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Comparative analysis of Land cover classification using ML and SVM
Classifier for LISS-iv data

Abstract: This paper focuses on the crucial role that remote sensing plays in
divining land features. Data that is collected distantly provides information in
spectral, spatial, temporal and radiometric domains, with each domain having
specific resolution to information collected. Diverse sectors such as hydrology,
geology, agriculture, land cover mapping, forestry, urban development and
planning, oceanography and others are known to use and rely on information that
is gathered remotely from different sensors. In the present study, IRS LISS IV
Multi-spectral data is used for land cover mapping. It is known, however, that the
task of classifying high-resolution imagery of land cover through manual digitizing
consumes time and is way too costly. Therefore, this paper proposes accomplishing
classifications by way of enforcing algorithms in computers. These classifications
fall in three classes: supervised, unsupervised, and object-based classification. In
the case of supervised classification, two approaches are relied upon for land cover
classification of high resolution LISS-1V multispectral image. These approaches
are: Maximum Likelihood and Support Vector Machine (SVM). Finally, the paper
proposes a step-by-step procedure for optical image classification methodology.
This paper concludes that in optical data classification, SVM classification gives a
better result than ML classification technique.

Keywords: Classification, SVM Classifier, ML Classifier, Supervised and
Unsupervised Classification, Object-based Classification, Multispectral Data.

1. Introduction

Remote sensing has revolutionized the way we gather information. This is because with remote
sensing you can garner data or information pertaining to any object from calculations executed at
a point away from the object and without the sensor actually coming in contact with it. The earth
gives out electromagnetic energy, either self-emitted or reflected/scattered in different bands of
wavelengths and the calculation is based on the observation of it. The reflectance/emittance
pattern under different spectral/temporal/polarization conditions provides indications or
signatures specific to a land feature, which forms the basis for data interpretation (Neware
and Khan 2018; Lisani et al. 2016; Schowengerdt 2007). Remotely sensed data provides
information in spectral; spatial; temporal; and radiometric domains. Each domain has resolution
relevant to the information gathered. Different sensors have various resolutions in these domains
(Ran et al. 2017; Cheng et al. 2015; Liu & Mason 2009; Schott 2007). The finer the
resolution, the lesser is the total ground area observed.

This becomes very useful in cartography. In the creation of maps, high-resolution data
that is generated by satellite having resolution of 5 to 10m in the panchromatic mode is useful,
while in the multi-spectral mode 10 to 30m is employed to create maps within the scale of 1:
25,000 and 1: 50,000 (Ajai 2002). Depending on the resolution, the following categories emerge
for optical satellite images: Low Resolution, Medium Resolution, High Resolution and Very
High-Resolution Satellite Data (Jacobsen 2002). Different types of sensors generate different
kinds of data. For instance, multi-spectral sensors like GEOS, Meteosat, NOAA, OCM and
MODIS give low resolution optical satellite data with 250m - some kms. spatial resolution. And
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multi-spectral sensors like LANDSAT MSS, RESURS-01 (MSU-SK), IRS LISS-1 and IRS-1C
Wide image Field Sensor (WiFS) generate medium resolution optical satellite data within the
range of 50m - 250m spatial resolution. Panchromatic or multi-spectral sensors or analogue
camera systems such as LANDSAT TM, SPOT PAN & MS, IRS-1C/1D, Resourcesat 1, 2 & 2A
(PAN, LISS Il and LISS V), KFA 1000, MK4, etc. produce high resolution optical satellite data
within the scale of 5m - 50m spatial resolution.

In the present study, IRS LISS 1V Multi-spectral data is used, and the details of the sensor
are provided in Table 1. (Rsorcesat 2).

Table 1: Specifications of IRS LISS IV sensor

Sensor LISS IV
Resolution 5.8 m (visible and near IR region)
Swath 70/ 23 km
Repetitivity 5 days
Spectral 0.52 - 0.59 microns (B2)
Bands 0.62 - 0.68 microns (B3)
0.77 - 0.86 microns (B4)
Radiometry 10-bit

Preceding researchers have established that that using different classifiers may lead to
different outcomes of classification. Consequently, to confirm the efficacy of different classifiers
a plethora of research has been done. (Thilagavati 2015; Zewdie 2015; Sexton 2013; Cheng et al.
2013; Longbotham et al. 2012; Yi & Newsam 2011; Prakasam 2010; Yang & Newsam 2010; Xin,
Liangpei & Le 2009).

