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Abstract. We present smooth approximations to |z| using sigmoid func-
tions. In particular x er f(x/p) is proved to be better smooth approximation
for |z| than ztanh(x/u) and /22 + p with respect to accuracy. To accom-
plish our goal we also provide sharp hyperbolic bounds for error function.

1 Introduction

An S - shaped function which usually monotonically increases on R (the set
of all real numbers) and has finite limits as * — +oo is known as sigmoid
function. Sigmoid functions have many applications including the one in
artificial neural networks.

Rigorously, a sigmoid function is bounded and differentiable real function
that is defined for all real input values and has a non-negative derivative
at each point [6]. It has bell shaped first derivative. A sigmoid function
is constrained by two parallel and horizontal asymptotes. Some examples of
sigmoid functions include logistic function, i.e. 1/(1 + e~%), tanh(x), tan 'z,
Gudermannian function, i.e. gd(z), error function, i.e. erf(z), z(1 + 2?)~4/2
etc. Some of them are described below.

The Gudermannian function is defined as follows:

gd(z) = /OI #h(t) dt.

Alternatively,

gd(x) = sin(tanh(z)) = tan"'(sinh(x)).
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The error function or Gaussian error function is defined as follows:

erf(x) = %/@ e ¥ dt.

The Gudermannian and error functions are special functions and they have
many applications in mathematics and applied sciences. All the above men-
tioned sigmoid functions are differentiable and their limits as z — 400 are
listed below:

1 1 ) 1 1
lim 2 —=|=-1, lim 2 —=l =1
T——00 l4+e= 2 T—-+00 l4+e= 2
lim tanh(z) = —1, lim tanh(z) =1
T—>—00 T—r+00
. T oy T
xll)r_noo tan" " (x) = 5 xl_lgloo tan”" (x) 5
im _gd(z) = —g, Jim gd(z) = g

lim erf(z) =—-1, lim erf(z)=1

T——00 T—+00

lim -1, lIlm ——=1

x
x%*OOw/l—}—xQ_ ’:r%+oo‘/]__|_x2

Due to these properties it is easy to see that the functions x tanh(x/u),

20 [1/(1+ e7/m) — 1/2], (2/m) w tan~ (w/p), (2/7) 2 gd(x/), wer (] p)

and 22(z% 4+ p?)~Y2 as u — 0 can be used as smooth approximations for |z|.
In [3], /2% 4 p is proved to be computationally efficient smooth approxima-
tion of |z, since it involves less number of algebraic operations. In spite of
being this, as far as accuracy is concerned some of the above mentioned func-
tions are better transcendental approximations to |z|. In [1] x tanh(x/u) was
proposed by first author and it is recently proved [2] that this approximation
is better than /22 + p in terms of accuracy by Yogesh J. Bagul and Bhavna
K. Khairnar. One of the users of Mathematics Stack Exchange [7] suggested
xerf(x/p) as a smooth approximation to |z|. However that user did not give
the logical proof or did not compare this approximation with existing ones.
In fact, it is better than /22 + p or y/x2 + 2 in terms of accuracy; but it is
not proved in [7]. To prove this fact is the main goal of this paper. We shall
prove this thing by showing xerf(x/u) to be better than xtanh(z/u). We
avoid logical proofs for other approximations presented above, since they are
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not as good as x tanh(x/u) or xerf(x/n) for accuracy which can be seen in
the figures given at the end of this article.

The rest of the paper is organized in the following manner. Section 2
presents the main results, with proofs. Two tight approximations are then
compared numerically and graphically in Section 3. A conclusion is given in
Section 4.

2 Main Results with Proofs

We need the following lemmas to prove our main result.

Lemma 1. (I’Hépital’s Rule of Monotonicity [4]): Let f,g : [c,d] — R be
two continuous functions which are differentiable on (c,d) and g # 0 in
(c,d). If f'(x)/g () is increasing (or decreasing) on (c,d), then the func-
tions (f(z) — f(c))/(g9(x) —g(c)) and (f(z) = f(d))/(9(z) — g(d)) are also
increasing (or decreasing) on (c,d). If f'(x)/g'(x) is strictly monotone, then
the monotonicity in the conclusion is also strict.

Lemma 2. For x € R, the following inequality holds:
1

22 e < -
e
Proof: Suppose that
h(z) =x*e ™.
By differentiation we get
W(z)=2ze ™ (1—2?).

This implies x = 0, 1 are the critical points for h(x). Again differentiation
gives
R'(z) =2e7 " (1 — 2%) —4a? e (2 — 2%)

Hence,
" " 4 " 4
R'(0) =2, h"(—1) = ——, h"(1) = ——.
e e
By second derivative test, h(z) has minima at © = 0 and maxima at x = +1.
Therefore 0 is the minimum value and 1/e is the maximum value of h(z),

ending the proof of Lemma 2. [
Lemma 3. For x € R — {0}, one has

lerf(x)] + S 1, (2.1)

]

with o = 2/(e/m) = 0.4151075.
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Proof: We consider two cases depending on the sign of x as follows:
Case(1): For x > 0, let us consider the function

f(x) = erf(x)+%— 1

which on differentiation gives

A PR
F@= et - - )

By Lemma 2, f’(z) < 0 and hence f(z) is decreasing on (0, 4+00). So, for any
x>0, f(x) > f(+o007), ie.

erf(x)+ % > 1.

