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Abstract: Environmental DNA (eDNA) is an increasingly used non-invasive molecular tool for
detecting species presence and monitoring populations. In this article, we review the current state
of non-avian reptile eDNA work in aquatic systems, as well as present a field experiment on
detecting the presence of painted turtle (Chrysemys picta) eDNA. Thus far, turtle and snake eDNA
studies have been successful mostly in detecting the presence of these animals in field conditions.
However, some instances of low detection rates and non-detection occur for these non-avian
reptiles, especially for squamates. We explored this matter by sampling lentic ponds with different
densities (0 kg/ha, 6 kg/ha, 9 kg/ha, and 13 kg/ha) of painted turtles over three months, attempting
to detect differences in eDNA accumulation using a qPCR assay. Only one sample of the highest
density pond readily amplified eDNA. Yet, estimates of eDNA concentration from pond eDNA
were rank-order correlated with turtle density. We present a “shedding hypothesis”—the possibility
that animals with hard, keratinized integument do not shed as much DNA as mucus-covered
organisms-as a potential challenge for turtle eDNA studies. Despite challenges with eDNA
inhibition and availability in water samples, we remain hopeful that eDNA can be used to detect
freshwater turtles in the field. We provide key recommendations for biologists wishing to use eDNA
methods for detecting non-avian reptiles.

Keywords: Turtle; environmental DNA; eDNA; non-avian reptile; review; eDNA guidelines;
Chrysemys picata; painted turtle, shedding hypothesis

1. Introduction

Monitoring changes in a target species, such as presence/absence in a given locality, is necessary
to model future population trends and may illuminate important life-history traits of an organism
[1]. Indeed, changes in population density have downstream demographic effects on range,
metapopulation structure, and niche availability [2,3]. Stochastic environmental factors,
anthropogenic pressures, or biotic interactions (e.g., disease, intrinsic growth and age class, fecundity,

or predation) can change population density [4-8]. Thus, changes in population density can inform
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40  researchers about fluctuations in environmental or biotic conditions. For example, novel habitat
41  created by human activities could increase food resources, thereby expanding the area in which
42 energy requirements can be met [9,10]. Thus, monitoring current species presence and abundance

43 may aid in predicting future densities.

44 1.1. Environmental DNA and its uses

45 Central to population monitoring is the need for a sensitive detection method. Recently,
46  environmental DNA (eDNA) has received attention for being able to sensitively reveal the presence
47  of target species, especially where traditional methods fall short [11,12]. We adopt Taberlet’s (2018)
48 definition of eDNA as DNA extracted from environmental samples such as soil, water, air, and feces
49  [13]. Thus far, eDNA techniques have been applied to many environmental contexts, including leaf
50  litter, soil, and air. Although eDNA has been used to examine alpha and beta diversity through
51  metabarcoding (the use of “universal” primers to detect the presence of multiple taxa [14-19]), eDNA
52 has also been employed to detect single-species presence (e.g., DNA collected for target species from
53 water samples). Single-species eDNA techniques can be used widely, mainly because of the
54 sensitivity of eDNA methodology, compared with traditional methods [18,20,21]. Even so, how
55  eDNAisshed, degrades, travels, and interacts within specific environments varies with target species
56  and specific ecosystem (e.g., lentic vs lotic freshwater), thus methods continue to be refined for
57  obtaining eDNA in a variety of habitats [22-25].

58 Focusing on aquatic systems, single-species eDNA has been used in two main ways for
59  conservation: detecting invasive species and monitoring threatened species. Invasive species cause
60  environmental, ecological, and economic damage, incentivizing prevention and early detection
61 [26,27]. In some studies, eDNA is sensitive enough to detect the forefront of an invasion [28-30].
62  Knowing the range limits of the invasion can help reduce the cost of mitigation efforts. For example,
63  Asian carp (Hypophthalmichthys sp.) were one of the first targets for extensive eDNA monitoring of
64  aninvasive species [29]. The presence of invasive carp was detected along a Chicago area waterway

65  above the previously defined invasion front [29]. Successful application of eDNA techniques allows
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66  carp behavior to be followed more easily than via traditional monitoring approaches; thus, eDNA
67  tools continue to be refined and used to inform monitoring efforts in the Great Lakes system for
68  multiple invasive carp species [31-37]. Because of the headway made in invasive carp biomonitoring,
69  many other biological invasions have been detected using eDNA. Since then, many invasive fish have
70 been targeted, and eDNA has been used for determining the efficiency of fish eradication efforts [38-
71 43]. Amphibian species have also been targeted [30,44,45], as have crustaceans [41,46—49], reptiles
72 [50,51], and molluscs [19,52,53]. The rapid adoption of eDNA for invasive aquatic species paved the
73 way for developing eDNA-based tools for other systems and continues to motivate advancing this
74 method for further genetic monitoring.

75 Another exponentially growing use for eDNA in aquatic systems is the detection of endangered
76  and secretive taxa [20,54-60]. Many endangered species presences have been identified in this way,
77  including in areas where presence had not been confirmed using traditional methods [11,61-64].
78 Endangered species distribution and migrations also have been monitored using eDNA [60,65,66],
79 and seasonal spikes in eDNA may indicate spawning [62,67]. Recently, eDNA-obtained haplotypes
80  for endangered species have helped identify relatedness between populations [68-70]. This non-
81  invasive technique may even require fewer sampling permits compared to traditional methods,
82  which can be difficult to obtain for protected species [71]. These benefits of eDNA detection could
83  provide managers with important information on population presence, thereby aiding initial
84  monitoring and conservation efforts.

