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Abstract: This paper considers estimating the ratio of two distributions with different parameters and
common supports. We consider a Bayesian approach based on the Log–Huber loss function which
is resistant to outliers and useful to find robust M-estimators. We propose two different types of
Bayesian density ratio estimators and compare their performance in terms of Bayesian risk function
with themselves as well as the usual plug–in density ratio estimators. Some applications such as
classification and divergence function estimation are addressed.
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1. Introduction

The problem of estimating the ratio of two densities appears in many areas of statistical and
computer science. The density ratio estimation (DRE) is widely considered to be the most important
factor in the machine learning and information theory. Sugiyama et al. in a series of papers (e.g. 2009,
2011) developed the DRE in different statistical data analysis problems. Some useful applications of the
DRE are as follows: non–stationary adaptation (Sugiyama and Müller 2005 and Quiñonero-Candela et
al., 2009), variable selection (Suzuki et al., 2009), dimension reduction (Suzuki and Sugiyama, 2010),
conditional density estimation (Sugiyama et al., 2010), outlier detection (Hido et al., 2008) among
others. This paper addresses cases when the density belongs to the parametric distributions (e.g.,
exponential family of distributions). Parametric methods are usually favourable thanks to existence
of closed forms (mostly, simple and explicit formulas) and hence help to enhance computational
efficiency.

Recently several estimators of the ratio of two densities have been proposed. One of the simplest
approaches to estimate density ratio p/q, where p and q are two probability density (or mass) functions
(PDF or PMF), is called “plug–in", which the ratio of the estimated densities is computed. Alternatively,
one can estimate the ratio of two densities directly. Several approaches have been explored recently to
estimate the ratio including moment matching approach (Gretton et al., 2009) and density matching
approach (Sugiyama, 2008). There exists other work such as Nguyen (2010) and Deledalle (2017) which
studied the application of DRE in estimating Kullback–Leibler (KL) divergence (or more generally
α–divergence function, also known as f –divergence) and vice versa. The main objective of this paper
is to address the Bayesian parametric estimation with some commonly used loss functions for the ratio
of p/q and to compare the proposed estimators with other estimators in the literature.

The remainder of the paper is organized as follows. In Section 2, we discuss the methodology of
the DRE and introduce some useful definitions and related examples. Section 3 discusses how to find
a Bayesian DRE under several loss functions for any arbitrary prior density on the parameter, and
provides some interesting examples from the exponential families. In Section 4 we study some of the
DRE applications. Se. Some numerical illustrations for considering the efficiency of the proposed
DRE’s are given in Section 5. Finally, we make some concluding remarks in Section 6.
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2. Density ratio estimation for exponential distribution family

Let X| η and Y| γ be conditionally independent multivariate random variables

p(x | η) = h(x) exp
{

η> s(x)− κ(η)
}

, (1)

q(y | γ) = h(y) exp
{

γ> s(y)− κ(γ)
}

, (2)

where η, γ ∈ Rd are natural parameters, s(·) is a sufficient statistic, and κ(·) = log c(·) is the
log–normalizer, which ensures that the distribution integrates to one.

Consider the problem of estimating the density ratio

r(t; η, γ) =
p(t | η)

q(t | γ)
, (3)

which obviously is proportional to exp
{
(η − γ)>s(t)

}
. So one can merge two natural parameters η

and γ into one single parameter β = η − γ (it can be a vector), and write the density ratio in (3) as
follows

r(t; θ) = exp
{

α + β> s(t)
}

, (4)

where α = κ(γ) − κ(η), and θ = (α, β>) are parameters of interest. Note that since r(t; θ) itself
belongs to the exponential family, the normalization term α can be considered as − log N(β), where
N(β) =

∫
q(t) exp

{
β>s(t)

}
dt, that guarantees

∫
q(t | γ)r(t; θ) dt = 1 and hence q(t)r(t; θ) becomes a

valid PDF (PMF).
For instance, suppose two normal densities p(t | µ1, σ2

1 ) = N(t | µ1, σ2
1 ) and q(t | µ2, σ2

2 ) = N(t |
µ2, σ2

2 ). They are corresponding to (1) and (2) respectively. One can easily verify that η = ( µ1
σ2

1
, −1

2σ2
1
)>,

γ = ( µ2
σ2

2
, −1

2σ2
2
)>, s(t) = (t, t2)> and κ(η) =

µ2
1

2σ2
1
+ log σ2

1 , γ(η) =
µ2

2
2σ2

2
+ log σ2

2 , and so according to (4),

we have α = log σ1
σ2

+
µ2

1
2σ2

1
− µ2

2
2σ2

2
and β =

(
µ2
σ2

2
− µ1

σ2
1

, 1
2σ2

1
− 1

2σ2
2

)>
.