Case(2): For x < 0 let us consider the function g(z) = erf(z) + o/z + 1.
As in Case(1), ¢’(z) < 0 and is decreasing in (—o0,0). Hence, for any x < 0,
g(z) < g(—oo™). So we get

erf(x) —|—% < -1,

which completes the proof of Lemma 3. [

Theorem 1. Let > 0 and o = 2/(ey/7) ~ 0.4151075. For x € R, the
approximation F(x) = xerf(xz/p) to |x| satisfies

20 _=22 1
Fl(z) = w24 —F
(@)= 2= B L F()
and
|z| = F(z)| < ap. (2.2)
Proof: We have
20 _z2 T 20 _2 1
Fl(x) = e#z—i—erf(—): e v? + —F(x).
(@) VT n)  Vmu 2T

For x = 0 the inequality (2.2) is obvious. For x # 0, it follows from Lemma

3 that e (g)” = [a] |1 —|erf (E)H

= |z| {1— erf (§>H < |z] o ‘H’ = .
1 x

||z = F(z)] = ||| = 1=
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The proof of Theorem 1 is completed. [

In the following theorem we give sharp bounds for error function er f(x)
implying that the present approximation to |z| is better than x tanh(x/u).

Theorem 2. For x > 0, it is true that

tanh(x) < erf(z) < % tanh(z). (2.3)

Proof: Consider the function

_erf(z)  Gi(z)
Gla) = tanh(x)  Ga(z)’

where G(x) = erf(z) and Ga(z) = tanh(z) with G1(0) = G3(0) = 0. On
differentiating we get

Gilz) _ 2 e cosh®(z) = 2 Az),

Gy(x) V7 VT

where \(z) = e™*" cosh?(x), derivative of which is given by

N(z) = 2¢™ cosh(z) [sinh(z) — x cosh(z)] .

Since sinh(x)/x < cosh(z) (see, for instance, [5]), we have N(z) < 0 and
hence A(z) is decreasing in (0, 400). By Lemma 1, G(z) is also decreasing in
(0, 4+00). So, for z > 0,

G(0%) > G(z) > G(+o07).
It is easy to evaluate G(07) = 2/y/7 by I'Hospital’s rule and G(+o00™) = 1.
This ends the proof of Theorem 2. [
3 Comparison between two approximations

By virtue of Theorem 1, for all z € R and p > 0, we get the following chain
of inequalities:

xtanh (£> <xzerf <§> <|z| <22+ p. (3.1)

1

Again in [2], it is proved that = tanh(x/u) is better than \/22 + por /22 + p2
with respect to accuracy. Consequently, x erf(z/p) is better than /a2 + p

5
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or \/x? + p? in the same regard. Numerical and graphical studies support
the theory.

In Table 1, we compare numerically some of these approximations by
investigating global Ly error which is given by

+o00
2
o) = [l = ) do
where f(z) denotes an approximation to |z|. With this criterion, a lower e( f)
value indicates a better approximation. Table 1 indicates that zerf(x/u) is
the best of the considered approximation (for g = 0.1 and p = 0.01, but
other values can be considered for p, with the same conclusion).

Table 1: Global Ly errors e(f) for the functions f(z).

n=0.1
1 1 2
flz) | 22| —— — = —xgd z wtanh [ £ xerf z
14+e2/n 2 s I ! 7
e(f) ~ 0.00126521 ~ 0.000754617 ~ 0.000158151 =~ 0.000087349
w=10.01

1 1 2 x T T
1@ | 2 e 5| | Zeoa(2) | st (2) | wers (%)

e(f) | ~1.26521 x 1076 | ~ 7.54617 x 1077 | ~ 1.58151 x 1077 | ~ 8.7349 x 108

By considering the setting of Table 1, Figures 1 and 2 also support our
theoretical findings.
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n=0.1

o
K& 4 xI
< - = xerf(x/n)

xtanh(x/;?

c=-  (2/mxgd(x/n)

. 2x(1/(1 +exp(—x/p) —1/2)
g ] g
= \ ,;
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=
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o
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Figure 1: Graphs of the functions in Taf)le 1 with g = 0.1 for z € (—0.2,0.2).
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Figure 2: Graphs of the functions iI)l( Table 1 with © = 0.01 for x €
(—0.04,0.04).
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4 Conclusion

Sigmoid functions can be used for smooth approximation of |z|. In particular
xerf(xz/p) is proved to be better smooth approximation for |x| with respect
to accuracy.
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