
ARBTools: A tricubic spline interpolator for three-dimensional
scalar or vector fields.

Walker, Paul1,*, Krohn, Ulrich1, Carty, David2

1 Department of Physics, Durham University, South Road, Durham, DH1 3LE,
United Kingdom.
2 Department of Chemistry, Durham University, South Road, Durham, DH1
3LE, United Kingdom

* paul.a.walker@durham.ac.uk

Abstract

ARBTools is a Python library containing a Lekien-Marsden type tricubic spline method for
interpolating three-dimensional scalar or vector fields presented as a set of discrete data
points on a regular cuboid grid. ARBTools was developed for simulations of magnetic
molecular traps, in which the magnitude, gradient and vector components of a magnetic
field are required. Numerical integrators for solving particle trajectories are included, but
the core interpolator can be used for any scalar or vector field. The only additional system
requirements are NumPy.

Keywords

Python, three-dimensional interpolation, spline, vector field, scalar field, smoothing

Introduction 1

It is often necessary to smoothly interpolate vector or scalar fields known as a set of discrete 2

data points across a grid. For one- and two-dimensional problems cubic and bicubic spline 3

implementations exist (for example, in the SciPy interpolate library), but three-dimensional 4

problems are more difficult. Solving the three-dimensional motion of neutral particles 5

through a magnetic potential, such as a Zeeman decelerator or magnetic trap, requires 6

knowledge of the derivatives of the potential field. These fields can generally not be 7

analytically solved and are calculated using e.g. finite element analysis and interpolated. 8

Commonly available interpolation packages do not give access to these derivatives. 9

Additionally, it may be desired to return the interpolated vector components of the field, for 10

example when calculating the probabilities of non-adiabatic spin transitions, or simulating 11

laser-cooling interactions. 12

A tricubic spline interpolator of the type described by Lekien and Marsden [1] was 13

implemented using Python, and requires only NumPy to work. Interpolation coefficients are 14

calculated on-the-fly and subsequently reused where required to reduce processor time. For 15

arbitrary points inside the interpolation volume the field magnitude, partial derivatives and 16

vector components are readily accessible from a single query. Separate query methods are 17

included for dealing with interpolation of a single point, or for multiple simultaneous 18

1/6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 doi:10.20944/preprints201903.0029.v1

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201903.0029.v1
http://creativecommons.org/licenses/by/4.0/

coordinates. Fourth-order Runge-Kutta and velocity Verlet algorithms are implemented for 19

solving particle motion. 20

Although produced for the specific application of modelling low-field-seeking neutral 21

particles, this software has been developed to be more general. It can work directly with 22

either a scalar or vector field input, and is suitable for a variety of applications with any 23

field supplied across a regular, paralleliped grid. 24

An overview of the software, how it was produced, and the research for which it has been 25

used, including references to relevant research articles. A short comparison with software 26

which implements similar functionality should be included in this section. 27

Implementation and architecture 28

ARBTools is written in Python [2], with extensive use of NumPy [3]. ‘ARBInterp’ contains 29

the tricubic interpolator and query methods. ‘ARBTraj’ contains numerical integrators and 30

acceleration functions for modelling the trajectories of paramagnetic neutral particles in a 31

magnetic field; replacing the acceleration functions as appropriate could allow a different 32

system to be solved, e.g. movement of atoms in an optical tweezer. 33

Installation 34

To install on Linux run ‘sudo python setup.py install’. The interpolator is contained in a file 35

called ‘ARBInterp.py’ and the command ‘from ARBTools.ARBInterp import tricubic’ will 36

import the interpolation class. 37

Usage 38

To instantiate the class, pass it a source field - e.g. ‘interp = tricubic(sourcefield)’ will 39

create an instance called ‘interp’. Input can be either a scalar field U(x,y,z) as an N x 4 40

(x,y,z,U) array or a vector field B(x,y,z) as an N x 6 (x, y, z, Bx, By, Bz) array. If an N x 4 41

field is passed, the interpolator will automatically default to return the magnitude and 42

gradient of the field. If an N x 6 field is passed it will accept an optional ‘mode’ keyword 43

argument to select one of three modes, (e.g. interp = tricubic(sourcefield, mode=‘kw’)): 44

