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Abstract: Plants produce a diverse portfolio of sesquiterpenes that are important in their response
to herbivores and the interaction with other plants. Their biosynthesis from farnesyl diphosphate
depends on the sesquiterpene synthases. Here, we investigate to what extent metabolic pathways can
be reconstructed just from knowledge of the final product and the reaction mechanisms catalyzed by
sesquiterpene synthases. We use the software package MedØlDatschgerl (MØD) to generate chemical
networks and elucidate pathways contained in them. As examples, we successfully consider the
reachability of the important plant sesquiterpenes β-caryophyllene, α-humulene, and β-farnesene. We
also introduce a graph database to integrate simulation results with experimental biological evidence
for selected predicted sesquiterpenes biosynthesis.
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1. Introduction

Terpenes form a large and diverse class of natural products appearing particularly in the essential
oils of many plants. They have commercial uses in medicine and as fragrances in perfumery. Synthetic
derivatives of natural terpenes are also used as aromas and food additives [1]. Ecologically they
perform key functions both in direct plant defense and in indirect mechanisms involving herbivores
and their natural enemies [2].

Terpenes are produced throughout the tree of life from the C5 compounds isopentenyl
pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP). Leopold Ružička [3] formulated the
“biogenetic isoprene rule” according to which terpenes are the result of concatenating isoprene units in
a “head-to-tail” fashion to form chains, from which then rings are formed. Prenyltransferases condense
IPP and DMAPP to geranyl pyrophosphate (GPP), farnesyl pyrophosphate (FPP), and geranylgeranyl
pyrophosphate (GGPP) as the entry points to the world of monoterpenes (C10), sesquiterpenes (C15),
and diterpenes (C20) [4]. FPP and GGPP can then be condensed further to form squalene (C30) and
even larger molecules [5].
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These intermediates are substrates for a very large class of enzymes known collectively as terpene
synthases (TPSs) to produce a wide variety of compounds. There are two major classes of TPS,
which are distinguished by essential amino acid motifs [6,7]. Class I TPS, which are of interest in this
contribution, convert linear, all-trans, isoprenoids, geranyl (C10)-, farnesyl (C15)-, or geranylgeranyl
(C20)-diphosphate into numerous monoterpenes, sesquiterpenes, and diterpenes. They bind their
substrate by coordination of a divalent metal ion catalytic site consisting of a central cavity formed
by mostly antiparallel α-helices. This catalytic site has an aspartate-rich DDxxD/E motif, and often
another NSE/DTE motif in the C-terminal portion [8–10].

The mechanisms of sesquiterpenes synthesis involve the formation of C C bonds, cationic
intermediates, Wagner-Meerwein rearrangements, carbocation capture by water and hydride, as
well as methyl- and allyl-shifts caused by conformational changes of intermediate cations [11–13]. A
combinatorial reaction cascade inside the TPS combining different cyclization/rearrangement reactions
yields a highly diverse set of sesquiterpenes from just a handful of simple acyclic precursors molecules.
Nevertheless, there are only four dominating types of cyclization reactions initiating the complex
reaction cascade: C1−C10, C1−C11, C1−C6, and C1−C7 [14]. Even though the electrophilic chemical
reaction mechanisms [11] primarily determine the diversity of the products, many other factors
influence multiproduct sesquiterpene enzymes and their cyclization cascades, such as pH, the metal
cofactor [4], evolutionary forces for the functional divergence [15], and plant-plant interactions [16].

