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Comparative analysis of Land cover classification using ML and SVM 

Classifier for LISS-iv data  

Abstract: This paper focuses on the crucial role that remote sensing plays in 

divining land features. Data that is collected distantly provides information in 

spectral, spatial, temporal and radiometric domains, with each domain having 

specific resolution to information collected. Diverse sectors such as hydrology, 

geology, agriculture, land cover mapping, forestry, urban development and 

planning, oceanography and others are known to use and rely on information that 

is gathered remotely from different sensors. In the present study, IRS LISS IV 

Multi-spectral data is used for land cover mapping. It is known, however, that the 

task of classifying high-resolution imagery of land cover through manual digitizing 

consumes time and is way too costly. Therefore, this paper proposes accomplishing 

classifications by way of enforcing algorithms in computers. These classifications 

fall in three classes: supervised, unsupervised, and object-based classification. In 

the case of supervised classification, two approaches are relied upon for land cover 

classification of high resolution LISS-IV multispectral image. These approaches 

are: Maximum Likelihood and Support Vector Machine (SVM). Finally, the paper 

proposes a step-by-step procedure for optical image classification methodology. 

This paper concludes that in optical data classification, SVM classification gives a 

better result than ML classification technique.   

Keywords: Classification, SVM Classifier, ML Classifier, Supervised and 

Unsupervised Classification, Object-based Classification, Multispectral Data. 

1. Introduction 

Remote sensing has revolutionized the way we gather information. This is because with remote 

sensing you can garner data or information pertaining to any object from calculations executed at 

a point away from the object and without the sensor actually coming in contact with it. The earth 

gives out electromagnetic energy, either self-emitted or reflected/scattered in different bands of 

wavelengths and the calculation is based on the observation of it.  The reflectance/emittance 

pattern under different spectral/temporal/polarization conditions provides indications or 

signatures specific to a land feature, which forms the basis for data interpretation (Neware 

and Khan 2018; Lisani et al. 2016; Schowengerdt 2007). Remotely sensed data provides 

information in spectral; spatial; temporal; and radiometric domains. Each domain has resolution 

relevant to the information gathered. Different sensors have various resolutions in these domains 

(Ran et al. 2017; Cheng et al. 2015; Liu & Mason 2009; Schott 2007). The finer the 

resolution, the lesser is the total ground area observed. 

This becomes very useful in cartography. In the creation of maps, high-resolution data 

that is generated by satellite having resolution of 5 to 10m in the panchromatic mode is useful, 

while in the multi-spectral mode 10 to 30m is employed to create maps within the scale of  1: 

25,000 and 1: 50,000 (Ajai 2002). Depending on the resolution, the following categories emerge 

for optical satellite images: Low Resolution, Medium Resolution, High Resolution and Very 

High-Resolution Satellite Data (Jacobsen 2002). Different types of sensors generate different 

kinds of data. For instance, multi-spectral sensors like GEOS, Meteosat, NOAA, OCM and 

MODIS give low resolution optical satellite data with 250m - some kms. spatial resolution. And 
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multi-spectral sensors like LANDSAT MSS, RESURS-01 (MSU-SK), IRS LISS-I and IRS-1C 

Wide image Field Sensor (WiFS) generate medium resolution optical satellite data within the 

range of 50m - 250m spatial resolution.  Panchromatic or multi-spectral sensors or analogue 

camera systems such as LANDSAT TM, SPOT PAN & MS, IRS-1C/1D,  Resourcesat 1, 2 & 2A 

(PAN, LISS III and LISS IV), KFA 1000, MK4, etc. produce high resolution optical satellite data 

within the scale of 5m - 50m spatial resolution.  

In the present study, IRS LISS IV Multi-spectral data is used, and the details of the sensor 

are provided in Table 1. (Rsorcesat 2). 

 

Table 1: Specifications of IRS LISS IV sensor 

Sensor LISS IV 

Resolution 5.8 m (visible and near IR region) 

Swath 70 / 23 km 

Repetitivity 5 days 

Spectral 

Bands 

0.52 - 0.59 microns (B2) 

0.62 - 0.68 microns (B3) 

0.77 - 0.86 microns (B4) 

Radiometry 10-bit 

 

Preceding researchers have established that that using different classifiers may lead to 

different outcomes of classification. Consequently, to confirm the efficacy of different classifiers 

a plethora of research has been done. (Thilagavati 2015; Zewdie 2015; Sexton 2013; Cheng et al. 