Another interesting point is the relationship between DRE and probabilistic classification problem
(Sugiyama et al. 2012 c ) Suppose Z = {0, 1} is a binary response variable which shows whether an
observation t is drown from either p(·|η) (say Z = 0) or q(·|γ) (say Z = 1). In such a classification
problem the logistic model has the form

P(Z = 1 | t) =
exp(β0 + β>t)

1 + exp(β0 + β>t)
,

and consequently, P(Z = 0 | t) = 1
1+exp(β0+β>t) and

P(Z = 1 | t)
P(Z = 0 | t)

= exp(β0 + β>t) . (5)

Letting π = P(Z = 1) =
∫
P(Z = 1 | t)p(t) dt and p(t) = P(t | Z = 0) and q(t) = P(t | Z = 1), we

have

p(t) =
exp(β0 + β>t)

(1 + exp(β0 + β>t))π
,

q(t) =
p(t)

(1 + exp(β0 + β>t))(1− π)
,
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and hence

p(t)
q(t)

=
1− π

π
exp(β0 + β>) = exp

(
α + log

1− π

π
+ β>t

)
,

which has indeed form of exp(α + β>t) with α = β0 + log 1−π
π and hence has a density ratio model in

(4).
However if our response Z = {0, 1, . . . , m− 1}, we can extend equation (5) to the multinomial logit

model, and we have
P(Z = k | t)
P(Z = 0 | t)

= exp(β0k + β>k t) , k = 1, . . . , m− 1 . (6)

Analogously, letting Pk(t) = P(t | Z = k) and πk = P(Z = k) for k = 1, . . . , m − 1, we have
Pk(t)
P0(t)

= exp(αk + β>k ), with αk = β0k + log 1−∑k−1
k=1 πk
πk

.
In fact a conceptually simple solution to the DRE is to estimate separately each of two densities and

calculate the ratio. This can be done by replacing the estimators of the parameters into each density.
This approach is known as a plug–in density ratio estimation, defined in below

r̂plug(t) =
p(t | η̂(t))
q(t | γ̂(t))

, (7)

where η̂(·) and γ̂(·) are estimates of parameters of pη(·) and qγ(·) based on a sample of size np and nq

respectively .

3. Bayesian DRE

Consider the loss function `(θ, δ(t)) and its average under long–term (repeated) use of δ(t), in
estimating θ is called frequentist risk and given by

R(θ, δ) = ET|θ [`(θ, δ)] (8)

=
∫

t
`(θ, δ(t)) Pθ(dt) , (9)

where ET|θ(·) is the expectation with respect to the arbitrary measurable cumulative density function
(CDF) T ∼ P(t | θ). Given any prior distribution π, it is also possible to define the integrated risk (Bayes
risk), which is the frequentist risk averaged over the values of θ according to prior distribution π(θ)

and posterior distribution π(θ | t).

Eθ|t [R(δ(t), θ)] =
∫

Θ

∫
T
`(θ, δ(t))π(θ | t) dt dθ . (10)

Finally, the Bayes estimator is the minimizer of the Bayes risk (10). It can be shown that the minimizer
of the above expression also minimize the posterior risk function and hence is the Bayes estimator (See
Lehman and Casella 1998) .

Next, we will address the log–Huber loss and reasons beyond choosing such a loss function, in
order to study the efficiency of the DRE.

