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Abstract: In the past few decades, probabilistic interpretations of brain functions have become1

widespread in cognitive science and neuroscience. In particular, the free energy principle and2

active inference are increasingly popular theories of cognitive functions that claim to offer a3

unified understanding of life and cognition within a general mathematical framework derived4

from information and control theory, and statistical mechanics. However, we argue that if the active5

inference proposal is to be taken as a general process theory for biological systems, it is necessary6

to understand how it relates to existing control theoretical approaches routinely used to study and7

explain biological systems. For example, recently, PID control has been shown to be implemented in8

simple molecular systems and is becoming a popular mechanistic explanation of behaviours such9

as chemotaxis in bacteria and amoebae, and robust adaptation in biochemical networks. In this10

work, we will show how PID controllers can fit a more general theory of life and cognition under11

the principle of (variational) free energy minimisation when using approximate linear generative12

models of the world. This more general interpretation provides also a new perspective on traditional13

problems of PID controllers such as parameter tuning as well as the need to balance performances14

and robustness conditions of a controller. Specifically, we then show how these problems can be15

understood in terms of the optimisation of the precisions (inverse variances) modulating different16

prediction errors in the free energy functional.17

Keywords: approximate Bayesian inference, active inference, PID control, generalised state-space18

models, sensorimotor loops, information theory, control theory19

1. Introduction20

Probabilistic approaches to the study of living systems and cognition are becoming increasingly21

popular in the natural sciences. In particular for the brain sciences, the Bayesian brain hypothesis,22

predictive coding, the free energy principle and active inference have been proposed to explain23

brain processes including perception, action and higher order cognitive functions [1–8]. According24

to these theories, brains, and biological systems more generally, should be thought of as Bayesian25

inference machines, since they appear to estimate the latent states of their sensory input in a process26

consistent with a Bayesian inference scheme. Given the complexity of exact Bayesian inference,27

however, approximated schemes are believed to provide a more concrete hypothesis on the underlying28

mechanisms. One candidate scheme is the free energy principle (FEP), which was introduced in [4] and29

later elaborated in a series of papers, e.g. [9–11], and has its roots in information theory, control theory,30

thermodynamics and statistical mechanics. While initially the theory emerged in the computational31

[12] and behavioural/cognitive neurosciences [13,14], over time, further connections with the fields of32

biological self-organisation, information theory, optimal control, cybernetics and economics among33

others, have also been suggested [10,15–17]. According to the FEP, living systems exist in a limited34

set of physical states and thus must minimise the entropy of those physical states (see fluctuation35
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theorems for non-equilibrium thermodynamics, e.g. [18]). To achieve this, organisms can minimise the36

informational entropy of their sensory states, which, under ergodic assumptions, is equivalent to the37

time average of surprisal (or self-information) [9]. Surprisal quantifies how improbable an outcome38

is for a system, i.e. a fish out of water is in a surprising state. Biological creatures can thus be seen39

as minimising the surprisal of their sensations to maintain their existence, e.g. a fish’ observations40

should be limited to states in water. Since this surprisal itself is not directly accessible by an agent,41

variational free energy is proposed as an upper bound on this quantity which can be minimised in its42

stead [4,19]. It has also been suggested that cognitive functions such as perception, action, learning43

and attention can be accounted for in terms approximate Bayesian inference schemes such as the FEP.44

In particular, according to this hypothesis, perception can be described using predictive coding models45

of the cortex. These models describe perception as a combination of feedforward prediction errors46

and feedback predictions combined under a generative model to infer the hidden causes and states47

of sensory data [2]. More recent work has connected these ideas to control theory and cybernetics48

[15,17,20], extending existing accounts of (optimal) motor control and behaviour [10,13,21,22]. On this49

view, behaviour is cast as a process of acting on the world to make sensory data better fit existing50

predictions, with (optimal) motor control cast as a Bayesian inference problem. The most recent51

attempt to unify predictive coding and optimal control theory, usually falls under the name of active52

inference [10,13].53

While in standard accounts of perceptual inference prediction errors can be suppressed only by54

updating predictions of the incoming sensations, in active inference errors can also be minimised by55

directly acting on the environment to change sensory input to better accord with existing predictions56

[9,13]. If a generative model encodes information about favourable states for an agent, then this57

process constitutes a way by which the agent can change its environment to better meet its needs. Thus,58

under the FEP, these two processes of error suppression allow a system to both infer the properties of,59

and control, the surrounding environment. Most models implementing the FEP and active inference60

assume that agents have a deep understanding of their environment and its dynamics in the form of61

an accurate and detailed generative model. For instance, in [13,23] the generative model of the agent62

explicitly mirrors the generative process of the environment, i.e. the dynamics of the world the agent63

interacts with. In recent work, it has been argued that this need not be the case [24–27], especially if we64

consider simple living systems with limited resources. We intuitively don’t expect an ant to model65

the entire environment where it forages, performing complex simulations of the world in its brain (cf.66

the concept of Umwelt [28]). When states and parameters in the world change too rapidly, accurate67

online inference and learning are implausible [29]. This idea is however common in the literature,68

e.g. [6,13,14,23], where cognition and perception are presented as processes of inference to the best69

explanation, and agents are primarily thought to build sophisticated models of their worlds with only70

a secondary role for action and behaviour. A possible alternative introduces action-oriented models71

entailing a more parsimonious approach where only task-relevant information is encoded [24,25]. On72

this normative view, agents only model a minimal set of environmental properties, perhaps in the73

form of sensorimotor contingencies [26], that are necessary to achieve their goals.74

The relationship between information/probability theory and control theory has long been75

recognised, with the first intuitions emerging from work by Shannon [30] and Kalman [31]. A unifying76

view of these two theoretical frameworks is nowadays proposed for instance in stochastic optimal77

control [32,33] and extended in active inference [15], with connections to ideas of sensorimotor loops in78

biological systems [11,13]. These connections emphasise homeostasis, regulation and concepts such as79

set-point control and negative feedback for the study of different aspects of living systems, with roots80

in the cybernetics movement [34,35]. It remains, however, unclear how the active inference formulation81

directly relates to more traditional concepts of control theory. PID control, a popular control strategy82

working with little prior knowledge of the process to regulate, is commonly applied in engineering83

[36–38] and more recently used in biology and neuroscience modelling [39–43]. In this work, we84

develop an information theoretic interpretation of PID control, showing how it can be derived in a85
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more general Bayesian (active) inference framework. We will show that approximate models of the86

world are often enough for regulation, and in particular that simple linear generative models that only87

approximate the true dynamics of the environment implement PID control as a process of inference.88

Using this formulation we also propose a new method for the optimisation of the gains of PID89

controllers based on the same principle of variational free energy minimisation, and implemented as a90

second order optimisation process. Finally, we will show that our implementation of PID controllers as91

approximate Bayesian inference lends itself to a general framework for the formalisation of different92

(conflicting) criteria in the design of a controller, the so-called performance-robustness trade-off93