The complexity of the portfolio of sesquiterpenes and their synthesis pathways calls for
computational models that explain the observed diversity and can be used to predict biosynthetic
pathways for particular terpene compounds. Within the field of systems biology, the construction
and exploration of metabolic networks is grounded in determining metabolic capabilities from the
enzymes encoded in the genome and extensive knowledge on enzymes themselves, collected, e.g.
in the BRENDA database [17]. Several software tools have been developed to predict pathways from
annotated genome sequences and to analyze and explore them. Pathway Tools [18], for instance, is a
system designed for the BioCyc database collection [19]. Complementarily, versatile tools have become
available to predict the metabolism of xenobiotics, in particular aiming at drugs. Starting from a known
parent molecule, pattern recognition and/or machine learning techniques and knowledge-based rules
are used to identify a “site of metabolism” a set of chemical products from biotransformation. Many of
these tools are restricted to quite specific metabolic processes, although recently much more generally
applicable tools such as Biotransformer [20] have become available. RetroRules [21] is a database
of >400,000 highly specific reaction rules intended for metabolic engineering and in particular the
prediction of novel and alternative products from de novo reactions of promiscuous enzymes. Possible
reactions can in principle also be obtained with methods such as AFIR [22] from Potential Energy
Surfaces, however, the computational cost makes it difficult to use them for exploring large chemical
spaces.

Here we take a somewhat different approach in that we do not start from an extensive base of
detailed chemical and biological knowledge but from a very generic representation of the reaction
mechanisms underlying sesquiterpene synthesis. Molecules are represented as labeled graphs,
abstracting away details of the spatial embedding of the molecules. Reactions are considered at
the level of graph transformations and only use local context information to determine whether they
are applicable to a given molecule or not. A key advantage of this approach, which is described in more
detail in the Methods section, is its computational efficiency. The simple representation of molecules
and reactions as graphs and graph transformation enables the efficient expansion of large networks of
logically possible reactions. Integer flows in this networks correspond to feasible synthesis pathways,
which can be identified efficiently as solutions of Integer Linear Programs (ILP). The software package
MØD [23,24] makes it possible to prescribe potential synthesis pathways leading up to a user-defined
molecule using a prescribed set of reaction mechanism (here the types of rearrangements catalyzed by
TPSs) and a prescribed set of starting materials available in the already mapped part of the terpene
metabolism. We have shown that such an explorative approach is indeed feasible and yields reasonable
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results without the need first to mine an extensive knowledge base. As examples, we consider the
biosynthesis common plant sesquiterpenes as β-caryophyllene, α-humulene and β-farnesene.

2. Results

Here we present the results of three simulations and discuss the potential to expand them,
how selected portions of specific pathways fit into conditions previously described in the literature,
acknowledging their advantages and limitations.

2.1. Protonation-Dependent Diphosphate Cleavage

Natural class I terpene synthetases precisely pre-orient their acyclic diphosphate substrates in their
active-site pockets in a reaction ready conformation. The complex reaction cascade is than initiated
by cleaving off the diphosphate group from the pre-oriented substrate molecule, a pH-dependent [4]
process that requires divalent metal ions as co-factor [25,26]. It has been shown, that this ionization
step of the allylic diphosphate is the rate-limiting step in class I terpene synthetase catalysis [27]. The
resulting highly reactive carbocation is than guided by the enzyme via rearrangements of the carbon
skeleton towards diverse poly-cyclic product molecules. The highly reactive carbocation intermediates
can scavenge nucleophiles, present in the enzyme’s active-site, or saturate the positive charge by
deprotonation, terminating the rearrangement cascade in an early stage. An example where the
rearrangement cascade is minimal is the isomerization of FPP to Nerolidyl Diphosphate (NPP) [28],
where the diphosphate anion terminates the reaction cascade by reattaching to the the carbocationic
intermediate immediately after an allylic rearrangement has occurred (see Fig. 1).

In other words, NPP is reachable from FPP via a defined sequence of reactions from a predefined
reaction set. It has been shown by reduction to the word problem for (semi)groups [29], that this type of
reachability questions for chemical transformation systems is Turing undecidable. Therefore, the best
we can do is to try out if in a given reaction network a path between two molecules of interest can be
found. This test can easily be performed by combining a systematic reaction network generation, using
the graph rewrite framework MØD, with an ILP-based pathway search within the generated reaction
network. Furthermore, the reachability question for molecules of interest can be investigated under
varying conditions by modulating the sets of reactions and / or additional molecules, e.g. nucleophiles,
present during reaction networks expansion and pathway search. Terpene cyclization involves
highly reactive cationic intermediates vulnerable to nucleophilic attack or elimination reactions. This
characteristics allows us to tie the changing mixture of reachable sesquiterpene products to variations
in external constraints which can in many cases be mapped to changes of environmental conditions
such as seasonal changes, soil composition or periods of drought. A particular set of external conditions
will in the following be called a scenario.

