
  Article 

On the approximate evaluation of some oscillatory 

integrals 
Robert Beuc 1,*, Mladen Movre 2 and Berislav Horvatić 3 

1 Institute of Physics, Zagreb, Croatia; beuc@ifs.hr 
2 Institute of Physics, Zagreb, Croatia; movre@ifs.hr 
3 Institute of Physics, Zagreb, Croatia; horvatic@ifs.hr 

* Correspondence: beuc@ifs.hr, Tel.: +385-091-787-5082 

Abstract: To determine the photon emission or absorption probability for a diatomic system in the 

context of the semiclassical approximation it is necessary to calculate the characteristic canonical 

oscillatory integral which has one or more saddle points. Integrals like that appear in a whole range 

of physical problems, e.g. the atom-atom and atom-surface scattering and various optical 

phenomena. A uniform approximation of the integral, based on the stationary phase method is 

proposed, where the integral with several saddle points is replaced by a sum of integrals each 

having only one or at most two real saddle points and is easily soluble. In this way we formally 

reduce the codimension in canonical integrals of "elementary catastrophes" with codimensions 

greater than 1. The validity of the proposed method was tested on examples of integrals with three 

saddle points ("cusp" catastrophe) and four saddle points ("swallow-tail" catastrophe). 
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1. Introduction 

In the cuspoid case (one integration variable), the oscillatory integrals are usually written in the 

form 

     

 ( ; )( ) ( ) if uI g u e du



−

= 
a

a  , (1)

  

where a = {a1, a2,…} is a set of parameters. As a varies as many as K+1 (real or complex) critical points 

of the smooth, real-valued phase function f can coalesce in clusters of two or more. The function g has 

a smooth amplitude. In what follows we denote ( )( ; ) ( ; )a a
n

n

n

u
f u f u


= . The critical (stationary) points 

uj(a), 1 ≤ j ≤ K+1, are defined by (1) ( ; ) 0jf u =a  [1]. 

In the case of a single real critical point the integral ( )I a  is in the leading order approximated 

by [2] 
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where (2)

1 1sgn( ( ; ))af u =  and the subscript q indicates a quadratic expansion of ( ; )f ua around
1u . The 

result is easily generalized to the case of jmax ( max1 j K  ) isolated real critical points [3]. The main 

contribution to the integral comes from the regions around the stationary points 
ju where the phase 

function ( ; )f ua  is slowly varying. 

Since the positions of the critical points depend on a, they can move close together and coalesce 

as a varies. In the uniform asymptotic evaluation of oscillatory integrals the result is expressed in 

terms of certain canonical integrals [1, 3] and their derivatives. Each canonical integral is characterized 
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by a given number of coalescing critical points. One defines a mapping u(a;t) by relating f(a;u) to the 

normal form of cuspoid catastrophes ( ; )K t b  in the following way: 

 2

1

( ; ( ; )) ( ) ( ( ); ) ( )
K

K m

K m

m

f u t A t A t b t+

=

= + = + +a a a b a a , (3) 

with the K+1 functions A(a) and b(a) determined by the correspondence of K+1 critical points of f and 

K . 

In the simplest case of two coalescing critical points (K = 1, fold catastrophe), there is a single 

point ( )e eu u= a  where (2) ( ; ) 0ef u =a  , i.e. the function (1) ( , )f ua has an extremum and there are two 

stationary points 
1( )u a  and

2 ( )u a . In some range of the parameter a the stationary points are real and

1 2eu u u  . For 
e=a a  the two points coalesce and

1 2eu u u= = . For other values of a the stationary 

points are complex conjugate solutions of eq. (2), i.e. *

1 2u u= . 

The leading-order uniform approximation in the case of the fold catastrophe is given by [4] 
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where  1
2 12

( ) ( ; ) ( ; )A f u f u= +a a a ,  3/2 3
1 2 14

( ) ( ; ) ( ; )f u f u = −a a a and ( )(2)sgn ( ; )i if u = a . The 

branches are chosen so that ( ) a  is real and positive if the critical points are real, or real and negative 

if they are complex. (Note that (2) (2)( ; ) ( ; )i i if u f u =a a  and in the case under consideration
2 1 = −

). 