85 Not surprisingly, eDNA could be both effective and useful for monitoring aquatic species in
86  general [72]. One reason for increased efficiency is that eDNA can take fewer person-hours to sample
87  biodiversity in a given area, as samples are easily obtained. One extreme example is when the
88  presence of invasive carp was detected with eDNA, prompting 93 person-days of effort to find one
89  individual carp using electrofishing [29]. The sensitivity of eDNA tools allows managers to target
90 sites flagged by positive eDNA detection for more intensive sampling. Furthermore, eDNA does not

91  harm target organisms (e.g., electrofishing may harm fish if used improperly) [73]. Other examples
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92  include a 67% cost reduction and lower sampling effort for detecting fish species with eDNA,
93 compared to triple-pass electrofishing [40, but see 74]. The ease of collecting samples has also enabled
94 community science projects [75]. Genetic methods offer an advantage for identifying cryptic target
95  species or species with small larval stages, which may be difficult even for expert taxonomists to
96  identify[76-78]. Given the efficiency, cost, and analytical advantages, eDNA is an attractive tool for

97  detecting species presence.

98 1.2. Environmental DNA limitations

99 Although monitoring populations with eDNA methods has clear benefits, the utility of the
100  information obtained from eDNA surveys beyond detecting species presence currently has limits. No
101 clear relationship seems to exist between organism biomass, density, or count and eDNA abundance
102 in a field setting [79,80]. Many measures of diversity (e.g., most biodiversity indices) require
103 abundance measurements, not simply presence [81]. Biomass can correlate with both sequence reads
104  and eDNA copy number/concentration, but these relationships may be species- and ecosystem-
105 specific [82-85]. Wide confidence intervals on quantification models can yield unreliable estimates
106  [86,87]. In addition, DNA may be shed at varying rates between individuals, diet, breeding season,
107  and life stage [34,80]. For example, at least one male hellbender (Cryptobranchus alleganiensis) shed
108  more eDNA during its mating season month than during other months [62]. Overall, variability
109  among species and individuals — mediated by environmental factors — can cloud our ability to relate
110 eDNA systematically to population or individual measures.

111 Some technical and ecological considerations are required when using eDNA methods to detect
112 species presence, since organisms will not be observed directly. More specifically, false positives and
113 false negatives must be carefully considered [28,88,89]. Because the organism itself is not sampled,
114  false positives may occur when a target is not truly present [90]. Negative controls throughout the
115  eDNA sampling, extraction, and amplification process can help signal where contamination may
116 occur [28,91]. Biologically, false positives may also occur when a signal is detected but comes from a

117  nonviable source, such as eDNA from a decaying organism or eDNA from the gastrointestinal tract
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118  of a predator [92,93]. Using eDNA methods alone could cause managers to initiate costly
119  management efforts when no action is needed. False negatives, where the target organism is present
120 but goes undetected, are also possible [28]. Small sample size, insufficient replication, or lack of a
121 sufficiently large sampling area can contribute to non-detection [12,89,90,94]. Employing a targeted
122 sampling design and species-specific PCR primers may increase the chance of species detection [80].
123 Increasingly, eDNA studies incorporate occupancy and species distribution models to robustly
124 confirm detection and mitigate false positives and negatives [56,95,96]. Like other sampling methods,
125  eDNA techniques can detect presence, whereas absence can never be detected. Therefore, species
126 occupancy modeling is used to determine the number of samples needed to have high (95%)
127 confidence of a true absence [97]. This probability can never be zero, but it can be minimized with a
128  high number of replicates and extensive sampling design coverage [91,95]. Species-distribution
129 models also can use information gathered from eDNA to determine the probability of presence [96].
130  Confidence in detection is essential, especially if managed species are targets, thus traditional

131  assessments of eDNA-identified localities may be necessary to confirm presence.

132 1.3. Sampling Design and Workflow

133 Sampling design is of paramount importance, as it often has a large impact on the results of
134 aquaticeDNA studies [98-101]. The biology of target organisms, water flow, and experimental design
135 can affect eDNA signal strength [22,37,102]. For instance, benthic marine species are best detected
136  with methods that target sediment and the lower water column, not surface water [41,56].
137  Furthermore, riverine systems may transport eDNA downstream from the actual location of target
138  species, which must be considered when designing sample sites and interpreting results [102-105].
139  The numbers of samples and replicates obtained directly affect occupancy probability (e.g., a large
140 number of replicates will likely yield higher detection probability) [89,106,107]. Larger volumes of
141  water and filter size also may increase probability of eDNA capture [108].

142 Extraction methodologies have been tested extensively, but may still require tailoring and

143 troubleshooting for particular systems. Shorter times between sample capture, filtration, and
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144  extraction minimize eDNA degradation [99,100,109]. Multiple filters of varying material and pore
145 size and with preservation buffers have been tested, each yielding different amounts and qualities of
146  eDNA [100,109]. Numerous extraction techniques have been tested, commonly including variations
147 on the Qiagen Blood and Tissue kit, sodium acetate, or phenol-chloroform-isoamyl (PCI) extraction
148  protocols [54,99,100]. To clean up inhibited samples, a bead step, clean-up kits (e.g., Zymo one-step),
149 or dilution have all been successfully used [38,91,110]. It is possible to lose some extracted eDNA
150  while cleaning samples post-extraction, which may decrease detection of species presence [111].

