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Abstract: The underground complicated testing environment and the fan operation instability cause 

large random errors and outliers of the wind speed signals. The outliers and large random errors 

result in distortion of mine wind speed monitoring, which possesses safety hazards in mine 

ventilation system. Application of Kalman filter in velocity monitoring can improve the accuracy of 

velocity measurement and eliminate the outliers. Adaptive Kalman Filter was built by automatically 

adjusting process noise covariance and measurement noise covariance depending on the differences 

between measured and expected speed signals. We analyzed the fluctuation of airflow flow using 

data of wind speed flow and distribution characteristics of the tunnel obtained by the Laser Doppler 

Velocimetry system (LDV) studies. A state-space model was built based on the tunnel airflow 

fluctuations and wind speed signal distribution. The adaptive Kalman Filter was calculated 

according to the actual measurement data and the Expectation Maximization (EM) algorithm. The 

adaptive Kalman filter was used to shield fluid pulsation while preserving system-induced 

fluctuations. Using the Kalman filter to treat offline wind speed signal acquired by LDV, the 

reliability of Kalman filter wind speed state model and the characteristics of adaptive Kalman Filter 

were investigated. Results showed that the adaptive Kalman filter effectively eliminated the outliers 

and reduced the root-mean-squares error (RMSE), and the adaptive Kalman filter had better 

performance than the traditional Kalman filter in eliminating outliers and reducing RMSE. Field 

experiments in online wind speed monitoring were conducted using the optimized adaptive 

Kalman Filter. Results showed that adaptive Kalman filter treatment could monitor the wind speed 

with smaller RMSE compared with LVD monitor. The study data demonstrated that the adaptive 

Kalman filter is reliable and suitable for online signal processing of mine wind speed monitor. 

Keywords: mine wind speed; Laser doppler velocimetry; Kalman filter; expectation maximization 

algorithm; online monitoring. 

 

1. Introduction 

One of the basic conditions for mine safety production is a reliable mine ventilation system, 

especially in coal mine production. Accurate ventilation parameters must be tested to ensure effective 

ventilation. The air volume is one of the most important parameters for mine ventilation [1]. At 

present, mine air volume is calculated by testing the average wind speed at the tunnel test point 

section and the test point cross-sectional area. Therefore, the mine air volume is actually the average 

wind speed of the roadway test point section, or the average wind speed is obtained by measuring 

the average dynamic pressure value of the tunnel section through the piezometer. In order to obtain 

an accurate average wind speed in the tunnel section, some scholars conducted related testing and 
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simulation study on the average value of single-point test of tunnel by using laser Doppler 

velocimeter and CFD simulation theory [2-4]. The results showed that there was a positive correlation 

relationship between the wind speed at certain points in the roadway section and the average wind 

speed in the roadway section under certain conditions. The above study analyzed the relationship 

between turbulent pulsation characteristics and cross-section wind speed and average wind speed. 

However, the accuracy of the average wind speed is determined by the precision and accuracy of the 

single point test data. 

Therefore, it is necessary to get precise and accurate wind speed for accurate estimation of 

section air volume in the mine. Sensors are usually used for mine data collection. The results obtained 

by wind speed sensor monitoring often have large random errors and fluctuations, and outliers [5]. 

Filtering is the common method for sensor signal processing [6, 7]. There is random white noise in 

the mine wind speed monitoring, which is consistent with the use conditions of the Kalman filter [8, 

9]. Kalman filters are used widely in various fields [10-13]. Kalman filter can treat the disordered and 

fluctuating data collected by the roadway wind speed sensors to get valid mine wind speed data for 

analysis and therefore improve the accuracy of wind speed monitor by effectively shielding invalid 

measurement values. 

We analyzed the fluctuation of airflow flow using data of wind speed flow and distribution 

characteristics of the tunnel obtained by the LDV studies. A state-space model was built based on the 

tunnel airflow fluctuations and wind speed signal distribution. The adaptive Kalman Filter was 

calculated according to the actual measurement data and the EM algorithm. Using the Kalman filter 

to treat offline wind speed signal acquired by LDV, the reliability of Kalman filter wind speed state 

model and the characteristics of adaptive Kalman Filter were investigated. Field experiments in 

online wind speed monitoring were conducted using the optimized adaptive Kalman Filter, the 

applicability of the adaptive Kalman filter in online monitoring of mine wind speed were verified. 