[38,44], as a cohesive set of constraints implemented in a free energy functional. In active inference,94

these criteria will be mapped to precisions, or inverse variances, of observations and dynamics of a95

state-space model with a straightforward interpretation in terms of uncertainty on different variables96

of a system.97

In section 2 we will introduce PID control and give a brief overview of the recent literature98

highlighting the most common design principles used nowadays for PID controllers. The free energy99

principle will be presented in section 3, followed by a complete derivation of PID control as a form100

of active inference. In this section we will also propose that the parameters of a PID controller, its101

gains, can be optimised following the active inference formulation, which also captures modern design102

constraints and desiderata of PID controllers.103

2. PID control104

Proportional-Integral-Derivative (PID) control is one of the most popular types of controllers
used in industrial applications, with more than 90% of total controllers implementing PID or PI (no
derivative) regulation [38,45]. It is one of the simplest set-point regulators, whereby a desired state (i.e.
set-point, reference, target) represents the final goal of the regulation process, e.g. to maintain a room
temperature of 23◦ C. PID controllers are based on closed-loop strategies with a negative feedback
mechanism that tracks the real state of the environment. In the most traditional implementation of
negative feedback methods, the difference between the measured state of the variable to regulate (e.g.
the real temperature in a room) and the target value (e.g. 23◦ C) produces a prediction error whose
minimisation drives the controller’s output, e.g. if the temperature is too high, it is decreased and if
too low, it is raised. In mathematical terms:

e(t) = yr − y(t) (1)

where e(t) is the error, yr is the reference or set-point (e.g. desired temperature) and y(t) is the observed105

variable (e.g. the actual room temperature).106

This mechanism is, however, unstable in very common conditions, in particular when a
steady-state offset is added (e.g. a sudden and unpredictable change in external conditions affecting
the room temperature which are not under our control), or when fluctuations need to be suppressed
(e.g. too many oscillations while regulating the temperature may be undesirable). PID controllers
elegantly deal with both of these problems by augmenting the standard negative feedback architecture,
here called proportional or P term, with an integral or I and a derivative or D term, see Fig. 1. The integral
term accumulates the prediction error over time in order to cancel out errors due to unaccounted
steady-state input, while minimising the derivative of the prediction error leads to a decrease in the
amplitude of fluctuations of the controlled signal. The general form of the control signal u(t) generated
by a PID controller is usually described by:

u(t) = kpe(t) + ki

∫ t

0
e(τ)dτ + kd

de(t)
dt

(2)

where e(t) is, again, the prediction error and kp, ki, kd are the so called proportional, integral and107

derivative gains respectively, a set of parameters used to tune the relative strength of the P, I and D108
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terms of the controller. The popularity of PID controllers is largely due to their simple formulation and

Figure 1. A PID controller [46]. The prediction error e(t) is given by the difference between a reference
signal r(t), yr in our formulation, and the output y(t) of a process. The different terms, one proportional
to the error (P term), one integrating the error over time (I term) and one differentiating it (D term),
drive the control signal u(t).

109

implementation. One of the major challenges on the other hand, lies with the tuning of parameters110

kp, ki, kd, that have to be adapted to deal with different (often conflicting) constraints on the regulation111

process [36,44].112

2.1. The performance-robustness trade-off113

The presence of conflicting criteria for the design of PID controller is a well known issue in the114

control theory literature, often referred to as the performance-robustness trade-off [38,44,47–49]. A115

controller needs to optimise pre-specified performance criteria while, at the same time, preserving some116

level of robustness in face of uncertainty and unexpected conditions during the regulation process.117

In recent attempts to formalise and standardise these general principles [38,44], the performance of a118

controller has been proposed to be evaluated through:119

• load disturbance response, how a controller reacts to changes in external inputs, e.g. a step input,120

• set-point response, how a controller responds to different set-points over time,121

• measurement noise response, how noise on the observations impacts the regulation process,122

while robustness to be assessed on:123

• robustness to model uncertainty, how uncertainty on the plant/environment dynamics affects124

the controller.125

The goal of a general methodology for the design and tuning of PID controllers is to bring together126

these (and possibly more) criteria into a formal and tractable framework that can be used for a large127

class of problems. One possible example is presented in [48] (see also [50,51] for other attempts). This128

methodology is based on the maximisation of the integral gain (equivalent to the minimisation of129

the integral of the error from the set-point, see [36]), subject to constraints derived from a frequency130

domain analysis related to the Nyquist stability criterion applied to the controlled system [48]. In131

this work, we propose our formulation also as a general framework for the design and tuning of132

PID controllers leveraging the straightforward interpretation of the performance-robustness trade-off133

for PID controllers in terms of uncertainty parameters (i.e. precisions or inverse variances) in the134

variational free energy.135

3. The active inference framework136

According to the free energy principle, living system must minimise the surprisal, or
self-information, of their observations [4,9,10,19], defined as:

− ln p(ψ|m) (3)
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where ψ is a set of sensory inputs conditioned on an agent m. Surprisal, in general, can in fact differ
from agent to agent, with states that are favourable for a fish (in water), different from those favourable
for a bird (out of water) (see [52] for a review on the value of information). According to the FEP, agents
that minimise the surprisal of their sensory states over time will also minimise the entropy of their
sensations, thus limiting the number of states they can physically occupy [4,19]. This minimisation is,
however, intractable in any practical scenario since surprisal can be seen as the negative log-model
evidence or negative log-marginal likelihood of observations ψ, with (omitting m for simplicity from
now on) the marginal likelihood or model evidence expressed as:

p(ψ) =
∫

ϑ
p(ψ, ϑ) dϑ. (4)

This integral is defined over all possible hidden variables, ϑ, of observations ψ. In many cases, the
marginalisation is intractable since the latent space of ϑ may be high dimensional or the distribution
may have a complex (analytical) form. In statistical mechanics, an approximation under variational
formulations transforms this into an optimisation problem. The approximation goes by several names,
including variational Bayes and ensemble learning [53,54], and constitutes the mathematical basis of
the free energy principle. Using variational Bayes, surprisal can then be decomposed into [54]:

− ln p(ψ) = F− DKL(q(ϑ) || p(ϑ|ψ)), (5)

where

DKL(q(ϑ) || p(ϑ|ψ)) =
∫

q(ϑ) ln
q(ϑ)

p(ϑ|ψ) dϑ, (6)

is the Kullback-Leibler (KL) divergence [55], or relative entropy [54], an asymmetrical non-negative
measure of the difference between two probability distributions. The first one, p(ϑ|ψ), represents the
posterior distribution specifying the probability of hidden states, causes and parameters (ϑ) given
observations ψ, while the second one q(ϑ), is the variational or recognition density which encodes
currents beliefs over hidden variables ϑ. The latter is introduced with the idea of approximating
the (also) intractable posterior p(ϑ|ψ) with a simpler distribution, q(ϑ), and then minimising their
difference through the KL divergence: when the difference is zero (following Jensen’s inequality the
divergence is always non-negative [54]), q(ϑ) is a perfect description of p(ϑ|ψ). Analogously, from the
point of view of an agent, its goal is to explain the hidden states, causes and parameters ϑ of sensations
ψ by approximating the posterior p(ϑ|ψ) with a known distribution, q(ϑ). The first term in equation 5
can be written as

F =
∫

q(ϑ) ln
q(ϑ)

p(ϑ, ψ)
dϑ (7)

and is defined as (variational) free energy [8,12,56,57] for its mathematical analogies with free energy
in thermodynamics, or [54] (negative) evidence lower bound in machine learning. Since the KL
divergence is always non-negative we arrive at

DKL(q(ϑ) || p(ϑ|ψ)) ≥ 0⇒ F ≥ − ln p(ψ) (8)

which demonstrates that variational free energy is an upper bound to surprisal, since by minimising F
we are guaranteed to minimise − ln p(ψ). To evaluate the variational free energy F, we must formalise
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a recognition density q(ϑ) and a generative density p(ϑ, ψ) specific to an agent. Starting from the latter,
we define a generative model formulated as a one dimensional generalised state-space model [12]:

ψ = g(x, v) + z

ψ′ = gx(x, v)x′ + gv(x, v)v′ + z′

ψ′′ = gx(x, v)x′′ + gv(x, v)v′′ + z′′

...