151 Once extracted, samples are typically amplified with PCR and sequenced to confirm species
152 specificity and presence. In species-specific studies, primers must be sensitive to the species level,
153 often relying on a large number of mismatches between target and closely-related species or specific
154 probes, such as Tagman MGB or FAM probes [112,113]. Mitochondrial DNA (mtDNA) is often
155  chosen because of high copy number availability in the environment and commonality in databases
156  [114]. To simply detect presence, conventional PCR can be used if primers are specific. Beyond
157  presence, eDNA can be quantified via quantitative PCR (qQPCR) to detect eDNA copy number in
158  samples [82]. However, for increased sensitivity and absolute quantification, droplet digital PCR
159  (ddPCR) has been used [69,98]. Once DNA is amplified, amplicons can be sequenced with Sanger
160  sequencing or next generation sequencing (e.g. llumina) methods [115]. Matching eDNA-obtained

161  amplicons to known sequences (e.g., GenBank) confirms species DNA presence in a sample.

162 1.4. Reptile eDNA

163 Despite breakthroughs in assessing density in fish and amphibian species, there remains a
164 dearth of studies quantifying aquatic non-avian reptile populations with eDNA under field
165  conditions [116]. This lacuna is notable because turtles are among the most at-risk vertebrates, with
166 over 60% of modern species listed as threatened, endangered, or extinct [117,118]. To our knowledge,
167  most eDNA studies on non-avian reptiles that heavily use aquatic habitats focus on detecting the

168  presence of snakes and turtles (Figure 1). Attempts have also been made to find West African
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169  crocodile (Crocodylus suchus) and Nile monitor (Varanus niloticus) with eDNA metabarcoding

170 methods, but presence has not yet been detected successfully [119].
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171 Figure 1. A global map of non-avian reptile studies using eDNA and metabarcoding methods
172 mentioned in this paper. Each color denotes a different study. Circles indicate snake studies and
173 triangles indicate turtle studies. Note that one study, Lacoursiere-Roussel et al., 2016 found both
174 snakes and turtles. Antarctica not pictured.
175 The first notable aquatic reptile eDNA study was on Burmese python (Python bivittatus) in south

176  Florida [50]. After successfully detecting python presence from aquatic eDNA using penned snakes,
177  field sites with previously sighted pythons were tested [50]. Field sites yielded positive eDNA
178  detection where P. bivittatus had been detected previously, and no eDNA was detected at one site
179  where a python had not been detected previously [50]. Further research detected eDNA in terrestrial
180  samples under field conditions in sites monitored via radio telemetry [50]. Additional aquatic snake
181 studies have focused on the threatened eastern massasauga rattlesnake (Sistrurus catenatus) [120].
182  Water was taken from crayfish burrows, typical S. catenatus overwintering refugia, in occupied field
183  sites [120]. Despite known local abundance, only two of 100 environmental samples amplified
184  positively with eDNA, compared to detecting 12 positive snake presences with traditional methods

185  within a 2-m radius [120]. Similarly, giant garter snake (Thamnophis gigas) eDNA assays were created
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186  for presence detection [121]. In this study, laboratory experiments detected T. gigas presence from
187  skin and feces in water, but not live snakes in water [121]. Despite capturing snakes with traps at field
188  locations, T. gigus eDNA was not detected in water at the same sites [121]. With metabarcoding
189  primers, redbelly snake (Storeria occipitomaculata), northern watersnake (Nerodia sipedon) and
190  milksnake (Lampropeltis triangulum) eDNA presence was detected in Canadian lakes and rivers [122].
191  Opverall, results have been mixed for detecting the presence of snakes with eDNA (Table 1) and, to
192 our knowledge, no studies have yet attempted to quantify snake eDNA. It is possible that the more
193 time snakes spend in water, the more likely aquatic eDNA will be able to detect snake presence,

194 however, more research is needed to support this relationship.

195 Table 1. Studies that include research on snake or turtle environmental DNA in aquatic systems.
. Laboratory Field Consistent Field
Study Order Species Country Detection? Detection? Detection?
Baker et al., Squamata Sistrurus catenatus US.A. - Yes No, 2/100 samples
2018 amplified with S.
catenatus.
Cannonet  Testudines  Terrapene carolina US.A. - Yes 2/91 samples
al., 2016 amplified from
universal
"amphibian”
primers.
Davy et al,, Testudines Emydoidea Canada Yes Yes Yes, all PCR
2015 blandingii, Clemmys replicates of a field
guttata, Glyptemys sample for T. scripta
insculpta, in a local pond.
Chrysemys picta, Other turtles not test
Graptemys for in a field setup.
geographica,
Sternotherus

odoratus, Chelydra
serpentina, Apalone
spinifera, Trachemys

scripta
de Souzaet  Testudines Sternotherus U.S.A. Yes Yes Yes, four water
al., 2016 depressus samples required in

the warm season and
14 water samples
required in the cold
season for a 95%
detection

probability.
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Feistetal,  Testudines Macrochelys US.A. Yes Yes 2/3 to 1/6 replications
2018 temminckii amplified in the field
when amplification
occurred.
Halstead et Squamata Thamnophis gigas US.A. Yes, limited. No No, no samples
al., 2017 amplified.
Kelly et al., Testudines Chelonia mydas US.A. No - -
2014
Kucherenko  Squamata Pantherophis US.A. Yes Yes 66.7% successful
et al., 2018 guttatus, Python detection rate.
bivittatus
Kunduetal, Testudines Nilssonia nigricans, India - Yes No information
2018 Nilssonia gangetica, given on how many
Chitra indica of the 10 replicates

were successful.

Lacoursiere- Testudines, Chelydra serpentina, Canada Yes Yes Yes, targeted qPCR
Roussel et Squamata Glyptemys detected wood turtle
al., 2016 insculpta, Nerodia in 9/9 locations. eDNA
sipedon, metabarcoding
Lampropeltis detected two turtle
triangulum, Storeria species in 3/9
occipitomaculata locations, but 4/9

locations did not
detect wood turtle
otherwise detected
with qPCR
methodology. Snake
species were found in
3/9 locations.