Using only the cleavage of the diphosphate group and the addition of a nucleophile to a cation in
the reaction set, the reachability of NPP from FPP is trivial to ascertain in a constraint independent
simulation, Fig. 1.

2.2. Synthesis of β-caryophyllene, α-humulene, β-farnesene, and their side products

(E)-β-caryophyllene is produced from FPP, and is emitted by different plant tissues, often in
response to herbivore attack [30–32]. There is ample evidence that TPS catalysis produces a mixture of
sesquiterpenes rather than a single sesquiterpene product [2,33,34].

Figure 2 shows that β-caryophyllene, α-humulene and β-farnesene are closely related in the
reaction network. The same mechanism potentially produces several additional compounds. While
the P0, 0 is an intermediate compound, the predicted side compounds P0, 1 and P0, 2 could not be
identified using chemical public databases such as PubChem [35] and ChemSpider [36].
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2.3. Large-scale exploration of terpene space

Simulation 03 is an explorative way to get the diversity of the feasible compounds. Starting with
an FPP and a water molecule, during seven iterations, all the set of rules were iteratively applied.

2.4. Database Storage

Detailed mechanistic simulations of complex metabolic pathways typically involve extensive
curation and annotation of the results. Thus they are a potentially valuable resource, which can be
leveraged more efficiently if the data are provided with a comprehensive and consistent data schema
can support the FAIR Guiding Principles for scientific data management [37] and facilitate the exchange
and interoperability. Graph databases are a suitable tool for this purpose that has been demonstrated
to be an efficient and convenient way to store and explore metabolic networks [38,39]. Here we use
a graph database to enriches simulation data with experimental evidence related to the predicted
sesquiterpenes.

Graph databases can both store data into nodes and relationships. Using our proposed graph
database (2Path-Sesquiterpenes), the generated metabolic network was stored in a graph database,
whose schema is a graph that minimizes the transition from the generated hypergraph. The labeled
nodes represent the predicted compounds, the reactions transforming them, and the biological evidence
related to these compounds. The labeled relationships represent the relations between these nodes.
Once stored, the generated chemical mechanisms level metabolic network can be traversed and
handled through graph databases query languages as Cypher1 or Gremlin2, and visualized using tools
such as Cytoscape [40].

The 2Path-Sesquiterpenes database nodes labeled as Scenarios provide a kernel of manually
curated biological experimental evidence about constraints under which the compound are produced.
In the 2Path-Sesquiterpene, a relationship labeled as OCCURS is created between a node Scenarios
and a node Compound when there is a biological scenario supporting the biosynthesis of this predicted
compound. The Scenarios provide NCBI accession number for the enzymes, PUBMED accession
number for the associated publication with the experimental results, experimental conditions, plant
tissue3, compound yield, EC numbers for the reactions, and cross-references to KEGG [41], Rhea [42]
and ExploEnz (IUBMB) [43] in a taxonomic range of species. Figure 4 shows an example of query
result for a stored simulation into Neo4J4 graph database.

3. Discussion

Metabolic networks have been abstracted by various data structures, including substrate graphs,
bipartite graphs, directed hypergraphs, reaction graphs, stoichiometric matrix and petri-net [44],
[45], [46]. Direced hypergraphs can overcome conceptual limitations of graph modeling of biological
processes such as multilateral relationships, which are not compatible with graph edges [44]. These
hypergraphs properties allow for multilateral relationships between the nodes resulting in a suitable
description of biological processes [44]. For example, in a metabolic reaction such as (Compound1 +

Compound2 → Compound3 + Compound4), a hypergraph allows edges to connect more than two
nodes.

