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Abstract : Our goal in this paper is to study the relationship between the linear approximation of Einstein's 
equations to the Klein-Gordon’s equation. The part one presents what is the Klein-Gordon’s equation and 
the integration of the theory of quantum information in it. The Part two deals with the stress energy 
quantum tensor, wherein the detail I linearized gravity of Einstein equation, and wherein I develop the 
stress energy quantum tensor quantum from the equivalence the linearized gravity of Einstein’s equation 
and the Schrödinger equation relativistic described by Klein-Gordon’s equation. 
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Part 1 – Klein-Gordon’s equation. 
 

Part A – Introduction to the Klein-Gordon’s equation. 
 
The Klein-Gordon’s equation [1] is a relativistic version of the Schrödinger equation describing massive 
particles of zero spin and, in our case, no electric charge. So I'm here to make a point of this equation. 
 
First, write the Schrödinger equation: 
 

 𝑖ℎ
𝜕

𝜕𝑡
𝜓(𝑟,⃗⃗ 𝑡) = 𝐻̂𝜓(𝑟,⃗⃗ 𝑡) (1) 

 

With 𝐻̂ the Hamiltonian operator: 
 

 𝐻̂ = −
ℎ²

2𝑚
∆ + 𝑉(𝑟,⃗⃗ 𝑡) (2) 

 
It is noted that the Hamiltonian (2) gives the total energy of the system with the reduced Planck constant 
ℎ corresponding to the pulse, −ℎ²∆/(2𝑚) corresponds to the kinetic energy, 𝑉(𝑟,⃗⃗ 𝑡) potential energy of 
the system. The delta (∆) is a Laplacian. 
 
It will from the invariant relativistic giving the energy of a single particle. In special relativity, the equation 
is as follows: 

 𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 = 𝑝 ∙ 𝑝 + 𝑚2𝑐4 (3) 
 
We now from the correspondence principle (where the quantum behavior of a system can be reduced to 
behavior of classical physics). We then have two principles of correspondence: 
 

 𝐸 = 𝑖ℎ
𝜕

𝜕𝑡
 (4) 

 
 𝐸2 = 𝑝2𝑐2 + 𝑚2𝑐4 = 𝑝 ∙ 𝑝 + 𝑚2𝑐4 (5) 
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With ∇⃗⃗  the operator nabla. 
We then obtain the following equation: 
 

 𝑝 = 𝑖ℎ∇⃗⃗  (6) 

 

 −ℎ2
𝜕2

𝜕𝑡2
𝜓(𝑟,⃗⃗ 𝑡) = −ℎ2𝑐2∇2𝜓(𝑟,⃗⃗ 𝑡) + 𝑚²𝑐4𝜓(𝑟,⃗⃗ 𝑡) 

 
(7) 

That can be written in the following form: 
 

 ∆𝜓(𝑟,⃗⃗ 𝑡) −
1

𝑐2

𝜕2

𝜕𝑡2
𝜓(𝑟,⃗⃗ 𝑡) =

𝑚²𝑐²

ℎ2
𝜓(𝑟,⃗⃗ 𝑡) 

 
(8) 

With ∆ = ∇2. Finally, we have the following equations : 
 

 (∆ −
1

𝑐2

𝜕2

𝜕𝑡2
)𝜓(𝑟,⃗⃗ 𝑡) =

𝑚²𝑐²

ℎ2
𝜓(𝑟,⃗⃗ 𝑡) (9) 

 
Here the Klein Gordon equation. However, the latter problem when we want to calculate the probability 
density. When calculating the probability density, one is faced with a major problem. Indeed, we have: 
 

 𝜌 =
𝑖ℎ

2𝑚𝑐²
(𝜓∗

𝜕𝜓

𝜕𝑡
− 𝜓

𝜕𝜓∗

𝜕𝑡
) (10) 

 
More synthetically, if calculation starting from a single wave function, described as follows, with 𝐴 is the 
amplitude of the wave, and 𝑝  the pulse vector [2] : 
 

 𝜓(𝑟,⃗⃗ 𝑡) = 𝐴𝑒𝑖(𝐸𝑡−𝑝 ∙𝑟 ) (11) 

 
And we calculate the following probability density: 
 

 𝜌 = 𝑖 (𝜓∗
𝜕𝜓

𝜕𝑡
− 𝜓

𝜕𝜓∗

𝜕𝑡
) (12) 

 
We get this: 
 

 𝜌 = 2𝐸𝐴² (13) 
 
The expression of the probability density then depends entirely on the energy 𝐸. Since energy can be 
negative, this suggests that the probability density can be as negative. An equation that described must 
then be used as the Schrödinger equation, an equation of first order in the derivatives of the time for which 
the probability density is positive definite, thus respecting the principles of relativity and quantum 
mechanics, Dirac equation. 
 