Piaggio et Squamata Python bivittatus US.A. Yes Yes Yes, 5/5 field sites
al., 2014 with known
presence amplified.

Raemy and  Testudines Emys orbicularis Switzerland Yes Yes 3/6 to 6/6 replications
Ursenbacher, amplified in the field
2018 when amplification
occurred.
Wilson et al.,  Testudines Batagur affinis Malaysia Yes Yes Yes, with live
2018 individuals within
1km vicinity of turtle
presence.
196
197 Previous work has assessed the ability of eDNA to detect presence of aquatic turtle species in a

198  variety of habitats. In a marine aquarium, a green sea turtle (Chelonia mydas) was present but not
199  detected when using eDNA metabarcoding methods [123]. Similarly, eDNA assays were developed
200  for multiple captive native Canadian turtles, and eDNA from red-eared slider turtles (Trachemys

201 scripta) was successfully detected in a small artificial pond (Table 1) [51]. Additionally, an eDNA
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202  assay was developed to detect alligator snapping turtle (Macrochelys temminckii) presence in both
203 lentic and lotic environments in the southeastern USA [124]. In India, several imperiled turtle species
204  (Chitra indica, Nilssonia gangetica, and N. nigricans) were detected in a temple pond using eDNA
205  methodology [125]. In Southeast Asia, the southern river terrapin (Batagur affinis) was detected in
206  river samples in Malaysia [126]. This eDNA detection corresponded to the presence of at least one
207  radio-tracked individual within one km (Table 1).

208 Beyond presence detection, site-occupancy models in slow-flowing streams in the southeastern
209  USA quantified the minimum number of eDNA samples needed to determine presence of the
210  endangered flattened musk turtle (Sternotherus depressus) [106]. This study found the warm season
211  (May-September) yielded higher eDNA detection rates for S. depressus, which likely corresponds to
212 turtle activity [106]. Four replicate samples were needed in the warm season for a 95% detection
213 probability versus 14 during the cool season. Density dependence of threatened European pond
214  turtles (Emys orbicularis) in natural ponds was also investigated using eDNA in Switzerland [127]. No
215 correlation was found between turtle density, number, or biomass and eDNA abundance, although
216  sites with shallow waters and vegetation yielded more turtle eDNA [127]. In Canadian riverine
217  environments, the sensitivity of eDNA detection of at-risk wood turtles (Glyptemys insculpta) was
218  tested [122]. With gPCR methodology, presence of G. insculpta was detected and correlated with turtle
219  abundance from visual surveys. Furthermore, when using eDNA-metabarcoding methodology and
220  “universal” primers, both G. insculpta and common snapping turtles (Chelydra serpentina) were
221  detected. However, these metabarcoding methods did not detect G. insculpta eDNA in all rivers
222 where gPCR eDNA methods detected this species [122]. Finally, eastern box turtle (Terrapene carolina)
223 presence was detected using metabarcoding methods on an Illinois river, though turtle presence was
224 not confirmed with an actual specimen [128]. These studies illustrate successes in detecting turtle
225  eDNA in aquatic systems, indicating promise for using this population monitoring technique in this

226  increasingly imperiled group.

227  1.5. Painted turtle eDNA case study
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228 At the conception of this experiment in 2015, essentially no turtle eDNA studies had been
229  published (Table 1). Thus, we conducted a field experiment to quantify relationships between turtle
230  density and turtle eDNA over time in a lentic pond system. We used painted turtles (Chrysemys picta)
231  asamodel because they exist in the same aquatic habitats as multiple endangered turtle species, such
232 asthe yellow mud turtle (Kinosternon flavescens) and Blanding’s turtle (Emydoidea blandingii) [129]. We
233 populated semi-natural ponds with varying numbers of adult turtles and correlated painted turtle
234 eDNA in water samples with painted turtle biomass in this enclosed system over a three-month
235  period. We hypothesized the amount of total eDNA and turtle eDNA would linearly increase with
236  time and turtle density. Establishing a relationship between eDNA concentration and turtle density
237  between ponds and throughout time could deliver an eDNA-based monitoring tool for the painted

238  turtle and other imperiled freshwater turtles.

239 2. Materials and Methods

240  2.1. Experimental setup and eDNA collection

241 We seeded four closed-system outdoor ponds with painted turtles at the Iowa State University
242 Horticulture Farm in 2016. These outside, uncovered ponds were natural with respect to abiotic
243 variables and water was not treated in any way. We lined the ponds with black polyethylene
244  laminated tarp and added three white water lily plants (Nymphaea sp.) to each pond. Ponds were
245  surrounded by an electric fence, preventing foreign turtles from entering. Although these ponds were
246  the same dimensions (19m L x 15m W x 1.5m D each), they varied in number of adult turtles (0, 11,
247 23, 38) and initial biomass (0g, 6088g, 9198g, and 12990g, respectively). We labeled these ponds as
248  zero (0 turtles at a density of Okg/ha), low (11 turtles and a density of 6kg/ha), medium (23 turtles at
249  adensity of 9kg/ha) and high (38 turtles at a density of 13kg/ha) density. In North American aquatic
250  systems, painted turtle densities can range between 7.2 and 106 kg/ha [130,131]. Our pond densities

251  most mimic low-density painted turtle populations, as these would most likely be relevant to co-
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252 occurring imperiled species. We placed turtles in the ponds on 1 April 2016, which coincides with
253 extensive painted turtle post-hibernation activity [132].