The rule-based simulations using graph transformation with MedØlDatschgerl can reach various
compounds. These compounds are abstracted as undirected graphs, while the chemical mechanisms
are abstracted as hyperedges in a directed hypergraph. Depending on the rule combination, it is
possible to provide context-free results regarding sesquiterpenes biosynthesis reactions. By exploring

1 https://neo4j.com/developer/cypher-query-language/
2 https://tinkerpop.apache.org/gremlin.html
3 EMBL-EBI Plant Ontology – https://www.ebi.ac.uk/ols/ontologies/po
4 Neo4J graph database - https://neo4j.com
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the possible chemical mechanisms of these reactions, it is reasonable to establish connections with
experimental results to draw from this universe of possibilities, those that can occur naturally
or synthetically under certain circumstances. Constraint-based models (CBM) have enormous
potential to enhance the understanding of reconstructed/predicted metabolic networks and predictive
computational models by integrating biological evidence [47], [48], [49]. Studies combining genome,
transcriptome, and metabolome data can address important questions, as biosynthetic pathways,
selection of plants of interest, the environment influence in the gene expression and the metabolome
profile, and many further questions.

2Path-Sesquiterpenes focusses plant sesquiterpene biosynthesis and aggregating putative
biological meaning to the generated network, but there are some related works as AFIR [22]/GRRM,
RetroRules [21], and Biotransformer [20]. Isegawa et al [50] had made simulations predicting
pathways for terpene formation from a humulyl cation and others intermediate molecules using
AFIR [22]/GRRM whose chemical results are aligned to ours, which allowed for a cross-confirmation.
AFIR [22]/GRRM approach is fundamentally distinct from 2Path-Sesquiterpenes because it uses
both a different data structure to design molecules and applies artificial forces between two or more
reacting molecules. Both Biotransformer and RetroRules [21] uses chemical reaction descriptions
and rules encoded by SMARTS [51] and SMIRKS [52] and they are at the same time next to this
work concerning objectives, but quite distinct regarding method. These three related works can deal
with compounds chemical bonds geometry, while using 2Path-Sesquiterpenes, the geometry of
chemical bonds are indistinguishable due to the data structure (undirected graphs) that abstracts the
compounds molecules. The Table 1 shows a summary of some features of the 2Path-Sesquiterpenes
and its related works.

Table 1. Summary of some features of the 2Path-Sesquiterpenes and its related works.

Molecules Reactions Focus Storage for results Biological Evidence

2Path-Sesquiterpenes Undirected graphs Graph rewrite rules Plant sesquiterpenes Graph database Scenarios
Isegawa et al [50] Internal AFIR/GRRM Sesquiterpenes Internal -
RetroRules [21] SMART SMIRKS General - RetroRules
BioTransformer [20] SMART SMIRKS General - MetXBioDB

Another matter is to make the simulation results findable, accessible, inter-operable, and reusable
(FAIR). For this purpose, 2Path-Sesquiterpenes offers the option of storing the predictions in a graph
database. Metabolic network databases have been constructed since 1989 [53] through distinct methods,
and many of them have been made available over time mostly due both to advances in metabolic
network reconstruction methods and the expansion of omic data. Despite their extensive range, such as
KEGG [41], Metacyc [54], and Reactome [55], to name a few, most of them do not provide information
at the level of chemical mechanisms and intermediate compounds of a reaction, except for MACiE [56],
which still offering rare data on biosynthetic sesquiterpene reactions. Also, gaph databases can bring
significant query performance improvements for selected problems including metabolic networks [55],
confirming their suitability for this purpose.

4. Methods

4.1. Graph Transformation, Hypergraphs, and Integer Hyperflows

Labeled graphs are commonly used in the chemical literature to represent molecules. Vertex
labels identify atom types, while edge labels are used to indicate bond types. Chemical reactions thus
correspond to transformations of graphs with particular features:

(i) Reactions may change the number of molecules, hence both input (substrate) and output
(product) graphs are not necessarily connected.

