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Abstract

In this paper, we study the convergence of new implicit iterations dealing with n-tupled fixed point results

for nonlinear contractive-like mappings on W-hyperbolic metric spaces. Herein, we demonstrate that our

newly implicit iteration schemes have faster rate of convergence than implicit S-iteration process, implicit

Ishikawa and Mann type iteration processes. Furthermore, a numerical simulation to improve our theoretical

results is obtained.
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1 Introduction and Preliminaries

The classical Banach Contraction Principle is one of the most important results of analysis which considered

as the main source of metric fixed point theory. It states that every contraction operator on a complete metric
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space has a unique fixed point. A great deal of expansions of this principle have been done, for the most part by

generalizing the contraction operator and some of the time by expanding the necessity of completeness or even

both. This principle is applied to prove the existence and uniqueness of solutions of nonlinear Volterra integral

equations and nonlinear integro-differential equations in Banach spaces other than supporting the assembly of

calculations in Computational Mathematics.

In 1987, Guo and Lakshmikantham [5] presented some results about coupled fixed point. Thereafter, in 2006,

Bhaskar and Lakshmikantham [6] gave some fixed point results for weak contractivity type mappings on a

partially ordered complete metric space, using a mixed monotone property. In 2009, Lakshmikantham and

Ciric [7] defined the concept of mixed g-monotone mappings and introduced coupled coincidence and coupled

common fixed point results for nonlinear contractive mappings in a metric space endowed with a partial ordering,

which also extended the fixed point theorems due to Bhaskar and Lakshmikantham [5]. In 2013, Imdad et al.

[14] gave the definition of n-tupled common fixed point as well as n-tupled common coincidence and utilized

these two notions to obtain n-tupled coincidence as well as n-tupled common fixed point results for contraction

operators. The notions given by Imdad et al. [14] are quite different from the notions of Roldán et al. [16].

On the other hand, there is one, may be more characteristic, approach to respect the idea of convexity. Convexity

in a vector space is characterized utilizing lines between points; in Euclidean spaces or more generally in Banach

spaces, there is a line of most brief length that joins two points, and the length of this line is the line segment

between its two endpoints. However, metric spaces do not naturally have this convex structure. In 1970,

Takahashi [18] defined the concept of convexity in metric spaces and gave some fixed point theorems for non-

expansive mappings in such spaces. A convex metric space is more general than normed space and cone Banach

space [18]. After some time, diverse raised convex structures have been presented on metric spaces. In 2004,

Kohlenbach [11] gave the notion of W-hyperbolic spaces which represents a consolidated approach for both

linear and nonlinear structures at the same time. It is worth noting that every hyperbolic space is a convex

metric space defined by Takahashi [18] but converse may not be true in general [3].

Iterative methods for approximating fixed points in convex metric spaces have been studied by many authors

(see, e.g., [3, 4, 8, 9]), using implicit iterative procedures which are incredible significance from numerical angle
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as they give precise estimate.

The following forms give a metric version of implicit Ishikawa and implicit Mann iteration schems defined by

Ćirić et al. [1, 2] in the background of W-hyperbolic space.

Let E be a nonempty convex subset of a W-hyperbolic space X and T : E → E. Choose x0 ∈ E and define the

sequence {xn} as follows:

xn = W (xn−1, T yn, αn) (1)

yn = W (xn, Txn, βn), n ∈ N,

and

xn = W (xn−1, Txn, αn), n ∈ N. (2)

Recently, Yildirim and Abbas [13] introduced implicit S-iteration process with higher rate of convergence than

Mann type (2) and Ishikawa type (1) implicit iterative processes.

Initiated with x0 ∈ E, then we get the following sequence {xn}:

xn = W (Txn−1, T yn, αn) (3)

yn = W (xn, Txn, βn), n ∈ N,

where (αn) and (βn) are certain real sequences in [0, 1]. In this paper, we introduce some new implicit iteration

process and study their rate of convergence in hyperbolic metric spaces. Also, we give a numerical example to

exhibit the utility of our proved results.

We need the following definitions and lemma in order to introduce our main results.