3.1. Log–Huber’s robust loss

One of the weakness of a squared error loss function z2, with z = δ − θ, is that it can overly
emphasize on outliers. As a result, other loss functions can be used to avoid this issue. For instance one
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can use the absolute loss function |z|, but since it is not a differentiable function at the origin, Huber
(1964), proposed the following function instead

H(z) =

{
z2 |z| ≤ 1
2|z| − 1 |z| ≥ 1 ,

(11)

which is equivalent to the squared error loss (L2 loss) for errors that are smaller than 1, and absolute
error loss (L1 loss) for larger errors (See Figure 1). This loss borrows advantages of L1 and L2 losses
and does not have their disadvantage. That is, it is not sensitive to the outliers (as opposed to L2)
and it is it is everywhere differentiable (as opposed to L1). In practice optimizing the Huber loss (and
consequently, Log–Huber) is much faster because it enables us to use standard smooth optimization
methods (such as quasi-Newton) instead of linear programming.
In the context of the DRE, we propose taking z = log r̂(t)

r(t,θ) in (11), yields the Log–Huber’s loss function

`(r̂, r) =
∫
(log r̂

r )
2 dP(t)

The corresponding frequentist risk function to the Log–Huber’s loss function is given by

R(r̂, θ) =

{ ∫∫
(log r̂

r )
2 dP(x) dP(y) e−1 ≤ r̂

r ≤ e
2
∫∫ (
| log r̂

r | − 1
)

dP(x) dP(y) 0 < r̂
r ≤ e−1, r̂

r ≥ e ,
(12)

where θ = (η, γ) and hence the Bayes risk for the Bayesian DRE is given by Rπ(r̂) = Eθ|tR(r̂, θ), which
is a scalar and a function of t.

Figure 1. Comparison of Huber, L2 (least square), and L1 (absolute error) loss functions in (11)

Before discussing further on this topic, it is worthwhile to consider the specific cases of Log–L2 and
Log–L1 respectively along with some useful definitions. Here are a definition and a lemma appeared
in Nielsen and Nock (2010).

Definition 1. Bregman divergence associated with a real valued strictly convex and differentiable function c(·),
is defined by

B (η, γ) = κ(η)− κ(γ)− 〈η − γ,∇c(γ)〉 , (13)

where 〈·, ·〉 is the inner product and and other notations are similar to equation (1). It can be shown
that for all regular exponential families (see, Brwon 1986) κ(·), is strictly convex, and furthermore
B(η, γ) = log c(η)

c(γ) − 〈η − γ,Eq(s(T))〉.

Lemma 1. The Kullback–Leibler (KL) distance between pη and qγ in model (1) is equal to Bregman divergence
between natural parameters. That is:

KL(p(·|η), q(·|γ)) = B(η, γ) ,
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where the KL divergence (Kullback–Leibler, 1951), between densities f1 and f2, KL( f1, f2) = E f1 log f1/ f2.

3.1.1. Log–L2 loss function

The Log–L2 loss (log z)2, with z = r̂
r , puts a small weight whenever the density ratio estimator r̂

and the true density ratio r are close and proportionately more weight when they are significantly
different. Lemma 2 provides the Bayesian DRE of the density ratio r in (3).

Lemma 2. For any measurable PDF p(· | η) and q(· | γ), the Bayesian DRE of r(t; θ) associated with log–L2

loss function (log r̂
r )

2 and prior distribution π(θ) on θ = (η, γ) is given by

r̂π(t) = exp
{
Eθ|X=t,Y=t KL (p, q)

}
, (14)

and in addition for the natural exponential family model (1) also it can be expressed as

r̂π(t) = exp
{
Eθ|X=t,Y=t B (η, γ)

}
. (15)

Note that Eθ|X=t,Y=t(·) represents the expectation associated with θ | X = t, Y = t.

Proof. For simplicity assume notations r̂π(t) and r(t; η, γ) as r̂ and r respectively.
The Bayesian estimator r̂ in estimating r is the minimizer of the posterior risk Eθ|t`(r̂, r), with `(r̂, r) =
Ep(log r̂

r )
2, and therefore, ∂

∂ log r̂ E
θ | tEp (log r̂− log r)2 = 0 implies log r̂π(t) = Eθ | tEp log r =

Eθ | tKL(p, q). Applying Lemma 1 and the fact that ∂2

∂ log r̂2 Eη | tEp (log r̂− log r)2 ≥ 0, completes the
proof.