However, these studies had been mainly carried out using pixel-based approaches. There are some
basic principles for the selection of training samples for pixel-based classification (Van Niel et
al. 2005; Foody et al. 2006).

Based on the information required in land cover classification, six classes were identified:
agriculture land, water body, settlement and scrub areas in forest land entwined with agricultural
land. In this, the sample collection is the most time-consuming and a critical process in land cover
classification efforts. This research study randomly chose samples from recognized regions
through the use of ENVI version 5.0 software and its ‘region of interest’ (Rol) tools, together with
the help of image characteristics and ground know-how. Those homogeneous sample areas had
been easily visually recognized on the LISS-1V image and Bhuvan imagery. It was found that the
sample pixels are distributed evenly and uniformly, thus effectively representing the whole study
area. In their study (Jia et al. 2014), they randomly chose, as training samples, 50% of the sample
pixels, and used the rest to gauge the accuracy of classification.

2. Classification Techniques of Land Use
It is worth noting that different sensors using various platforms and giving a wide range of
spectral, spatiotemporal and radiometric resolutions have served to make available data that is
remotely sensed. Consequently, numerous sectors including geology, land cover mapping,
oceanography, hydrology, urban development and planning, forestry and agriculture have made
extensive use of this technology (Melesse et al. 2007; Acharya et al. 2016).

Land cover information that can be gleaned from satellite images are the spectral and
spatial attributes of individual cover types. There are some differences between coarse and fine
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resolution data, mainly in relative importance of these two kinds of attributes. Because of the
reduced resolution, the spectral dimension is the most important source of cover type information
in coarse resolution images. For fine resolution data, the relative importance of spatial dimension
is higher, although the spectral content still dominates in most cases (RSA Document).

Land cover classification of high-resolution imagery can be performed via manual
digitizing on a computer display screen. As manual digitizing takes a lot of time and is costly, the
classification is generally accomplished by way of enforcing algorithms in computers. Various
classification techniques that have been advanced in latest decades can be classified into three
huge classes: supervised, unsupervised, and object-based classification.

2.1. Supervised Classification

Supervised classification is the type of machine learning in which training input is given, and then
according to training inputs classification is applied. Supervised classification is the most used
classification algorithm in remote sensing. After applying this technique, output is classified
image according to each class called training. In supervised classification the user has to select
region of interest which acts as classifier, and pixels of whole image are classified according to
region of interest. In remote sensing, while performing supervised classification, maximum
likelihood and Spectral mapping classification algorithms are mostly used. (Dingwen et al. 2015;
Munoz-Mari & Camps-Valls 2012; Atkinson & Lewis 2000).
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Figure 1. Supervised Classification Technique

2.2. Unsupervised Classification

Unsupervised classification denotes that the analyst, during the classifying stage, has no advanced
knowledge. It is normally carried out purely based on the naturally occurring spectrum
distribution of features of ground objects in the images that are sensed remotely. Unsupervised
classification chiefly relies on cluster analysis. Clustering is defined as segmenting pixels into
numerous classes with the aim of grouping pixels having similar characteristics. The aim to make
sure that between pixels in the same class the distance is as little as possible, and between pixels
of different classes, the distance is as large as possible. Unsupervised classification centres around
the choice of the initial class parameters and adjustments in its iteration. The task of giving land
cover labels to individual spectral clusters is accomplished later, on the basis of ground data culled
from the areas indicated by the resulting clusters (Yuan, Wan & Wang 2016; Cheriyadat 2014).
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Figure 2. Unsupervised Classification Technique