Definition 1 [11] A W-hyperbolic space (X, d,W ) is a metric space (X, d) together with a convex mapping

W : X2 × [0, 1]→ X satisfying the following properties:

(i) d(u,W (x, y, α)) ≤ (1− α)d(u, x) + αd(u, y),

(ii) d(W (x, y, α),W (x, y, β)) = ‖α− β‖d(x, y),

(iii) W (x, y, α) = W (y, x, 1− α),

3
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(iv) d(W (x, z, α),W (y, w, α)) ≤ (1− α)d(x, y) + αd(z, w),

for all x, y, z, w ∈ X and α, β ∈ [0, 1].

Definition 2 [13] A self mapping T on X is called a contractive-like mapping if there exists a constant δ ∈ [0, 1)

and a strictly increasing and continuous function ϕ : [0, 1)→ [0, 1) with ϕ(0) = 0 such that for any x, y ∈ X we

have

d(Tx, Ty) ≤ δd(x, y) + ϕ(d(x, Tx)). (4)

Definition 3 [5] An element (x, y) ∈ X ×X is called a coupled fixed point of the mapping T : X ×X → X if

T (x, y) = x and T (y, x) = y.

Definition 4 [14] Let X be a nonempty set.An element x1, x2, x3, ..., xn ∈ Xn is called an n-tupled fixed point

of the mapping T if

x1 = T (x12, x
2, x3, ..., xn),

x2 = T (x2, x32, x
3, ..., xn, x1),

...

xn = T (xn, x1, x2, ..., xn−1).

Lemma 5 [17] Let {cn}∞n=1 ⊂ [0,∞). If there exists an n0 ∈ N such that for all n ≥ n0, we get

cn+1 ≤ (1 + ηn)cn + ηnθn,

where ηn ∈ (0, 1),
∞∑

n=0
η =∞ and θn ≥ 0 for all n ∈ N. Then the following holds:

0 ≤ lim
n→∞

sup cn ≤ lim
n→∞

sup θn.

2 Main Results

Definition 6 Let E be a nonempty convex subset of a W-hyperbolic space X and T :
n∏

i=1

E → E. Choose

{xi0} ∈ E and define the two sequences {xim} and {yim} for each i = 1, 2, 3, ..., n as follows:

x1m = W (Tm(x1m−1, x
2
m−1, . . . , x

n
m−1), T (y1m, y

2
m, . . . , y

n
m), αm) (5)

4
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x2m = W (Tm(x2m−1, x
3
m−1, . . . , x

n
m−1, x

1
m−1), T (y2m, y

3
m, . . . , y

n
m, y

1
m), αm)

...

xnm = W (Tm(xnm−1, x
1
m−1, x

2
m−1, . . . , x

n−1
m−1), T (ynm, y

1
m, y

2
m−1, . . . , y

n−1
m ), αm)

y1m = W (x1m, T (x1m, x
2
m, . . . , x

n
m), βm)

y2m = W (x2m, T (x2m, x
3
m, . . . , x

n
m, x

1
m), βm)

...

ynm = W (xnm, T (xnm, x
1
m, x

2
m, . . . , x

n−1
m ), βm), m, n ∈ N,

where Tm(x1, x2, . . . , xn) = T (Tm−1(x1, x2, . . . , xn), T (x2, x3, . . . , xn, x1), . . . , T (xn, x1, . . . , xn−1)) and (αm),

(βm) are certain real sequences in [0, 1].

Definition 7 Let E be a nonempty convex subset of a W-hyperbolic space X and T :
n∏

i=1

E → E. Choose

{xi0} ∈ E and define the two sequences {xim} and {yim} for each i = 1, 2, 3, ..., n as follows:

x1m = W (T (x1m−1, x
2
m−1, . . . , x

n
m−1), T (y1m, y

2
m, . . . , y

n
m), αm) (6)

x2m = W (T (x2m−1, x
3
m−1, . . . , x

n
m−1, x

1
m−1), T (y2m, y

3
m, . . . , y

n
m, y

1
m−1), αm)

...

xnm = W (T (xnm−1, x
1
m−1, x

2
m−1, . . . , x

n−1
m−1), T (ynm, y

1
m, y

2
m−1, . . . , y

n−1
m ), αm)

y1m = W (x1m, T (x1m, x
2
m, . . . , x

n
m), βm)

y2m = W (x2m, T (x2m, x
3
m, . . . , x

n
m, x

1
m), βm)

...

ynm = W (xnm, T (xnm, x
1
m, x

2
m, . . . , x

n−1
m ), βm), m, n ∈ N,

where (αm) and (βm) are certain real sequences in [0, 1].