ẋ = x′ = f (x, v) + w

ẋ′ = x′′ = fx(x, v)x′ + fv(x, v)v′ + w′)

ẋ′′ = x′′′ = fx(x, v)x′′ + fv(x, v)v′′ + w′′)
...

(9)

where ψ are the observations and ϑ = {x, v, θ, γ}, with x as the hidden states and v as the exogenous
inputs, while θ and γ follow a partition in terms of parameters and hyperparameters defined in [12]
and are specified later to simplify the notation now. Functions g(·) and f (·) map hidden states/inputs
to observations and the dynamics of hidden states/inputs respectively. The prime symbols, e.g.
x′, x′′, x′′′ are used to define higher orders of motion of a variable. Generalised coordinates of motion
are introduced to represent non-Markovian continuous stochastic processes based on Stratonovich
calculus, with strictly non-zero autocorrelation functions [12,58,59]. Ito’s formulation of stochastic
processes, on the other hand, is based on Wiener noise, where the autocorrelation can be seen as
strictly equal to a delta function [59,60]. In general, the Stratonovich formulation is preferred in
physics, where it is assumed that perfect white noise does not exist in the real world [61], while Ito’s
calculus is extensively used in mathematics/economics for its definition preserving the Martingale
property [62]. It is proposed that models of biological systems should be based on the Stratonovich
derivation [12], to accommodate more realistic properties of the physical world (i.e. non-Markovian
processes). Using the Stratonovich interpretation, random processes can be described as analytic (i.e.
differentiable) and become better approximations of real-world (weakly) coloured noise [60,63,64]. In
this formulation, standard state-space models are extended, describing dynamics and observations for
higher “orders of motion” encoding, altogether, a trajectory for each variable. The more traditional
state-space description is based on Markovian processes (i.e. white noise) and can be seen as a special
case of generalised state-space models defined here and in, for instance, [8,12]. When coloured noise
is introduced, one should either define a high order autoregressive process expressed in terms of
white noise [65] or embrace the Stratonovich formulation defining all the necessary equations in a
state-space form [12]. The higher “orders of motion” introduced here can be thought of as quantities
specifying “velocity” (e.g. (ψ)′), “acceleration” (e.g. (ψ)′′), etc. for each variable, which is neglected
in more standard formulations. For practical purposes, in equation (9) we also made a local linearity
approximation on higher orders of motion suppressing nonlinear terms [8,12]. We introduce then a
more compact form:

ψ̃ = g(x̃, ṽ) + z̃ x̃′ = f (x̃, ṽ) + w̃ (10)

where the tilde sign (e.g. ψ̃) summarises a variable and its higher orders of motion (e.g. ψ̃ =

{ψ, ψ′, ψ′′, . . . }). The stochastic model in equation (9) can then be described in terms of a generative
density:

P(ψ̃, x̃, ṽ; θ, γ) = P(ψ̃|x̃, ṽ; θ, γ)P(x̃, ṽ; θ, γ) (11)

In this case, we also make the conditional dependence on θ, γ explicit, defining θ as slowly changing
parameters coupling hidden states and causes to observations, and hyperparameters γ as encoding
properties of random fluctuations/noise w̃ and z̃. P(ψ|x, v; θ, γ) is a likelihood function describing the
measurement law in equation (10), while the prior P(x̃, ṽ; θ, γ) describes the system’s dynamics. Under
the Laplace approximation [66,67], the form of the recognition density q(ϑ) is specified in terms of a
Gaussian distribution centred around the estimated mode (i.e. the mean for a Gaussian distributions)
which can be evaluated using an extension of the EM algorithm [56,57]. Furthermore, (co)variances
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can be solved analytically in terms of the Hessian of the free energy evaluated at the mode [8,67,68].
The variational free energy in equation (7) can then be simplified, without constants, to [8]:

F ≈ − ln P(ψ̃, x̃, ṽ; θ, γ)
∣∣∣
ϑ̃=µ̃ϑ

(12)

where the condition ϑ̃ = µ̃ϑ represents the fact that the generative density P(ψ̃, x̃, ṽ; θ, γ) will be
approximated by a Gaussian distribution centred around the best estimates µ̃ϑ of the unknown ϑ̃,
following the Laplace method implemented in a variational context [66]. With Gaussian assumptions
on random variables z̃ and w̃ in equation equation (10), the likelihood and prior in equation (11) are
also Gaussian, and the variational free energy can be expressed as:

F ≈ 1
2

[
πz̃

(
ψ̃− g(µ̃x, µ̃v)

)2
+ πw̃

(
µ̃′x − f (µ̃x, µ̃v)

)2
− ln

(
πz̃πw̃

)]
(13)

where x̃ and ṽ are replaced by their sufficient statistics, means/modes µ̃x, µ̃v, and sensory and
dynamics/process precisions πz̃, πw̃, or inverse variances, of random variables z̃ and w̃. Following
[12,56], the optimisation of the (Laplace-encoded) free energy with respect to expected hidden states
µ̃x, equivalent to estimation or perception, can be implemented via a gradient descent:

˙̃µx = Dµ̃x −
∂F
∂µ̃x

(14)

while, considering how, from the perspective of agent, only observations ψ are affected by actions a
(i.e. ψ(a)), control or action can be cast as:

ȧ = −∂F
∂a

= − ∂F
∂ψ̃

∂ψ̃

∂a
(15)

representing a set of coupled differential equations describing a closed sensorimotor loop in terms137

of a physically plausible minimisation scheme [12]. The first equation includes a term Dµ̃x that138

represents the “mode of the motion” (also the mean for Gaussian variables) in the minimisation139

of states in generalised coordinates of motion [8,12,69], with D as a differential operator “shifting”140

the order of motion of µ̃x such that Dµ̃x = µ̃′x. More intuitively, since we are now minimising the141

components of a generalised state representing a trajectory rather than a static state, variables are in a142

moving frame of reference in the phase-space, and the minimisation is achieved when the temporal143

dynamics of the gradient descent match the ensemble dynamics of the estimates of hidden states, so144

for ˙̃µx = µ̃′x rather than for ˙̃µx = 0 (which assumes that the mode of the motion is zero, as in standard145

state-space formulations with Markov assumptions). In the second equation, active inference makes146

the assumption that agents have innate knowledge of the mapping between actions a and observations147

ψ̃ (i.e. ∂ψ̃/∂a) as reflex arcs, acquired on an evolutionary time scale, see [13,15] for discussion.148

4. Results149

4.1. PID control as active inference150

To implement PID control as a process of active inference, we will first describe an agent’s
generative model as a generalised linear state-space model of second order (i.e. only two higher orders
of motion, anything beyond that is zero-mean Gaussian noise):

ψ = x + z

ψ′ = x′ + z′

ψ′′ = x′′ + z′′

ẋ = x′ = −α(x + v) + w

ẋ′ = x′′ = −α(x′ + v′) + w′

ẋ′′ = x′′′ = −α(x′′ + v′′) + w′′
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where α ∈ θ is a parameter. As previously suggested, with a Gaussian assumption on z̃, w̃, the
likelihood is reduced to:

P(ψ̃|x̃, ṽ; θ, γ) = P(ψ̃|x̃; θ, γ) = N(µ̃x, σ2
z̃ ) (16)

where we assume no direct dependence of observations ψ̃ on external inputs ṽ, while the prior is
described by:

P(x̃, ṽ; θ, γ) = P(x̃|ṽ; θ, γ)P(ṽ; θ, γ) (17)

with

P(x̃|ṽ; θ, γ) = N(−α(µ̃x + µ̃v), σ2
w̃)