2. Adaptive Kalman filter  

2.1. State space model 

The flow of wind in the underground tunnel is very complicated. Random changes in the state 

of the structure and unknown factors such as the operation of the mine cars lead to unstable airflow 

conditions, which would make large wind speed random errors and random fluctuations at the 

location of the wind speed monitoring sensors. It is difficult to identify whether alterations are 

turbulent pulsations or disturbances caused by system movement. The state space model is important 

for improving the performance of the Kalman filter. Kalman filter can filter the monitored data by 

shielding the fluctuations caused by turbulent pulsations so that the output of each monitoring 

moment is close to the true situations. Assuming that T is sampling interval, the Kalman filter model 

assumes the true state at time t is evolved from the state at (t-1) according to [14]: 

1 1 1t t t t t tu− − −= + +x A x B ω                                 (1) 

where tA is a state transition model from the state of the previous moment 1t−x  to the state of the 

moment tx ; tB  is the control-input model, which is applied to the control vector tu ; tω  is the 

process noise which is assumed that the mean normal value of zero and the multivariate normal 

distribution of the covariance ( ): 0,t t tQ ω Ν Q ; 

At time t a measurement tz  of the true state tx  is made according to 

t t t t= +z H x υ                                    (2) 

where tH  is the observation model which maps the true state space into the observed space; tυ  is 

the observation noise which is assumed to be zero mean Gaussian white noise with covariance 

: ~ (0, )t t tR υ N R . 
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The previous time estimate will be denoted as ˆ
t

−
x  , where the “hat” denotes estimate, and the 

“super minus” is a reminder that this is the best estimate prior to assimilating the measurement at 

time of t. The Kalman filtering base equations are given by: 
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where ˆ
t

−
p  is the priori estimate error covariance; tK is the Kalman gain. 

In this state space model, 1, 0, 1, ,t t t t t= = = = =A B H Q Q R R  , where Q  and R  are 

constants. And the base equations are changed to: 
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where t t=z v  is the measured instantaneous wind speed at the test point at time t, the unit is m/s. 

ˆ ˆ
t t=x v  is the test point to estimate the instantaneous wind speed at time t, that is, the instantaneous 

point wind speed after Kalman filter processing, the unit is m/s. 

2.1. Adaptive parameter adjustment 

Process noise covariance Q  and measurement noise covariance R  are important for Kalman 

filter performance improvement [8]. Inappropriate R  and Q  make poor performance of the 

Kalman filter in eliminating outliers and reducing random errors [15]. In practical applications, the 

R  and Q  are difficult to be determined. Only by constantly adjusting R  and Q  can the 

Kalman filter achieve the best performance. 

EM algorithm is a method for finding maximum likelihood estimation parameters from 

incomplete data sets [16]. This method is widely used to deal with incomplete data such as defects, 

truncation, and noise [17]. According to the deviation between the observed and estimated values, 

Kalman's orthogonality and wind speed estimation error, using the EM algorithm to achieve process 

noise covariance and measurement noise covariance adaptive adjustment can improve Kalman's 

filtering performance. 

The purpose of the Kalman-EM algorithm is to find a set of parameters ( )0 0, , , = Q R   

that maximize the probability ( )0: 1;TP −z  of Kalman performance. Where 0 0,   are the initial 

mean and variance, respectively. 

Using 
0: 1t t


−

 to represent ( )0: 1t Tx −E z  , and 
0:t t

  to represent ( )0: 1t TVar −x z  , where 

( )E  is the mathematical expectation of   and ( )Var   is the variance of  . Then the Kalman 

filter recursively forwards to obtain: 
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where 
010

 =  ，
010

 =   . To get ( )0: 1max ;TP


−z  , need to perform backward recursion: 
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This gives the expressions of Q  and R : 
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The instantaneous wind speed can be obtained by recursively calculating the basic equation (4) 

of the Kalman filter using the parameters calculated by equations (7) and (8). 
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If the constraint condition of (9) is satisfied, the test value tz  at time t is a normal value, 

otherwise tz  is outlier, at this time, the estimated value is used as the true value at time t to update 

the process noise covariance and the measurement noise covariance. 

3. Experiment  

The mine wind speed monitoring is interfered by the complex and variable test environment, 

there are many unknown disturbance factors in the wind speed monitoring signal in actual 

production. The wind speed signal that monitored is difficult to determine the performance of the 

Kalman filter. Therefore, the experimental monitoring of the wind speed signal is carried out using a 

laser Doppler velocimetry system with high measurement accuracy and less influence from external 

disturbance factors. The obtained offline signals were processed by a conventional Kalman filter and 

an adaptive Kalman filter for comparing the performance of the Kalman filter in reducing random 

errors and rejecting outliers. But in the production process, off-line wind speed signal processing is 

difficult to meet the needs of real-time monitoring of mine wind speed, real-time filtering of wind 

speed monitor signals is required. Therefore, the experimental mine was used for the field test to 

determine the feasibility and application performance of the adaptive Kalman filter in mine wind 

speed online monitoring. 

