
Article

Tie-system calibration for the experimental setup of
large deployable reflectors

A. Cammarata1* , R. Sinatra 1, R. Rigato 2 and P.D. Maddio 1

1 University of Catania; alessandro.cammarata@unict.it; rosario.sinatra@unict.it; pietro.maddio@unict.it
2 Thales Alenia Space Italia; riccardo.rigato@thalesaleniaspace.com
* Correspondence: alessandro.cammarata@unict.it; Tel.: +39-095-738-2403

Version March 12, 2019 submitted to Preprints

Abstract: The tradeoff between the design phase and the experimental setup is crucial to satisfy the1

accuracy requirement of Large Deployable Reflectors. Manufacturing errors and tolerances change2

the RMS of the reflecting surface and require careful calibration of the tie rod system to be able3

to fit into the initial design specifications. To give a possible solution to this problem, here two4

calibration methods, respectively for rigid and flexible ring truss support, are described. Starting5

from the acquired experimental data on the net nodal coordinates, the initial problem of satisfying6

the static equilibrium at the measured configuration is described. Then, two constrained optimization7

problems, for rigid and flexible ring truss support, are defined to meet RMS accuracy of the reflecting8

surface modifying the tie lengths. Finally, a case study to demonstrate the validity of the proposed9

methods is presented.10
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1. Introduction12

In recent decades, satellite communications have been increasingly spread thanks to the possibility13

of having high transmitting capacities at a relatively low cost compared to the establishment of a14

terrestrial broadcasting network. The deployable reflectors represent the most widely used type of15

structure because of their features such as large scale, high packaging efficiency, high accuracy and16

lightweight. Typically, its architecture consists of a deployable ring truss support, two cable nets, facing17

each other and linked by a series of tension ties, and an RF mesh attached to the backside of the front18

net. The most representative kind of this type of reflector is the AstroMesh [1], and its components are19

shown in Fig. 1. The electromagnetic performance of these antennas is closely related to the shape of20

the reflector surface. In turn, this depends on the position of nodes located on the front net. Therefore,21

it is clear how the measurement process of 3D node coordinates is to be made with extreme accuracy22

so as to avoid invalidating the real root mean square (RMS) value.23

In recent years several measurement systems have been developed depending on the application24

area. Generally, they can be summarised in three categories:25

• Photogrammetry26

• Laser tracker27

• Laser radar28

The photogrammetry is a measurement technique that uses two-dimensional images of an object29

to obtain its dimensions. As depicted in Fig. 2 the photogrammetry is based exclusively on angle30

measurements: three-dimensional coordinates are calculated via optical triangulation (or intersection)31

of two or more images taken from different positions. The object to be measured is identified by32

targets mounted on it, usually made of reflective material so as to produce high contrast between the33

target and the background [2]. Typically, a calibrated scale bar is integrated into the object in order34

to reproduce it in true scale. At the end of measurements, a dedicated software calculates the 3D35

coordinates into the chosen Cartesian coordinate system (x, y, z).36
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Figure 1. AstroMesh
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Figure 2. Photogrammetry

Laser tracker and laser radar, instead, are measurement systems based on the estimation of two37

angles and one length, as shown in Fig. 3. Two high-resolution encoders measure the azimuth (θ) and38

elevation (ϕ) angles, whereas the radial coordinate (r) relative to the center of the target is measured39

by means of optical interference [3]. Several types of target can be mounted, but the most widely used40

is the spherically mounted retroreflector (SMR). Differently from laser tracker, laser radar does not41

require a retroreflector. As a matter of fact, it is capable of measuring the surface of the object with just42

1% of the reflected signal [4].43

Each of these measurement systems, however, has advantages and disadvantages, which need44

to be assessed on the basis of various factors. Van Gestel et al. [4] identify the influencing factors to45

be taken into account before making the measurement, i.e.: task requirements, part restrictions and46
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Figure 3. Laser tracker

environmental restrictions. Regarding task requirements, the main element to be considered when47

measuring the position of nodes is the accuracy, since the permissible RMS error on the reflecting48

surface is less than 1 (mm). Whilst the laser tracker has errors on the order of 1 µm, it is too costly due to49

the high price of each SMR and given the number of nodes (at least a hundred). The photogrammetry50

turns out to be the best choice [5,6], considering the affordable cost and accuracy of the measure.51