254 We sampled 250mL of water at randomized locations around the perimeter of each pond
255  approximately 0.75m from the edge once every three days starting 1 April through 30 June 2016,
256  which corresponds to Julian days 91 thru 182. To process samples within 48 hours, we chose small
257  water sample volumes due to frequent filter clogging and high turbidity. We took samples in 10%
258  bleach sterilized, autoclaved glass Nalgene jars. When sampling, we used sterile gloves and did not
259  touch the water’s edge with our feet to prevent pond-to-pond contamination. We immediately
260  transported samples to Iowa State University, stored them in a 4°C refrigerator, and filtered and
261  extracted DNA within 48 hours. Samples were filtered with 0.45pum cellulose nitrate filters in a room
262  never used for amplifying turtle DNA (however, they were carried to a room with PCR products
263  from past testudine and squamate experiments for extraction and amplification).

264 Painted turtle eDNA was also extracted from laboratory water containing captive turtles for use
265 as an eDNA positive control (“turtle lab water”). Four adult turtles were placed in a bin (0.59 m x 0.42
266  mx0.27 m, 47L) about 1/3rd full of water for two weeks during their hibernation period. Water was
267  sampled as above on 15 January 2016 and immediately filtered using 0.45um cellulose nitrate filters

268  inaroom never used for amplifying turtle DNA.

269  2.2. Extraction

270 We optimized our eDNA protocol by testing multiple published eDNA methods and
271  commercially available extraction kits before settling on the following methods. We processed all
272 samples under a UV-sterilized hood to ensure sterility. We vacuum-filtered water samples through
273 a 0.45um-pore cellulose nitrate filter. Once filtration was finished, we immediately folded the filter
274  inward and put it into a QIAshredder with 350uL buffer ATL and 25uL proteinase K
275 [19,45,99,133,134]. We then incubated the sample overnight at 65°C [135,136]. After the overnight
276  incubation, we spun down the QIAshredder column for 2min at 14,000 rpm and added 200 uL buffer

277 AL and 200 pL 95% ethanol to the elute. After vortexing, we put the solution into a DNeasy Blood
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278  and Tissue Kit spin column and spun the sample in a microcentrifuge for 2 min at 14,000 rpm [19].
279  We followed Qiagen’s Manufacturer’s instructions starting with the addition of 500 uL Buffer AW1
280  (step 5) until elution (step 7). We eluted the samples with 200 uL EDTA (low TE) buffer heated to
281  65°C [51]. We also filtered and extracted three negative laboratory control samples using Culligan

282  Nanopure water in this same way.

283 2.3. Amplification and quantification

284 No species-specific qPCR protocol existed at the time of sampling for the painted turtle;
285  therefore, we developed our own. Thermo Fisher Scientific designed a primer-probe combination
286  from painted turtle mtDNA using GenBank Accession numbers KF874616.1, NC_023890.1,
287  NC_002073.3, and AF069423.1. Primer and probe sequence can be ordered using Tagman Assay
288  APMFWY7_C_PICTA_V2 from Thermo Fisher Scientific. These were custom designed to have at
289  least six mismatches over both primers and probe from five other sympatric turtle species (Chelydra
290  serpentina (GenBank Accession Numbers EF122793.1, NC_011198), Trachemys scripta (GenBank
291 Accession Numbers NC_011573.1, FJ392294.1), Apalone spinifera (GenBank Accession Numbers
292  NC_021371.1, JF966197.1), Graptemys ouachitensis (GenBank Accession Number JN993985.1
293  (incomplete mtDNA genome), and Graptemys geographica (GenBank Accession Number JN993982.1
294 (incomplete mtDNA genome)). We tested species-specificity of the primer/probe set by amplifying
295  DNA from blood samples from these five sympatric turtle species. These turtle species and negative
296  controls all yielded quantification cycle (Cq) values 5 higher than painted turtle amplification,
297  denoting species specificity [137,138]. Due to cost and time constraints, we ran a subset of our field
298  samples, using samples from all ponds from dates spaced at roughly two-week intervals: 30 March
299  (Julian day 91), 16 April (Julian day 107), 1 May (Julian day 122), 16 May (Julian day 137), 31 May
300  (Julian day 152), 15 June (Julian day 167), and 30 June (Julian day 182).

301 We performed a gPCR assay composed of 20uL PerfeCTa qPCR ToughMix (Quanta Biosciences,
302  MD), 10puL nanopure water and 2 uL of the Tagman primer/probe reaction mix, and 8uL of 1:4 diluted

303  template for a final reaction volume of 40uL. Reaction conditions were as follows: 10 minutes initial
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304  denaturation at 95°C, followed by 45 cycles of 95°C for 15 seconds and 60°C for 45 seconds. We ran
305  qPCR reactions in triplicate and averaged the Cq values for each sample. We ran standard curves
306  using DNA extracted from painted turtle blood and painted turtle eDNA from laboratory water in a
307  1:2 dilution series. We ran one sample (31 May, high density pond) alongside these standard curves
308  atthe same dilutions. Due to non-linear eDNA amplification likely from inhibitor presence, we chose
309  a 1:4 dilution for all samples [110]. Using more concentrated eDNA consistently failed to improve
310  eDNA amplification, indicating the presence of inhibitors.

311 We assumed replicates that did not return a Cq value were below detection limit and excluded
312 them from Cq averages, standard deviation (SD), and standard error of the mean (SEM) for the
313 sample. Samples without Cq values also were excluded from future analysis. All qPCR runs
314  contained no template controls in triplicate and all were prepped in a UV-sterilized hood treated with
315 10% bleach. We only considered values <33 Cq to ensure our samples were distinct from background
316  amplification (i.e. turtle DNA amplifying that was not derived from pond samples) [137,138].
317  Assuming exponential amplification, less than one percent (0.95%) of signal contribution would be
318  non-target DNA contribution when efficiency is 100% (10-1/m, m = -3.497 = slope of eDNA lab water
319  standard curve, Eamr=1.932, intercept = 25.888) [137].