The transitional approximation ( )tr

FI a  reproduces the uniform approximation ( )FI a  on the 

neighbourhood of 
ea a  ( ( ) ( )tr

F e F eI I=a a ) and enables analytical continuation from the region of real 

stationary points into the region of complex ones. The transitional approximation is given by [5] 
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(1)

(3)

2
( ; ) (4)1
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e
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A f u f u= +

a

a
a a a .  

 In order to obtain A(a) and b(a), a set of nonlinear equations has to be solved. These can be 

solved in principle, but there are, however, practical difficulties in attempting a solution [6]. On the 

other hand, away from b = 0 the canonical integrals can be approximated in terms of canonical 

integrals 
J  corresponding to lower-order catastrophes (i.e. J < K) [3, 6-11]. 

The motivation to study these types of integrals originates from the investigation of optical 

spectra of diatomic molecules [5]. For example, in the semiclassical approximation the matrix element 

of the dipole moment ( )D R  for the optical transition is proportional to the integral [12] 

    

 ( )
0

( ( ))exp ( ( ))

t

idtD R t R t h dt


−

 
  − 

 
    (6) 

The radial movement of atoms is described classically, ( )R R t= . The phase function in the integral (6) 

is ( )1

0

( ) ( ( ))

t

f t R t h dt =   − , where ( )R  is the energy difference of the upper and lower electronic 

state energies. The condition (1) ( ) 0f t = gives the saddle points which satisfy the classical Franck-

Condon condition ( ( ))cR t h = . If there are points 
tt  satisfying the condition (3) ( ) 0tf t = , the method 

suggested in Section 2 of this paper is a good choice to calculate the integral in equation (6). 

In the following sections we propose a new procedure for the approximate evaluation of 

oscillatory integrals with several stationary points. 
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2. A new procedure for approximate evaluation of oscillatory integrals 

Let there be a point 
tu in the integration interval  ,−   which satisfies the condition

(3) ( ; ) 0tf u =a . In the neighbourhood of this point one defines a function 

 ( ) ( ) ( )
2 4(1) (2) (4)1 1

2 4!
( ; ) ( ; ) ( ; ) ( ; ) ( ; )t t t t t t tF u f u f u u u f u u u f u u u= + − + − + −a a a a a . (7) 

The first derivative of this function, ( ) ( )
3(1) (1) (2) (4)1

3!
( ; ) ( ; ) ( ; ) ( ; )t t t t tF u f u f u u u f u u u= + − + −a a a a , 

has an inflection at the point
tu . If ( ) ( )(2) (4)sgn ( ; ) sgn ( ; )t tf u f u=a a , (1) ( ; )F ua  is monotonic function. 

In the case when ( ) ( )(2) (4)sgn ( ; ) sgn ( ; )t tf u f u= −a a , the function (1) ( ; )F ua  has two extrema at real 

points
( 2)

( 4)

2 ( ; )

1,2 ( ; )

t

t

f u

t f u
u u= −

a

a
. 

If there are m points  , ,p iu  −  , 1,...,i m= , satisfying (3)

,( ; ) 0p if u =a and 

( ) ( )(2) (4)

, , ,sgn ( ; ) sgn ( ; )p i p i p if u f u = = −a a , these points divide the interval  ,−  into m+1 intervals

, 1 ,,p i p iu u−
    and the integral ( )I a  can be written: 

 

,
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1
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1
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p i
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where the end points of the integration 
,0pu = − and 

, 1p mu + =   ( ( )(2)

,0 sgn lim ( ; )p u f u →−= a and 

( )(2)

, 1 sgn lim ( ; )p m u f u + →= a  have been introduced. At each interval , 1 ,,p i p iu u−
    the function 

(1) ( ; )f ua  has a simple property. If
, 1 ,p i p i − = , the function (1) ( ; )f ua is monotonic on the interval

, 1 ,,p i p iu u−
    and has a single real saddle point. In the case 

, 1 ,p i p i − = −  there is a point 

, 1 ,,e p i p iu u u−
   , (2) ( ; ) 0ef u =a and the function (1) ( ; )f ua  has an extremum at 

eu  and two saddle 

points. 