However, quantum physics said probability computation can be done by simply calculating the norm in the 
square wave function. In this case, the problem regarding the possible negativity of the probability density 
is set. Now we will see that it is possible to integrate quantum information to the Klein-Gordon’s equation. 
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Part B – Klein-Gordon’s equation and quantum information. 
 
Before calculating theory of quantum information, we will start on the equation of De Broglie wave, in 
which the wave propagates along the axis of 𝑧 [3]. 
 

 𝜓(𝑟,⃗⃗ 𝑡) = 𝜓0𝑒
𝑖(𝜔𝑡−𝑘𝑧) (14) 

 
One can then define the electric field given by the following equation (14) [3] : 
 

 𝐸̅(𝑟,⃗⃗ 𝑡) = 𝐸̅0𝑒
𝑖(𝜔𝑡−𝑘𝑧) (15) 

 
The vector 𝐸̅0 is given by the following equation: 
 

 𝐸̅0 = 𝐸0𝑒̂𝑥 + 𝐸0𝑒̂𝑦 (16) 

 
It is noted that 𝐸̅0 is a complex number which defines the polarization of the wave. 
 
As part of the theory of quantum information, we can use the above formula for defining the polarization 
of the wave to change the Klein-Gordon’s equation and thus adapt to quantum information. One example 
would be to study the position / motion of a particle by defining a probability amplitude of the different 
possible polarizations of the particle. Thus, if we write [4] : 
 

 |𝜓⟩ = 𝛼|𝑎⟩ + 𝛽|𝑏⟩ (17) 
 
We could generalize as a complex function, for which the probability amplitude given by the complex 𝛼 and 
𝛽 depends on the vecto 𝑟  and 𝑡, like so: 
 

 |𝜓(𝑟 , 𝑡)⟩ = 𝛼(𝑟 , 𝑡)|𝑎⟩ + 𝛽(𝑟 , 𝑡)|𝑏⟩ (18) 
 
What we have above is a complex probabilistic function vector value whose complex probabilistic 𝛼(𝑟 , 𝑡) 
and 𝛽(𝑟 , 𝑡) functions. We have with the Klein-Gordon’s equation :  
 

 
(∆ −

1

𝑐2

𝜕2

𝜕𝑡2
) |𝜓(𝑟 , 𝑡)⟩ =

𝑚²𝑐²

ℎ2
[𝛼(𝑟 , 𝑡)|𝑎⟩ + 𝛽(𝑟 , 𝑡)|𝑏⟩] 

 

(19) 

This allows us to obtain a relativistic equation the Schrödinger wave function incorporating quantum 
information. 
Moreover, the probability will always be positive. Indeed, the calculation of the probability of a state being 
performed by the standard square complex probabilistic vector valued functions, the latter will always be 
positive, we can write as follows: 

 0 < |𝛼(𝑟 , 𝑡)|² < 1 (20) 
 0 < |𝛽(𝑟 , 𝑡)|2 < 1 (21) 

 
So that the following property is verified: 
 

 ‖|𝜓(𝑟 , 𝑡)⟩‖2 = |𝛼(𝑟 , 𝑡)|2 + |𝛽(𝑟 , 𝑡)|2 = 1 (22) 
 
It is important to note that the following function is used to define the movement of particles without spin. 
However, the formulation that we have done previously to associate the movement of particles in quantum 
information. 
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Part 2 – Stress energy tensor. 
 

Part A – Linear approximation of stress energy tensor. 
 