P(ṽ; θ, γ) = N(η̃x, σ2
ṽ ) (18)

The Laplace-encoded variational free energy in equation (13) then becomes:

F ≈ 1
2

[
πz

(
ψ− µx

)2
+ πz′

(
ψ′ − µ′x

)2
+ πz′′

(
ψ′′ − µ′′x

)2
+ πw

(
µ′x + α(µx − ηx)

)2
+

+πw′
(

µ′′x + α(µ′x − η′x)
)2

+ πw′′
(

µ′′′x + α(µ′′x − η′′x )
)2
− ln

(
πzπwπz′πw′πz′′πw′′

)]
(19)

To simplify our formulation, we assume that precisions πṽ tend to infinity (i.e. no uncertainty on
the priors for ṽ), so that P(ṽ; θ, γ) in equation (18) becomes a delta function and inputs ṽ reduce
to their prior expectations η̃x, i.e. µ̃v = η̃x. With this simplification, prior precisions πṽ and
respective predictions errors (µ̃v − η̃x) are not included in our formulation (see [56,57] for more
general treatments). By applying the gradient descent described in equation (14) and equation (15) to
our free energy functional, we then get the following update equations for perception (estimation):

µ̇x =µ′x −
[
− πz

(
ψ− µx

)
+ πwα

(
µ′x + α(µx − ηx)

)]
µ̇′x =µ′′x −

[
− πz′

(
ψ′ − µ′x

)
+ πw′α

(
µ′′x + α(µ′x − η′x)

)
+ πw

(
µ′x + α(µx − ηx)

)]
µ̇′′x =µ′′′x −

[
− πz′′

(
ψ′′ − µ′′x

)
+ πw′′α

(
µ′′′x + α(µ′′x − η′′x )

)
+ πw′

(
µ′′x + α(µ′x − η′x)

)]
(20)

and for action (control):

ȧ = −
[

πz

(
ψ− µx

)∂ψ

∂a
+ πz′

(
ψ′ − µ′x

)∂ψ′

∂a
+ πz′′

(
ψ′′ − µ′′x

)∂ψ′′

∂a

]
. (21)

The mapping of these equations to a PID control scheme becomes more clear under a few simplifying
assumptions. First, we assume strong priors on the causes of proprioceptive observations ψ1.
Intuitively, these priors are used to define actions that change the observations to better fit the agent’s
desires, i.e. the target of the PID controller. This is implemented in the weighting mechanism of
prediction errors by precisions in equation (19); see also [13,26,70] for similar discussions on the
role of precisions for behaviour. In our derivation, weighted prediction errors on system dynamics,
πw̃(µ̃′x + µ̃x− η̃x), will be weighted more than weighted errors on observations, πz̃(ψ̃− µ̃x). To achieve

1 For consistency with previous formulations, e.g. [8,13,15], we will define ψ as proprioceptive observations. Proprioception is
the sense of position and movement of different parts of our body. For the car model we introduce later, this is equivalent
for instance to readings of the velocity of the car.
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this, we decrease sensory precisions πz̃ on proprioceptive observations, effectively biasing the gradient
descent procedure towards minimising errors on the prior dynamics [70]. Secondly, we set the decay
parameter α to a large value (theoretically α→ ∞, in practice α = 105 in our simulations), obtaining a
set of differential equations including only terms of order α2 for perception:

µ̇x ≈− πwα
(

α(µx − ηx)
)

µ̇′x ≈− πw′α
(

α(µ′x − η′x)
)

µ̇′′x ≈− πw′′α
(

α(µ′′x − η′′x )
)

(22)

This can be interpreted as an agent encoding beliefs in a world that quickly settles to a desired
equilibrium state. This assumption effectively decouples orders of generalised motion, with higher
embedding orders not affecting the minimisation of lower ones in equation (20), since terms from
lower orders are modulated by α directly. The remaining terms effectively impose constraints on
the generalised motion only close to equilibrium, playing a minor role in the control process away
from the target/equilibrium (the more interesting part of regulation). These terms are necessary for
the system to settle to a proper steady state when (µ̃x − η̃x) → 0 and maintain consistency across
generalised orders of motion for small fluctuations at steady state, but have virtually no influence at
all in conditions far from equilibrium. Following equation (22), at steady state, expectations on hidden
states µ̃x are mainly driven by priors η̃x:

µ̃x = η̃x (23)

but are still not met by appropriate changes in observations ψ̃ which effectively implement the
regulation around the desired target. To minimise free energy in presence of strong priors, this agent
will necessarily have to modify its observations ψ̃ to better match expectations µ̃x, which in turn are
shaped by priors (i.e. desires) η̃x. Effectively, the agent “imposes” its desires on the world, acting
to minimise the prediction errors arising at the proprioceptive sensory layers. In essence, an active
inference agent implements set-point regulation by behaving to make its sensations accord with its
strong priors/desires. After these assumptions, action can be written as:

ȧ ≈ −
[

πz

(
ψ− ηx

)∂ψ

∂a
+ πz′

(
ψ′ − η′x

)∂ψ′

∂a
+ πz′′

(
ψ′′ − η′′x

)∂ψ′′

∂a

]
(24)

where we still need to specify partial derivatives ∂ψ̃/∂a. As discussed in [13], this step highlights
the fundamental differences between the FEP and the more traditional forward/inverse models
formulation of control problems in biological systems [71,72]. While these derivatives help in the
definition of an inverse model (i.e. finding the correct action for a desired output), unlike more
traditional approaches, active inference does not involve a mapping from hidden states x̃ to actions
a, but is cast in terms of (proprioceptive) sensory data ψ̃ directly, This is thought to simplify the
problem: from a mapping between unknown hidden states and actions, to a mapping between known
proprioceptive observations ψ̃ and actions a. It is claimed that this provides an easier implementation
for an inverse model [15], one that is grounded in an extrinsic frame of reference, i.e. the real world
(ψ̃), rather than in a intrinsic one in terms of hidden states (x̃) to be inferred first. To achieve PID-like
control, we assume that the agent adopts the simplest (i.e. linear) relationship between its actions
(controls) and their effects on sensory input across all orders of motion:

∂ψ

∂a
=

∂ψ′

∂a
=

∂ψ′′

∂a
= 1 . (25)

This reflects a very simple reflex-arc-like mechanism that is triggered every time a proprioceptive
prediction is generated: positive actions (linearly) increase the values of the sensed variables ψ̃, while
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negative actions decrease them. There is, however, an apparent inconsistency here that we need to
dissolve: the proprioceptive input ψ and its higher order states ψ′, ψ′′ are all linearly dependent with
respect to actions a as represented in equation (25). While an action may not change position, velocity
and acceleration of a variable in the same way, a generative model doesn’t need to perfectly describe
the system to regulate: these derivatives only encode sensorimotor dependencies that allow for, in
this case, sub-optimal control. In the same way, PID controllers are, in most cases, effective but only
approximate solutions for control [36,73]. This allows us to understand the encoding of an inverse
model from the perspective of an agent (i.e. the controller) rather than assuming a perfect, objective
mapping from sensations to actions that reflects exactly how actions affect sensory input [13]. This
also points at possible investigations of generative/inverse models in simpler living systems where
accurate models are not perhaps needed, and where strategies like PID control are implemented
[39–41]. By combining equation (24) and equation (25), action can then be simplified to:

ȧ ≈ πz
(
ηx − ψ

)
+ πz′

(
η′x − ψ′

)
+ πz′′

(
η′′x − ψ′′

)
(26)

which is consistent with the “velocity form” or algorithm of a PID controller [36]:

u̇ = ki
(
yr − y

)
+ kp

d
dt
(
yr − y

)
+ kd

d2

dt2

(
yr − y

)
. (27)