One defines a function
, ( ; )p if ua  as a series expansion of the phase ( ; )f ua  around 

,p iu  up to the 

quadratic term: (1) (2) 21
, , , , , ,2!
( ; ) ( ; ) ( ; )( ) ( ; )( )p i p i p i p i p i p if u f u f u u u f u u u= + − + −a a a a . Note that 

, , ,( ; ) ( ; )p i p i p if u f u=a a , (1) (1)

, , ,( ; ) ( ; )p i p i p if u f u=a a , (2) (2)

, , ,( ; ) ( ; )p i p i p if u f u=a a , and 

(3) (3)

, , ,( ; ) ( ; ) 0p i p i p if u f u= =a a . 

We define the integral , ( ; )

, ,( ) ( ) p iif u

p i p iI g u e du



−

= 
a

a , which has an exact solution 
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Relation (8) can be written as: 
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. 

By combining integrals in the first three sums a simple expression is obtained: 
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= − a a a  , (10) 

where integrals ( )iI a are   

 ( ; )
( ) ( ) iif u

i iI g u e du



−

= 
a

a  . (11) 

The functions ( )ig u and ( ; )if ua are shown in Table 1. 

Table 1. Functions ( )ig u  and ( ; )if ua  for i = 1, i = m+1 and 1 < i < m+1 
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The relation (10) can be generalized to be valid for the case 0m=  as well: 

 ( )
1

,0 ,0 ,

1 1

( ) ( ) 1 ( ) ( )
m m

m m i p i

i i

I I I I 
+

= =

 
= + − − 

 
 a a a a  . (12) 

So far, no approximation has been made. The relation (10) is an identity. An integral of the function, 

the phase of which has several real stationary points, is divided into the sum of the integrals ( )iI a  

whose phase functions ( ; )if ua  have either one or at most two stationary points. 

If the phase function ( ; )if ua  has only one real saddle point and its first derivative (1) ( ; )if ua is 

monotonic, the value of integral ( )iI a  can be calculated using equation (2). In the case when the 

function (1) ( ; )if ua has a single extremum at the point 
eu  and two real or complex saddle points, the 

integral is easily soluble using the approximate methods described in the introduction (equation (4)). 

If the phase ( ; )if ua is given by numerical points in the region where a complex pair of saddle points 

contributes to the integral, the analytical continuation of (5) can be used. The numerical accuracy of 

this method is determined by the accuracy of the leading-order uniform approximations (2) and (4). 

 

3. Results 

 The method outlined in Section 2 was tested on three examples that are typical for the spectra of 

diatomic molecules. For simplicity we use the phase function given by the polynomial phase of the 

Thom’s elementary catastrophe. The case when (1) ( )f t  and the difference potential ( )R  are both 

monotonic functions with a single inflection point is illustrated by the analysis of the Pearcey integral 

( 0, )P x y  in Section 3.1.1. In Section 3.1.2 with the Pearcey integral ( 0, )P x y we analyze the case 

when the function (1) ( )f t and the difference potential ( )R have two extremes and one inflection point. 

Finally, in Section 3.2 we illustrate the case when the difference potential has an extreme near the 

turning point by the analyses of the swallow-tail catastrophe integral ( 0,0, )S x z . For simplicity, we 

take ( ) 1g u =  in all the examples. The dependence of the integral (6) on the variable transition dipole 

moment was discussed by Beuc et al. in [5]. 
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3.1 Cusp catastrophe (K = 2) 

 

Let us consider the Pearcey integral, the canonical integral for the cusp catastrophe ( ,x y R  ): 

 

 
( )4 2

( , )
i u xu yu

P x y e du


+ +

−

=  . (6) 

 

(Other notations also appear in the literature). The Pearcey integral is symmetric with respect to 

variable y: ( , ) ( , )P x y P x y= − . For the numerical integration of the Pearcey integral we used the form: 
3

54 24
8 8

0

( , ) 2 cos( )
i

i it e xtP x y e e e yt dt


 


− +=   [8]. The numerical evaluation of the integral and all other 

calculations in this paper were done using the Wolfram Mathematica 11.3 computing system. 