A first formulation of Einstein's equations is as follows [5] : 
 

 𝑅𝑖𝑗 =
16𝜋𝐺

𝑐4
[Γ𝑖𝑗 −

1

2
𝑔𝑖𝑗Γ] (23) 

 

With 𝑅𝑖𝑗 the Ricci tensor and Γ𝑖𝑗 stress energy tensor.  
The metric tensor through a gravity field is written by the following equations [4] : 
 

 𝑔𝑖𝑗 = 𝜂𝑖𝑗 + ℎ𝑖𝑗 (24) 
 𝑔𝑖𝑗 = 𝜂𝑖𝑗 − ℎ𝑖𝑗 (25) 

 

When |ℎ𝑖𝑗| ≪ 1, one can obtain a linear approximation of Einstein's equations given by the following 

formula [5] : 
 

 (∆ −
1

𝑐2

𝜕2

𝜕𝑡2
)ℎ𝑖𝑗 =

16𝜋𝐺

𝑐4
[Γ𝑖𝑗 −

1

2
𝜂𝑖𝑗Γ] (26) 

 
From wich we obtain the values of the metric tensors : 
 

 𝑔𝑖𝑗 = 𝜂𝑖𝑗 +
2𝐺𝑀

𝑐2𝑟
𝑑𝑖𝑎𝑔(1,1,1,1) (27) 

 

 𝑔𝑖𝑗 = 𝜂𝑖𝑗 −
2𝐺𝑀

𝑐2𝑟
𝑑𝑖𝑎𝑔(1,1,1,1) (28) 

 

then we can get ℎ = 𝜂𝑖𝑗ℎ𝑖𝑗 , considering that the following equation [6] : 

 

 (∆ −
1

𝑐2

𝜕2

𝜕𝑡2
)ℎ(𝑟,⃗⃗ 𝑡) = −

8𝜋𝐺

𝑐4
Γ(𝑟,⃗⃗ 𝑡) (29) 

 
Small note: The signed negative now in the right side of the equation does not mean that there is a negative 
energy. In fact, the tensor represents the attraction while the dot represents repulsion. It is just a distinction 
between the tensor and the scalar form of equation. 
To recall, the equation of the Newtonian gravitation writing is as follows: 
 

 𝐹 = −𝐺
𝑚𝑀

𝑟²
𝑢⃗  (30) 

 
However, the stress energy tensor in scalar form isn’t a vector, but a scalar ! So we will remove it and we 
will consider the scalar rating and tensor notation represents the same concept, an attraction. We will 
rewrite the equation of the stress energy tensor in its linear formalism as follows : 
 

 (∆ −
1

𝑐2

𝜕2

𝜕𝑡2
)ℎ(𝑟,⃗⃗ 𝑡) =

8𝜋𝐺

𝑐4
Γ(𝑟,⃗⃗ 𝑡) (31) 

 
We will keep this form for the following sections we will deal with. 
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Part B – Stress energy quantum tensor from the Klein-Gordon’s equation. 
  

Part B.1 – Equivalence between the small deviation of the Minkowski metric and the quantum wave 
function. 
 
From the above equations written, we can define an equivalence between the curvature "scalar" granted 
by the Laplacian of ℎ(𝑟, 𝑡) (31) and also the relativistic version of the Schrödinger equation developed by 
Klein Gordon (9). 
 

 (∆ −
1

𝑐2

𝜕2

𝜕𝑡2
)ℎ(𝑟,⃗⃗ 𝑡) = (∆ −

1

𝑐2

𝜕2

𝜕𝑡2
)𝜓(𝑟,⃗⃗ 𝑡) (32) 

 
Or, for simplicity, we get: 
 

 ℎ(𝑟,⃗⃗ 𝑡) = 𝜓(𝑟,⃗⃗ 𝑡) (33) 
 
For this equality may exist, one must consider that the linearized gravity of Einstein's equations given by 

the disturbance ℎ(𝑟,⃗⃗ 𝑡) (which ℎ𝑖𝑗 is the low deflection of 𝜂𝑖𝑗) is equivalent to the complex function 𝜓(𝑟,⃗⃗ 𝑡) 

defining the quantum state of a system with an amplitude probability. 
 