Velocity forms are used in control problems where, for instance, integration is provided by an external151

mechanism outside the controller [36,73]. Furthermore, velocity algorithms are the most natural form152

for the implementation of integral control to avoid windup effects of the integral term, emerging when153

actuators can’t regulate an indiscriminate accumulation of steady-state error in the integral term due154

to physical limitations [36,74]. This algorithm is usually described using discrete systems to avoid the155

definition of the derivative of random variables, often assumed to be white noise in the Ito’s sense156

(i.e. Markovian processes). In the continuous case, if the variable y is a Markov process, its time157

derivative is in fact not well defined. For this form to exist in continuous systems, y must be a smooth158

(stochastic) process. Effectively, this drops the Markov assumption of white noise and implements159

the same definition of analytic (i.e. differentiable) noise related to Stratonovich calculus and the160

generalised coordinates of motion we described earlier. The presence of extra prediction errors beyond161

the traditional negative feedback (proportional term) can, in this light, be seen as a natural consequence162

of considering linear non-Markovian processes with simple reflex mechanisms responding to position,163

velocity and acceleration in the generalised motion phase space (see equation (25)). To ensure that the164

active inference implementation approximates the velocity form of PID control we still need to clarify165

the relationship between the generalised coordinates of motion in equation (26) and the differential166

operators d/dt, d2/dt2 in equation (27). As pointed out in previous work, when the variational free167

energy is minimised, the two of them are equal since the motion of the mode becomes the mode of the168

motion [8,56]. To simplify our formulation and show PID control more directly, we can consider the169

case for η′x = η′′x = 0, defining the more standard set-point control where a desired or set-trajectory170

collapses to a single set-point in the state-space and equivalent, in the velocity form, to the case where171

yr is a constant and dyr/dt = d2yr/dt2 = 0.172

To show an implementation of PID control through active inference we use a standard model173

of cruise control, i.e. a car trying to maintain a certain velocity over time 2. While only a toy model,174

the intuitions and results we derive can easily be transferred to the regulation of proteins in bacterial175

chemotaxis [39] or yeast osmoregulation [75], and more generally to any homeostatic mechanism [34],176

especially when including limited knowledge of external forces [76]. In this setup, a controller receives177

the speed of the car as an input and adapts the throttle of the vehicle based on a negative feedback178

2 Our code is available at https://github.com/mbaltieri/PIDControlActiveInferenceFEP.
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mechanism to achieve the desired, or target, cruising velocity. In real-world scenarios, this mechanism179

needs to be robust in presence of external disturbances, essentially represented by changes in the180

slope of the road, wind blowing, etc., see Fig. 2d. For simplicity, we will use the model based on the181

formulation in [73], see also Appendix A. In this particular instance, we will provide a simple proof of182

concept, simplifying PID to PI control as in [73], hence implementing only a first order generalised183

state-space model (see equation (16)). The controller receives noisy readings ψ, ψ′ of the true velocity184

and acceleration of the car, x, x′, following the formulation in equation (16). The controller is provided185

with a Gaussian prior in generalised coordinates encoding desired velocity and acceleration with186

means ηx = 10 km/h, η′x = 0 km/h2. This prior represents a target trajectory for the agent that, as we187

saw in equation (26), will be equivalent to integral and proportional terms of a PI controller in velocity188

form. The recognition dynamics ([69]) are then specified in equation (20) and equation (21).
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Figure 2. A cruise controller based on PI control under active inference. (a) The response of the car
velocity over time with a target state, or prior in our formulation, ηx = 10 km/h, ηx′ = 0 km/h2. (b)
The acceleration of the car over time with a specified prior η′x = 0 km/h2. (c) The external force v,
introduced at t = 150s, models a sudden change in the environmental conditions, for instance wind or
change in slope. Action obtained via the minimisation of variational free energy with respect to a and
counteracts the effects of v. The motor action is never zero since we assume a constant slope, λ = 4◦

(see table A1, Appendix A). (d) The model car we implemented, where v could be thought as a sudden
wind or a changing slope.

189

In Fig. 2 we show the behaviour of a standard simulation of active inference implementing PI-like190

control for the controller of the speed of a car. The sensory and process precisions πz̃, πw̃ are fixed,191

to show here only the basic disturbance rejection property of PID controllers [36,76]. In Fig. 2a, after192

the car is exposed to some new external condition (e.g. wind) represented in Fig. 2c and not encoded193

in the controller’s generative model, the regulation process brings the velocity of the car back to the194

desired state after a short transition period. Fig. 2b shows how sudden changes in the acceleration of195

Preprints  (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 27 February 2019                   doi:10.20944/preprints201902.0246.v1

Peer-reviewed version available at Entropy 2019, 21, 257; doi:10.3390/e21030257

http://dx.doi.org/10.20944/preprints201902.0246.v1
http://dx.doi.org/10.3390/e21030257


12 of 23

the car are quickly cancelled out in accord with the specified prior η′x = 0 km/h2. The action of the car196

is then shown, as one would expect [76], to counteract the external force v, Fig. 2c.197

4.2. Responses to external and internal changes198

It is often desirable for a PID regulator to provide different responses to external perturbations199

(e.g. wind), which should be rather rapid, and to internal updates (e.g. a shift in target velocity)200

which should be relatively smooth [36,45], see also section 2.1. It is not, however, trivial to identify201

and isolate parameters that contribute to these effects [37,77,78], and thus to tune these properties202

independently. It has been suggested that in order to achieve such decoupling, a controller with two203

degrees of freedom is necessary [45,77]. Such controller can be thought to contain a feedforward204

model of the dynamics of the observed/regulated system [73]. In our implementation, this is elegantly205

achieved by construction, since active inference is based on generative (forward) models. Specifically,206

we can fix the response to external forces by setting the expected sensory precisions πz̃ (i.e. PI gains)207

but then independently tune the response to changes in the setpoint by altering the expected process208

precisions πw̃ on the priors, see Fig. 3a and Fig. 3b.
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Figure 3. Different responses to load disturbances and set-point changes. The simulations were
300s long, with an external disturbance/different target velocity introduced at t = 150s. Here
we report only a 20 seconds time window around the change in conditions. (a) The same load
disturbance (v = 3.0km/h2) is applied with varying expected process precisions πw̃ where πw =

{exp(−24), exp(−22), exp(−20)}. Expected sensory log-precisions πz̃ are fixed over the duration
of the simulations, with µγz = 1. (b) A similar example for changes in the target velocity of the
car, from ηx = 13km/h to ηx = 10km/h, tested on varying expected process precisions πw̃ where
πw = {exp(−24), exp(−22), exp(−20)}.