The phase function in (6) is 4 2( , ; )f x y u u xu yu= + + . There are three saddle points defined by the 

condition (1) 3( , ; ) 4 2 0f x y u u xu y= + + = (Figure 1, 3): 
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where 1 3
2

( , ) ( , )U x y x Y y= − and 3 28
27

x y = + . If δ < 0, all saddle points are real and if δ > 0, one 

saddle point is real and the other two are complex conjugates of each other (Figure 1,3). There are 

two bifurcation points 1
1, 2 6e eu x= −  defined by the relation (2) 2( , ; ) 12 2 0f x y u u x= + = . There is a 

single point 0pu =  where (3) ( , ; ) 0pf x y u =  and 
(2)

(4)

( , ; )

( , ; ) 12

p

p

f x y u x

f x y u
=  , i.e. 

(2)

(4)

( , ; )
sgn sgn( )

( , ; )

p

p

f x y u
x

f x y u

 
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 

. 

In the special case 0x =  one has 
1 2 0e e pu u u= = = . 

 

3.1.1 Case 0x   

 

 If 0x  , then δ is always positive, the saddle point 
3( , )u x y  is real and the points 

1( , )u x y  and

2 ( , )u x y  are complex conjugates (Figure 1). 

 

 

Figure 1. Saddle points (
1u ,

2u , and
3u ) of the function (1) (1, ; )f y u . 
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The function (1) (1, ; )f y u is monotonic and, according to the equation (2) , the value of the Pearcey 

integral can be approximated as 

 
4 2
3 3 3

2
3

( )

6
( 0, ) ( 0, )

i i u xu yu

q u x
P x y P x y e

 + +

+
   =  . (8) 

 

(a) (b) 

(c) 

Figure 2. Function ( , )P x y  (Figure 2a), function ( , )qP x y  (Figure 2b) and the relative difference 

( , ) ( , )

( , )

qP x y P x y

P x y

−
 (Figure 2c) for  0,10x  and  0,10y . 

 

 

 

Table 2. Comparison values of ( , )P x y and approximate function ( , )qP x y for 0y =  and 0x = .  

x 𝑷(𝒙, 𝟎) 𝑷𝒒(𝒙, 𝟎) y 𝑷(𝟎, 𝒚) 𝑷𝒒(𝟎, 𝒚)

1 1.208384  + 0.779287ⅈ 1.253314  + 1.253314ⅈ 1 1.550927  + 0.427892ⅈ 1.092862  + 0.353605ⅈ
2 0.924029 + 0.729006ⅈ 0.886226  + 0.886226ⅈ 2 1.124750  − 0.176079ⅈ 0.837872  − 0.359347ⅈ
3 0.754294 + 0.657361ⅈ 0.723601  + 0.723601ⅈ 3 0.384485  − 0.642952ⅈ 0.244422  − 0.757992ⅈ
4 0.646978  + 0.593695ⅈ 0.626657  + 0.626657ⅈ 4 −0.385924 − 0.5451437ⅈ −0.434336 − 0.578748ⅈ
5 0.573930  + 0.541858ⅈ 0.560499  + 0.560499ⅈ 5 −0.670195 + 0.071080ⅈ −0.667479 + 0.075460ⅈ
6 0.520847  + 0.500053ⅈ 0.511663  + 0.511663ⅈ 6 −0.235367 + 0.592027ⅈ −0.214717 + 0.594539ⅈ
7 0.480234  + 0.465935ⅈ 0.473708  + 0.473708ⅈ 7 0.430078  + 0.415614ⅈ 0.442628  + 0.405753ⅈ
8 0.447915  + 0.437617ⅈ 0.443113  + 0.443113ⅈ 8 0.510179  − 0.260968ⅈ 0.506488  − 0.270768ⅈ
9 0.421413  + 0.413717ⅈ 0.417771  + 0.417771ⅈ 9 −0.103900 − 0.542068ⅈ −0.112748 − 0.540578ⅈ
10 0.399165  + 0.393241ⅈ 0.396332  + 0.396332ⅈ 10 −0.53222 − 0.0242517ⅈ −0.532895 − 0.016583ⅈ
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From Figure 2 and Table 2 we can freely estimate that the difference of the approximation 

( , )qP x y  and the exact values of ( , )P x y is smaller than few percent if the condition 2 2 5x y+   is 

satisfied. 

