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Abstrat: The purpose of this paper is to show a new approach to unify the theory of general relativity and 
quantum physics. For this, we rely on thermodynamics, fluid mechanics and the theory of information. 
We will then see that the Shannon entropy, Boltzmann and Von Neumann can be the source of gravity, 
which would be a form emerging. For this, we will study at first what is lacking for the unification of general 
relativity and physics. Secondly, we will explain the concept of entropic gravity by introducing calculations 
Erik Verlinde. Then we will explain the concept of entropy Boltzmann, Shannon, Von Neumann and the 
links between them. Then, we will modify Einstein's equations by transforming the tensor of perfect fluid 
in terms of entropy. Finally, we will link our theory with experience already carried out as part of a link 
between gravity and quantum theory. 
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1 formalization of quantum gravity difficulties. 
 
General relativity [1, 2] is a theory of gravitation: Written by Einstein between 1907 and 1915, it states that 
the gravitational attraction previously known by Newton's equation is actually a distortion of space- time 
caused by concentrations of energy. It is described in a simplified way, by this equation: 
 

 𝐺௜௝ =
8𝜋𝐺

𝑐ସ
𝑇௜௝  (1) 

 
This is a tensor equation. 8𝜋𝐺/𝑐^4 is a constant, the tensor 𝑇௜௝ is the relativistic stress energy tensor 
(matrix 4 × 4) deducted of the stress tensor (matrix 3 × 3).  
We can have also the stress energy tensor in perfect fluid, noted: 
 

 𝑇௜௝ = ൬
𝑃

𝑐²
+ 𝜌൰ 𝑢௜𝑢௝ − 𝑃𝑔௜௝  (2) 

 
Where 𝑃 the pressure, 𝜌 density, 𝑢௜𝑢௝  a four-vector, and 𝑔௜௝ the metric tensor. Ultimately 𝐺௜௝  defines the 
curve that takes the space given to some constant precise and stress energy tensor. 
 
Quantum physics [3] is radically different from classical physics and relativity. Indeed, it is probabilistic: the 
evolution of a physical system is defined by the wave function computable from the Schrödinger equation. 
And one of the fundamental principles of quantum physics is this: as a quantum system has not been 
measured, its status is undefined. The Schrödinger equation is as follows: 
 

 𝑖ℎ
𝜕

𝜕𝑡
𝜓(𝑟,ሬሬ⃗ 𝑡) = 𝐻෡𝜓(𝑟,ሬሬ⃗ 𝑡) (3) 
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With the Hamiltonian operator 𝐻෡ : 
 

 𝐻෡ = −
ℎ²

2𝑚
∆ + 𝑉(𝑟,ሬሬ⃗ 𝑡) (4) 

 
Note that the Hamiltonian gives the total energy of the system with ℎ the reduced Planck constant 
corresponding to the pulse, −ℎ²∆/(2𝑚) corresponds to the kinetic energy, 𝑉(𝑟,ሬሬ⃗ 𝑡) potential energy of the 
system. The delta (∆) is a Laplacian. This equation is a first-order equation with respect to time. So if we 
know the state of the system at the initial time, one can know the system status at any time 𝑡. 
 
Finally another fundamental principle of quantum physics is the uncertainty principle of Heisenberg: 
 

 ∆𝑥∆𝑝 ≥
ℎ

2
 (5) 

 
This equation simply means that one can not simultaneously define the position and momentum with 
infinite precision. 
 
The main issue is to understand the origin of gravitation. Indeed, the "infinite" appear from the time 
where you want mathematize gravitation in quantum equations. The quantum theories of gravity are 
therefore not renormalizable. So there is another formalism to standardize gravity in quantum equations? 
Gravitation it exist at the quantum level? So ... what is the origin of gravitation? Is it emerging? 
 
This would in fact define a mechanical "scale" and statistics. In fact, the goal is to move from formalism 
very small scale (call it the quantum level) at a macroscopic formalism (thermodynamic scale including 
the study of ideal gas) to finally a large scale formalism ( relativistic scale). For this, a particular formality 
is needed. We will need basic formulas in information theory and thermodynamics. 
 
The next part deals with the relationship between thermodynamics and gravitation. Another formalism 
of gravitation will thus born. 
 