An effective way to establish this equivalence principle can be explained by the so-called small extent. It is 
a technique used to measure the average value of an observable (or in other words, a physical quantity 
such as the position or energy) of a quantum system in not disrupting thereof negligibly . Thus, one would 
find the equivalence between a small perturbation (linearized gravity) of the Einstein equation and the 
small perturbations occurring during measurement of a quantum system. 
 
It is also noteworthy that the wave function is used to describe the motion of a wave, in the same manner 
as Newtonian approximation of Einstein equation to calculate the movement of the gravitational waves. 
Consider his gravitational waves as disturbances of space-time, the latter being generally flat, except that 
considers its perturbations as low. This means that the movement of gravitational and comparable to that 
of a particle comprising as a wave relativistic. 
 

Part B.2 – Stress energy quantum tensor. 
 
From the equivalence defined above, we can define the following equation: 
 

 
8𝜋𝐺

𝑐4
Γ(𝑟,⃗⃗ 𝑡) =

𝑚²𝑐²

ℎ2
𝜓(𝑟,⃗⃗ 𝑡) (34) 

 
By isolating the pressure, we get: 
 

 Γ(𝑟 , 𝑡) =
𝑚²𝑐6

8𝜋𝐺ℎ2
𝜓(𝑟 , 𝑡) (35) 

 
We notice when we find the constant 𝐾 of Einstein's equation 𝐺𝑖𝑗 = 𝐾 ∙ 𝑇𝑖𝑗. We can then write the following 

formulation: 
 

 Γ(𝑟 , 𝑡) = 𝐾−1
𝑐²𝑚²

ℎ2
𝜓(𝑟,⃗⃗ 𝑡) (36) 
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If we calculated and are measuring the wave function, we would find that this pressure is not local, with 
greater or lesser presence probabilities according to the surface area we choose. 
 
However, I want to clarify one important thing: This equation may not be valid to describe a single particle. 
However, quantum field theory, it can be used to describe a set of zero spin particle. 
 
Suppose we calculate the pressure Γ(𝑟 , 𝑡) of an electron. Considering that : 
 

ℎ ≈ 1,054 571 × 10−34 𝐽. 𝑠 
𝑐 ≈ 299 792 458 𝑚. 𝑠−1 

𝐾−1 =
𝑐4

8𝜋𝐺
≈ 4,815 612 × 1042 𝑁 

𝑚é𝑙𝑒𝑐𝑡𝑟𝑜𝑛 ≈ 9,109 382 × 10−31 𝑘𝑔 
 
We have : 
 

 Γé𝑙𝑒𝑐𝑡𝑟𝑜𝑛(𝑟 , 𝑡) ≈ 3,229 379 × 1067𝜓(𝑟,⃗⃗ 𝑡) (37) 
 
This means that the pressure of an electron (without calculating the wave function) is about 1067 ! 
 

Part 3 – Conclusion. 
 
In Part 1, we saw that the Klein-Gordon’s equation is a relativistic version of the Schrödinger equation for 
particles without spin. This equation, second order, some problems, including one very important: the 
probability density can be negative. 
We found a simple solution was to consider the psi function as a complex probabilistic function vector 
value, which we had reformed under the equations of the theory of quantum information. Thus, by 
calculating the probability, we are forced to standardize and squaring the probability amplitude, thus 
solving the problem of possible negativity of probability density. 
 
In section 2, we saw the formulation of the linear approximation (or linearized gravity) of the Einstein 
equation, wherein the equation is closer to Newtonian dynamics. 
We then found a match between the wave function of quantum physics, and low deflection previously 
defined by calculating the linear approximation of Einstein equation. This equivalence suggests that, in 
some cases, the description of a gravitational wave reduced to a flat space-time (or in which the curvature 
of the space-time is not important) is equivalent to the movement of a particle behave like a relativistic 
wave. 
 
From this equivalence, we described an important equation: The stress energy tensor quantum. We 
discover that it is not local because it depends on the wave function. The tensor becomes nonlocal. 
When calculating the pressure for a particle (an electron), we note that it is very high, on the order of ten 
to the 67. Is that a mathematical error? Or not we know enough about the subatomic world? 
 
To these questions I try to answer by finishing the article, when I have calculated from the new physical 
equivalence entropy. I then try to find the formula for Erik Verlinde linking entropy Newtonian gravity. 
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