An interesting alternative representation of Bayesian DRE from Lemma 2 is that is the Bayesian
DRE can be expressed in terms of the plug–in DRE in (7).

Corollary 1. For any PDF p and q belong to (1) and (2) respectively, the Bayesian DRE of under Log–L2 loss
L(r̂, r) = (log r̂

r )
2, and prior distribution π(θ), for θ = (η, γ), is given by

r̂π(t) = r̂plug(t) H(t) , (16)

where, r̂plug is obtained by replacing posterior expectations of unknown parameters given t.

r̂plug(t) =
exp{〈s(t),Eη|X=t,Y=tη〉 − logEη|X=t,Y=t log c(η)}

exp{〈s(t),Eγ|X=t,Y=tγ〉 − logEγ|X=t,Y=t log c(γ)}}
, (17)

and the correction factor

H(t) =
exp{logEη|X=t,Y=tc(η)−Eη|X=t,Y=t log c(η)}
exp{logEγ|X=t,Y=tc(γ)−Eγ|X=t,Y=t log c(γ)}

, (18)

Proof. The Bayesian DRE r̂π(t) is the minimizer of the posterior risk and

∂

∂ log r̂π
Eη|X=t,Y=t (log r̂π − log r)2 = 0 ,

implies log r̂π(t) = Eη|X=t,Y=t log rπ or equivalently,

r̂π(t) = exp
{
Eη|X=t,Y=t log r(t)

}
,
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with ∂2

∂ log r̂2
π
Eη|X=t,Y=t (log r̂− log r)2 ≥ 0. Therefore

r̂π(t) = exp
{
E η|X=t log pη(t)−Eγ|Y=t log qγ(t)

}
=

exp
{
E η|X=t log pη(t)

}
exp

{
Eγ|Y=t log qγ(t)

}
=

h1(t) exp {η̂>(x)s1(t)− log c1(η̂(t))}
h2(t) exp {γ̂>(t)s2(t)− log c2(γ̂(t))}

×
exp

{
c1(η̂1(t))− ̂log c1(η1)(t)

}
exp

{
c2(η̂2(t))− ̂log c2(η2)(t)

}
= r̂plug(t) H(t),

This completes the proof.

Table 1 explores the correction factor H(·) for certain densities which belong to exponential family
associated with log–L2 loss. Let the likelihood functions in below with sub indices i = 1, 2 represent
the underlying distributions are drawn from p and q accordingly to (1) and (2) respectively. It is worth
noting that posing constraints on the hyper–parameters leads to have H(t) as a constant function in t.
In fact, H(t) = 1 induces the Bayesian DRE r̂π coincides with the plug–in DRE r̂plug.

Note that the notation ψ(α) in below is for a “digamma" function and is given by ∂ Γ(δ)/∂δ
Γ(δ) . Also,

Gam, P, Pa, W and Geo stand for gamma, poisson, pareto, weibull and geometric distributions
respectively.

Density Conjugate Prior Correction factor H(t) Condition for H = 1

Gam(αi, βi) βi ∼ Gam(ai, bi) (α1 + a1)
α1 (α2 + a2)

α2 exp {−α1ψ(α1 + a1)− α2ψ(α2 + a2)} α1 = α2, a1 = a2

N(θi, σ2
i ) θi ∼ N(µi, τ2

i ) exp {1/2( 1
b1(1+b1)

− 1
b2(1+b2)

)} b1
b2

= 1+b1
1+b2

, where bi = σ2
i /τ2

i

N(θi, σ2
i ) σ2

i ∼ IG(αi, βi)
√

α1−1/2
α2−1/2 exp {1/2(ψ(α2 + 1/2)− ψ(α1 + 1/2))} α1 = α2

Pa(ai, bi) bi ∼ Gam(αi, βi)
α1+1
α2−1 exp { α1−α2

α1α2
+ ψ(α2)− ψ(α1)} α1 = α2

W(λi, ki) λi ∼ IG(αi, βi) αk1
1 /αk2

2 exp {k2ψ(α2 + 1)− k1ψ(α1 + 1)} k1 = k2, α1 = α2

Bin(ni, pi) pi ∼ Bet(αi, βi)