3.1. LDV experimental model 

The mine wind speed LDV test experimental equipment and model are shown in Figure 1. A 

square experimental model was used. The model had a proportion of 1:20, a section inner diameter 

of 0.2 m and a length of 15 m. To trace the airflow, the smoke with an average particle diameter of 

fewer than 2 μm is used as the tracer particles. Speed measurement precision reaches 0.1%. During 
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the experiment, the laser transmitter emitted 6 beams of laser and the laser was combined into 3 

beams of laser through a probe, the colors were green, blue and purple, respectively, for testing fluid 

velocity in the X, Y, and Z directions, where X is the flow direction, Y is the extension direction, and 

Z is the vertical direction. The laser probes were fixed on the 3D coordinate frame and the pitch of 

the probe was controlled by a computer, and movement accuracy was up to 0.001mm. 

 

Figure 1. Experimental model and equipment of LDV 

3.2. LDV experimental 

The LDV experiment is a non-contact measurement method with a more accurate test result that 

reflects the true state of the fluid[18]. The test point is placed at a point where a fully developed flow 

state is reached[5], and 10 times the cross-section of the air inlet,. The arrangement of the measuring 

points and the cross-section are shown in Figure 2. The experimental sampling time is 10s. The fan 

was turned on when all the equipment was ready, and testing started 10 minutes after the fan was 

on. The experiment was carried out under ideal conditions in which the wind flow was stable, and 

the environment was free from external interference. 

 

Figure 2. Test model and its cross section 

3.3. Field experiment 

In order to verify the practicality and accuracy of Kalman filter in online monitoring of mine 

wind speed, field experiments were conducted in the experimental mine of Liaoning Technology 

University. Figure 3 shows the experimental plan. Experimental mine was a 3×2.5 rectangular section 

with a unit of m. The measuring points were placed 60m away from the damper 2 and the corner of 

the roadway, 0.5m away from the roof of the roadway and 1.5m away from the wall of the tunnel. 

The wind speed sensor model was used KDF9403, and its test range was 0.4-20m/s. The fan ran for 

more than 10 minutes before collecting data at the measuring point. At this time, the damper 1 was 

closed, and in order to ensure the stability of the fan as much as possible, the wind window of the 
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damper 1 is opened, as shown in Fig. 4(a). The damper 2 was fully opened state, as shown in Fig. 

4(b). After the measuring points collected the data for 15 minutes, the damper 1 was fully opened, 

remaining in the same state as the damper 2, while data collection continued. Data collection 

continued and the test was terminated after 15 minutes. 

 

Figure 3. The experiment of mine floor plan 

 

Figure 4. Field experiment of mine air door 

4. Results 

4.1. Offline filter process results 

After the Kalman filter offline processing, the average values of wind speed were almost equal 

to those obtained the LDV test, but the RMSEs were hugely reduced (Table 1). The RMSE was 

obtained using the mean of wind speed as a reference in the sampling time T. The average value of 

the wind speed test results in 10s was 3.308m/s, and the RMSE was 0.299m/s. There was no outlier in 

the 1 to 4s (Figure 5), RMSE was 0.286m/s. There was an outlier in the 4 to 6s test (Figure 6), RMSE 

was 0.381 m/s. After traditional Kalman filter processing, the average value within 10s was 3.308m/s 

and the RMSE was 0.108m/s. the RMSE in 1-4s was 0.079m/s, while in 4-6s was 0.165 m/s. After 

adaptive Kalman filter processing, the average value within 10s was 3.307m/s and the RMSE was 

0.012m/s. the RMSE in 1-4s was 0.004m/s, while in 4-6s was 0.018m/s. 

Table 1. Results of test and Kalman filter signal processing 

values 

1-4s 4-6s 0-10s 

RMSE（

m/s） 

mean（m/s

） 

RMSE（

m/s） 

mean（

m/s） 

RMSE（

m/s） 

mean（

m/s） 

LDV 0.286 3.307 0.381 3.297 0.299 3.308 

Traditional filter 0.076 3.310 0.165 3.299 0.108 3.308 

Adaptive filter 0.004 3.303 0.018 3.309 0.012 3.307 
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Following the traditional Kalman filter process, the wind speed signal tended to be stable, but it 

was difficult to eliminate the abnormal point in the wind speed signal. After the adaptive Kalman 

filter processing, the wind speed signal fluctuated around the average value, and the fluctuation 

range was 3.28m/s-3.34m/s, indicating relatively stable (Figure 5-7). 