2013; Longbotham et al. 2012; Yi & Newsam 2011; Prakasam 2010; Yang & Newsam 2010; Xin, 

Liangpei  & Le 2009). 

However, these studies had been mainly carried out using pixel-based approaches. There are some 

basic principles for the selection of training samples for pixel-based classification (Van Niel et 

al. 2005; Foody et al. 2006).  

Based on the information required in land cover classification, six classes were identified: 

agriculture land, water body, settlement and scrub areas in forest land entwined with agricultural 

land. In this, the sample collection is the most time-consuming and a critical process in land cover 

classification efforts. This research study randomly chose samples from recognized regions 

through the use of ENVI version 5.0 software and its ‘region of interest’ (RoI) tools, together with 

the help of image characteristics and ground know-how. Those homogeneous sample areas had 

been easily visually recognized on the LISS-IV image and Bhuvan imagery. It was found that the 

sample pixels are distributed evenly and uniformly, thus effectively representing the whole study 

area. In their study (Jia et al. 2014), they randomly chose, as training samples, 50% of the sample 

pixels, and used the rest to gauge the accuracy of classification.  

 

2. Classification Techniques of Land Use 

It is worth noting that different sensors using various platforms and giving a wide range of 

spectral, spatiotemporal and radiometric resolutions have served to make available data that is 

remotely sensed. Consequently, numerous sectors including geology, land cover mapping, 

oceanography,  hydrology,  urban development and planning,  forestry and agriculture have made 

extensive use of this technology  (Melesse et al. 2007; Acharya et al. 2016).  

Land cover information that can be gleaned from satellite images are the spectral and 

spatial attributes of individual cover types. There are some differences between coarse and fine 
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resolution data, mainly in relative importance of these two kinds of attributes. Because of the 

reduced resolution, the spectral dimension is the most important source of cover type information 

in coarse resolution images. For fine resolution data, the relative importance of spatial dimension 

is higher, although the spectral content still dominates in most cases (RSA Document). 

Land cover  classification of  high-resolution imagery can be performed via  manual 

digitizing on a computer display screen. As manual digitizing takes a lot of time and is costly, the 

classification is generally accomplished by way of enforcing algorithms in computers. Various 

classification techniques that have been advanced in latest decades can be classified into three 

huge classes: supervised, unsupervised, and object-based classification. 

2.1. Supervised Classification  

Supervised classification is the type of machine learning in which training input is given, and then 

according to training inputs classification is applied. Supervised classification is the most used 

classification algorithm in remote sensing. After applying this technique, output is classified 

image according to each class called training. In supervised classification the user has to select 

region of interest which acts as classifier, and pixels of whole image are classified according to 

region of interest. In remote sensing, while performing supervised classification, maximum 

likelihood and Spectral mapping classification algorithms are mostly used. (Dingwen et al. 2015; 

Munoz-Mari & Camps-Valls 2012; Atkinson & Lewis 2000). 

 
Figure 1. Supervised Classification Technique  

2.2. Unsupervised Classification  

Unsupervised classification denotes that the analyst, during the classifying stage, has no advanced 

knowledge. It is normally carried out purely based on the naturally occurring spectrum 

distribution of features of ground objects in the images that are sensed remotely. Unsupervised 

classification chiefly relies on cluster analysis. Clustering is defined as segmenting pixels into 

numerous classes with the aim of grouping pixels having similar characteristics. The aim to make 

sure that between pixels in the same class the distance is as little as possible, and between pixels 

of different classes, the distance is as large as possible. Unsupervised classification centres around 

the choice of the initial class parameters and adjustments in its iteration. The task of giving land 

cover labels to individual spectral clusters is accomplished later, on the basis of ground data culled 

from the areas indicated by the resulting clusters (Yuan, Wan & Wang 2016; Cheriyadat 2014).  
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Figure 2. Unsupervised Classification Technique  

2.3. Object-Based Classification  

Object-oriented classification is the alternative for pixel-based classification. Object-oriented 

classification is specially used for high resolution imagery. In object-oriented classification a 

satellite image is mainly segmented into objects. Hence, it is called object-oriented classification. 