2 Thermodynamic and gravitational: Towards an entropic force of gravity. 
 
Eric Verlinde [4, 5] published in April 2011 a 29-page document entitled "On the Origin of Gravity and the 
Laws of the Newton". He was the first to say that gravity could be described entropic way. I will detail the 
calculations by taking the case of a gas contained in a closed box placed on a movable piston, knowing 
that the system is kept at a temperature 𝑇. Since the pressure is the force exerted on a surface, and 
assuming the gas is perfect, we can write: 
 

 𝐹 =
𝑁𝐾௕𝑇

𝑋
 (6) 

 
With 𝑋 the height of the piston. The work associated with the variation 𝑑𝑋 is 𝐹𝑑𝑋. It follows then, in view 
of the first law of thermodynamics that 𝑑𝑈 = 𝐹𝑑𝑋 + 𝑇𝑑𝑆 with S the entropy of the system. We can then 
write the following equality 𝑑𝑆 = 𝑑𝑈/𝑇 + 𝐹𝑑𝑋/𝑇 finally giving: 
 

 𝐹 = 𝑇
𝜕𝑆

𝜕𝑋
=

𝑁𝐾௕𝑇

𝑋
 (7) 
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But where is the gravitational force? Well gravity in general relativity is in fact a pressure force. This is a 
mass that has some "pressure" on a surface, the space-time, causing its curvature. And remember one of 
the principles of entropy: the entropy of a system of two particles is higher as the particles are close. This 
statement is similar to the force of gravity more two objects are, the more gravitational force is strong. 
We deduce then with two distinctive and masses 𝑚 and 𝑀, as well as the distance separating these two 
weights 𝑅, the following formula: 
 

 𝑇
𝜕𝑆

𝜕𝑋
= 𝐺

𝑚𝑀

𝑅²
=

𝑁𝐾௕𝑇

𝑋
 (8) 

 
There is another way to get the same result starting from the equation of the average kinetic energy of 
ideal gas molecules: 
 

 
1

2
𝑚𝑣² =

3

2
𝐾௕𝑇 (9) 

 
If we write 𝑣 = ඥ2𝑔ℎ, we obtain the potential energy of gravity on Earth, either: 
 

 𝑚𝑔ℎ =
3

2
𝐾௕𝑇 (10) 

 
In the end, putting pm on the other side, we have: 
 

 𝐺
𝑚𝑀

𝑅²
=

3𝐾௕𝑇

2ℎ
 (11) 

 
This is very similar to the result of Eric Verlinde. 
 
What is amazing in the equation of Verlinde is that by giving an entropic origin to gravity, the macroscopic 
gravitational forces can be deduced without saying anything of what happens at the microscopic scale. 
The publication of this document took a stir among scientists and criticism, both positive and negative. 
 

3 Entropy and information. 
 
But we will go further than that. Indeed, we will see what really entropy and integrated into the suite in 
the Einstein equations. 
There are various forms equational of entropy, we will see now. The first is the entropy used below, the 
Boltzmann entropy [6], which is written: 
 

 𝑆(Ω) = 𝐾௕ In Ω (12) 
 
This equation defines the microcanonical entropy of a physical system at the macroscopic balance, but 
left free to evolve on a microscopic scale between Omega (Ω) different micro-states (also called number 
of complexions, or number of system configuration). The unit is in Joule per Kelvin (J / K). 
Entropy is the key point of the second law of thermodynamics, which states that "Any transformation of 
a thermodynamic system is performed with increasing the overall entropy, including the entropy of the 
system and the external environment. We then say that there is creation of entropy."; "The entropy in an 
isolated system can only increase or remain constant." 
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There is also the Shannon formula [7]. The Shannon entropy, due to Claude Shannon, is a mathematical 
function that corresponds to the amount of information contained in or issued by a source of information. 
Over the source is redundant, it contains less information. Entropy is maximum and for a source whose 
symbols are equally likely. The Shannon entropy can be seen as measuring the amount of uncertainty of 
a random event, or more precisely its distribution. Generally, the log is in base 2 (binary). Its formula is: 
 

 𝑆(𝑝) = ෍ 𝑝௜ logଶ

1

𝑝௜
௜

 (13) 

 
however, one can define an entropy in quantum theory [10], particularly used in quantum cryptography 
(with the properties of entanglement), called the von Neumann entropy noted: 
  

 𝐻(𝜌) = −tr(𝜌 logଶ 𝜌) = ෍ 𝑝௜ logଶ

1

𝑝௜
௜

 (14) 

 
With the density 𝜌 and orthonormal basis matrix |𝑎〉 : 
 

 𝜌 = ෍ 𝑝௜

௜

|𝑎〉〈𝑎| (15) 

 
The von Neumann entropy is identical to that of Shannon, except that it uses the variable 𝜌, a density 
matrix. As written by Serge Laroche, this equation can be used to calculate the degree of entanglement 
of two particles: if two particles are entangled, the entropy is zero. Conversely, if the entanglement 
between two particles is maximum, the entropy is maximum, given we do not have access to the 
subsystem. In classical mechanics zero entropy means that the events are some (only one possibility), 
while in quantum mechanics this means that the density matrix is a pure state of 𝜓. But in quantum 
physics measurements are generally unpredictable because the probability distribution depends on the 
wave function and observable. 
And this is also explained by the principle Heisenberg uncertainty: indeed, if for example we had to have 
more information (so less entropy) the momentum of the particle, there is less information on the position 
thereof (more entropy). This implies that quantum physics is still immersed in the entropy, although the 
entropy is low. 
 