α2+β2+n2
α1+β1+n1

β1+n1−t
α2+n2−t×

exp {ψ(β2 + n− t)− ψ(β1 + n1 − t) + ψ(α1 + β1 + n1)− ψ(α2 + β2 + n2)} α1 = α2, β1 = β2, n1 = n2
P(λi) λi ∼ Gam(αi, βi) 1 ∀ αi, βi and λi

Ge(pi) pi ∼ Bet(αi, βi) exp {ψ(β1 + t)− ψ(α1 + 1) + ψ(β2 + t)− ψ(α2 + 1)} β2+t
β1+t

α1+1
α2+1 α1 = α2, β1 = β2

Table 1. Correction factor H(t) and conditions when H(t) = 1 associated with log–L2 loss

3.1.2. Log–L1 loss function

For some larger errors in loss function (12), one needs to consider Log–L1 loss function `(r̃, r) =
2| log r

r̃ | − 2 for all r̃ ≤ r/e, r̃ ≥ r e. Let r̃ be the corresponding Bayesian DRE. Similar calculation to
Lemma 2 suggests

r̃π(t) = exp
{
Mθ|X=t,Y=t B (η, γ)

}
,

where Mθ|t(·) is the median of the posterior density function θ | t. Similar to Section 3.1.1, and
equations (14) and (15), we can write r̃π(t) = exp

{
Mθ|X=t,Y=tKL(p, q)

}
which expectations are

replaced by medians.
Alike Corollary 1 we also can express r̃π(t) in terms of product of the correction factor and the

plug–in DRE. That is, under Log–L1 loss L(r̃, r) = | log r̂
r |, and prior distribution π(θ), for θ = (η, γ),

we have
r̃π(t) = r̃plug(t) H′(t) , (19)
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where the r̃plug(t) and H′(t) are obtained in the same fashion in (17) and (18) except applying median
Mθ|X=t,Y=t(·) instead of Eη|X=t,Y=t(·). Notice that for instance the results in Table 1 hold, wherever
the posterior densities turn out to be symmetric about their means (or medians).

3.2. Examples of the Bayesian DRE and some applications

We consider commonly used families of distributions and study the corresponding Bayesian DREs.
As we saw in the previous section, the key point is to find the KL divergence between two densities
p and q (or equivalently, Bregman divergence in the cases of distributions belonging to exponential
family) and we have a closed-form for the divergence. The following table presents the KL divergence
between p and q.

Density KL

Np(θi, Σi)
1
2

[
(θ1 − θ2)

′Σ−1
2 (θ1 − θ2) + tr(Σ−1

2 Σ1)− p− log det(Σ1)
det(Σ2)

]
N(θi, σi)

1
2σ2

2

[
(θ1 − θ2)

2 + σ2
1 − σ2

2
]
− 1

2 log σ2
1

σ2
2

Bet(ai, bi) log Bet(a2,b2)
Bet(a1,b1)

+ ψ(a1)(a1 − a2) + ψ(b1)(b1 − b2) + ψ(a1 + b1)(a2 − a1 + b2 − b1)

Gam(ki, λi) ( λ1
λ2
− 1)k1 + (k1 − k2)(log λ1 + ψ(k1))− log Γ(k1)λ

k1
1

Γ(k2)λ
k2
2

χ2(ki) log Γ( k2
2 )

Γ( k1
2 )

+ 1
2 ψ( k2

2 )(k1 − k2)

Log–N(θi, σ2
i )

1
2σ2

2

[
(θ1 − θ2)

2 + σ2
1 − σ2

2
]
− log σ2

1
σ2

2

Ray(σi) 2 log σ2
σ1

+
σ2

1−σ2
2

σ2
2

Pa (mi, αi) log(m1
m2

)2 − log a2
a1
+ a2

a1
− 1

U(0, θi) log( θ2
θ1
) Provided θ2 > θ1

Table 2. KL divergence between p and q

Example 1. Let X|θ1 ∼ N(θ1, σ2
1 ) be independent of Y|θ2 ∼ N(θ2, σ2

2 ), with the known variances and
independent prior distributions θi ∼ N(ξi, τ2

i ) for i = 1, 2. Hence the posterior densities are given by

θ1 |X = t ∼ N
(

ξ1τ2
1 + τ2

1 t
τ2

1 + σ2
1

,
τ2

1 σ2
1

τ2
1 + σ2

1

)
,

θ2 |Y = t ∼ N
(

ξ2τ2
2 + τ2

2 t
τ2

2 + σ2
2

,
τ2

2 σ2
2

τ2
2 + σ2

2

)
,

yields the Bayesian DRE as below.