2.3. Object-Based Classification

Object-oriented classification is the alternative for pixel-based classification. Object-oriented
classification is specially used for high resolution imagery. In object-oriented classification a
satellite image is mainly segmented into objects. Hence, it is called object-oriented classification.
In object-oriented classification a knowledge base is created for the segmented object like,
agency, length, shape and size etc. The object-oriented classification gives very accurate
classified results of high-resolution satellite images (Blaschke 2010; Li, Gu, Han, & Yang 2010).
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Figure 3. Object-Based Classification Technique

3. Classification Techniques Used

This paper presents the use of two classification algorithms: Maximum likelihood and
Support Vector Machine algorithm, which are as follows:

3.1. Maximum Likelihood Classifier

The most widely used classification in remote sensing is the maximum likelihood classifier. This
is because it uses a simple premise, conjecturing on the probability or chance of a pixel fitting
into a specific category or class. And its fundamental equation presumes that for all the categories
or classes these probabilities are same, and the bands that are put in are normally distributed.
However, the probabilities are not equal for all classes. For instance, one can specify weight factor
for a particular class. This variation of the maximum likelihood decision rule is known as the
Bayesian decision rule (Sisodia, Tiwari & Kumar 2014; Hester et al. 2008; Bruzzone & Prieto
2001; Paola & Schowengerdt 1995; Hord 1982).

The equation for the maximum likelihood/ Bayesian classifiers is as fallows.


http://dx.doi.org/10.20944/preprints201903.0122.v1

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 March 2019 d0i:10.20944/preprints201903.0122.v1

L, =P (E) _ P(K)*P(X/k)/Z

X P()*P(X/;)
WhereP(Kk): prior probability of class k
P(X/K): conditional probability to observe X from class k, or probability density function

Usually P(K) are assumed to be equal to each other and ) P(i)*P G) is also common to all

classes. Therefore Ly depends on P(X/K) or the probability density function.

3.2. Support Vector Machine Classifier

Support Vector Machine (SVM), essentially, is an algorithm of supervised machine
learning. Although this algorithm can be employed for classification as well as for challenges of
regression, it is primarily used to solve issues of classification. Support vector machines (SVMs,
also support vector networks) (Cortes & Vapnik 1995) double up as supervised learning entities
with linked algorithms of learning, which interpret data that is utilized for classification and for
analyzing regression. When presented with a bunch of training examples, the algorithm marks
each example placing it either one or the other of twin categories. Thus an SVM training algorithm
constructs a facsimile .which allocates new examples to one or the other category, thus creating
a classifier that is non-probabilistic binary linear.

As a classification approach SVM is extracted from the theory of statistical learning.
What it does is to sunder the classes with a decision surface that widens the boundaries between
the classes. Here the surface is frequently billed as the optimal hyperplane, and points of data that
are nearest to the hyperplane are billed as support vectors which, in turn, are the crucial aspects
of the training set. Particularly, from data that is noisy and complex, excellent classification
outcomes are given by SVM.

Interestingly, by utilizing non-linear kernels SVM can be adapted to create a non-linear
classifier. Also, because SVM is essentially a pure binary classifier, it can double up as a multi-
class classifier by stringing together many binary SVM classifiers, basically producing, for each
separate pair of classes, a binary classifier. For multi-class classification, SVM employs a strategy
to classify pairs. The output of SVM classification translates into the decision parameters or
values of each pixel for each class which, in turn, are utilized to gauge the probability. And when
each probability falls in the margin of 0 to 1, these probability values are deemed as “true”
probability and the total of these values for each pixel amounts to 1. By choosing the highest
probability classification is accomplished. (Tuia et. al 2014; Moustakidis et al. 2012).

4. Methodology

In this study, first of all, the area pertaining to the study area was geo-referenced to address
geometric distortions with the help Ground Control Points (GCPs). Using information gathered
from field visit and knowledge of experts, from the high resolution image samples for training
and validation were secured. Figure 4 shows the entire process this study adopted. The step-by-
step procedure of the optical image classification methodology is as follows:

Step 1: Obtain the LISS-1V optical image of the study area.

Step 2: Perform rectification on the obtained LISS-1V image of the study area (Roy 2010;

Ju 2012).