 

Figure 5. Experiment results without outliers in 1s-4s and the consequences of filtering 

 

Figure 6. Experiment results with outliers in 4s-6s and the consequences of filtering 

 

Figure 7. Wind speed signal and the consequences of filtering in 10s 

4.2. Field experiment results 

The field experiment results showed that even if the system was not adjusted or moved, the 

signal monitored by the sensor fluctuated largely, and the fluctuation range was 2.4-3.19m/s (Figure 

8). Before the dampers was closed, the average value of wind speed was 2.83m/s, the RMSE was 0.141 

m/s, and the average value of wind speed in the 600-900s is 2.83m/s, and the RMSE is 0.119m/s. 

Following the adaptive Kalman filter, the mean of wind speed was 2.82m/s, and the RMSE was 

0.017m/s in the first 5minutes. The average value was 2.83m/s, and the RMSE was reduced to 0.009m/s 

in the 600-900s (Table 2). After the damper 2 was opened, the experiment was continued for 15 

minutes. The results showed that the wind speed had a slow downward trend, and the trend of 

decline after the adaptive Kalman filter treatment was more obvious (Figure 9). After the damper 
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was opened for about 2 minute, the wind speed remained at around 0.87 m/s, and the RMSE 

decreased by 0.07 m/s. 

Table 2. Real-time monitoring of experimental mine wind speed and results of Kalman filtering 

values 
First 15 minutes 600-900s 

RMSE（m/s） mean（m/s） RMSE（m/s） mean（m/s） 

Monitor 0.141 2.83 0.119 2.83 

Adaptive filter 0.017 2.82 0.009 2.83 

 

Figure 8. Field monitoring and filtering results in 220s-280s 

 

Figure 9. Field monitoring and filtering results in 10 minutes including system changed. 

5. Discussion 

Studies on wind speed test by laser Doppler velocimetry system, the results showed that even 

in the relatively stable and ideal experimental conditions, the wind speed of the test points in the 

pipeline also had random fluctuations, and outliers. The reason for the outlier may be that the fan 

did not run completely stable, or the tracer particles were not observed at the time of data acquisition. 

The Kalman filter offline processing on the wind speed signal reduced the RMSE, but couldn’t 

completely remove the outlier of the signal. The adaptive Kalman filter could not only reduce the 

RMSE, but also eliminate the outliers of the wind speed signal. Results showed that the performance 

of the adaptive Kalman filter is better than the traditional Kalman filter (Figure 6).  

The field experiment results showed that there was a random disturbance in the online 

monitoring wind speed of the measurement points in the tunnel. Even when the system had no 

changes, the monitored wind speed signals were not so smoothly stable as those obtained under LDV 

experimental conditions. The reasons for such observations might be voltage instability, which causes 

changes of the fan operating conditions, or the natural wind flow in the air inlet, which affected the 

wind speed. The adaptive Kalman filter treatment reduced the RMSE greatly. When the system is 

changing, the adaptive Kalman filter can quickly reflect the real change process, instead of treating 

the actual change value as the outlier (Figure 9). Therefore, the adaptive Kalman filter can be applied 

for mine wind speed online monitoring signal processing. 
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Comparison of the RMSEs obtained in the wind speed monitoring and the filter processing 

revealed that the RMSE at the sampling time without outliers was smaller than that at the sampling 

time with outliers. When the number of outliers was constant, the longer the sampling time is, the 

more accurate the experiment results are, which is in line with the law of signal processing [19]. 

Results proved the reliability of test systems, models, and methods. In the case where the test system 

does not change, and no outliers occur, the mean value of the monitored speed during the sampling 

time is generally equal to the mean value of the filtered speed. Data showed that the monitoring 

methods commonly used in engineering have a certain reliability. However, the occurrence of 

abnormal points and the time and location of system changes are unknown, therefore, in actual 

applications, there may be some errors that cause the sensor to alarm under normal conditions, which 

results in the emergency rescue program, or the alarming system fails to respond to a real emergency 

condition, which results in safety issues. The wind speed signal filtered by the adaptive Kalman filter, 

when there is a wild value, in the case that the system does not change, the signal at each monitoring 

moment is close to the mean of signal at the sampling time. when the system changes, the filtered 

signal can give a corresponding response. As a result, adaptive Kalman filter can quickly reflect the 

real wind speed at each measuring point. The wind speed and other parameters at the measuring 

point can ensure the safety of production at each monitoring time and ensure the safe and effective 

production of the mine. The Kalman filter predicts the monitored values based on a small number of 

measurements [9]. Applying the Kalman filter to mine wind speed online monitoring signal 

processing can provide short-term wind speed online prediction in the event of an accident or failure 

of the ventilation system, ensure the wind speed monitored at every moment, and it can also provide 

some reference clues for the rescue work in the accident. 

