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1 Abstract: In the past few decades, probabilistic interpretations of brain functions have become
= widespread in cognitive science and neuroscience. In particular, the free energy principle and
s active inference are increasingly popular theories of cognitive functions that claim to offer a
s unified understanding of life and cognition within a general mathematical framework derived
s from information and control theory, and statistical mechanics. However, we argue that if the active
s inference proposal is to be taken as a general process theory for biological systems, it is necessary
»  to understand how it relates to existing control theoretical approaches routinely used to study and
s explain biological systems. For example, recently, PID control has been shown to be implemented in
o simple molecular systems and is becoming a popular mechanistic explanation of behaviours such
1o as chemotaxis in bacteria and amoebae, and robust adaptation in biochemical networks. In this
u  work, we will show how PID controllers can fit a more general theory of life and cognition under
1z the principle of (variational) free energy minimisation when using approximate linear generative
1z models of the world. This more general interpretation provides also a new perspective on traditional
1« problems of PID controllers such as parameter tuning as well as the need to balance performances
15 and robustness conditions of a controller. Specifically, we then show how these problems can be
1 understood in terms of the optimisation of the precisions (inverse variances) modulating different
1z prediction errors in the free energy functional.

1= Keywords: approximate Bayesian inference, active inference, PID control, generalised state-space
1 models, sensorimotor loops, information theory, control theory

20 1. Introduction

2 Probabilistic approaches to the study of living systems and cognition are becoming increasingly
22 popular in the natural sciences. In particular for the brain sciences, the Bayesian brain hypothesis,
= predictive coding, the free energy principle and active inference have been proposed to explain
2a brain processes including perception, action and higher order cognitive functions [1-8]. According
= to these theories, brains, and biological systems more generally, should be thought of as Bayesian
26 inference machines, since they appear to estimate the latent states of their sensory input in a process
2z consistent with a Bayesian inference scheme. Given the complexity of exact Bayesian inference,
2 however, approximated schemes are believed to provide a more concrete hypothesis on the underlying
2 mechanisms. One candidate scheme is the free energy principle (FEP), which was introduced in [4] and
30 later elaborated in a series of papers, e.g. [9-11], and has its roots in information theory, control theory,
a1 thermodynamics and statistical mechanics. While initially the theory emerged in the computational
52 [12] and behavioural/cognitive neurosciences [13,14], over time, further connections with the fields of
33 biological self-organisation, information theory, optimal control, cybernetics and economics among
sa  others, have also been suggested [10,15-17]. According to the FEP, living systems exist in a limited
s set of physical states and thus must minimise the entropy of those physical states (see fluctuation
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36 theorems for non-equilibrium thermodynamics, e.g. [18]). To achieve this, organisms can minimise the
sz informational entropy of their sensory states, which, under ergodic assumptions, is equivalent to the
;s time average of surprisal (or self-information) [9]. Surprisal quantifies how improbable an outcome
s is for a system, i.e. a fish out of water is in a surprising state. Biological creatures can thus be seen
20 as minimising the surprisal of their sensations to maintain their existence, e.g. a fish” observations
a1 should be limited to states in water. Since this surprisal itself is not directly accessible by an agent,
«2 variational free energy is proposed as an upper bound on this quantity which can be minimised in its
s stead [4,19]. It has also been suggested that cognitive functions such as perception, action, learning
«s and attention can be accounted for in terms approximate Bayesian inference schemes such as the FEP.
4« In particular, according to this hypothesis, perception can be described using predictive coding models
s of the cortex. These models describe perception as a combination of feedforward prediction errors
a7 and feedback predictions combined under a generative model to infer the hidden causes and states
s of sensory data [2]. More recent work has connected these ideas to control theory and cybernetics
w0 [15,17,20], extending existing accounts of (optimal) motor control and behaviour [10,13,21,22]. On this
so view, behaviour is cast as a process of acting on the world to make sensory data better fit existing
s1 predictions, with (optimal) motor control cast as a Bayesian inference problem. The most recent
s2 attempt to unify predictive coding and optimal control theory, usually falls under the name of active
ss  inference [10,13].

54 While in standard accounts of perceptual inference prediction errors can be suppressed only by
ss updating predictions of the incoming sensations, in active inference errors can also be minimised by
se directly acting on the environment to change sensory input to better accord with existing predictions
s7 [9,13]. If a generative model encodes information about favourable states for an agent, then this
ss process constitutes a way by which the agent can change its environment to better meet its needs. Thus,
so under the FEP, these two processes of error suppression allow a system to both infer the properties of,
s and control, the surrounding environment. Most models implementing the FEP and active inference
e1 assume that agents have a deep understanding of their environment and its dynamics in the form of
e2 an accurate and detailed generative model. For instance, in [13,23] the generative model of the agent
es  explicitly mirrors the generative process of the environment, i.e. the dynamics of the world the agent
e« interacts with. In recent work, it has been argued that this need not be the case [24-27], especially if we
es consider simple living systems with limited resources. We intuitively don’t expect an ant to model
es the entire environment where it forages, performing complex simulations of the world in its brain (cf.
ez the concept of Umwelt [28]). When states and parameters in the world change too rapidly, accurate
es online inference and learning are implausible [29]. This idea is however common in the literature,
e e.g. [6,13,14,23], where cognition and perception are presented as processes of inference to the best
70 explanation, and agents are primarily thought to build sophisticated models of their worlds with only
= asecondary role for action and behaviour. A possible alternative introduces action-oriented models
72 entailing a more parsimonious approach where only task-relevant information is encoded [24,25]. On
73 this normative view, agents only model a minimal set of environmental properties, perhaps in the
s form of sensorimotor contingencies [26], that are necessary to achieve their goals.