 

3.1.2 Case 0x   

 

(a) (b) 

Figure 3. Saddle points (
1u ,

2u , and
3u ) of the functions (1) (1, ; )f y u and (1) ( 1, ; )f y u−  are shown in 

Figure3a and Figure3b, respectively. 

According to Section 2, when 0x  using the relation (10) the Pearcy integral can be written as 

 

 
,11 2

1 2 ,1

( , ; )( , ; ) ( , ; )

( , ) ( , ) ( , ) ( , )

p

p

if x y uif x y u if x y u

P x y I x y I x y I x y

e du e du e du

  

− − −

= + −

= + −  
 . (9) 

 

Here the phase functions have the form 2

,1( , ; )pf x y u xu yu= + , 
1

( , ; ) 0
( , ; )

( , ; ) 0p

f x y u u
f x y u

f x y u u


= 


 ,

2

( , ; ) 0
( , ; )

( , ; ) 0

pf x y u u
f x y u

f x y u u


= 


 . It is easy to show that

2 1( , , ) ( , , )f x y u f x y u= − − , 
2 1( , ) ( , )I x y I x y= − , and 

the Pearcey integral can be decomposed exactly as 

 

 
2

4 4
1 1( , ) ( , ) ( , )

y

x
i i

x
P x y I x y I x y e




− +

= + − −  . (10) 

 

The function
1( , ; )f x y u has on the interval  ,u −   only one bifurcation point 1 6

x

eu = −  , 

where (2)

1 1( , ; ) 0ef x y u = , and two saddle points
1 1( , ) ( , )u x y u x y= , 

2

2

( , ) 0

( , )
0

2

u x y y

u x y y
y

x




= 





 (figure 2). 

Using relation (4), the integral 
1( , )I x y  can be approximated as 

 

( ) ( ) 42 2 2 2
1 2 1 2

( ( , ))( , ) 1 1 1 14
1 ( , )6 6 ( ) 6 6 ( )
( , ) ( , ) ( , ) ( ( , ))

Ai x yiA x y

F x yu x u y x u x u y x
I x y I x y e x y Ai x y i




    −

+ −  − − + −  − −

  = + − − −
  

,

 (11) 
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where
( ) ( )2 2

1 2 1 2

1
4 2

2

1 1

3
0

2
( , )

3
0

22

y
x u u u u y

A x y
y y

xu u y
x


+ + + 

= 
 + − 


, 
( ) ( )2 2

1 2 1 2
3/2 3

1 8 2
2

1 1

3
0

2
( , )

3
0

22

y
x u u u u y

x y
y y

xu u y
x

 


− + − 

= 
 + + 


 . 

 

We define the Airy approximation of the Pearcey integral as 

 

 
2

4 4( , ) ( , ) ( , )
y

x
i i

A F F x
P x y I x y I x y e




− +

= + − −  . (12) 

 

Paris obtained the asymptotic form of P(x,y) by considering its analytic continuation to arbitrary 

complex variables x and y [11]. In table 3. we compare some values of P(x,y) for large negative values 

of x when y = 2 and 4 to the asymptotic values [11] and the present work. 

Table 3. Values of P(x,y) obtained for large negative values of x when y = 2 and 4 compared to the 

asymptotic values [11] and the present work. 

 

 

 

 

 

 

 

 

Kaminski [10] rewrites (8) as a sum of two contour integrals, one of which has exactly two 

relevant coalescing saddle points. This allows him to apply a cubic transformation introduced by 

Chester, Friedman, and Ursell [13] and to construct a uniform asymptotic expansion of (7) as x → -∞ 

with δ varying in an interval containing 0. The leading-order approximation was already given by 

Connor [7] and Connor and Farrelly [8]. In Table 4 the values of ( , )P x y  are compared to Kaminski’s 

results [10] and the approximation ( , )AP x y  at some points on the caustic ( )
3
22

3
y x= − . 