Step 3: Apply the supervised classification of various algorithms on the rectified image

of LISS-1V image.
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Step 4: Obtain the classified image as output and graphical representation of each band.
The broad methodology followed for the supervised classification is depicted in Figure 4. To
compare the outcomes of correctness, on the original dataset ML and SVM, two of the most
widely employed classifiers, were applied.
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Figure 4. Methodology for the classification LISS-1V images.

4.1. Working of Maximum Likelihood

The maximum likelihood technique has been used to classify high resolution LISS IV imagery.
The ground truth data collected during field data collection phase has been incorporated into the
classification system by drawing Region of Interest (ROI) polygons in ENVI software. The
satellite image overlaid with corresponding ROIs is presented in Figure 5. The standard deviation
and mean values of the classes are presented in Figure 6.
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Figure 5. LISS 1V imagery with ROIs depicting different land cover classes
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Figure 6. Standard deviation and mean values of selected classes

The accuracy assessment is carried out with the help of confusion matrix and kappa accuracies
and is presented in Tables 2 and 3 respectively.

Table 2. Confusion Matrix for the Maximum likelihood classification

Classification of ML Classifier
LISS-1V Image
Land cover classes 1 2 3 4 5 6

Water body 90 3 0 0 0 7
Settlements 0 66 24 10 0 0
Agriculture 8 2 61 10 9 10
Open forest 0 4 10 80 0 6
Dense forest 0 15 5 0 80 0
Barren land 2 10 0 0 11 77

Table 3. Overall accuracy and kappa coefficient for the ML Classified output
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LISS-1V Image Overall Accuracy Kappa Coefficient
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Figure 7. Output of ML Classification

4.2. Working of SVM Classifier

The SVM technigue has been used to classify high resolution LISS IV imagery. The ground truth
data collected during field data collection phase has been incorporated into the classification
system by drawing Region of Interest (ROI) polygons in ENVI software. In fact, the same ground
truth data that was used for MXL classified has also been used in SVM classification. The satellite
image overlaid with corresponding Rols is presented in figure 8. The standard deviation and mean
values of the classes are presented in figure 6.

The accuracy assessment is carried out with the help of confusion matrix and kappa
accuracies and is presented in tables 4 and 5 respectively.

Table 4. Confusion Matrix for the SVM classification

Classification of SVM
LISS-1V Image
Land cover classes 1 2 3 4 5 6

Water body 95 4 0 1 0
Settlements 0 52 25 8 10
Agriculture 5 12 65 10 1 7
Open forest 0 8 4 85 2 1
Dense forest 0 10 0 0 88 2
Barren land 0 14 6 0 0 80
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Table 5. Overall accuracy and kappa coefficient for the SVM Classified output

LISS-1V Image Overall Accuracy Kappa Coefficient
SVM 77.5% 0.75%
Classified outp;‘t’;fclll::sl;:‘sesr 1V data using \’E

Legend
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Figure 8. Output of SVM Classification

Result and Conclusion

In optical data classification, too, ML and SVM classification techniques were used. A
comparative analysis of MXL and SVM classification reveals that SVM classification gives a
better result than MXL with an overall accuracy of 77.5% and kappa coefficient of 0.75, whereas
with MXL it is 75.7% and 0.70 respectively. SVM shows better results for all classes except for
settlement in which MXL shows better results.

Table 6. Comparative Analysis of Different land cover classification results

o m

Landcoverclasses 1 2 3 4 5 6 |1 2 3 4 5 6
Water body % 4 0 0 1 0 (9 3 0 0 7
Settlements 0 52 25 5 8 10|0 66 24 10 0 O
Agriculture 5 12 65 10 1 7 |8 61 10 9 10
Open forest 0O 8 4 8 2 1 |0 4 10 80 0 6
Dense forest 0 10 0 O 8 2 |0 15 5 0 80 O
Barren land 0 14 6 0 0 82 10 0 0 11 77

Table 7. Comparison of overall accuracy and kappa coefficient
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LISS-1V Image Overall Accuracy Kappa Coefficient
SVM 77.5% 0.75
MLH 75.7% 0.70
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