209

In the limit for process prediction errors πw̃(µ̃′x + α(µ̃x − η̃x)) much larger than the sensory210

ones πz̃(ψ̃− µ̃x) and with fixed expected sensory precisions πz̃, the response to load disturbances211

is invariant (Fig. 3a). A new target velocity for the car creates different responses with varying212

πw = {exp(−24), exp(−22), exp(−20)} 3. Larger πw̃ values imply an expected low uncertainty on213

the dynamics (i.e. changes to the set-point are not encoded and therefore not expected) and are met214

almost instantaneously with an update of expected hidden states µ̃x, matched by suitable actions a.215

On the other hand, smaller πw̃ account for higher variance/uncertainty and thus changes in the target216

velocity are to be expected, making the transitions to new reference values slower, as seen in Fig. 3b.217

3 Precisions on higher embedding orders are built, in both cases, using a smoothness (i.e. decay) factor of 1/2, see [12].
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4.3. Optimal tuning of PID gains218

One of the main goals of modern design principles for PID controllers is to find appropriate tuning219

rules for the gains on the prediction errors: proportional, integral and derivative terms. However,220

existing approaches are often limited [37,38,44,48,78]. In general, the proportional term must bring a221

system to the target state in the first place, the integral of the error should promptly deal with errors222

generated by steady state inputs not accounted by a model [76], while the derivative term should223

reduce the fluctuations by controlling changes in the derivative of a variable [73]. In our car example,224

this could mean for example controlling the velocity of the vehicle in spite of changes such as the225

presence of wind or variations in slope of the road (I term) and avoiding unnecessary changes in226

accelerations close to the target (D term, even if sometimes not used for cruise control problems [73]).227

In our treatment of PID controllers as approximate Bayesian inference, the controllers’ gains ki, kp, kd228

become equivalent to sensory precisions πz, πz′ , πz′′ , cf. equation (26) and equation (27). Following229

[12,56,57], we thus propose to optimise these precisions to minimise the path integral of variational free230

energy (or free action), assuming that parameters and hyperparameters change on a much slower time231

scale. To do so, we extend our previous formulation and replace fixed sensory precisions πz, πz′ , πz′′232

with expected sensory precisions µπz , µπz′ , µπz′′ , derived from a Laplace approximation applied not only233

to hidden states x but extended also to these hyperparameters, now considered as random variables to234

be estimated, rather than fixed quantities [56,57].235

Active inference provides then an analytical criterion for the tuning of PID gains in the temporal
domain, where otherwise mostly empirical methods or complex methods in the frequency domain
have insofar been proposed [36,38,47,48]. In frameworks used to implement active inference, such as
DEM [12,56], parameters and hyperparameters are usually assumed to be conditionally independent
of hidden states based on a strict separation of time scales (i.e. a mean-field approximation). This
assumption prescribes a minimisation scheme with respect to the path-integral of free energy, or
free action, requiring the explicit integration of this functional over time. In our work, however, for
the purposes of building an online self-tuning controller, we will treat expected sensory precisions
as conditionally dependent but changing on a much slower time-scale with respect to states x,
using a second order online update scheme based on generalised filtering [57]. The controller gains,
µπz , µπz′ , µπz′′ , will thus be updated specifying instantaneous changes of the curvature of expected
precisions with respect to variational free energy rather than first order updates with respect to free
action:

µ̈πz̃ = −
∂F

∂µπz̃

(28)

Expected precisions µπz̃ should however be non-negative since variances need to be positive, a fact
also consistent with the negative feedback principle behind PID controllers (i.e. negative expected
precisions would apply a positive feedback). To include this constraint, following [66] we thus
parametrise sensory precisions πz̃ (and consequently expected sensory precisions µπz̃ ) in the generative
model as:

πz̃ = exp (γz̃) (29)

creating, effectively, log-normal priors and making them strictly positive thanks to the exponential
mapping of hyperparameters γ. The scheme in equation (28) is then replaced by one in terms of
expected sensory log-precisions µγz̃ :

µ̈γz̃ = −
∂F

∂µγz̃

(30)
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For practical purposes, the second order system presented in equation (30) is usually reduced to a
simpler set of first order differential equations [8]:

µ̇γz̃ =µ′γz̃

µ̇′γz̃
=− ∂F

∂µγz̃

− κµ′γz̃
(31)

where µ′γz̃
is a prior on the motion of hyperparameters γ which encodes a “damping” term for the

minimisation of free energy F 4. This term enforces hyperparameters to converge to a solution close to
the real steady state thanks to a drag term for κ > 0 5. The parametrisation of expected precisions in
terms of log-precisions γz̃, in fact, makes the derivative of the free energy with respect to log-precisions
strictly positive (∂F/∂γz̃ > 0), not providing a steady-state solution for the gradient descent [57].
This “damping” term stabilises the solution, reducing the inevitable oscillations around the real
equilibrium of the system. Given the free energy defined in equation (19), with exp(µγz̃) replacing
πz̃, the minimisation of expected sensory log-precisions (or “log- PID gains”) is prescribed by the
following equations:

µ̇γz =µ′γz

µ̇′γz =−
∂F

∂µγz

− κµ′γz = −
1
2

[
exp (µγz)(ψ− µx)

2 − 1
]
− κµ′γz

µ̇γz′ =µ′γz′

µ̇′γz′
=− ∂F

∂µγz′
− κµ′γz′

= −1
2

[
exp (µγz′ )(ψ

′ − µ′x)
2 − 1

]
− κµ′γz′

µ̇γz′′ =µ′γz′′

µ̇′γz′′
=− ∂F

∂µγz′′
− κµ′γz′′

= −1
2

[
exp (µγz′′ )(ψ

′′ − µ′′x )
2 − 1

]
− κµ′γz′′

(32)

This scheme introduces a new mechanism for the tuning of the gains of a PID controller, allowing236

the controller to adapt to adverse and unexpected conditions in an optimal way, in order to avoid237

oscillations around the target state.238

In Fig. 4 the controller for the car velocity is initialised with suboptimal sensory log-precisions
µγz̃ , i.e. log-PI gains. The parameters were initially not updated (Fig. 4d) to allow the controller to
settle around the desired state, see Fig. 4a. The adaptation begins at t = 30s and is stopped at t = 150s,
when an external force is introduced, to test the response of the controller after the gains have been
optimised. With the adaptation process, the controller becomes more responsive when facing external
disturbances (cf. Fig. 2), quickly and effectively counteracted by prompt changes in controls, see Fig. 4c.
As a trade-off, the variances of the velocity and the acceleration are however increased, see Fig. 4a and
see Fig. 4b. The optimisation of the gains through µγz̃ without extra constraints (if not the stopping
condition we imposed at t = 150s, after the adaptation reaches a steady-state) effectively introduces an
extremely responsive controller: cancelling out the effects of unwanted external inputs, such as wind in
our cruise control example, but also more sensitive to measurement noise. In Fig. 5 we show summary
statistics with the results of the adaptation of the gains. Following the examples in Fig. 2 and Fig. 4, we
simulated 20 different cars with expected sensory log-precisions µγz̃ sampled uniformly in the interval
[−4,−2] and expected process log-precisions µγw̃ in the interval [−23,−21]. We initially maintained
(i.e. no adaptation) the same hyperparameters and introduced a load disturbance at t = 150s, then

4 In [57] we can see that this is equivalent to the introduction of a prior p(γ̃) on the motion of γ̃ to be zero (i.e. zero mean)
with precision 2κ.