Furthermore, the possibility of obtaining multiple images from different angles makes it possible to52

overcome the lower accuracy of the angular encoders of laser trackers.53

The acquisition of node coordinates is essential for the next calibration step in order to meet the54

RMS design requirements of the reflecting surface. Generally, the main strategies followed by LDR55

developers and designers is to use the tie system, connecting front and rear nets, to locally move56

single nodes. This operation is long and delicate but allows to adjust different error sources such as57

manufacturing errors [7–9], material definition errors, clearance [10,11], friction [12,13], hysteresis [14],58

mechanical vibrations [15,16], not perfect behaviour of elastic properties of components. This paper59

describes a method for the tie system calibration of LDRs with rigid or flexible ring truss. To our60

knowledge this topic has not been deeply investigated in the literature and the adjustment phase is61

entrusted with proprietary solutions of LDR companies. The outline of this paper is as follows. In62

Section 2 the problem of correcting the parameters to satisfy the static equilibrium in the deployed63

configuration is first addressed. Then, the method to find the necessary corrections to the tie-system64

is discussed for the two cases of LDR with rigid and flexible ring truss. In Section 3 the method65

is applied to a LDR with asymmetric ring truss developed by Thales Alenia Space. A simulated66

error distribution is superimposed to the design configuration to represent a real experimental test.67

Tie-system corrections, expressed in terms of length elongation or shortening, necessary to meet RMS68

design requirement are obtained for both rigid and flexible ring truss cases. Finally, conclusions close69

the paper.70

2. Experimental setting for calibration71

Once the antenna has been manufactured, it is necessary to carry out some experimental tests72

in order to check for the RMS of the reflector in the deployed configuration. To do this, the first73

operation consists of measuring the position of all nodes of the nets with respect to a reference system74

through one of the methods described in the Introduction. Due to different sources of errors such as75

manufacturing errors, assembly errors, the deployed configuration will be different from the design76

configuration and the RMS will be usually greater than the design requirement. Even the measurement77
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operation of the nodes coordinates will be affected by errors. Laser trackers and photogrammetry have78

errors on the order of 1 µm; while laser radar reaches 0.1 µm. Anyway, errors related to measurement79

systems maintain significantly below the proceeding mechanical errors. In the following, two methods80

for the experimental setting of the rigid and flexible ring truss support are described.81

Several experimental methodologies [17–20] based on multibody approach have been developed82

[21–29]. Recently, methods based on the Fuzzy logic [30–34], neural networks [35] and genetic83

algorithm have been applied for the tensioning of space trusses [36,37]. The proposed methods84

act on the tensioning system of the ties to fix the errors coming from the construction of the antenna.85

2.1. Rigid ring truss support: construction length determination86

Tie cables regulation is usually independent from the actuators used for the LDA deployment
[38–40] and from the control system [41–44]. Here, the method to regulate tie cables tension of an
antenna with rigid ring truss support is first described. Once the deployment has been carried out
and all node coordinates of the net have been measured the reflective surface deviated from the
design configuration due to mechanical errors. As a consequence of this deviation, the system of
equilibrium equation is not satisfied for the current configuration. Then, denoting with Eij, Aij, Lij, L0

ij
the Young modulus, the cross-section area, the measured length, the construction length of cable/tie ij,
respectively and with kij the spring constant of tie ij, the system of nonlinear equations for each free
node i, with j adjacent nodes, is not satisfied:

∑
j
[Eij Aij

Lij−L0
ij

L0
ij

+ kij(Lij − L0
ij)]

xi−xj
Lij

6= 0

∑
j
[Eij Aij

Lij−L0
ij

L0
ij

+ kij(Lij − L0
ij)]

yi−yj
Lij

6= 0

∑
j
[Eij Aij

Lij−L0
ij

L0
ij

+ kij(Lij − L0
ij)]

zi−zj
Lij

6= 0

(1)

where xl , yl and zl are the measured Cartesian coordinates of the l-th node. It is noteworthy to remark87

that the only measured parameters are the node coordinates; while the measured length is derived88

using the Euclidian norm. The remaining parameters of the previous system are design parameters89

instead, each affected by different types of error. Here, we choose to gather all these errors inside the90

construction length L0
ij defined as the distance between the centers of the eyelets i and j belonging to91

the same cable, as shown in Fig. 4. This choice is motivated by the fact that the construction length of92

the cables is affected by two main sources of errors such as the manufacturing errors, generated during93

the cutting operation of CNC machines [45], and the assembly errors, coming from a bad placement of94

the eyelets necessary to connect two or more cables. In order to restore the equilibrium condition in95

system (1) only the design parameters can be adjusted while the measured parameters describe the96

real configuration of equilibrium: the measured configuration is already of equilibrium, thus system97