r̃π(t) = r̂π(t) =
σ2

σ1
exp


σ2

1 − σ2
1 +

(
ξ1σ2

1+tτ2
1

σ2
1+τ2

1
− ξ2σ2

2+tτ2
2

σ2
2+τ2

2

)2

2σ2
2

 . (20)

If we assume the multivariate case, ie. X|θ1 ∼ Np(θ1, Σ1) and Y|θ2 ∼ Np(θ2, Σ2), where both covariance
matrices are known, since the conjugate prior for the mean is p–variate normal, θi ∼ Np(ξi, Vi), for i =

1, 2, hence the posterior is p–variate normal. The results are analogous to the univarite case and θ1|t ∼
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Np(W1(Σ−1
1 t+V−1

1 ξ1), W1) and θ2|t ∼ Np(W2(Σ−1
2 t+V−1

2 ξ2), W2) with Wi = (Σ−1
i +V−1

i )−i. Therefore
the Bayesian DRE for the ratio of two multivariate normal densities equals to

1
2

[
(W1(Σ−1

1 t + V−1
1 ξ1)−W2(Σ−1

2 t + V−1
2 ξ2))

′Σ−1
2 (W1(Σ−1

1 t + V−1
1 ξ1)

−W2(Σ−1
2 t + V−1

2 ξ2)
′ + tr(Σ−1

2 Σ1)−
1
2

log
det(Σ1)

det(Σ2)

]
.

Example 2. Let X|σ2
1 ∼ Ray(σ2

1 ) and Y|σ2
2 ∼ Ray(σ2

2 ) be two independent random variables from Rayleigh
distribution with the PDF p(x|σ2) = x

σ2 exp(− x2

2σ2 ) for x > 0 and σ2 > 0. The KL divergence between
p(x|σ2

1 ) and p(y|σ2
2 ) is given in the Table 2. Assuming λi = 2σ2

i , and choosing the inverse gamma conjugate
prior distribution (IG) with parameters α and β, with the PDF π(λ|α, β) = βα

γ(α)
λ−(α+1) exp(− β

λ ) for λ > 0,
which yields to have the posterior distribution as follows

λi | t ∼ IG(1 + αi, βi + t2) . (21)

Therefore the Bayesian DRE for ratio of two Rayleigh densities is the exponential
function of the conditional expectation of their KL loss divergence function. That is,
exp

(
Eλ2|tλ2 −Eλ1|t log λ1 +Eλ1|tλ1 Eλ2|tλ−1

2 − 1
)

.

By making use of properties of λ ∼ IG(α, β), such as E(log λ) = log β− ψ(α), where ψ(α) is a
“digamma" function, the Bayesian DRE under log–L2 loss is give by

r̂π(t) =
β2 + t2

β1 + t2 exp
(

α2 − α1

α1α2
+

α1

1 + α2

β1 + t2

β2 + t2 − ψ(α2) + ψ(α1)− 1
)

.

Since the median of an inverse gamma distribution does not have a closed form, we cannot express an
explicit formula for the Bayesian DRE under log–L1 loss function and consequently for the log–Huber
loss and they must be calculated iteratively.

The following remarks are some clarification related to Table 2 and the obtained Bayes estimators
in the previous examples in Section. 3.2.

Remark 1. The Bayes DRE r̂π(t) is connected to samples X and Y via the posterior density η | X = t and
γ | Y = t.

Remark 2. From Table 2 it can be seen that the KL divergence between two log–normal PDF’s is the same as in
normal distributions, since it is known that KL is invariant under parameter transformations.