Table 4. Comparison of values of ( , )P x y  on the caustic with Kaminski [10] and ( , )AP x y . 

x y P(x,y) Kaminski [10] PA(x,y) 

-1.0 0.544331 2.14158 +0.0990191 i 2.34415 +0.00118008 i 2.1003 +0.156994 i 

-2.0 1.5396 0.962205 -0.450083 i 0.926925 -0.428207 i 0.965935 -0.448303 i 

-3.0 2.82843 1.13215 +1.19182 i 1.14743 +1.19594 i 1.12358 +1.19408 i 

-4.0 4.35465 -0.142478+1.20972 i -0.143582+1.2217 i -0.146125+1.20649 i 

-5.0 6.08581 -0.888104+0.979074 i -0.890885+0.983784 i -0.889185+0.975844 i 

-6.0 8. -1.10157+0.582286 i -1.09951+0.581515 i -1.1015+0.58047 i 

-7.0 10.0812 -0.249906-0.91133 i -0.249866-0.914663 i -0.248282-0.910954 i 

-8.0 12.3168 0.321769 -0.468203 i 0.324275 -0.466919 i 0.321939 -0.467325 i 

-9.0 14.6969 0.495502 +0.309572 i 0.495034 +0.311661 i 0.494746 +0.309898 i 

-10.0 17.2133 -0.704129+0.779039 i -0.704954+0.779772 i -0.70467+0.778148 i 

  

x y P(x,y) Asymptotic [11] PA(x,y) 

-4 2 1.96341-0.73419i 1.97363-0.72605i 1.96482−0.72731i 
-6 2 0.96527+0.46413i 0.96537+0.46415i 0.96366+0.46538i 
-8 2 1.00422-0.11480i 1.00422-0.11480i 1.004077-0.11392i 
-4 4 0.14360+0.90244i - 0.14063+0.90013i 
-6 4 0.29478-0.84373i 0.29399-0.84356i 0.29629-0.84406i 
-8 4 0.75372-0.23933i 0.75371-0.23933i 0.75379−0.23889i 
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(a) (b) 

(c) 

Figure 4. Function ( , )P x y  (Figure 4a), function ( , )AP x y  (Figure 4b) and the absolute value of the 

functions’ difference ( , ) ( , )AP P x y P x y = −  (Figure 4c) for  10,0x − and  0,10y . 

From Table 3, Table 4, and Figure 4 we estimate that the difference of the approximation ( , )AP x y  

and the exact values of ( , )P x y is smaller than a few percent if the condition 2 2 4x y+   is satisfied. 

 

3.2. Swallow-tail catastrophe (K = 3) 

The swallow-tail canonical integral is defined by 

 
( )5 3 2

( , , )
i u xu yu zu

S x y z e du


+ + +

−

=   . (13) 

As a further example we consider a special case of the swallow-tail integral, i. e. ( ,0, )S x z  – the 

oddoid integral of the order two [14]. For the real x and y the function ( ,0, )S x z  is also real, and for 

the numerical evaluation the equation ( )5 3

0

( ,0, ) 2 cosS x z u xu zu du



= + + is used. This integral is of 

interest in the study of bound-continuum [15] and bound-bound [16] Franck-Condon factors. The 

analysis is applied to the domain 0x  . 
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(a) 

(b) (c) 

Figure 5. Saddle points (
1u ,

2u ,
3u , and

4u ) of the functions (1) ( 1,0, ; )f z u−  (Figure 5a), 
(1)

1 ( 1,0, ; )f z u−  (Figure 5a), and (1)

2 ( 1,0, ; )f z u−  (Figure 5c). 