320 In addition to assessing absolute Cq values, we examined the ordered trend of lowest Cq value
321  to highest Cq value among ponds and controls, with abundance corresponding to 1/Cq. Thus, we
322 expected the pond with the highest turtle density to have the lowest Cq value followed by ponds
323 with medium, low, and zero densities of turtles. We also included positive controls (DNA extracted
324 from blood and turtle laboratory water) and negative controls, expecting extracts from blood to have
325  the highest concentration of turtle DNA, followed by turtle lab water, and the negative controls. We
326  evaluated the statistical significance of this ordering with Jonckheere’s trend test. This test is similar
327  to the Kruskal-Wallis test, but is used specifically to assess a priori ordering hypotheses [139]. Our
328  null hypothesis was that there was no trend order, whereas our alternative hypothesis dictated the

329  following strict trend: turtle blood, turtle laboratory water, high turtle density pond, medium turtle
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330  density pond, low turtle density pond, zero turtle density pond, then negative controls. To perform

331  these tests, we used the packages ggplot2, clinfun and base R statistical software (version 3.2.3) [140].

332  3.Results

333 From our qPCR dataset, we obtained 27 Cq sample values from seven sampling days by
334  averaging triplicates. One sample—from the zero-turtle density pond on Julian day 167 —was below
335  our detection limit and did not yield a Cq value. Our negative controls amplified at an average Cq of
336 40.07 (SD = 0.39, SE = 0.11) and our blood positive control Cq was 21.43 (SD = 0.39; SE = 0.11).
337  Background signal in the negative controls were always detected. The mean of all samples (excluding
338 positive and negative controls) was 38.27 Cq (SD = 0.86; average SE = 0.48). The lowest mean value
339  (i.e. highest eDNA abundance) for any sample was the high turtle density pond on Julian day 122,
340  with 31.06 Cq (SD = 0.39; SE = 0.11). This reading is more than 7 Cq values away from the mean of
341  our negative controls, rendering it able to be considered for analysis [137]. The next highest eDNA
342  abundance was for the medium turtle density pond on Julian day 167, with 33.92 Cq (SD = 0.08; SE =
343 0.04), which is not more than 7 Cq values away from the negative control and therefore not
344  sufficiently distinguishable from background amplification. Thus, with only one sample meeting
345  detection criteria, we could not statistically analyze individual Cq values (Figure. 2). That we detected
346  background signal, however, indicates our amplification assay was sensitive and that potential turtle-

347  specific eEDNA concentrations in our samples were simply too low.
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348 Figure 2. Amplification (quantification cycle = Cq) of adult painted turtle eDNA as a function of
349 sample source and date. Higher Cq values indicate less eDNA. Varying colors and symbols represent
350 pond treatments: the zero-density pond had 0 turtles (orange squares), the low-density pond had 11
351 turtles (red circles), the medium-density pond had 23 turtles (purple triangles), and the high-density
352 pond had 38 turtles (blue diamonds). Points indicate the average triplicate value of each sample and
353 points are jittered for readability. The positive controls from extracted painted turtle blood and the
354 negative controls were plotted at Julian day 75 to facilitate comparisons. The zero density pond on
355 Julian day 167 failed to amplify, and only one replicate of the low density pond on Julian day 91
356 amplified.
357 Regardless of sample Cq values relative to background amplification, we assessed whether

358  sampled Cq values followed an expected trend of turtle-specific eEDNA concentrations. The rank-
359  order obtained for highest to lowest amplification of turtle-specific eEDNA was: turtle blood, turtle
360  lab water, high turtle density pond, medium turtle density pond, low turtle density pond, zero

361  turtle density pond, and our negative control (Figure 3). This ranking of turtle-specific eDNA
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meaningful order to these samples (P <0.001).
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Figure 3. Plot of Cq mean per sample source with the standard error of the mean (SE) for painted
turtle eDNA from water samples obtained from experimental ponds during the 2016 field season.
Higher Cq values indicate lower eDNA. Varying colors and symbols represent pond treatments: the
zero-density pond had 0 turtles (orange squares), the low-density pond had 11 turtles (red circles),
the medium-density pond had 23 turtles (purple triangles), and the high-density pond had 38 turtles

(blue diamonds). See Figure 2 for more information.

4. Discussion

Overall, we could not discern quantitative patterns of painted turtle-specific eDNA in individual
samples from semi-natural ponds, indicating potential detection limitations. This result occurred
despite known abundances of turtles in the water we sampled and a sensitive qPCR assay. We
conclude that our qPCR protocol for painted turtle-specific eEDNA did not effectively detect turtles or

quantify turtle density, because only 1 of 27 field samples amplified substantial turtle-specific eEDNA
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376  (the high-density pond on Julian day 122). Even so, our rank-order analysis supported the expected
377  trend of increased turtle-specific eDNA with increased turtle density.