In object-oriented classification a knowledge base is created for the segmented object like, 

agency, length, shape and size etc. The object-oriented classification gives very accurate 

classified results of high-resolution satellite images (Blaschke 2010; Li, Gu, Han, & Yang 2010).  

 
Figure 3. Object-Based Classification Technique  

3. Classification Techniques Used 

This paper presents the use of two classification algorithms: Maximum likelihood and 

Support Vector Machine algorithm, which are as follows:  

3.1. Maximum Likelihood Classifier  

The most widely used classification in remote sensing is the maximum likelihood classifier. This 

is because it uses a simple premise, conjecturing on the probability or chance of a pixel fitting 

into a specific category or class.  And its fundamental equation presumes that for all the categories 

or classes these probabilities are same, and the bands that are put in are normally distributed.  

However, the probabilities are not equal for all classes. For instance, one can specify weight factor 

for a particular class. This variation of the maximum likelihood decision rule is known as the 

Bayesian decision rule (Sisodia, Tiwari & Kumar 2014; Hester et al. 2008; Bruzzone & Prieto 

2001; Paola & Schowengerdt 1995; Hord 1982). 

The equation for the maximum likelihood/ Bayesian classifiers is as fallows. 
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𝑋
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⁄  

 

WhereP(k): prior probability of class k 

P(X/k): conditional probability to observe X from class k, or probability density function 

Usually P(k) are assumed to be equal to each other and  ∑ P( i)∗P (
X

i
)     is also common to all 

classes. Therefore Lk depends on P(X/k) or the probability density function. 

3.2. Support Vector Machine Classifier  

Support Vector Machine (SVM), essentially, is an algorithm of supervised machine 

learning. Although this algorithm can be employed for classification as well as for challenges of 

regression, it is primarily used to solve issues of classification. Support vector machines (SVMs, 

also support vector networks) (Cortes & Vapnik 1995) double up as supervised learning entities 

with linked algorithms of learning, which interpret data that is utilized for classification and for 

analyzing regression. When presented with a bunch of training examples, the algorithm marks 

each example placing it either one or the other of twin categories. Thus an SVM training algorithm 

constructs a facsimile .which allocates new examples to one or the other category, thus creating 

a classifier that is non-probabilistic binary linear.  

As a classification approach SVM is extracted from the theory of statistical learning. 

What it does is to sunder the classes with a decision surface that widens the boundaries between 

the classes. Here the surface is frequently billed as the optimal hyperplane, and points of data that 

are nearest to the hyperplane are billed as support vectors which, in turn, are the crucial aspects 

of the training set. Particularly, from data that is noisy and complex, excellent classification 

outcomes are given by SVM.   

Interestingly, by utilizing non-linear kernels SVM can be adapted to create a non-linear 

classifier. Also, because SVM is essentially a pure binary classifier, it can double up as a multi-

class classifier by stringing together many binary SVM classifiers, basically producing, for each 

separate pair of classes, a binary classifier. For multi-class classification, SVM employs a strategy 

to classify pairs. The output of SVM classification translates into the decision parameters or 

values of each pixel for each class which, in turn, are utilized to gauge the probability. And when 

each probability falls in the margin of 0 to 1, these probability values are deemed as “true” 

probability and the total of these values for each pixel amounts to 1. By choosing the highest 

probability classification is accomplished. (Tuia et. al 2014; Moustakidis et al. 2012). 

4. Methodology 

In this study, first of all, the area pertaining to the study area was geo-referenced to address 

geometric distortions with the help Ground Control Points (GCPs). Using information gathered 

from field visit and knowledge of experts, from the high resolution image samples for training 

and validation were secured. Figure 4 shows the entire process this study adopted. The step-by-

step procedure of the optical image classification methodology is as follows:  

Step 1: Obtain the LISS-IV optical image of the study area. 

Step 2: Perform rectification on the obtained LISS-IV image of the study area (Roy 2010; 

Ju 2012). 

Step 3: Apply the supervised classification of various algorithms on the rectified image 

of LISS-IV image. 
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Step 4: Obtain the classified image as output and graphical representation of each band.  