Now that we know the Boltzmann entropy and Shannon entropy, we can merge the two giving the 
Boltzmann-Shannon entropy or statistical entropy [8]. If we consider a thermodynamic system that can be 
in several microscopic states 𝑖 of probabilities 𝑝௜, statistical entropy is then: 
 

 𝑆(𝑝) = 𝐾௕ ෍ 𝑝௜ logଶ

1

𝑝௜
௜

 (16) 

 
The Boltzmann entropy-Neumann, equivalent to the above equation:  
 

 𝑆(𝜌) = −𝐾௕tr(𝜌 logଶ 𝜌) (17) 
 
This function is paramount, and it will be constantly used in our theory of gravitational entropy. Its unit is 
the binary and Joule per Kelvin.  
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Imagine [9] two compartments (or room, as you prefer) next to each other in which particles are present. 
Let's call the first compartment (or room) A, and the other B. 
If all the particles are in A or all the particles are in B, mathematically, we note that the entropy is minimal 
and the uncertainty on the information is zero. 
If, on the other hand, the particles are in A and B in an equal manner (as many particles in A as in B) the 
entropy is maximal (great disorder), so the uncertainty on the information is maximum. 
 
With this interpretation, we note that the more dispersive particles (probability less than 1) the stronger 
the entropy. This is the case of our particules which are separated equally in A and B (𝑝 = 1/2, 𝑆 =
2 × 1/2 × logଶ 2 = 1). In the opposite case (all the particules in A or B), the information is certain, the 
probability is zero, so the entropy is zero. 
 
In the end, the Shannon entropy and Boltzmann entropy is the same concept. 
 
To better understand the need to link the information to thermodynamics, we must understand the scope 
of influence of information theory in physics and the problems it could solve. Indeed, a strong example is 
the information paradox: the point of view of general relativity, information can completely disappear in 
a black hole. This is irreversible. However, in quantum physics, information must always be preserved, 
and is reversible (previous states can be known). 
 

4 The modified Einstein equation: proposal of a thermodynamic form given the 
entropic gravity and the theory of information. 

 
We wrote above the simplified Einstein equation. In this section, we will calculate the Einstein equation 
with the stress energy tensor of perfect fluids. For this, we will calculate two things: pressure and volume 
density. 
 
The pressure can be written: 
 

 𝑃 =
𝑛𝑅𝑇

𝑉
=

𝑁𝐾஻𝑇

𝑉
 (18) 

 
The energy according to Erik Verlinde [4] equals 𝑁𝐾஻𝑇/2 so we can easily calculate the energy density: 
 

 𝜌𝑐ଶ =
𝑚𝑐ଶ

𝑉
=

𝐸

𝑉
=

𝑁𝐾஻𝑇

2𝑉
 (19) 

 
The part in brackets the stress energy tensor of an ideal fluid becomes easy to solve: 
 

 𝑃

𝑐²
+ 𝜌 =

𝑃 + 𝜌𝑐²

𝑐²
=

𝑁𝐾஻𝑇
𝑉

+
𝑁𝐾஻𝑇

2𝑉
𝑐²

=
3𝑁𝐾஻𝑇

2𝑉𝑐²
 

 
(20) 

 
The stress energy tensor becomes: 
 

 𝑇௜௝ = ൬
𝑁𝐾஻𝑇

𝑉

3

2𝑐²
൰ 𝑢௜𝑢௝ −

𝑁𝐾஻𝑇

𝑉
𝑔௜௝ (21) 
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It only remains to factor: 
 

 𝑇௜௝ =
𝑁𝐾஻𝑇

𝑉
൬

3𝑢௜𝑢௝

2𝑐²
− 𝑔௜௝൰ (22) 

 
The stress energy tensor depends on the metric tensor 𝑔௜௝, four-vector 𝑢௜𝑢௝ but most of the volume 𝑉, 
particle number 𝑁 and temperature 𝑇. Indeed, when the temperature increases, the power increases, 
due in particular to the increase in the speed of each particle. In addition, when the number of particle is 
high and they are present in a smaller volume, the pressure exerted on the walls of the same volume (for 
example a box) increases. 
 