Definition 8 Let E be a nonempty convex subset of a W-hyperbolic space X and T :
n∏

i=1

E → E. Choose

{xi0} ∈ E and define the two sequences {xim} and {yim} for each i = 1, 2, 3, ..., n as follows:

x1m = W (x1m−1, T (y1m, y
2
m, . . . , y

n
m), αm) (7)
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x2m = W (x2m−1, T (y2m, y
3
m, . . . , y

n
m, y

1
m−1), αm)

...

xnm = W (xnm−1, T (ynm, y
1
m, y

2
m−1, . . . , y

n−1
m ), αm)

y1m = W (x1m, T (x1m, x
2
m, . . . , x

n
m), βm)

y2m = W (x2m, T (x2m, x
3
m, . . . , x

n
m, x

1
m), βm)

...

ynm = W (xnm, T (xnm, x
1
m, x

2
m, . . . , x

n−1
m ), βm), m, n ∈ N,

where (αm) and (βm) are certain real sequences in [0, 1].

Definition 9 Let E be a nonempty convex subset of a W-hyperbolic space X and T :
n∏

i=1

E → E. Choose

{xi0} ∈ E and define the two sequences {xim} and {yim} for each i = 1, 2, 3, ..., n as follows:

x1m = W (x1m−1, T (x1m, x
2
m, . . . , x

n
m), αm) (8)

x2m = W (x2m−1, T (x2m, x
3
m, . . . , x

n
m, x

1
m−1), αm)

...

xnm = W (xnm−1, T (xnm, x
1
m, x

2
m−1, . . . , x

n−1
m ), αm), m, n ∈ N,

where (αm) and (βm) are certain real sequences in [0, 1].

Definition 10 A self mapping T on X × X is called a contractive-like mapping if there exists a constant

δ ∈ [0, 1) and a strictly increasing and continuous function ϕ : [0,∞)→ [0,∞) with ϕ(0) = 0, such that for any

x, y ∈ X we have

d(T (x1, x2, . . . , xn), T ((y1, y2, . . . , yn))) ≤ δ

n
[d(x1, y1) + d(x2, y2) + . . .+ d(xn, yn)] + ϕ(d(x1, T (x1, x2, . . . , xn)) +

d(x2, T (x2, x3, . . . , xn, x1)) + . . .+ d(xn, T (xn, x1, . . . , xn−1))). (9)

Theorem 11 Let T :
n∏

i=1

E → E be a contractive-like mapping defined in (9) on a nonempty closed convex

subset E of a W-hyperbolic metric space (X, d,W ) with F (T ) 6= φ (F (T ) denote the set of all fixed points of

T ). Then, for the sequence {xm} defined in (5) we have lim
m→∞

xim = pi, where (p1, p2, ..., pi) ∈ F (T ).

6
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Proof. Assume that (p1, p2, ..., pi) ∈ F (T ). Using (5) and (9), we get

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (10)

= d(W (Tm(x1m−1, x
2
m−1, . . . , x

n
m−1), T (y1m, . . . , y

n
m−1), αm), p1)

+d(W (Tm(x2m−1, x
3
m−1, . . . , x

n
m−1, x

1
m−1), T (y2m, . . . , y

n
m−1, y

1
m−1), αm), p2)

...

+d(W (Tm(xnm−1, x
1
m−1, . . . , x

n−1
m−1), T (ynm, y

1
m−1, . . . , y

n−1
m−1), αm), pn)

≤ αmd(T (Tm−1(x1m−1, x
2
m−1, . . . , x

n
m−1), Tm−1(x2m−1, x

3
m−1, . . . , x

1
m−1), . . . ,

Tm−1(xnm−1, x
1
m−1, . . . , x

n−1
m−1)), T (p1, p2, . . . , pn))

+(1− αm)d(T (y1m, . . . , y
n
m−1), T (p1, p2, . . . , pn))

+αmd(T (Tm−1(x2m−1, x
3
m−1, . . . , x

1
m−1), Tm−1(x3m−1, x

4
m−1, . . . , x

2
m−1), . . . ,

Tm−1(x1m−1, x
2
m−1, . . . , x

n
m−1)), T (p2, p3, . . . , pn, p1))

+(1− αm)d(T (y2m, . . . , y
1
m−1), T (p2, p3, . . . , p1))

...