5 κ = 5 in our simulations
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Figure 4. Optimising PID gains as expected sensory log-precisions µγz̃ . This example shows the
control of the car velocity before and after the optimisation of µγz̃ (before and after the vertical dash
dot black line) is introduced. (a) The velocity of the car. (b) The acceleration of the car. (c) The action of
the car, with an external disturbance introduced at t = 150s. (d) The optimisation of expected sensory
precisions µγz̃ and their convergence to an equilibrium state, after which the optimisation is stopped
before introducing an external force. The blue line represents the true log-precision of observation
noise in the system, γz = γz′ = 5.

repeated the simulations (20 cars) with the same initial conditions allowing for the adaptation of
expected sensory log-precisions as log-PI gains after t = 30s, as in Fig. 4. Following [79], we measured
the performance of the controllers by defining the integral absolute error (IAE):

IAE =
∫ t+τ

t
|e(t)| dt (33)

between two zero-crossings: the last time the velocity was at the target value before a disturbance is239

introduced, assumed to be t = 150 in our case, and the first time the velocity goes back to the target240

after a disturbance is introduced (t + τ). To compute t + τ, we took into account the stochasticity of241

the system and errors due to numerical approximations, considering the case for the real velocity to be242

within a ±0.5 km/h interval away from the target value. The IAE captures the impact of oscillations243

on the regulation problem by integrating the error over the temporal interval where the car is pushed244

away from its target due to some disturbance (for more general discussions on its role and uses see245

[36]). As we can see in Fig. 5, the IAE converges to a single value for all cars (taking into account our246

approximation of a ±0.5 km/h interval while measuring it) and is clearly lower when the adaptation247

mechanism for expected sensory log-precisions is introduced, making the controller very responsive248

to external forces and thus reducing the time away from the target velocity, see Fig. 4 for an example.249
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Figure 5. Performance of PID controllers with and without adaptation of the gains based on the
minimisation of free energy. The integral absolute error (IAE) is used to measure the effects of the
oscillations introduced by a single load disturbance at t = 150s (see text for the exact definition of the
IAE).

5. Discussion250

In this work we developed a minimal account of regulation and control mechanisms based on251

active inference, a process theory for perception, action and higher order functions expressed via252

the minimisation of variational free energy [4,8,10,13]. Our implementation constitutes an example253

of the parsimonious, action-oriented models described in [24,25], connecting them to methods from254

classic control theory. We focused in particular on Proportional-Integral-Derivative (PID) control, both255

extensively used in industry [36–38,78] and more recently emerging as a model of robust feedback256

mechanisms in biology, implemented for instance by bacteria [39], amoeba [40] and gene networks257

[41], and in psychology [42]. PID controllers are ubiquitous in engineering mostly due to the fact that258

one needs only little knowledge of the process to regulate. In the biological sciences, this mechanism is259

thought to be easily implemented even at a molecular level [43] and to constitute a possible account260

for limited knowledge of the external world in simple agents [76].261

Following our previous work on minimal generative models [26], we showed that this mechanism262

corresponds, in active inference terms, to linear generative models for agents that only approximate263

properties of the world dynamics. Specifically, our model describes linear dynamics for a single264

hidden or latent state and a linear mapping from the hidden state to an observed variable, representing265

knowledge of the world that is potentially far removed from the real complexity behind observations266

and their hidden variables. To implement such model, we defined a generative model that only267

approximates the environment of an agent and showed how under a set of assumptions including268

analytic (i.e. non-Markovian, differentiable) Gaussian noise and linear dynamics, this recapitulates PID269

control. A crucial component of our formulation is the presence of low sensory precision parameters on270

proprioceptive prediction errors of our free energy function or equivalently, high expected variance of271

proprioceptive signals. These low precisions play two roles during the minimisation of free energy: (1)272

they implement control signals as predictions of proprioceptive input influenced by strong priors (i.e.273

desires) rather than by observations, see equation (24) and [13], and (2) they reflect a belief that there274

are large exogenous fluctuations (low precision = high variance) in the observed proprioceptive input.275

This last point can be seen as the well known property of the Integral term [73,76] of PID controllers,276

dealing with unexpected external input (i.e. large exogenous fluctuations). The model represented by277

derivatives ∂ψ̃/∂a encodes then how actions a approximately affect observed proprioceptive sensations278

ψ̃, with an agent implementing a sensorimotor mapping that does not match the real dynamics of279

actions applied to the environment. The formulation in equation (20) and equation (21) can in general280
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be applied to different tasks, in the same way PID control is used in different problems without specific281

knowledge of the system to regulate.282

The generative model we used is expressed in generalised coordinates of motion, a mathematical283

construct used to build non-Markovian continuous stochastic models based on Stratonovich calculus.284

Their importance has been expressed before [12,56,57], for the treatment of real world processes285

best approximated by continuous models and for which Markov assumptions don’t really hold (see286

also [69] for discussion). The definition of a generalised state-space model provides then a series of287

weighted prediction errors and their higher orders of motion from the start, with PID control emerging288

as the consequence of an agent trying to impose its desired prior dynamics on the world via the289

approximate control of its observations on different embedding orders (for I, P and D terms). In290

this light, the ubiquitous efficacy of PID control may thus reflect the fact that the simplest models of291

controlled dynamics are first-order approximations to generalised motion. This simplicity is mandated292

because the minimisation of free energy is equivalent to the maximisation of model evidence, which293

can be expressed as accuracy minus complexity [10,24]. On this view, PID control emerges via the294

implementation of constrained (parsimonious, minimum complexity) generative models that are,295

under some constraints, the most effective (maximum accuracy) for a task.296

In the control theory literature, many tuning rules for PID gains have been proposed (e.g.297

Ziegler-Nichols, IMC, etc., see [36,38] for a review) and used in different applications [36–38,48,78],298

however most of them produce quite different results, highlighting their inherent fit to only one of299

many different goals of the control problem. With our active inference formulation, we argue that300

different criteria can and should be expressed within the same set of equations in order to better301

understand their implications for a system. Modern approaches to the study of PID controllers propose302

four points as fundamental features to be considered for the design of a controller [44]:303

• load disturbance response304

• set-point response305

• measurement noise response306

• robustness to model uncertainty.307

In our formulation, these criteria can be interpreted using precision (inverse variance) parameters of308

different prediction errors in the variational free energy, expressing the the uncertainty associated to309

observations and priors, as reported in table 1, see also Appendix B for further reference.

Table 1. Active inference as a general framework for PID controllers.

Criterion Mapped to Advantages in active inference

Load disturbance
response µπz̃

Intuitively expressed via the expected inverse variance
of the observations (i.e. precision), with low variance
implying a fast response and vice versa (see section 4.2
and section 4.3)

Set-point change
response µπw̃

Natural formulation of PID controllers with two degrees of
freedom derived from sensory and process precisions and
expressed as a Bayesian inference process (see section 4.2)

Measurement noise
response µπz̃

Straightforward interpretation of PID gains as (expected)
inverse variances of different embedding orders of
measurement noise (see Appendix B)

Robustness to
model uncertainty µπw̃

Direct mapping of model uncertainty to expected
variances of the fluctuations, representing unknown
dynamics, of the system to control (see Appendix B)

310

After establishing the equivalence between PID control and linear approximations of generalised311

motion in generative models, we showed that the controllers’ gains, ki, kp, kd, are in our formulation312

equivalent to expected precisions, µπz , µπz′ , µπz′′ , for which a minimisation scheme is provided in313

[12,56,57]. The basic version of this optimisation produces also promising results in presence of314

time-varying measurement (white) noise in the simulated car (see Fig. A1 in Appendix B). If the315
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adaptation is halted on a system with fixed measurement noise, it can be used to effectively deal with316

load disturbances, external forces acting against a system reaching his target (see Fig. 4), e.g. a change317

in chemicals concentration for a bacterium.318

Future extensions could provide a more principled way of dealing with these two (and possibly319

other) conflicting cases, an issue that can be solved by introducing suitable hyperpriors (priors on320

hyperparameters) expressing the confidence of a system regarding changes in measurement noise321

via the use of precisions on hyperpriors [12]. High confidence (i.e. high precision on hyperpriors)322

would imply that a system should quickly react to sudden changes, both in measurement noise and323

other disturbances, since they are unexpected. On the other hand, low confidence (i.e. low precision324

on hyperpriors) would make a system’s reaction to new conditions slower since such changes are325

expected. A trade-off between these conditions, with appropriate knowledge of a system or a class of326

systems introduced in the form of hyperpriors, would then make the process completely automatised,327

taking advantage of, for instance, empirical Bayes for learning such hyperpriors [10]. By extending328

our proposition with priors on precisions we can also, in principle, cast more criteria for the controller,329

expressing different requirements for more complex regulation processes. Given the fact that any330

optimality criterion can be recast as a prior, following the complete class theorem [80,81], as long as331

we know how to represent these rules as priors for the controller, we can provide any combination of332

requirements and tune the parameters in a straightforward fashion.333

6. Conclusion334

PID controllers are robust controllers used as a model of regulation for noisy and non-stationary335

processes in different engineering fields [38,73]. More recently, they have also been proposed as336

behavioural models of adaptive learning in humans [42] and as mechanistic explanations of different337

functions of systems in microbiology [39–41]. Their utmost relevance to the natural sciences is becoming338

clear, with implementations now proposed at the level of simple biomolecular interactions [43,82].339