It is then to formalize the Einstein equation as follows: 
 

 𝐺௜௝ =
8𝜋𝐺

𝑐ସ

𝑁𝐾஻𝑇

𝑉
൬

3𝑢௜𝑢௝

2𝑐²
− 𝑔௜௝൰ (23) 

 
Now we can write according to the statistical entropy Boltzmann-Shannon (16), which gives: 
 

 𝐺௜௝ =
8𝜋𝐺

𝑐ସ

𝑁𝑇

𝑉

𝑆(𝑝)

− ∑ 𝑝௜logଶ 𝑝௜௜
൬

3𝑢௜𝑢௝

2𝑐²
− 𝑔௜௝൰ (24) 

 
Isolate entropy: 
 

 𝑆(𝑝) =
𝑐ସ𝐺௜௝𝑉

8𝜋𝐺𝑁𝑇
෍ 𝑝௜logଶ

1

𝑝௜
௜

൬
3𝑢௜𝑢௝

2𝑐²
− 𝑔௜௝൰

ିଵ

 (25) 

 
What we notice is that this time, Einstein's equation is described directly statistically by the laws of 
thermodynamics. Gravity becomes an emerging force from the macroscopic scale. 
Indeed, if one focuses on the involvement of 𝐺௜௝  on 𝑆(𝑝), we notice that when the curvature increases, 
the entropy increases, and vice versa. It is therefore possible that the entropy affects the curvature of 
space-time, and even the curvature of space-time affects entropy. 
We can formalize the Einstein equation of quantum way. Simply use the von Neumann entropy. 
 

 𝑆(𝜌) =
𝑐ସ𝐺௜௝𝑉

8𝜋𝐺𝑁𝑇
൬

3𝑢௜𝑢௝

2𝑐²
− 𝑔௜௝൰

ିଵ

tr(𝜌 logଶ 𝜌) (26) 

 
The finding is the same as before: the curvature of space to influence the entropy. However, quantum 
entropy is here. This means that the smallest particle of space influences spacetime. 
 
To show you, try husked this equation. Take the case of pure material [11]. The stress energy tensor of a 
continuous medium is thus written: 

 𝑇௜௝ = 𝜌𝑢௜𝑢௝  (27) 
 
We would then an equivalence with the energy on a volume : The pseudo-norm of the quadrivector 𝑢௜𝑢௝ 
is 𝑐², so we can write, the scalar form of the stress energy tensor : 
 

 𝑇 =
𝑁𝐾஻𝑇

2𝑉
 (28) 
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So Einstein’s Equation is in a scalar form : 
 

 𝐺 =
8𝜋𝐺

𝑐ସ

𝑁𝐾஻𝑇

2𝑉
 (29) 

 
Either with 𝐺௜௝ , then according to the entropy: 
 

 𝐺 =
4𝜋𝐺

𝑐ସ

𝑁

𝑉

𝑆(𝑝)

− ∑ 𝑝௜logଶ 𝑝௜௜
 (30) 

 
We can have : 
 

 𝑆(𝑝) =
𝑐ସ𝐺𝑉

4𝜋𝐺𝑁𝑇
෍ 𝑝௜ logଶ

1

𝑝௜
௜

 (31) 

 
If we that entropy is maximum, we have: 
 

 𝑆 =
𝑐ସ𝐺𝑉

4𝜋𝐺𝑁𝑇
 (32) 

 
Considering that there is only one particle and that the constants are removed, we have: 
 

 𝑆 =
𝐺𝑉

𝑇
 (33) 

 

 𝐺 =
𝑆𝑇

𝑉
 (34) 

 
It is then found that the main variables defining the entropy is the curvature, temperature and volume. 
Similarly, the main variables defining the curvature is the entropy, the temperature and volume. Take for 
example a box, numbered 1 size 𝑙 (with 𝑉ଵ = 𝑙ଷ), and another number 2 size 𝐿 box (with 𝑉ଶ = 𝐿ଷ). If we 
deposit 𝑥 particles, all having the same rate noted 𝑣 in the size of box 1, we could calculate its entropy, 
that it will be appreciated 𝑆ଵ. Let's do the same with the box number 2, and we would have noted entropy 
𝑆ଶ. it then noted that if 𝑙 < 𝐿, then 𝑆ଵ < 𝑆ଶ. in conclusion, the more the volume of a box is small, less is 
entropy. This is quite normal. the more particles have space to move, the greater the entropy, so the 
harder it is to get information. Uncertainty is high. If all particles concentrated in a smaller volume, 
entropy will be much lower. The volume plays a central role in the calculation of entropy. Finally, 
temperature plays such a central role. The higher the temperature, the more heat is high. The energy 
increases, so the curvature of space increases. 
 