+αmd(T (Tm−1(xnm−1, x
1
m−1, . . . , x

n−1
m−1), Tm−1(x1m−1, x

2
m−1, . . . , x

n
m−1), . . . ,

Tm−1(xn−1m−1, x
n
m−1, x

1
m−1 . . . , x

n−2
m−1)), T (pn, p1, . . . , pn−1))

+(1− αm)d(T (ynm, T (y1m, . . . , y
n−1
m−1), T (pn, p1, . . . , pn))

≤ αmδ
m[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)] + (1− αn)δ[d(y1m, p
1) + d(y2m, p

2) + . . .+ d(ynm, p
n)],

and

d(y1m, p
1) + d(y2m, p

2) + . . .+ d(ynm, p
n) (11)

= d(W (x1m, T (x1m, x
2
m, . . . , x

n
m), βm)), p1)

+d(W (x2m, T (x2m, x
3
m, . . . , x

1
m), βm)), p2)

...

+d(W (xnm, T (xnm, x
1
m, . . . , x

n−1
m ), βm)), pn)

7
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≤ βm[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)]

+(1− βm)[d(T (x1m, x
2
m, . . . , x

n
m), T (p1, p2, . . . , pn)) + d(T (x2m, x

3
m, . . . , x

1
m), T (p2, p3, . . . , p1))

...

+d(T (xnm, x
1
m, . . . , x

n−1
m ), T (pn, p1, . . . , pn−1))]

≤ (βm + (1− βm)δ)[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)].

By (10) and (11), we have

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)

≤ αmδ
m[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)] (12)

+(1− αm)δ(βm + (1− βm)δ)[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)]

< αmδ
m[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]

+(1− αm)δ[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)]

which implies that

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) < Dm[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)], (13)

where

Dm =
αmδ

m

1− (1− αm)δ
.

Observe that

1−Dm = 1− αmδ
m

1− (1− αm)δ
=

1− (1− αm)δ − αmδ
m

1− (1− αn)δ

≥ 1− (1− αm)δ − αmδ
m

implies that

Dm ≤ (1− αm)δ + αmδ
m < δ (14)

Now, in view of (13) and (14), we have

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) < Dm[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)] (15)

8
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< δ[d(x1m−1, p
1) + d(x2m−1, p

2) + . . .+ d(xnm−1, p
n)]

...

< δm[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)].

Taking limit on both sides of the above inequality, we have lim
m→∞

[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)] = 0.

Theorem 12 Let T :
n∏

i=1

E → E be a contractive-like mapping defined in (9) on a nonempty closed convex

subset E of a W-hyperbolic metric space (X, d,W ) with F (T ) 6= φ. Then, for the sequence {xn} defined in (7)

we have lim
m→∞

xim = pi, where (p1, p2, ..., pi) ∈ F (T ).

Proof. Assume that (p1, p2, ..., pi) ∈ F (T ). Using (7) and (9), we get

(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (16)

= d(W (T (x1m−1, x
2
m−1, . . . , x

n
m−1), T (y1my

2
m, . . . , y

n
m), αm)), p1)

+d(W (T (x2m−1, x
3
m−1, . . . , x

1
m−1), T (y2m, y

3
m, . . . , y

1
m), αm)), p2)

...

+d(W (T (xnm−1, x
1
m−1, . . . , x

n−1
m−1), T (ynm, y

1
m, . . . , y

n−1
m ), αm)), pn)

≤ αm[d(T (x1m−1, x
2
m−1, . . . , x

n
m−1), T (p1, p2, . . . , pn)) + . . .+ d(T (xnm−1, x

1
m−1, . . . , x

n−1
m−1), T (pn, p1, . . . , pn−1))]

+(1− αm)[d(T (y1m, y
2
m, . . . , y

n
m), T (p1, p2, . . . , pn)) + . . .+ d(T (ynm, y

1
m, . . . , y

n−1
m ), T (pn, p1, . . . , pn−1))]

≤ αmδ[d(x1m−1, p
1) + d(x2m−1, p

2) + . . .+ d(xnm−1, p
n)]

+(1− αm)δ[d(y1m, p
1) + d(y2m, p

2) + . . .+ d(ynm, p
n)]

and

d(y1m, p
1) + d(y2m, p

2) + . . .+ d(ynm, p
n) (17)

= d(W (x1m, T (x1m, x
2
m, . . . , x

n
m), βm)), p1)

+d(W (x2m, T (x2m, x
3
m, . . . , x

1
m), βm)), p2)

...