Remark 3. Equations (14) and (15) are applicable for not only exponential family but any distributions. The
key point is that the nice representation of Bayesian DRE in (16) and (19) are correct based on models (1) and (2).

Example 3. Suppose, X ∼ Uni f orm(0, θ1) is independent of Y ∼ Uni f orm(0, θ2), with θ1 < θ2. It is easy
to check Pareto distribution is conjugate to a uniform. Hence assume that π(θi) = αiβ

αi
i θ
−(α1+1)
i for θ ≥ βi

and i = 1, 2, therefore
θi | t ∼ Pareto(1 + αi, max (βi, t))

Moreover, assuming p and q are the PDF’s of X and Y respectively, therefore, KL(p, q) = log θ2 − log θ1 (see
Table 2). Employing the fact that transformation log(z/b) has exponential distribution with mean of a, given
Z ∼ Pareto(a, b), and hence EZ log Z = a + log b, after some calculation we have the Bayes DRE associated
with log–L2

r̂π(t) =
max (β2, t)
max (β1, t)

+ α2 − α1.
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4. Other applications

Here, we discuss some of other applications of DRE method.

1. Estimating α–divergence function between two probability densities:
A discrepancy measure between densities pη and qγ applicable to the class of Ali-Silvey (1966)
distance also known as α–divergence (Csiszàr, 1967) is given by

`α(p(· | η), q(·| γ)) =
∫
Rd

hα

(
p(t| η)
q(t| γ)

)
d P(t| γ) , (22)

where

hα(z) =


4

1−α2 (1− z−(1+α)/2) for |α| ≤ 1
− log(z)/z for α = −1
log(z) for α = 1.

Note that some of the notable divergence functions say, Kullback–Leibler, reverse
Kullback–Leibler (RKL) and Hellinger divergence functions correspond to α = 1,−1 and 0
respectively and belong to this class. So, if r(t) is estimated by r̂π(t) under log– L2(or r̃π(t) under
log– L1 losses ), then applying the Monte–Carlo approximations method, the α–divergence is
also estimated by

dα(t) = 1/n
n

∑
i=1

hα(r̂π(ti)) , (23)

where ti are drown from p(· | η). It is worthwhile to note that there are other work in order to
estimate the α–divergence loss function (eg. Póczos and Schneider 2010) but our estimator in
(23), is based on the Bayesian parametric method based on the DRE. Next section we show the
performance of the proposal estimator dα.

2. plug–in type estimation of the density ratio under KL loss function
Consider the plug–in density estimator, say, pη̂(t) for estimating pη in the exponential family (1),
based on the KL loss. We have

KL(p(t | η), p(t | η̂)) =
∫

log
p(η | t)
p(t | η̂) P(t | η) dt

=
∫

p(t | η̂) log
exp {〈η, s(t)〉 − c(η)}

exp {〈η̂(t), s(t)〉 − c(η̂(t))} dt

= 〈η − η̂(t), Ep s(T)〉 − (c(η)− c(η̂(x))

= 〈η − η̂(t),
∂c(η)

∂ η
〉 − (c(η)− c(η̂(t)) . (24)

Next, finding the plug–in density estimator p(t, η̂(t)) that minimizes KL loss, is equivalent to
find the point estimator η̂(t), which minimizes the posterior expectation associated with the loss
function in (24). Therefore, ∂

∂ η̂E
η|tKL(p(t | η), p(t | η̂)) = 0, implies c1(η̂) = Eη|t c(η)

η and hence
the Bayes estimator of η is given by

η̂1(t) = c−1
1

(
Eη|t c1(η)

η

)
. (25)

Similar arguments can be applied to qγ̂(t) for estimating qγ in the exponential family (2), and we
have,

γ̂2(y) = c−1
2

(
Eγ|t c2(γ)

γ

)
. (26)
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By setting the case when the both densities follow the identical distribution from (1) (for instance
the ratio of two normal or two Poisson, etc.), substituting the Bayes estimators obtained in (25)
and (26) into the plug–in estimator of r(t), gives

r̂(t) = exp{(η̂1(t)− η̂2(t))>s(t)− (c1(η̂1(t)− c2(η̂2(t))}. (27)

Note that r̃(t) can be obtained similarly by replacing posterior medians η̃i instead of posterior
expectations η̂i for i = 1, 2, in above.

