h′′(−1) = −4

e
, h′′(1) = −4

e
.

By second derivative test, h(x) has minima at x = 0 and maxima at x = ±1.
Therefore 0 is the minimum value and 1/e is the maximum value of h(x),
ending the proof of Lemma 2.

Lemma 3. For x ∈ R− {0}, one has

|erf(x)|+ α

|x|
> 1, (2.1)

with α = 2/(e
√
π) ≈ 0.4151075.
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Proof: We consider two cases depending on the sign of x as follows:
Case(1): For x > 0, let us consider the function

f(x) = erf(x) +
α

x
− 1

which on differentiation gives

f ′(x) =
2√
π
e−x

2 − α

x2
=

2√
π

[
e−x

2 − 1

ex2

]
.

By Lemma 2, f ′(x) 6 0 and hence f(x) is decreasing on (0,+∞). So, for any
x > 0, f(x) > f(+∞−), i.e.

erf(x) +
α

x
> 1.

Case(2): For x < 0 let us consider the function g(x) = erf(x) +α/x+ 1.
As in Case(1), g′(x) 6 0 and is decreasing in (−∞, 0). Hence, for any x < 0,
g(x) < g(−∞+). So we get

erf(x) +
α

x
< −1,

which completes the proof of Lemma 3.

Theorem 1. Let µ > 0 and α = 2/(e
√
π) ≈ 0.4151075. For x ∈ R, the

approximation F (x) = x erf(x/µ) to |x| satisfies

F ′(x) =
2x√
π µ

e
− x

2

µ2 +
1

x
F (x)

and

||x| − F (x)| < αµ. (2.2)

Proof: We have

F ′(x) =
2x√
π µ

e
− x

2

µ2 + erf

(
x

µ

)
=

2x√
π µ

e
− x

2

µ2 +
1

x
F (x).

For x = 0 the inequality (2.2) is obvious. For x 6= 0, it follows from Lemma
3 that

||x| − F (x)| =
∣∣∣∣|x| − ∣∣∣∣x erf (xµ

)∣∣∣∣∣∣∣∣ = |x|
∣∣∣∣1− ∣∣∣∣erf (xµ

)∣∣∣∣∣∣∣∣
= |x|

[
1−

∣∣∣∣erf (xµ
)∣∣∣∣] < |x|α ∣∣∣µx ∣∣∣ = αµ.

4

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2019                   doi:10.20944/preprints201903.0140.v1

http://dx.doi.org/10.20944/preprints201903.0140.v1


The proof of Theorem 1 is completed.

In the following theorem we give sharp bounds for error function erf(x)
implying that the present approximation to |x| is better than x tanh(x/µ).

Theorem 2. For x > 0, it is true that

tanh(x) < erf(x) <
2√
π
tanh(x). (2.3)

Proof: Consider the function

G(x) =
erf(x)

tanh(x)
=
G1(x)

G2(x)
,

where G1(x) = erf(x) and G2(x) = tanh(x) with G1(0) = G2(0) = 0. On
differentiating we get

G′1(x)

G′2(x)
=

2√
π
e−x

2

cosh2(x) =
2√
π
λ(x),

where λ(x) = e−x
2
cosh2(x), derivative of which is given by

λ′(x) = 2e−x
2

cosh(x) [sinh(x)− x cosh(x)] .

Since sinh(x)/x < cosh(x) (see, for instance, [5]), we have λ′(x) < 0 and
hence λ(x) is decreasing in (0,+∞). By Lemma 1, G(x) is also decreasing in
(0,+∞). So, for x > 0,

G(0+) > G(x) > G(+∞−).

It is easy to evaluate G(0+) = 2/
√
π by l’Hospital’s rule and G(+∞−) = 1.

This ends the proof of Theorem 2.

3 Comparison between two approximations

By virtue of Theorem 1, for all x ∈ R and µ > 0, we get the following chain
of inequalities:

x tanh

(
x

µ

)
< xerf

(
x

µ

)
< |x| <

√
x2 + µ. (3.1)

Again in [2], it is proved that x tanh(x/µ) is better than
√
x2 + µ or

√
x2 + µ2

with respect to accuracy. Consequently, x erf(x/µ) is better than
√
x2 + µ
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or
√
x2 + µ2 in the same regard. Numerical and graphical studies support

the theory.
In Table 1, we compare numerically some of these approximations by

investigating global L2 error which is given by

e(f) =

∫ +∞

−∞
[|x| − f(x)]2 dx,

where f(x) denotes an approximation to |x|. With this criterion, a lower e(f)
value indicates a better approximation. Table 1 indicates that x erf(x/µ) is
the best of the considered approximation (for µ = 0.1 and µ = 0.01, but
other values can be considered for µ, with the same conclusion).

Table 1: Global L2 errors e(f) for the functions f(x).

µ = 0.1

f(x) 2x

[
1

1 + e−x/µ
− 1

2

]
2

π
xgd

(
x

µ

)
x tanh

(
x

µ

)
x erf

(
x

µ

)
e(f) ≈ 0.00126521 ≈ 0.000754617 ≈ 0.000158151 ≈ 0.000087349

µ = 0.01

f(x) 2x

[
1

1 + e−x/µ
− 1

2

]
2

π
xgd

(
x

µ

)
x tanh

(
x

µ

)
x erf

(
x

µ

)
e(f) ≈ 1.26521× 10−6 ≈ 7.54617× 10−7 ≈ 1.58151× 10−7 ≈ 8.7349× 10−8

By considering the setting of Table 1, Figures 1 and 2 also support our
theoretical findings.
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Figure 1: Graphs of the functions in Table 1 with µ = 0.1 for x ∈ (−0.2, 0.2).
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Figure 2: Graphs of the functions in Table 1 with µ = 0.01 for x ∈
(−0.04, 0.04).
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4 Conclusion

Sigmoid functions can be used for smooth approximation of |x|. In particular
x erf(x/µ) is proved to be better smooth approximation for |x| with respect
to accuracy.
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Francisco(Eds), From Natural to Artificial Neural computation, IWANN
1995, Lecture Note in Computer Science, Volume 930, pp. 195-201,
Springer, Berlin Heidelberg.

[7] Ravi (https://math.stackexchange.com/users/36224/ravi), Smooth ap-
proximation of absolute value inequalities, URL (version: 2014-02-17):
https://math.stackexchange.com/q/173479

8

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 March 2019                   doi:10.20944/preprints201903.0140.v1

http://dx.doi.org/10.20944/preprints201903.0140.v1

	Introduction
	Main Results with Proofs
	Comparison between two approximations
	Conclusion