(1) is to be satisfied in this configuration without changing node coordinates.98

L

Figure 4. Layout of a cable: the construction length L0 is affected by manufacturing errors, generated
during the cutting operation and assembly errors coming from a bad placement of the eyelets necessary
to connect two or more cables

Then, as each cable works in traction force only, the constraint Lij ≥ L0
ij must be imposed. To

solve the system of nonlinear equation, Matlab c© provides the command fsolve, but it does not allow
to include any constraint. To overcome this problem it can be used the nonlinear programming solver
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fmincon by giving a constant objective function and setting the eq.(1) as the nonlinear equality
constraint, in addition to the linear inequality constraint Lij ≥ L0

ij. The resulting constrained
optimization problem is described below:

find L0
ij, ∀cables and ties

min constant objective function
s.t. Lij ≥ L0

ij

(2)

Hence, a first check is required. Because the springs used in tension ties require a prestress value, here
denoted with F0, representing the minimum value necessary for their activation, the condition Fij ≥ F0

ij
for each tension tie cable must be verified, where

Fij = kij(Lij − L0
ij) (3)

is the spring force of tie ij. If the condition is satisfied the next step can be conducted, otherwise the99

spring belonging to the tie which has failed the test must be replaced and the algorithm starts again100

calculating the array L0 of all construction lengths.101

2.2. Rear nodes determination102

In the event that only the coordinates of the nodes of the front net are known by measurement,103

before implementing the algorithm described above, the rear nodes coordinates have to be estimated.104

Their coordinates are initialized with the design data and the system (1) for each free node of the front105

and rear net is implemented. It can be noted the dualism between the two methods: in the former, the106

unknowns are the construction lengths, in the latter the rear node coordinates. Then, the construction107

lengths are obtained as a consequence using the Euclidian norm. We checked that both methods lead108

to the same results, unless negligible errors, if the experimental configuration is not too distant from109

the design one.110

2.3. Rigid ring truss support: tie calibration111

Once the configuration satisfying the static equilibrium has been found, the algorithm continues112

with the estimation of the values of stretching or shortening for each tension tie cable that ensure that113

the surface accuracy of the reflector can be met. The Figure 5 shows the screw adjustment system of a114

tie. One fixed part is connected to a node of the front net while one mobile part, adjustable through a115

screw, is connected to a node of the rear net. Now, the system of nonlinear equation of each free node i116

can be written as follows:117 

∑
j
[Eij Aij

Lij−L0
ij

L0
ij

+ kij(Lij − L0
ij + δLij)]

xi−xj
Lij

= 0

∑
j
[Eij Aij

Lij−L0
ij

L0
ij

+ kij(Lij − L0
ij + δLij)]

yi−yj
Lij

= 0

∑
j
[Eij Aij

Lij−L0
ij

L0
ij

+ kij(Lij − L0
ij + δLij)]

zi−zj
Lij

= 0

(4)

This system is similar to (1), used to determine the vector L0, with the difference that, this time,
the variables to be found are the stretching/shortening values δLij and the coordinates of the free
nodes of the front and rear net. The values δLij can be positive or negative: here we assume positive
values for tie shortening and negative for tie stretching. Also this system is subject to some constraints.
One condition for all net cables is that L ≥ L0. For the tension tie cables, for which the values δLij are
to be considered, the constraint condition is that the final force Fij must be of traction:

Fij = kij(Lij − L0
ij) + kijδLij ≥ 0⇒ Lij + δLij ≥ L0

ij (5)
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Figure 5. Screw adjustment tie system: (left) tie system before the adjustment; (right) tie system after
the screw regulation.