The broad methodology followed for the supervised classification is depicted in Figure 4. To 

compare the outcomes of correctness, on the original dataset ML and SVM, two of the most 

widely employed classifiers, were applied.  

 
 

Figure 4. Methodology for the classification LISS-IV images. 

4.1. Working of Maximum Likelihood  

The maximum likelihood technique has been used to classify high resolution LISS IV imagery. 

The ground truth data collected during field data collection phase has been incorporated into the 

classification system by drawing Region of Interest (ROI) polygons in ENVI software. The 

satellite image overlaid with corresponding ROIs is presented in Figure 5. The standard deviation 

and mean values of the classes are presented in Figure 6. 
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Figure 5. LISS IV imagery with ROIs depicting different land cover classes 

 

 

Figure 6. Standard deviation and mean values of selected classes 

 

The accuracy assessment is carried out with the help of confusion matrix and kappa accuracies 

and is presented in Tables 2 and 3 respectively. 

 

 

Table 2. Confusion Matrix for the Maximum likelihood classification 

Classification of 

LISS-IV Image 

ML Classifier 

Land cover classes 1 2 3 4 5 6 

Water body 90 3 0 0 0 7 

Settlements 0 66 24 10 0 0 

Agriculture 8 2 61 10 9 10 

Open forest 0 4 10 80 0 6 

Dense forest 0 15 5 0 80 0 

Barren land 2 10 0 0 11 77 

 

 

Table 3. Overall accuracy and kappa coefficient for the ML Classified output 

Standard deviation of all Classes Mean values of all Classes 
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LISS-IV Image Overall Accuracy Kappa Coefficient 

MLC 75.7% 0.70 % 

 

 
Figure 7. Output of ML Classification 

4.2. Working of SVM Classifier 

The SVM technique has been used to classify high resolution LISS IV imagery. The ground truth 

data collected during field data collection phase has been incorporated into the classification 

system by drawing Region of Interest (ROI) polygons in ENVI software. In fact, the same ground 

truth data that was used for MXL classified has also been used in SVM classification. The satellite 

image overlaid with corresponding RoIs is presented in figure 8. The standard deviation and mean 

values of the classes are presented in figure 6. 

The accuracy assessment is carried out with the help of confusion matrix and kappa 

accuracies and is presented in tables 4 and 5 respectively. 

 

Table 4. Confusion Matrix for the SVM classification 

Classification of 

LISS-IV Image 

SVM 

Land cover classes 1 2 3 4 5 6 

Water body 95 4 0 0 1 0 

Settlements 0 52 25 5 8 10 

Agriculture 5 12 65 10 1 7 

Open forest 0 8 4 85 2 1 

Dense forest 0 10 0 0 88 2 

Barren land 0 14 6 0 0 80 
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Table 5. Overall accuracy and kappa coefficient for the SVM Classified output 

LISS-IV Image Overall Accuracy Kappa Coefficient 

SVM 77.5% 0.75 % 

 

 
Figure 8. Output of SVM Classification 

Result and Conclusion 

 In optical data classification, too, ML and SVM classification techniques were used. A 

comparative analysis of MXL and SVM classification reveals that SVM classification gives a 

better result than MXL with an overall accuracy of 77.5% and kappa coefficient of 0.75, whereas 

with MXL it is 75.7% and 0.70 respectively. SVM shows better results for all classes except for 

settlement in which MXL shows better results. 

 

Table 6. Comparative Analysis of Different land cover classification results 

Classification of 

LISS-IV Image 
SVM ML 

Land cover classes 1 2 3 4 5 6 1 2 3 4 5 6 

Water body 95 4 0 0 1 0 90 3 0 0 0 7 

Settlements 0 52 25 5 8 10 0 66 24 10 0 0 

Agriculture 5 12 65 10 1 7 8 2 61 10 9 10 

Open forest 0 8 4 85 2 1 0 4 10 80 0 6 

Dense forest 0 10 0 0 88 2 0 15 5 0 80 0 

Barren land 0 14 6 0 0 80 2 10 0 0 11 77 

  

Table 7. Comparison of overall accuracy and kappa coefficient  
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LISS-IV Image Overall Accuracy Kappa Coefficient 

SVM 77.5% 0.75 

MLH 75.7% 0.70 
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