In that case the phase function is 5 3( ,0, ; )f x z u u xu zu= + +  and it is antisymmetric with respect 

to the variable u: ( ,0, ; ) ( ,0, ; )f x z u f x z u− = − . There are four saddle points 
iu  defined by the 

condition (1) 4 2( ,0, ; ) 5 3 0f x z u u xu z= + + = : 

 

23 20
1 4 10 9

23 20
2 3 10 9

( , ) ( , )

( , ) ( , )

u x z u x z x z x

u x z u x z x x z

= − = − − −

= − = − − − −

 . (14) 

The condition (2) 3( ,0, ; ) 20 6 0e e ef x z u u xu= + =  defines three real bifurcation points 
eiu  of the “fold” 

type:
3

1 3 10

x

e eu u= − = − , 
2 0eu = . As there are two real points ( 1 10

x

pu = − , 2 10

x

pu =  ) satisfying the 

conditions (3) ( , ; ) 0pif x z u =  and ( ) ( )(2) (4)sgn ( , ; ) sgn ( , ; )pi pif x z u f x z u= − , according to section 2, the 

integral ( ,0, )S x z  can be written as 

 

3 2

1 1

3 2
( ,0, ; )( ,0, ; )

1 1

( ,0, ) ( , ) ( , )

pii

i pi

i i

if x z uif x z u

i i

S x z I x z I x z

e du e du

= =

 

= =− −

= −

= −

 

  

 , (15) 

where ( ) ( ) ( )
5 3
2 22 210 103

1 2 250 20 5
( ,0, ; ) ( ,0, ; )p pf x z u f x z u x u z x u x= − − = − + + + −  , 

,1

1

1 ,1

( ,0, ; )
( ,0, ; )

( ,0, ; )

p

p p

f x z u u u
f x z u

f x z u u u


= 


, 

,1 ,1

2 ,1 ,2

,2 ,2

( ,0, ; )

( ,0, ; ) ( ,0, ; )

( ,0, ; )

p p

p p

p p

f x z u u u

f x z u f x z u u u u

f x z u u u

 


=  
 

 , and

,2 ,2

3

,2

( ,0, ; )
( ,0, ; )

( ,0, ; )

p p

p

f x z u u u
f x z u

f x z u u u


= 


 . 
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Since
1 2( ,0, ; ) ( ,0, ; )p pf x z u f x z u= − − , it follows that *

2 1( , ) ( , )p pI x z I x z= and
2

1

1

( , ) 2Re ( , )pi p

i

I x z I x z
=

= . 

Also, 
1 3( ,0, ; ) ( ,0, ; )f x z u f x z u= − − , *

3 1( , ) ( , )I x z I x z= , and
1 3 1( , ) ( , ) 2Re ( , )I x z I x z I x z+ = . Using 

equation (9) to calculate
1( , )pI x z , one can write equation (20) in the form 

 ( )2 4 2 2

3 3/2

40 19 600 2000
4

1 2 41600 10
( ,0, ) 2Re ( , ) ( , ) cos x x z z

x x
S x z I x z I x z  − −= + − +  . (16) 

This expression exactly represents the function ( ,0, )S x z . To find an approximate solution of the 

integral ( ,0, )S x z one needs to calculate integrals 
1( , )I x z  and

2( , )I x z , using the approximation 

described by equation (4). 

 The function 
1( ,0, ; )f x z u  has two saddle points (see figure 4):

1 1( , ) ( , )u x y u x y= , 

( )

2

2

3
2

2 4

22 5 3
20 4

40

( , )
( , )

x

x

x

u x y z
u x z

z x z

 


= 
− + 


. Applying equation (4) one gets 

 

( ) ( ) 11

43 3 3 3
11 1 2 2 1 1 2 2

( ( , ))( , ) 1 1 1 14
1 1 1 1 ( , )10 3 10 3 10 3 10 3
( , ) ( , ) ( , ) ( ( , ))

Ai x ziA x z

F x zu xu u xu u xu u xu
I x z I x z e x z Ai x z i




  

 −

+ − − + − −

  = + − − −
  

 ,

 (17) 

where  1
1 1 2 1 12
( , ) ( , ; ) ( , ; )A x z f x z u f x z u= +  and  3/2 3

1 1 2 1 14
( , ) ( , ; ) ( , ; )x z f x z u f x z u = − . 