+d(W (xnm, T (xnm, x
1
m, . . . , x

n−1
m ), βm)), pn)

9
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≤ βm[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)]

+(1− βm)[d(T (x1m, x
2
m, . . . , x

n
m), T (p1, p2, . . . , pn)) + d(T (x2m, x

3
m, . . . , x

1
m), T (p2, p3, . . . , p1))

...

+d(T (xnm, x
1
m, . . . , x

n−1
m ), T (pn, p1, . . . , pn−1))]

≤ (βm + (1− βm)δ)[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)].

Therefore,

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (18)

≤ αmδ[d(x1m−1, p
1) + d(x2m−1, p

2) + . . .+ d(xnm−1, p
n)]

+(1− αm)δ(βm + (1− βm)δ)[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)]

< αmδ[d(x1m−1, p
1) + d(x2m−1, p

2) + . . .+ d(xnm−1, p
n)]

+(1− αm)δ[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)],

which implies that

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) < Dm[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)], (19)

where

Dm =
αmδ

1− (1− αm)δ
.

Observe that

1−Dm = 1− αmδ

1− (1− αm)δ
=

1− δ
1− (1− αm)δ

≥ 1− δ

implies that

Dm ≤ δ (20)

Due to (19) and (20), we have

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) < δ[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)] (21)

10
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< (δ)2[d(x1m−2, p
1) + d(x2m−2, p

2) + . . .+ d(xnm−2, p
n)]

...

< (δ)m[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)].

Taking limit on both sides of the above inequality, we obtain lim
m→∞

[d(x1m, p
1) +d(x2m, p

2) + . . .+d(xnm, p
n)] = 0.

Theorem 13 Let T :
n∏

i=1

E → E be a contractive-like mapping defined in (9) on a nonempty closed convex

subset E of a W-hyperbolic metric space (X, d,W ) with F (T ) 6= φ. Then, for the sequences {xn}, {yn} defined

in (6) with
∑

(1− ϕn) =∞, we have lim
m→∞

xim = pi, where (p1, p2, ..., pi) ∈ F (T ).

Proof. Assume that (p1, p2, ..., pi) ∈ F (T ). Using (7) and (9), we get

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (22)

= d(W (x1m−1, T (y1m, y
2
m, . . . , y

n
m), αm), p1) + d(W (x2m−1, T (y2m, y

3
m, . . . , y

1
m), αm), p2)

+ . . .+ d(W (xnm−1, T (ynm, y
1
m, . . . , y

n−1
m ), αm), pn)

≤ αm[x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)] + (1− αm)δ[d(y1m, p

1) + d(y2m, p
2) + . . .+ d(ynm, p

n)].

And

d(y1m, p
1) + d(y2m, p

2) + . . .+ d(ynm, p
n) ≤ (βn + (1− βn)δ)[d(x1m, p

1) + d(x2m, p
2) + . . .+ d(xnm, p

n)].(23)

Therefore

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) ≤ αm[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)] (24)

+(1− αm)δ(βm + (1− βm)δ)[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)]

< αm[d(x1m−1, p
1) + d(x2m−1, p

2) + . . .+ d(xnm−1, p
n)]

+(1− αm)δ[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)],

which implies that

[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)] < Dm[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)], (25)

11
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where

Dm =
αm

1− (1− αm)δ
.

Observe that

1−Dm = 1− αm

1− (1− αm)δ
=

(1− αm)(1− δ)
1− (1− αm)δ

≥ (1− αm)(1− δ)

implies that

Dm ≤ 1− (1− αm)(1− δ) (26)

From (25) and (26), we have

[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)] < 1− (1− αm)(1− δ)[[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]](27)

<

m∏
i=1

(1− (1− αi)(1− δ))[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)]

< exp{
m∑
i=1

(1− αi)(1− δ)}[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)]

< exp{
∞∑
i=1

(1− αi)(1− δ)}[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)]

Using the fact that 0 ≤ δ < 1 and
∑

(1− αi) =∞, we conclude that

lim
m→∞

[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)] = 0.