• Norm: takes the norm of the vector field and return the magnitude and gradient (as 45

three partial derivatives) 46

• Vector: returns the interpolated vector components 47

• Both: takes vector norm, and returns the magnitude and norm of the vector plus the 48

vector components at the interpolation point 49

If no keyword is passed, the interpolator defaults to vector mode. Two query modes are 50

implemented: ‘sQuery’ interpolates a single point within the volume, accepting an input in 51

the form ([x, y, z]). ‘rQuery’ accepts a range of coordinates for simultaneous interpolation, 52

as an array ([x1, y1, z1]...[xn, yn, zn]). For multiple queries rQuery is much more efficient 53

than running sQuery in a loop. 54

Figure 1 shows an interpolation example. The quadrupole electric field produced by four 55

point charges was calculated as a grid of 4003 data points; the left plot is a 2D slice through 56

the central plane. A less dense grid of 403 points was then calculated, and the middle image 57

shows a plot through the centre. Lastly, the sparse grid was interpolated to reproduce the 58

4003 data, and is shown on the right. 59

2/6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 doi:10.20944/preprints201903.0029.v1

http://dx.doi.org/10.20944/preprints201903.0029.v1

Figure 1. The magnitude of a quadrupole electric field, left, 400 x 400 pixel analytic
solution, centre, 40 x 40 pixel exported subset, right, 400 x 400 pixel interpolation of the
subset.

Quality control 60

ARBTools was written with Python 2.7.12 and NumPy 1.13.3 on Linux Mint 18.3, and has 61

been tested with Python 3.5.2 on the same platform. It has also been tested on Enthought 62

Canopy v2.1.9 on Microsoft Windows 7 and 10. 63

Example input fields and query scripts are available to download from the source 64

repository. Performance benchmarking on 64-bit Linux with an Intel Core i7 CPU shows 65

100 unique interpolations for a given data set take between 20 and 50 ms, depending on 66

which components are being returned. As expected, there is a linear relationship between 67

number of queries and run time. 68

The main constraint when using ARBTools is the amount of memory required to load 69

the source file; this is determined by the size of the input grid. For example; a cubic volume 70

20 mm on a side with a grid spacing of 0.5 mm contains 413 = 68921 grid points, which will 71

load in less than a second with negligible memory usage. The same data sampled at 72

0.25 mm intervals contains 531441 points, this may take several seconds to load and 73

consume ≈ 500 MB memory. At 0.125 mm intervals we have 4173281 points, this may take 74

up to a minute to load and consume over 5 GB of memory. Once loaded, however, querying 75

these different datasets takes almost exactly the same amount of time. 76

The tricubic interpolation method values smoothness of the interpolated function and its 77

first derivatives over absolute accuracy [1]. In order to quantify the errors in this method 78

two types of model were considered; the quadrupole electric field produced by a series of 79

point charges, which can be solved analytically (figure 1), and a magnetic field produced by 80

a permanent magnet, calculated using finite-element analysis with the ‘FEMM’ [4] software 81

package (see figure 2). (Of course, if an analytic solution is available there is no need to 82

interpolate - this is simply a useful calibration tool!) 83

Figure 2. The magnitude of the magnetic field around a ring magnet, left, 400 x 400 pixel
finite-element analysis model, centre, 40 x 40 pixel exported subset, right, 400 x 400 pixel
interpolation of the subset.

3/6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 doi:10.20944/preprints201903.0029.v1

http://dx.doi.org/10.20944/preprints201903.0029.v1

For both cases a high-resolution source dataset was created, and then a sparse subset of 84

this data was interpolated and compared with it. Figure 3 shows the root-mean-squared 85

errors between the interpolated and ‘true’ values of the calculated fields for a variety of grid 86

intervals. It can be seen that for a given level of accuracy the analytic solution can tolerate a 87

larger grid spacing - this is due to the high gradients at the interface between two materials 88

in finite-element (or boundary volume integral [5]) analysis. In general, consideration of the 89

nature of the data set being interpolated and its structure will inform the grid spacing 90

chosen, which is a compromise between inaccuracy and unwieldiness. These tests were 91

repeated with the interpolator in the ‘EQ Tools’ library; although it does not provide the 92

field derivatives, the magnitudes were found to be the same to within 1× 10−6 %. 93

Figure 3. Root-mean-square error in interpolated data as compared to ‘true’ values from
either a finite-element analysis model or an analytic solution.