378 We developed an eDNA amplification assay for detecting and quantifying turtle eDNA. We
379  detected background painted turtle signal despite thorough use of UV-sterilizing equipment before
380  gPCR amplification, isolation of gPCR preparation from DNA extraction, and much care to prevent
381  contamination. Although the majority of our turtle-specific eDNA samples did not differ enough
382  from the persistent background noise to allow quantitative analysis, the raw abundances do
383  qualitatively follow the expected rank-order pattern from highest-turtle density pond to lowest-turtle
384  density pond. Thus, if we had detected a higher concentration of painted turtle eDNA in our samples,
385  we would expect to have obtained enough copies of eDNA for quantitative analysis. Turtle eDNA
386  possibly has a stochastic nature at low concentrations, exemplified by one clear amplification and
387  several others which fall short of the cutoff (Figure 2). Larger water samples passing through multiple
388 filters may have mitigated this issue by increasing the chance of turtle eDNA capture [108]. Because
389  our negative control amplified, and painted turtle mtDNA has been amplified in our laboratory space
390  before, perhaps targeting another region, such as a nuclear portion not targeted by previously used
391  primers or restriction enzymes, of the painted turtle genome would aid in eliminating the DNA signal
392  inthe negative control [141,142]. Despite an abundance of turtles in the sample water, we were unable
393 to collect and extract enough turtle eDNA to reliably exceed the detection limit of qRT-PCR.

394 Currently, we cannot recommend our particular eDNA quantification assay for monitoring
395  aquatic turtle density under field conditions. We obtained just one substantially amplifiable sample
396  of turtle eDNA from pond water despite successfully amplifying turtle-specific eDNA from lab water
397  and developing a sensitive qPCR amplification assay. On the other hand, we did observe the expected
398  positive relationship between turtle density and turtle-specific eDNA, hinting at a possible
399  correlation between turtle density and eDNA extracted. Still, this study highlights some limitations
400  of detecting aquatic reptile eDNA density under field conditions. Indeed, other studies have reported

401  similar difficulties of not being able to relate known turtle density to eDNA under field conditions
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402 [127]. Still, advances in technology may soon realize the full potential of eDNA for monitoring the
403  density of turtle populations. One promising avenue is ddPCR, a sensitive PCR tool that absolutely
404  quantifies template copy number [83,84,98]. This technology has already shown a correlation
405  between density and eDNA copy number in a variety of environments and could be used to aid in
406  quantifying reptile eDNA [84]. As ddPCR technology becomes more widely available and decreases
407  incost, it may be an attractive alternative to current JPCR methods, especially as it can be more robust
408  to inhibition than qPCR [143,144]. That fish and amphibians have well developed eDNA techniques
409  lends optimism to the view that eDNA eventually can be used to monitor populations of aquatic

410  turtles.

411 4.1. Inhibition

412 As with other eDNA studies, our experiment likely suffers from DNA inhibition in the
413 environmental samples. When standard curves were run, 1:4 and 1:8 sample dilutions had a lower
414 Cq value than the full sample itself, signaling the presence of inhibitors [110]. With non-inhibited
415  DNA extracted from painted turtle blood and painted turtle laboratory water, this was not the case.
416  Despite the troubleshooting with Environmental Master Mix 2.0 and the use of ToughMix
417  (QuantaBiosciences), specifically designed to reduce the effects of PCR inhibition, we were unable to
418  amplify enough turtle eDNA to quantitatively relate to turtle density. Inhibition is common in eDNA
419  field studies and is addressed through various protocols. Employing special buffers during extraction
420  (e.g. CTAB), applying clean-up kits (e.g. Zymo One Step), using BSA in PCR reactions, and diluting
421  template for PCR reactions are common ways of minimizing the effect of inhibitory compounds
422 [51,100,109,145,146]. Common environmental inhibitors include plant secondary compounds such as
423 polysaccharides, pectin, xylan, phenols and tannins [147,148]. Soil also contains known PCR
424  inhibitors including humic acids, minerals such as calcium, and inorganic compounds [147,148].
425  Proteases, urea, and competing DNA may additionally inhibit reactions or decrease reaction

426  efficiency [148]. While inhibitors are well documented in the literature, it may be difficult to ascertain
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427  exactly what mixture of inhibitors are responsible for decreased PCR yield. Therefore, general

428  methods such as clean-up kits and dilution are commonly used for eDNA samples.

429 4.2. The shedding hypothesis

430 Biologically, non-avian reptiles may not shed eDNA into the environment at the same rates as
431  other organisms. This we dub the “shedding hypothesis,” or the hypothesis that organisms with a
432 Kkeratinized exterior integument may shed eDNA at lower rates compared to those with a mucus
433 integument, such as teleost fish and amphibians. For example, turtles lack gills and most integument
434  is keratinized, thus they may not shed eDNA as readily as organisms with a mucus layer [129,149].
435  Indeed, one study noted that when eDNA metabarcoding is used for non-avian reptiles and
436  amphibians, > 95% of read abundance was comprised of amphibian DNA for that specific primer set
437  [122]. Potentially, amphibian DNA is more abundant in environmental samples than non-avian
438  reptile eDNA and thus contributes to a larger percentage of read abundance. Furthermore, turtles
439  commonly shed scutes and skin in pieces (rather than as rafts of cells), which, due to their mass, may
440  sink into substrate and be unlikely to be detected in the water column as readily by our eDNA
441  methodology [150]. Thus only excrement, tears, and saliva may be primary shedding mechanisms for
442 detecting turtle eDNA [151,152]. As a result, turtle eDNA may not be overly abundant in the water
443 column. For example, when detecting alligator snapping turtle presence, Cq values were larger than
444 the usual <35 Cq, ranging from 39.06 to 44.89 Cgq, indicating low quantities of eDNA [124].
445  Additionally, despite detection, that study had a low rate of replicates amplifying in a field setting,
446  with most amplifications occurring at a 16% to 33% rate with no 100% replication rates [124]. In
447  studies of European pond turtles, some ponds with known turtle presence did not yield eDNA,
448  resulting in false negatives [127]. Further evidence comes from a previous mesocosm study,
449  specifically targeting marine vertebrates in a semi-controlled environment, where no turtle eDNA
450  was found with vertebrate metabarcoding primers although a sea turtle was present [123].