PID controllers are renowned for their simplicity and straightforward interpretation in control theory,340

however a general interpretation in probabilistic frameworks (e.g. Bayesian inference) is still missing.341

Active inference has been proposed as a general mathematical theory of life and cognition342

according to the minimisation of variational free energy [10]. On this view, biological agents are343

seen as homeostatic systems maintaining their existence via the the minimisation of free energy. This344

process is implemented via the estimation and prediction of latent variables in the world (equivalent to345

perception) and the control of sensory inputs with behaviours accommodating normative constraints346

of an agent. Active inference is often described as an extension of optimal control theory with deep347

connections to Bayesian inference [15]. While methods such as PID control are still widely adopted348

as models of biological systems, it is unclear how general theories such as active inference connect349

to practical implementation of homeostatic principles such as PID control. In this work we proposed350

a way to connect these two perspectives showing how PID controllers can be seen as a special case351

of active inference. This account is based on the definition of a linear generative model for an agent352

approximating the dynamics of its environment, potentially very different from the information353

represented by the model. The model is expressed in generalised coordinates of motion [8,12,69] with354

prediction errors at different embedding orders for integral, proportional and derivative components355

emerging naturally as a consequence of an agent assuming non-Markovian dynamics on its sensory356

input. Through the use of active inference we also proposed the implementation of a mechanism357

for the optimisation of the gains of a PID controller, i.e. the weights of different prediction errors,358

now interpreted as precision parameters encoding the uncertainty of different variables from the359

perspective of an agent.360
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Appendix A The car model368

The equation of motion of the car is:

m
d2s
dt2 = F− Fd (A1)

where s is the position, F the force generated by the engine and Fd a disturbance force that accounts
for a gravitational component Fg, a rolling friction Fr and an aerodynamic drag Fa, such that Fd =

Fg + Fr + Fa, see again Fig. 2d. The forces will be modelled as following:

F =rga(t)Tm

(
1− β

( ω

ωm
− 1
)2
)

Fg =mg sin λ

Fr =mg Cr sgn ṡ

Fa =
1
2

ρ Cd Aṡ2

(A2)

with all the constants and variables reported and explained in table A1.369

Table A1. Cruise control problem, constants and variables.

Description Value
s(t) car position -
rg gear ratio divided by wheel radius 12

a(t) control -
Tm maximum torque 190Nm
β motor constant 0.4
ω engine speed αnv

ωm speed that gives maximum torque 420rad/s
m car mass 100kg
g gravitational acceleration 9.81m/s2

λ slope of the road 4◦

Cr coefficient of rolling friction 0.01
ρ density of the air 1.3kg/m3

Cd aerodynamic drag coefficient 0.32
A frontal area of the car 2.4m2

Appendix B Measurement noise and model uncertainty in active inference370

Nowadays, it is common to include two more desiderata for the design of PID controllers (see371

section 2 and [44]) in order to characterise and tune their response to (1) different types of measurement372

noise and (2) their robustness to model uncertainty, inherent in simple approximate controllers [38,44].373

In our example, these properties map, respectively, to the response of a car given time-varying noise374

and to the available knowledge of a system, e.g. the working range of a controller or the type of375

disturbances affecting the car.376

In particular, the former describes the behaviour of a PID controller in presence of noise on the377

observed variables by modulating the decay of different prediction errors in equation (26). It is known378

that this response is (in the limit for t → ∞ and with the assumption of a system at equilibrium)379

inversely proportional to the integral gain [36,38]. In our case however, we have a more general and380

trivial relationship where the integral gain ki is, by construction, equivalent to the inverse variance381
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(i.e. precision) of the measurement noise πz, see equation (26) and equation (27). The remaining gains382

kp, kd can then be seen as encoding the uncertainty (i.e. precision) of higher orders of motion when the383

measurement noise is effectively coloured, otherwise just approximating possible correlations of the384

observed data over time.385

On the other hand, the robustness to model uncertainty is related to expected process386

log-precisions µγw̃ encoding (again by construction) the amplitude of fluctuations due to unknown387

effects on the dynamics [12]. By modulating the prior dynamics of a system, these hyperparameters388

assume then a double role, they can either: (1) passively describe (estimate) the dynamics of a system (cf.389

Kalman filters [83]) or (2) actively impose desired trajectories on observations that can be implemented390

through actions on the world, as explained in section 4.1. With these conditions at the extremes,391

a spectrum of intermediate behaviours is also possible, with µγw̃ enacting different sensorimotor392

couplings by weighting the importance of objective information and desired states/priors of a system.393

In the majority of the formulations of control problems, the properties of measurement noise and394

model uncertainty (especially their (co)variance) are assumed to be constant over time. Often, these395

parameters need also to be adapted to different systems since their properties are likely to be different.396

In section 4.3, we proposed an optimisation method for the gains of a PID controller based on active397

inference that here we exploit for time changing properties of the noise of a system, and that we show398

in an example when the measurement noise suddenly increases. In our car example, we could think of399

a drop in performance of the sensors recording velocity.
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Figure A1. Performance of PID controllers with a sudden increase in measurement noise. 20 cars
simulated in the case where measurement noise is increased at t = 150s during the 300s simulations.
We report aggregate results with the variance from the target value measured over the last 25%
(225 < t < 300s) of a simulation. We show (1) the case for adaptation of the gains of the PI controller
(through expected sensory log-precisions, or log-PI gains, µγz̃ ) interrupted before the measurement
noise drastically changes, and (2) the case where the adaptation process persists for the entire duration
of the simulations.

400

We simulated 20 cars for 300s with adaptation of expected sensory log-precisions (or log-PI gains)401

µγz̃ , introduced at t = 30s and stopped at t = 150s. At t = 150s we then decreased the log-precision of402

measurement noise (n.b. not the expectation on the log-precision) from γz = 5 to γz = 2 for the rest of403

the simulations to simulate the partial failure of a sensor, and stopped the adaptation process. We then404

simulated 20 cars where adaptation was not halted after the increased measurement noise. To represent405

the difference, we measured the variance of the real velocity of the cars (without measurement noise406

to avoid biases), from t = 225s to t = 300s to allow the velocity to settle after the transient due to407

the sudden change. Agent that kept adapting their gains are shown to be more robust to persistent408

changes in noise, see Fig. A1.409
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In the case of model uncertainty, given the dual role of µγw̃ explained above, i.e. encoding prior410

dynamics reflecting both real properties of the environment and desired trajectories imposed on the411

system to regulate, it is harder to show the update of expected precisions without compromising the412

control of the car. The optimisation of variational free energy is, in fact, not intrinsically biased towards413

the control of a system, i.e. we externally imposed that as a condition for the agent. While having more414

flexible priors, an agent could potentially begin to account for uncertainty in the world rather than415

forcibly change its observations to reach its target.416
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