Theorem 14 Let T :
n∏

i=1

E → E be a contractive-like mapping defined in (9) on a nonempty closed convex

subset E of a W-hyperbolic metric space (X, d,W ) with F (T ) 6= φ. Then, for the sequences {xn}, {yn} defined

in (8) with
∑

(1− αi) =∞, we have lim
m→∞

xim = pi, where (p1, p2, ..., pi) ∈ F (T ).

Proof. Assume that (p1, p2, ..., pi) ∈ F (T ). Using (8) and (9), we get

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (28)

= d(W (x1m−1, T (x1m, x
2
m, . . . , x

n
m), αm), p1) + d(W (x2m−1, T (x2m, x

3
m, . . . , x

1
m), αm), p2)

+ . . .+ d(W (xnm−1, T (xnm, x
1
m, . . . , x

n−1
m ), αm), pn)

12
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≤ αm[d(x1m−1, p
1) + d(x2m−1, p

2) + . . .+ d(xnm−1, p
n)]

+(1− αm)δ[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)],

which implies that

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) ≤ Dm[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)], (29)

where

Dm =
αm

1− (1− αm)δ
.

Observe that

1−Dm = 1− αm

1− (1− αm)δ
=

(1− αm)(1− δ)
1− (1− αm)δ

≥ (1− αm)(1− δ)

implies that

Dm ≤ 1− (1− αm)(1− δ) (30)

From (29) and (30), we have

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) ≤ (1− (1− αm)(1− δ))[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]

<

m∏
i=1

(1− (1− αi)(1− δ))[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)]

< exp{
m∑
i=1

(1− αi)(1− δ)}[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)]

< exp{
∞∑
i=1

(1− αn)(1− δ)}[d(x10, p
1) + d(x20, p

2) + . . .+ d(xn0 , p
n)] (31)

Using the fact that 0 ≤ δ < 1 and
∑

(1− αi) =∞, we conclude that

lim
n→∞

[d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n)] = 0.

The following result deals with the rate of convergence of implicit S-n-tupled iteration process.

Theorem 15 Let T :
n∏

i=1

E → E be a contractive-like mapping defined in (9) on a nonempty closed convex

subset E of a W-hyperbolic metric space (X, d,W ) with F (T ) 6= φ. Then, the sequences {xm}, defined in (5)

with
∑

(1− αm) =∞, converges to the n−fixed point of T faster than (6), (7) and (8) iterations.

13
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Proof. Let (p1, p2, ..., pi) be a fixed point of T. Using the implicit type iteration process given in (6), we have

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (32)

<
αmδ

1− (1− αm)δ
[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]

< ... < Im,

where

Im = (
αmδ

1− (1− αm)δ
)m[d(x10, p

1) + d(x20, p
2) + . . .+ d(xn0 , p

n)]. (33)

Now, using the implicit iteration defined in (7), we obtain that

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (34)

<
αm

1− (1− αm)δ(βm + (1− βm)δ)
[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]

< ... < Jm,

where

Jm = (
αm

1− (1− αm)δ(βm + (1− βm)δ)
)m[d(x10, p

1) + d(x20, p
2) + . . .+ d(xn0 , p

n)]. (35)

Next, using the implicit iteration given in (8), we obtain that

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (36)

<
αm

1− (1− αm)δ
[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]

< ... < Km,

where

Km = (
αm

1− (1− αm)δ
)m[d(x10, p

1) + d(x20, p
2) + . . .+ d(xn0 , p

n)]. (37)

Finally, using the iteration process (5), we have

d(x1m, p
1) + d(x2m, p

2) + . . .+ d(xnm, p
n) (38)

<
αmδ

m

1− (1− αm)δ
[d(x1m−1, p

1) + d(x2m−1, p
2) + . . .+ d(xnm−1, p

n)]

< ... < Lm,

14
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where

Lm = (
αmδ

m

1− (1− αm)δ
)m[d(x10, p

1) + d(x20, p
2) + . . .+ d(xn0 , p

n)]. (39)

Now, in view of (33), (35), (37) and (39), we have

lim
m→∞

Lm

Im
= 0, lim

m→∞

Lm

Jm
= 0 and lim

m→∞

Lm

Km
= 0.