The function 
2( ,0, ; )f x z u  has two symmetrical saddle points:

( )

2

2

3
2

2 4

23 10 3
20 4

40

( , )
( , )

x

x

x

u x z z
u x z

z x z

 


= 
− + 


, 

4 3( , ) ( , )u x z u x z= − . Since 
2 3 2 4( , ; ) ( , ; )f x z u f x z u= −  and (2) (2)

2 3 2 2 4( , ; ) ( , ; )f x z u f x z u= − , the 

approximation of the integral 
2( , )I x z has a simple form, 

 4
2 2 2 2

3

3 3

2
( , ) ( , ) ( , ) ( ( , ))

10 3
FI x z I x z x z Ai x z

u xu


  = −

− −
 , (18) 

where 3/2 3
2 2 32
( , ) ( , ; )x z f x z u = − . 

Finally, we write the approximation of the integral ( ,0, )S x z  as 

 ( )2 4 2 2

3 3/2

40 19 600 2000
4

1 2 41600 10
( ,0, ) 2Re ( , ) ( , ) cos x x z z

A F F x x
S x z I x z I x z  − −= + − +  . (19) 

 

 

 

 

 

Table 5. Comparison of the values of ( ,0, )S x z  and ( ,0, )AS x z  on the caustics 0z =  and 
29

20
z x=  
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x z S(x, 0,0) SA(x, 0,0) z =
9x2

20
S(x, 0, z) SA(x, 0, z)

−1 0. 2.269084 1.913266 0.45 2.043860 1.661334
−2 0. 2.409949 2.394455 1.8 1.663543 1.612423
−3 0. 0.596406 0.604199 4.05 −0.519597 −0.508896
−4 0. 1.292366 1.281152 7.2 −0.915491 −0.908131
−5 0. 0.215598 0.212031 11.25 0.821846 0.816979
−6 0. 0.247304 0.245451 16.2 0.660728 0.660188
−7 0. 0.670358 0.667798 22.05 −0.394882 −0.392698
−8 0. 0.834808 0.83448 28.8 0.204247 0.205210
−9 0. 1.155092 1.154554 36.45 1.055443 1.053662
−10 0. 0.767679 0.767563 45. −0.891812 −0.890310

 

 

 

(a) (b) 

(c) 

Figure 6. Function ( ,0, )S x z  (Figure 6a), function ( ,0, )AS x z  (Figure 6b) and the difference of the 

functions ( ,0, ) ( ,0, )AS x z S x z−  (Figure 6c) for  10,0x  and  10,10z − . 

 In Table 5 we compare the values of the functions ( ,0, )S x z and ( ,0, )AS x z at the caustics i.e. at the 

points where the function (1) ( ,0, ; )f x z u  has extrema. These comparisons together with the 

comparison of functions in Figure 6 clearly show that the function ( ,0, )AS x z  is a good 

approximation of the function ( ,0, )S x z  if the condition 2 2 3x y+   is satisfied. 

 

 

4. Discussion and Conclusions 
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We have shown that the original oscillatory integral can be exactly expressed as a sum of 

integrals, each having either one or at most two real stationary points. The construction of these 

integrals introduces new phase functions that are smooth (infinitely differentiable), but only a few 

first derivatives are continuous in a characteristic point. This means that the proposed method is 

limited to the leading term only (i.e. the integral is the same as the leading term plus the residue that 

cannot be further treated as in the standard application of asymptotic analysis and iterated to get an 

asymptotic expansion [2]). However, the method has practical applications, especially in cases where 

the phase function (or its first derivative!) is tabulated. 

The validity of the proposed method was tested on examples of integrals with three saddle 

points ("cusp" catastrophe) and four saddle points ("swallow-tail" catastrophe). The examples chosen 

are typical of the spectra of diatomic molecules, but the method described in this paper can be used 

for numerical computation of canonical integrals occurring in other physical fields as well, e.g. the 

propagation of electromagnetic, sound or fluid waves, and particularly within the semiclassical 

theory of atom-atom and atom-surface scattering, chemical reactions etc. 
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