(ii) All atoms are preserved, i.e., a chemical reaction defines a bijection between the vertex sets of
input and output graphs.
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(iii) Electrons are preserved as well, implying restrictive conditions on the way how edges (bonds)
can change, corresponding to chemical reaction mechanisms.

Graph grammars are formal systems describing rule-based graph transformation that generalize the
much more commonly used term-rewriting systems [57]. We favor the so-called double pushout
(DPO) formalism [58] as a model of chemistry because it guarantees the structural reversibility of
reactions [59] and it conveniently exposes the representation of the chemical transition state as part of
the rule. In DPO graph rewriting, a transformation rule is of the form

p = (L l←− K r−→ R) (1)

where L, R, and K are the left graph, right graph, and context graph, respectively. These three graphs
are connected by graph morphisms l : K → L and r : K → R describing the embedding of the context,
into the L and R. The application of the rule p to a graph G requires that L “matches” a part of G. The
existence of another graph morphism captures this, the matching morphism m : L → G. Together the

rule p and the matching morphism m uniquely define the transformation G
p,m
=⇒ H of the substrate G

to the product H by requiring that all morphisms in the following commutative diagram exist:

L K R

G D H

m

l r

(2)

In the context of modeling chemistry, we consider only injective graph morphisms, and we require
that the restrictions of r and l to the vertex sets are bijective, ensuring preservation of atoms.

Since each chemical reaction transforms a set of substrate molecules into a set of product molecules,
chemical networks are directed hypergraphs, with molecules as vertices and concrete reactions as
hyperedges. Iterated application of reaction rules to a set of starting molecules generates the network
(directed hypergraph) of reachable molecules, i.e., the chemical space defined by the given starting
molecules and reaction rules.

Chemical reactions preserve mass, atom types, and charges. Chemical reaction pathways therefore
from flows in the reaction hypergraph that connect a set of input molecules with a set of output
molecules [44,60]. As an immediate consequence, reachability questions in chemical reaction networks
translate into the existence of integer flows [24], which is efficiently evaluated by means of integer
linear programming (ILP).

4.2. Simulations

Simulations were performed using MedØlDatschgerl (MØD) [23], a software package that combines
a DPO graph rewriting engine and a ILP solver to generate and analyze large-scale reaction networks.
MØD provides a confortable Python interface (the Python 3 module PyMØD comprising bindings to
the underlying library libMØD) as well as a system of generic exploration strategies [61] to guide
and restrict the generation process. Graph transformation rules are specificied manually in GML
format [62], substrate molecules can be provided either in GML or SMILES [63] format.

We have designed DPO graph transformation rules representing chemical mechanisms involved
in the production of the plant sesquiterpenes β-caryophyllene, α-humulene and β-farnesene from its
precursor FPP, exploring the generation of distinct compound through simulations with varying sets
of rules. The presented simulations are available on GitHub. Figure 5 shows the rules employed in the
Simulation 01, Figure 6 shows the rules employed in the Simulation 02, and Figure 7 shows the rules
that, together with rules of the Figures 5 and 6, were employed in the Simulation 03.
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5. Conclusions

Rule-based generative transformation systems, such as the graph grammars used here
provide a mathematically sound way to answer reachability questions in combinatorial, potentially
infinite, search spaces. Here we have used DPO graph transformations, as implemented by
MedØlDatschgerl [23] to model the specific combination of cyclizations reactions catalyzed
by sesquiterpene synthases (STPS) using a small number of transformation rules. This
is sufficient to explain the diversity of sesquiterpenes, including the most common plant
sesquiterpenes:β-caryophyllene, α-humulene and β-farnesene, through combinations of specific
cyclization reactions. The generative approach produces a local view of the metabolic or chemical
network that is naturally represented as a hypergraph. Reachability then translates to the existence of
pathways, which can be decided by integer linear programming.

The networks and pathways are exported to a PDF report and optionally can be stored and
traversed in a graph database adhering to FAIR Guiding Principles [37]. This makes it possible to
integrate simulation results with Scenarios contained in database, in particular experimental evidence
on biosynthesis reactions.