Now suppose that the temperature is the volume is constant. If one proceeds as earlier, removing each 
constant, we would have: 
 

 𝐺 = 𝑆 (35) 
 
This means that the entropy to a direct effect on the curvature, and vice versa. Obviously, this equation 
is "false", since we have tried to simplify to the maximum this equation. However, this is necessary to 
understand the importance of entropy in space-time. 
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Finally, if the curvature was equal to 1 (flat surface), and the temperature was constant, we would have: 
 

 𝑆 = 𝑉 (36) 
 
This formula simply states that entropy increases or decreases when the volume increases or decreases, 
as we explained above. 
 
If we take again the previous equation of the maximum entropy in the scalar form of the Stress Energy 
Tensor of the Perfect Fluids (32). And that we write in this form : 
 

 𝑆 =
𝐺𝑐

𝜋𝐺𝑁𝑇
×

𝑐ଷ𝑉

4𝐺
→ 𝑆 ≡ 𝑉 (1) 

 
This equation is very similar to that found in holographic theory, defining a correspondence between the 
black holes and entropy [12, 13, 14] : 
 

 𝑆 =
𝐾஻𝑐ଷ𝐴

4𝐺ℎ
=

𝐾஻

ℎ
×

𝑐ଷ𝐴

4𝐺
→ 𝑆 ≡ 𝐴 (1) 

 
It can be assumed that the information of a system is contained / stored in a volume, as we noted, not on 
a surface as described by the equations of the holographic theory [15]! The information is contained in a 
volume 𝑉 of space-time. 
 

5 Towards quantum gravity. 
 
An experiment by Edward Bruschi and his team demonstrated that there is indeed a link between gravity 
and entanglement [16, 17]. 
 
David Edward Bruschi, a physicist at the Institute for Quantum physics of Jerusalem to demonstrate that 
quantum entanglement affects the gravitational field. Disturbances of the gravitational field are 
proportional to the intensity of the entanglement between two particles. Depending on the distance of 
the two particles, their energy, coherency state, strength of quantum correlation perturbative effects of 
metric spacetime emerge and alter the gravitational field by low disturbances. The experience was to a 
Bose-Einstein condensate in which two particles are entangled, both in different orbits and different 
speeds. The authors sought to know if the strength of entanglement can be altered by variations in 
intensity of the gravitational field. For it, both microsatellites must first be orbited in the same orbit, and 
then one of them was to receive a sudden thrust which forces him on a second orbit, undergoing a sudden 
change of speed and gravity. According to calculations and simulations, physicists expect that the 
entanglement between the condensate lose 20% of its effectiveness 
 
 
What does "entanglement of intensity"? In fact it is the degree of correlation between the two particles. 
And this degree can be calculated by von Neumann entropy. According to the written properties in over 
Haroche [17] I quote: "There is more information (less ignorance) in a pair correlated than the sum of its 
parts (equal if A and B are uncorrelated) "and" the degree of entanglement of an AB system appears as 
the measure of the increase of our ignorance when we lose the ability to make measurements on the 
system as a whole and that we have access locally only one of the two subsystems.". 
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It turns out that the equation of Verlinde explains that the entropy (the uncertainty of the information) is 
proportional to the gravitation of Newton! Moreover, after integration of the entropy, we find an equality 
between entropy and energy potential of gravitation. 
 
It follows then that to a abrupt variation in the intensity of gravity follows an increase of the entropy, as 
stipulated in the thermodynamics of Boltzmann. This increase, under the Boltzmann equation Shannon 
(or even Boltzmann-Neumann), is seen as an increase in the disorder and also of the uncertainty of the 
information.  
 

6 General conclusion. 
 
Gravitation is an emerging and informational entropic force. It is defined according to the Boltzmann-
Shannon entropy, and its quantum version Boltzmann-Neumann. Gravity is much stronger than the 
uncertainty of the information system is high. 
 
If you look at Einstein's equation by solving the energy-momentum tensor of perfect fluids and taking into 
account thermodynamics and information theory, we note that the entropy depends mainly on the 
temperature of the system , curvature of space-time and volume. It is then assumed that the information 
is recorded in a volume of space-time. 
 
The holographic theory says that we would be a projection of a space in 2 dimensions (the surface) in 3 
dimensions. I would say, in the sense of my equation, we would be the projection in 3 dimensions of 
space-time, no matter how many dimensions it has. This is simpler and also more general: in the end we 
may very well be the projection in 3D space making 2 or 3 or 4 etc ... 
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