451 Along with turtles, other animals with hard exteriors may have reduced shedding of eDNA. For

452  example, European green crab eDNA (Carcinus maenas) was about an order of magnitude lower than
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453  that of shanny fish eDNA (Lipophrys pholis) in a laboratory marine setup, despite comparable biomass
454  added to tanks [153]. Shedding of large skin fragments, rather than numerous small bits of tissue
455  containing DNA, also may have contributed to non-detection in previous studies of non-chelonian
456  reptiles in aquatic systems. Despite the aquatic nature of West African crocodiles, the species was not
457  detected in a metabarcoding study [119]. Additionally, giant garter snake individuals placed in water
458  were not detected with eDNA in a laboratory setting, suggesting live snake presence may not be
459  enough to shed sufficient eDNA [121]. However, given that substances such as fecal matter can yield
460  DNA [121] (and some successful snake detections have occurred using eDNA in the wild [50,122]),
461  animals with non-mucus integument ultimately may be detectable via eDNA sources other than skin.
462  The shedding hypothesis presented here may be applicable beyond turtles and other vertebrates with
463  keratinized skin, but likely only reduces environmentally available DNA rather than prevents eDNA
464  shedding altogether. We present the shedding hypothesis as just one potential explanation for why

465  eDNA may be less available in the water column for organisms with relatively rigid exteriors.

466  4.3. Best practices

467 Both the system and the particular target should be considered when sampling. Different targets
468  require different considerations. It is usually best to carry out a small-scale proof-of-concept
469  experiment in conjunction with traditional methods for comparison before widely applying eDNA
470  methods for monitoring. Here, we outline a few considerations when designing a species-specific
471  eDNA study and recommend additional reviews of eDNA study design [91,154].

472 Before obtaining samples, planning a robust experimental design as well as having a clean,
473  DNA-free space where experiments will be carried out is important [91,155]. Target species’ biology
474  can be used to optimize sample timing. Periods of increased activity, such as breeding seasons, can
475  elevate eDNA availability in the water [62,156]. For example, painted turtle eDNA may be taken
476  while animals are not hibernating and during times of day when they are most active and not basking.
477  For these species, as they are in shallow waters and regularly climb out to bask, surface water may

478  be sufficient. Samples should be taken with an appropriate number of replicates [106], which may
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479  vary depending on season and target biology. Regardless, replicates may increase the chance of
480 detection and confirm positive detection beyond stochasticity [106,107]. Field site(s) should also be
481 considered, as eDNA travels downstream in lotic systems or can have different spatial distribution
482 in lentic systems [82,102,105,157,158]. Water samples need to be filtered, extracted and have PCRs set
483  up in a PCR-free room, preferably in another building, floor, or lab. These practices will prevent
484  contamination, especially if the target species DNA has been amplified before in the same lab.

485 Beyond planning, sampling and laboratory workflows should be considered. Multiple negative
486  controls (e.g., field, extraction, amplification, and sequencing) are needed to determine at what step
487  contamination is introduced, if at all [28]. During amplification and sequencing, positive controls
488  should be used for comparison, such as laboratory eDNA or DNA tissue extract from the target
489  species [91,159]. At times, synthetic positive controls have been used to distinguish positive controls
490 from potential contamination [59,159]. Furthermore, primers should be tested with closely related,
491  sympatric species to ensure species specificity. Probe-based qPCR for closely-related taxa can increase
492 amplicon specificity [112] to discern single base pair mismatches.

493 To obtain eDNA, many filtration, extraction, and amplification methods have been used. It may
494 be best to test various filter types systematically, but protocols often use cellulose nitrate filters with
495  0.45uM pores to capture eDNA [100,160]. Larger pore size may be needed if clogging occurs,
496  especially with water containing high concentrations of algae or sediments [161]. Generally, larger
497  volumes (>1L) of water increase the chance of detecting organisms, though increasing replicates can
498 allow for smaller volumes to be used [106,108,162]. Once filtered, samples are extracted, such as with
499  Qiagen’s Blood and Tissue Kit or via a phenol-chloroform isoamyl solution [100]. To decrease sample
500  inhibition, Zymo’s One-Step PCR Inhibitor Removal Kit can be helpful, although dilution can work
501  as well [110,111]. Both methods may decrease inhibition, but potentially risk decreasing extracted
502  DNA concentration or yield [111]. Turbid aquatic environments can be more prone to inhibition, yet
503 it may still be possible to obtain eDNA from them [111,160]. To increase PCR reaction efficiency,

504  bovine serum albumin (BSA) may also be added to PCR reactions [51]. Once successful, Sanger
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505  sequencing of amplicons can be used to confirm target species DNA. A number of positive
506  identifications across replicates may be needed to support the presence of a target organism,
507  depending on how dilute the eDNA is expected to be and habitats sampled (e.g. lentic, lotic, or

508  marine) [91,124].

509 5. Conclusions

510 Beyond solving eDNA technical difficulties, there is no stand-in for knowing the biology of the
511  target organism. To maximize the probability of success of using eDNA, sampling should be targeted
512 to the life history and ecology of the particular species. Without this basic research, genetic
513  knowledge, and rigorous testing of methodology, eDNA monitoring may not easily yield useful
514 results. As in our case study, painted turtle eDNA may be difficult to obtain in the field. Even so,
515  eDNA could be a powerful tool for detecting presence of non-avian reptiles in lentic habitats [163],
516  as it is already being used successfully for fish and amphibians. Although employing eDNA for
517  studying reptiles in aquatic systems presents challenges, such as decreased eDNA shedding, we
518  remain hopeful that more sensitive technological advancements and robust study design will

519  mitigate these issues.

520 Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: title, Table
521  sl:title, Video S1: title.
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