Computational de novo pathway discovery is of particular interest for reactions catalyzed by
multi-product enzymes as in the case of STPS, because the combinatorial complexity of products in
multistep synthesis quickly exceeds the limits of manual analysis. It also enables a systematic analysis
of synthetic and heterologous biology with potential applications e.g. in sustainable bioeconomy.

The work presented here is intended as proof of concept. In future work, it will be expanded in
several directions. Additional graph grammar rules can be included to extend the space of reachable
sesquiterpenes and/or to include other classes of terpenes. Functionalization to a broad array of
terpenoids can also be modeled by generative approach discussed here. On the other hand, we plan to
expand the collection of experimental scenarios and develop a user-friendly interface to facilitate the
integration of experimental knowledge and computational predictions.
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The following abbreviations are used in this manuscript:
AAM Atom to Atom Mapping
AFIR Artificial Force-Induced Reaction
CBM Constraint-based models
DMAPP Dimethylallyl Pyrophosphate
DPO Double pushout graph rewriting
FAIR Findability, Accessibility, Interoperability, and Reuse of digital assets
FBA Flux Balanced Analysis
FPP Farnesyl Diphosphate
GGPP Geranylgeranyl Diphosphate
GML Graph Modeling Language
GRRM Global Reaction Route Mapping
GPP Geranyl Diphosphate
ILP Integer Linear Programming
IPP Isopentenyl Pyrophosphate
IUBMB International Union of Biochemistry and Molecular Biology
MEP Methylerythritol phosphate pathway
MVA Mevalonate pathway
NPP Nerolidyl Diphosphate
OPP Diphosphate
PDF Portable Document Format
PGDB Pathway/Genome database
STPS Sesquiterpene Synthases
TPS Terpene Synthase
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Sample Availability: A tutorial to setup the environment and the Python code for the simulations using
MedØlDatschgerl framework are available in the GitHub.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 1 March 2019                   doi:10.20944/preprints201903.0015.v1

Peer-reviewed version available at Processes 2019, 7, 240; doi:10.3390/pr7040240

https://jakobandersen.github.io/mod
https://github.com/waldeyr/InSilicoMetabolicModelingAndEngineering
http://dx.doi.org/10.20944/preprints201903.0015.v1
https://doi.org/10.3390/pr7040240


12 of 17

CH3

OP

O

OH

O

PO

OH

OH

CH3

CH3

CH3

FPP

OH P

OH

O P

OH

O−

OO

OPP−

CH3

CH2
+

CH3

CH3

CH3

farnesyl C1+

CH3

CH3

CH3

CH3

O P

OH

O P

OH

OH

OO
CH2

NPP

r0

r1

Figure 1. Plotted result of the Simulation 01 for OPP cleavage from FPP.
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Figure 3. The exploratory strategy yield 55 predicted molecules. Stable, neutral molecules are outlined
in black, while cations and anions are outlined in red.
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Figure 4. Example of a reaction stored in the Neo4J graph database. Yellow nodes (label Rules) denote
the rules diphosphate loss and H+ loss. Green nodes (label Compound) denote compounds from FPP
to α-humulene and other generated compounds. Red nodes (label Scenario) denote the experimental
scenarios with compound yield for the α-humulene. The details inside each Scenario node, as the
experimental conditions, the plant tissue, EC numbers for the reactions, and cross-references, can be
reached using the web interface, which is native for Neo4J graph database.

(a) OPP loss from FPP.

(b) OPP gain from FPP.

Figure 5. Graphical representation of the set of graph grammar rules used in the Simulation 01.
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(a) OPP loss from FPP.

(b) C1 to C11 cyclization.

(c) C2 to C10 cyclization.

(d) H+ loss.

Figure 6. Graphical representation of the set of graph grammar rules used in the Simulation 02.
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(a) C1 to C10 cyclization.

(b) C1 to C2 hidrid shift.

(c) C1 to C3 hidrid shift.

(d) H2O gain.

Figure 7. Graphical representation of the set of graph grammar rules that, together with Rules of the
Figures 5 and 6, where used in the Simulation 03.
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