(2) Availability 94

Operating system 95

ARBTools was developed on Linux Mint 18.3, and has been tested on Windows 7 and 10. 96

Programming language 97

ARBTools was developed in Python 2.7.12 and has been tested on 3.5.2. Any version of 98

Python from 2.7 upwards should be suitable. 99

Additional system requirements 100

Several GB of RAM should be suitable for most applications. ARBTools has been used with 101

large datasets on the Durham university supercomputer. 102

Dependencies 103

Written using NumPy 1.13.3. Earlier versions may work. 104

4/6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 doi:10.20944/preprints201903.0029.v1

http://dx.doi.org/10.20944/preprints201903.0029.v1

Software location: 105

• Name: ARBTools 106

• Persistent identifier: https://doi.org/10.5281/zenodo.2548609 107

• Publisher: Paul A. Walker 108

• Version published: v1.3 109

• Repository: GitHub 110

• Persistent identifier: https://github.com/DurhamDecLab/ARBInterp 111

• Licence: GPL-3.0 112

• Date published: 15/02/2019 113

Language 114

English 115

(3) Reuse potential 116

The core of ARBTools is the tricubic interpolator, which can be used with any 117

suitably-formatted input field, for many possible tasks - for example, visualising the shape 118

of a three-dimensional potential or extracting coherent Lagrangian structures from a 119

time-dependent two-dimensional flow. 120

As is, ARBTools can be used to model the trajectories of low-field-seeking argon atoms 121

in a magnetic field. Simply altering the mass and magnetic moment parameters would allow 122

other species to be modelled. If the functions defining the acceleration due to a potential are 123

replaced, trajectories in alternative systems could easily be modelled, for example, the 124

motion of charges in electric fields, or masses moving under gravity. 125

Support may be requested through the project GitHub page: 126

(https://github.com/DurhamDecLab/ARBInterp). The source code is available and may 127

be reused or modified at will subject to the details of the GPL-3.0 licence. 128

Acknowledgements 129

Many thanks to Dr. Lewis McArd for his invaluable advice on this and other projects. 130

Funding statement 131

This software was developed as part of research funded by EPSRC grant number 132

EP/N509462/1. 133

Competing interests 134

“The authors declare that they have no competing interests.” 135

5/6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 doi:10.20944/preprints201903.0029.v1

http://dx.doi.org/10.20944/preprints201903.0029.v1

References 136

1. Lekien, F. and Marsden, J. (2005) ‘Tricubic interpolation in three dimensions’, 137

International Journal for Numerical Methods in Engineering, Vol. 63, No. 3, pp. 455–471 138

. DOI: 10.1002/nme.1296 139

2. van Rossum, G. (1995) Python tutorial, Technical Report CS-R9526, Centrum voor 140

Wiskunde en Informatica (CWI), Amsterdam 141

3. van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011) ‘The NumPy array: a 142

structure for efficient numerical computation’, Computing in Science and Engineering, 143

Vol. 13, pp. 22-30, DOI:10.1109/MCSE.2011.37 144

4. ‘Finite Element Method Magnetics’ (2019), Meeker, D. . Available at: 145

http://www.femm.info/wiki/HomePage 146

5. Elleaume, P., Chubar, O., Chavanne, J. (1997) ‘Computing 3D Magnetic Field from 147

Insertion Devices’, proc. of the PAC97 Conference, pp. 3509-3511. 148

6. Chilenski, M.A., Faust, I.C. and Walk, J.R. (2017) ‘eqtools: Modular, extensible, 149

open-source, cross-machine Python tools for working with magnetic equilibria’, 150

Computer Physics Communications, Vol. 210, pp. 155-162, 151

DOI:10.1016/j.cpc.2016.09.011. 152

6/6

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 4 March 2019 doi:10.20944/preprints201903.0029.v1

http://dx.doi.org/10.20944/preprints201903.0029.v1