3 Numerical Simulations

In this section, we are interested in numerical simulations to support our analytical results by a numerical

example using MATLAB.

Example 16 Suppose that T :
n∏

i=1

[0, 1] → [0, 1] is a mapping defined by T (x1, x2, x3) = 3
4x1, T (x2, x3, x1) =

3
4x2, T (x3, x2, x1) = 3

4x3. Choose αn = βn = 1 − 1
n , n ≥ 2 and for n = 1, αn = βn = 0. Then we have the

following:

(a) T is a contractive type mapping,

(b) Tm(x1, x2, x3) = (3
4 )mx1, T

m(x2, x3, x1) = (3
4 )mx2, T

m(x3, x2, x1) = (3
4 )mx3,

(c) x1m = x2m = x3m as n = 1, 2, 3 in the implicit iterative processes (5), (6), (7) and (8),

(d) lim
n→∞

(x1m, x
2
m, x

3
m) = (0, 0, 0) in the implicit iterative processes (5), (6), (7) and (8).

15
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Table 1 shows the comparison of the rate of convergence of the implicit iterations (5), (6), (7) and (8) to the

tripled fixed point (0, 0, 0) with the initial value (x11, x
2
1, x

3
1) = (1, 1, 1) for the mapping given in Example (16).

Table 1: The values of (x1m, x
2
m, x

3
m) for Iterations (5), (6), (7), (8).

n Iteration (8) Iteration (7) Iteration (6) Iteration (5)

2 ( 1.0000, 1.0000,1.0000) (1.0000, 1.0000,1.0000) (1.0000, 1.0000,1.0000) ( 1.0000, 1.0000,1.0000)

3 (0.8000 ,0.8000 ,0.8000 ) (0.7442,0.7442,0.7442) (0.5581,0.5581,0.5581) (0.4186,0.4186,0.4186)

4 (0.7111,0.7111,0.7111) ( 0.6436, 0.6436, 0.6436) (0.3620,0.3620 ,0.3620 ) (0.1527,0.1527,0.1527)

5 (0.6564,0.6564,0.6564) (0.5857,0.5857,0.5857) (0.2471,0.2471,0.2471) (0.0440,0.0440,0.0440)

6 (0.6178,0.6178,0.6178) (0.5464,0.5464,0.5464) (0.1729,0.1729,0.1729) (0.0097,0.0097,0.0097)

7 (0.5884,0.5884,0.5884) ( 0.5173, 0.5173, 0.5173) (0.1228,0.1228,0.1228) (0.0016,0.0016,0.0016)

8 (0.5648,0.5648,0.5648) (0.4945,0.4945,0.4945) (0.0880,0.0880,0.0880 ) (0.0002,0.0002,0.0002)

9 (0.5454,0.5454,0.5454) (0.4759,0.4759,0.4759) (0.0635,0.0635,0.0635) (0.0000,0.0000,0.0000)

10 (0.5288,0.5288,0.5288) (0.4603,0.4603,0.4603) ( 0.0461,0.0461, 0.0461) (0.0000,0.0000,0.0000)

11 (0.5145,0.5145,0.5145) (0.4470,0.4470, 0.4470) (0.0336,0.0336,0.0336) (0.0000,0.0000,0.0000)

12 (0.5020,0.5020,0.5020) (0.4353,0.4353,0.4353) (0.0245,0.0245,0.0245) (0.0000,0.0000,0.0000)

13 (0.4908,0.4908, 0.4908) ( 0.4251, 0.4251, 0.4251) (0.0180,0.0180,0.0180) (0.0000,0.0000,0.0000)

Remark 17 By the example (16), we note that the implicit iteration (5) is faster than the implicit iterations

(6), (7) and (8).
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Figure 1 confirm that the iteration (5)) is converges faster than the iteration methods (6), (7) and (8).

............................................................... Implicit iteration (5)

——————————————————–Implicit iteration (6)

++++++++++++++++++++++++Implicit iteration(7)

- - - - - - - - - - - - - - - - - - - - - - - - - - - - -Implicit iteration (8)

Figure 1: Present the rate of convergence for the iterations (5), (6), (7) and (8).
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