Finally, the third constraint is related to the surface accuracy since the RMS error must be lower than118

the desired design value RMStarget. This is a typical constrained optimization problem largely used in119

design optimization of complex systems [46–49] and mechanisms [50–52]. The optimization problem120

can be summarised as follows:121 

find x1, y1, z1 and δL
min constant objective function
s.t. Lij ≥ L0

ij net cables

Lij + δLij ≥ L0
ij tension tie cables

RMS ≤ RMStarget reflecting surface requirement

(6)

where x1, y1 and z1 are the free node coordinates and δL is the array containing all corrections δLij.122

The RMS is calculated by measuring the minimum distance of the free nodes of the front net compared123

to the ideal surface of the paraboloid (citazione primo articolo). The initial condition for the free nodes124

is represented by their experimental measurement, while the guess value for δL is set equal to zero.125

2.4. Flexible ring truss support126

The truss support is generally manufactured in carbon fiber and is therefore reasonable to consider127

the truss deformation under the effect of the tension of the cable net.128

The elastodynamic model of the flexible ring truss support can be found using analytic techniques129

combined with the Matrix Structural Analysis, [53–56], elliptic integrals [57,58], FEM models [59–61],130

and flexible multibody formulations [62].131
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This implies the displacement of the nodes connected to the truss support, also called vertices,132

when the net system is tensioned. By considering the stiffness of the structure, the nonlinear system (4)133

described in the previous section becomes as follows:134 

[
c−r

∑
j=1

Eij Aij
Lij − L0

ij

L0
ij

+
r

∑
j=1

(Eij Aij
Lij − L0

ij

L0
ij
− kxxij(xvj − x0

vj
))

+ kij(Lij − L0
ij + δLij)]

xi − xj

Lij
= 0

[
c−r

∑
j=1

Eij Aij
Lij − L0

ij

L0
ij

+
r

∑
j=1

(Eij Aij
Lij − L0

ij

L0
ij
− kyyij(yvj − y0

vj
))

+ kij(Lij − L0
ij + δLij)]

yi − yj

Lij
= 0

[
c−r

∑
j=1

Eij Aij
Lij − L0

ij

L0
ij

+
r

∑
j=1

(Eij Aij
Lij − L0

ij

L0
ij
− kzzij(zvj − z0

vj
))

+ kij(Lij − L0
ij + δLij)]

zi − zj

Lij
= 0

(7)

Start

- Measure all node coordinates;
- Measure construction lengths of all
cables

Compute construction lengths L0
ij to

satisfy the equilibrium of the net by
eq.(1)

Compute F0
ij for all ties by eq.(3)

Fij ≥ F0
ij for all ties?

Compute the tie correction values
δLij, the position of verices xv, yv
and zv and the RMS by using eq.(7)

Is the desired RMS reached?

No feasible
solutions with this
configuration of the
net

End End

no

yes

no

yes

Figure 6. Algorithm of the method
135

where c is the total number of cables connected to the i-th node; r is the number of rods, xv, yv136

and zv are the unknown coordinates of the j-th vertex and x0
v, y0

v and z0
v the initial coordinates of the137
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vertex itself. The stiffness of the truss support can be represented as a three-dimensional bushing, with138

stiffnesses kxxij , kyyij and kzzij , connecting the rods to the vertex, as shown in Fig. 7. The constrained139

optimization (6) still applies to this flexible ring truss case and the overall algorithm is summarised in140

the flowchart of Fig. 6.141

3. Results142

In order to verify the validity of the proposed method, the case study of an asymmetric large143

deployable reflector, designed by Thales Alenia Space [63], is described. Relevant parameters and144

geometrical data are listed as follows:145

• Focal length: 6 (m)146

• Number of free nodes: 296147

• Number of vertices: 14148

• Number of total cables: 1044149

• Cable section: 4 (mm)2
150

• Young modulus of cables: 8.3× 1010 (N/m)2
151

• Initial RMS error: 0.5872 (mm)152

• Design value of the RMS faceting error: 0.21 (mm)153

The value of spring constant in tie cables ranges from 2× 103 N/m to 68× 103 N/m with radial154

step of 11× 103 N/m starting from the centre (central node) to the outer ring cables. The initial RMS155

error on the front net was simulated by introducing an additional value to each node proportionally to156

k

a b

ring truss support

rods

vertex

Figure 7. Displacement of the vertex due to the deformation of the flexible ring truss support