Compared the results of previous researchers' experiments on mine wind speed using LDV, the 

mine wind speed test conforms to the uncertainty principle. The wind speed signal results conform 

to the normal distribution, and the signal pulsation has little correlation with the wind speed and 

sampling time. Their experiment results are consistent with the LDV examination results of this 

research. The wind speed values in previous study were the average wind speed in the sampling 

time [5], while the current study used the instantaneous wind speed, which was the wind speed value 

after Kalman filter treatment at the sampling moment. According to the test results, when the stability 

of the testing system is free from external interference, the average wind speed obtained by LDV 

during the sampling time is close to the instantaneous wind speed following Kalman filter treatment. 

However, when the system is changed, the average wind speed is not equivalent to the instantaneous 

wind speed. Researchers on vehicle speed monitoring have applied LDV speed measurement system 

to vehicle speed monitor. The adaptive Kalman filter was used to process the measurement results. 

Turntable experiments and field test revealed that the adaptive Kalman filter could eliminate the 

measured outliers, and the RMSE was reduced by 0.370cm/s and 0.021m/s, respectively [20]. The 

difference between the current study and the vehicle speed monitor study is that the measurement 

of the vehicle running speed was adjusted adaptively for the acceleration variance and the 

measurement noise variance using the current state space model analysis. Our study was to solve the 

process noise variance and observation noise variance by using the EM algorithm to find the optimal 

parameters, thereby achieve the purposes of reducing the errors, eliminating the wild values and the 

condition of the Kalman filter convergence. 

The current study has some shortcomings, parameter optimization of process noise variance and 

observation noise variance is a non-convex optimization process, and non-convex optimization of 

parameters using the EM algorithm can easily lead to local optimization. Therefore, the choice of 

proper initial values for process noise variance and observation noise variance is important in 

adaptive Kalman filters. Our research analyzed the performance of Kalman filtering. But the reasons 

for the occurrence of outliers and fluctuations of wind speed were not analyzed thoroughly. This 

study only investigated treatment of wind speed signals in mine ventilation. To achieve real-time 

dynamic monitoring and warning of the safety of the ventilation system, it should also monitor other 

important parameters of the mine ventilation system[21] and perform correlated filtering and noise 

reduction treatment. 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 March 2019                   doi:10.20944/preprints201903.0048.v1

Peer-reviewed version available at Arch. Min. Sci. 2019; doi:10.24425/ams.2019.131068

http://dx.doi.org/10.20944/preprints201903.0048.v1
https://doi.org/10.24425/ams.2019.131068


 

In the actual production of the mine, circulating ventilation, unreliable ventilation facilities, 

unsafe ventilation systems, air leakage, insufficient air supply and series ventilation all may cause 

mine disasters at any time [22]. One of the important parameters for these phenomena is the 

ventilation air volume of the mine.  It is necessary to obtain the accurate wind speed value of the test 

point. The adaptive Kalman filter can filter the signals monitored online to obtain real-time values by 

eliminating outliers and reducing RMSE. In addition to the processing of wind speed signals, it is still 

necessary to study the feasibility of adaptive Kalman filter in processing signals of important 

ventilation parameters such as gas and wind pressure [23]. Under viable conditions, the scientific 

theory of mine ventilation safety shall be applied to conduct safety monitoring of mine ventilation 

system to achieve the purposes of reducing the probability of accidents and ensure the safe and 

effective production of mines. 

6. Conclusion 

The Kalman filter can eliminate outliers caused by versatile and unpredictable environments 

and monitoring instrument failures, and it can reduce the random errors of the wind speed signal. 

As a result, the accuracy of the instantaneous wind speed monitor can be improved. The adaptive 

Kalman Filter can be reached by adaptive adjustment of process noise variance and observation noise 

variance. The Kalman filter processing results of the offline signals obtained by the Doppler 

velocimetry system show that the performance of the adaptive Kalman filter is better than that of the 

traditional Kalman filter. The online processing of the adaptive Kalman filter for the online wind 

speed signal monitoring in the experimental mine shows that the adaptive Kalman filter not only 

improves the accuracy of instantaneous wind speed monitoring but also predicts the short-term wind 

speed. The adaptive Kalman filter is feasible in the online monitoring signal processing of mine wind 

speed, which can improve the ability of the ventilation system to identify unsafe factors and states. 

Therefore, the adaptive Kalman filter is suitable for mine wind speed online monitoring signal 

processing. 
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