5. Numerical illustrations

We conclude this section with some numerical illustrations of log–Huber risk performance of the
Bayesian and plug–in when both p and q are two normal models (belong to model 1 and 2) with a
common location parameter θ. We show that the performance of plug–in and Bayes are quite similar
and by selecting the hyper–parameters these two density ratio estimators coincide and hence have
the same frequentist risk. We start with comparing risk performance under the log–L2 first and then
extend them log–Huber loss.

Figure 2 exhibits the frequentist risk performance of the plug–in DRE r̂plug and the Bayes DRE r̂π

under log–L2 for all possible values of θ using Corollary 1.

-1 1 2 3
θ

1

2

3

Risk functions

Risk of DRE

Risk of plug-in Bayes DRE

Figure 2. Risk function of the Bayes and plug–in DRE under L2 loss in normal models p = N(θ, 1),
q = N(θ, 2) and corresponding hyper–parameters ξ = 1, ξ = 2 = 0, τ1 = τ2 = 1 correspond to Example
1.

Figure 3 shows changing the frequentist risk performance of the plug–in DRE r̂plug and the Bayes
DRE r̂π under log–L2 when the variance σ2 varies using Corollary 1.

2 3 4 5
ratio of the variances

0.40

0.45

0.50

0.55
Risk functions

Risk of DRE

Risk of plug-in Bayes DRE

Figure 3. Risk function of the Bayes and plug–in DRE under log–L2 loss in normal models p = N(1, σ2),
q = N(1, σ2) and hyper–parameters ξ = 1, ξ = 2 = 0, τ1 = τ2 = 1 in Example 1.

Finally, the following graphical illustrations depict the risk function of the Bayes and plug–in DRE
under log–Huber loss over possible ranges of the mean and variance respectively in Example 1.
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-2 2 4
θ

5

10

15

20

Risk functions

Risk of DRE

Risk of plug-in Bayes DRE

Figure 4. Risk function of the Bayes and plug–in DRE under log–Huber loss in normal models
p = N(θ, 1), q = N(θ, 2) and corresponding hyper–parameters ξ = 1, ξ = 2 = 0, τ1 = τ2 = 1 for all
possible range of µ in Example 1.

��������

0.2 0.4 0.6 0.8 1.0 1.2 1.4
σ2

10

20

30

40

Risk functions

Risk of DRE

Risk of plug-in Bayes DRE

Figure 5. Risk function of the Bayes and plug–in DRE under log–Huber loss in normal models
p = N(0, σ2), q = N(1, σ2) and corresponding hyper–parameters ξ = 1, ξ = 2 = 0, τ1 = τ2 = 1, for all
possible range of σ2 in Example 1.

6. Concluding remarks

Estimating the ratio of two or more densities has received a widespread attention in recent years.
Till date, most of the methods have been concentrated on solving this problem via nonparametric
approaches. In this paper, we focused on a parametric Bayesian approach, when distributions come
from the canonical form of the exponential family. We applied the log–Huber loss function to
investigate the utility of the Bayesian and plug–in DRE . Our results confirm that Bayesian DRE
along with the plug–in DRE (based on posterior expectations) perform similarly under log–Huber
loss functions with the possibility of being exactly equal when the correction factor H = 1. This is a
somehow different result from a non–parametric point of view which is often the time the plug–in
estimators perform poorly as opposed to empirical non–parametric Bayesian methods typically include
stochastic processes such as the Gaussian process and the Dirichlet process. There are instances (for
example, see Krnjajic et al. 2008, and the references therein) that for certain type of count data,
the nonparametric Bayesian methodology provides enhanced flexibility to fit the data, provide
rich posterior inferences, and provide finer predictive inference under a set of carefully selected
criteria. However, there is an apparent major drawback. These processes have an infinite number of
dimensions thus naive algorithmic approaches to computing posteriors is generally infeasible. Finally,
the application to estimating the α–divergence between two PDF’s was discussed.

Acknowledgments: The authors thank Prof. Eric Marchand (Université de Sherbrooke) for his useful comments.
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