3
4

6

24

62

1

02

04

06

08

m1

m2

Figure 8. Pie chart of the error (absolute value), grouped by measuring ranges (mm), between the
measured construction lengths and those obtained by solving equilibrium in system (1).
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the length of the tie connected to it. By imposing the equilibrium in the system (1) we can determine the157

construction lengths described in Section 2. Nevertheless, from Fig. 8 it can be noted that the maximum158

error eL0 obtained is about 1 (mm), representing only 1% of total cables; the largest percentage (86%)159

showing an error between 0.6 (mm) and 1 (mm).
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Figure 9. Faceted RMS (mm) of the front tension truss in the initial configuration.
160

In Fig. 9 the local faceting error for the chosen initial configuration is shown. The local faceting161

error is calculated considering the centroid of the triangular facets in which the surface can be162

decomposed [64–67]. As it can be observed, the faceting error follows the shape of the asymmetric163

reflector because the chosen error is proportional to the tie lengths. As a matter of fact, the central zone164

is the one with the shortest cables and therefore with the lowest faceting error. On the contrary, the tie165

lengths, and consequently the errors, grow moving from the centre to the outer perimeter of the net.166

The optimization method described in the previous sections is first applied to the rigid ring truss167

support. The Figure 10 shows the error of each free node of the front net with respect to the ideal168

surface coupled with the stretching/shortening value necessary to reach the desired surface accuracy.169

The reason why correction values are all positive is that the initial error is simulated by positioning all170

nodes of the front net above the ideal surface, so there is the need to shorten the tie lengths to satisfy171

the RMS design value. The bars are grouped by spring constant value.172

The corresponding faceting error is shown in Fig. 11. As it can be observed the RMS of the faceting173

error is lowered till the required value of 0.2036 (mm) furnished as specification.174

Then, the same analysis has been performed for the flexible ring truss support. It can be noted that175

in the Fig. 12, the correction values are lower than the corresponding values with rigid truss support:176

this is because the additional tensioning of ties further deforms the shape of the truss support resulting177

in a closure of the support itself [68]. As a result, this causes a slight lowering of the front net thus178

reducing the shortening action of tie lengths. Finally, the Fig. 13 shows the faceting error distribution179

on the front net. Even in this case the final RMS faceting error reached 0.2045 (mm) representing180

the design value of the RMS. Comparing the two Figs. 11 and 13 it can be observed that the faceting181

error distribution is more uniform for the flexible ring truss support. This result can be explained182

considering that the deformation of the truss support relaxes the front and rear tension truss systems183

making the tension distribution more uniform.184

Moreover, other simulations with different initial RMS errors revealed that, with the given design185

data, the maximum initial RMS error which can be fixed is about 1 (mm). Beyond this limit value, a186
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Figure 10. Error and correction values (rigid case)
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Figure 11. Faceting error (mm) distribution on the front tension truss obtained for the rigid ring truss
support

revision of design data is needed. This demonstrates the validity of the method only for small RMS187

errors.188

4. Conclusions189

In this paper a method for the tie-system calibration of Large Deployable Reflectors (LDRs) is190

provided. The LDRs are very sensitive to errors and usually require a careful experimental setup to191

meet the design requirement of surface accuracy. Due to manufacturing errors, clearance, friction, not192

perfect behaviour of materials the real configuration moves away from the design configuration and a193

fine calibration is needed to improve the quality of the reflecting surface expressed in terms of closeness194

to the ideal paraboloidal geometry. The proposed method follows two steps: the determination of the195

parameters satisfying the static equilibrium in the real deployed configuration; the fine calibration196
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Figure 13. Faceting error (mm) distribution on the front tension truss obtained for the flexible ring
truss support

to meet RMS design requirements. For the first step a constrained optimization problem has been197

proposed to find the cable construction lengths once all node coordinates have been measured. The198

second step has been developed acting on the system of screw adjustable ties. A further constrained199

optimization problem has been formulated to find the length corrections of each tie. Using the same200

approach the cases of LDR with rigid and flexible tension truss have been studied. Finally, the method201

has been applied to a LDR with asymmetrical ring truss designed by Thales Alenia Space. Considering202

an initial RMS of 0.58 (mm) the results, not yet validated by experimental test, seemed comforting in203

reaching the design RMS. The method convergency depends on the starting and desired RMS. Here,204

the convergency has been insured up to the reasonable high initial RMS value of 1 (mm): beyond this205

value the tie system is not able to reach the equilibrium and satisfy the constraints and a different206

solution should be adopted.207
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