75 The relationship between information/probability theory and control theory has long been
76 recognised, with the first intuitions emerging from work by Shannon [30] and Kalman [31]. A unifying
7z view of these two theoretical frameworks is nowadays proposed for instance in stochastic optimal
7e control [32,33] and extended in active inference [15], with connections to ideas of sensorimotor loops in
70 biological systems [11,13]. These connections emphasise homeostasis, regulation and concepts such as
s set-point control and negative feedback for the study of different aspects of living systems, with roots
&1 in the cybernetics movement [34,35]. It remains, however, unclear how the active inference formulation
ez directly relates to more traditional concepts of control theory. PID control, a popular control strategy
«s working with little prior knowledge of the process to regulate, is commonly applied in engineering
s« [36-38] and more recently used in biology and neuroscience modelling [39-43]. In this work, we
s develop an information theoretic interpretation of PID control, showing how it can be derived in a
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s Imore general Bayesian (active) inference framework. We will show that approximate models of the
ez world are often enough for regulation, and in particular that simple linear generative models that only
es approximate the true dynamics of the environment implement PID control as a process of inference.
e Using this formulation we also propose a new method for the optimisation of the gains of PID
so controllers based on the same principle of variational free energy minimisation, and implemented as a
o1 second order optimisation process. Finally, we will show that our implementation of PID controllers as
o2 approximate Bayesian inference lends itself to a general framework for the formalisation of different
o3 (conflicting) criteria in the design of a controller, the so-called performance-robustness trade-off
oa [38,44], as a cohesive set of constraints implemented in a free energy functional. In active inference,
os these criteria will be mapped to precisions, or inverse variances, of observations and dynamics of a
9s state-space model with a straightforward interpretation in terms of uncertainty on different variables
oz of a system.
o8 In section 2 we will introduce PID control and give a brief overview of the recent literature
9o highlighting the most common design principles used nowadays for PID controllers. The free energy
100 principle will be presented in section 3, followed by a complete derivation of PID control as a form
11 of active inference. In this section we will also propose that the parameters of a PID controller, its
102 gains, can be optimised following the active inference formulation, which also captures modern design
103 constraints and desiderata of PID controllers.

10s 2. PID control

Proportional-Integral-Derivative (PID) control is one of the most popular types of controllers
used in industrial applications, with more than 90% of total controllers implementing PID or PI (no
derivative) regulation [38,45]. It is one of the simplest set-point regulators, whereby a desired state (i.e.
set-point, reference, target) represents the final goal of the regulation process, e.g. to maintain a room
temperature of 23° C. PID controllers are based on closed-loop strategies with a negative feedback
mechanism that tracks the real state of the environment. In the most traditional implementation of
negative feedback methods, the difference between the measured state of the variable to regulate (e.g.
the real temperature in a room) and the target value (e.g. 23° C) produces a prediction error whose
minimisation drives the controller’s output, e.g. if the temperature is too high, it is decreased and if
too low, it is raised. In mathematical terms:

e(t) =yr —y(t) D

1s  where e(t) is the error, y, is the reference or set-point (e.g. desired temperature) and y(t) is the observed
106 variable (e.g. the actual room temperature).

This mechanism is, however, unstable in very common conditions, in particular when a
steady-state offset is added (e.g. a sudden and unpredictable change in external conditions affecting
the room temperature which are not under our control), or when fluctuations need to be suppressed
(e.g. too many oscillations while regulating the temperature may be undesirable). PID controllers
elegantly deal with both of these problems by augmenting the standard negative feedback architecture,
here called proportional or P term, with an integral or I and a derivative or D term, see Fig. 1. The integral
term accumulates the prediction error over time in order to cancel out errors due to unaccounted
steady-state input, while minimising the derivative of the prediction error leads to a decrease in the
amplitude of fluctuations of the controlled signal. The general form of the control signal u(t) generated
by a PID controller is usually described by:

u(t) = kye(t) + ki /()te(r)dr+kdd2<tt) )

10z where e(t) is, again, the prediction error and kp, ki, k; are the so called proportional, integral and
10s  derivative gains respectively, a set of parameters used to tune the relative strength of the P, I and D
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terms of the controller. The popularity of PID controllers is largely due to their simple formulation and

—» P Ke(t)

\J

+
r(t) Z e(t) I K,-je(f)d‘r + u(t) g!%r::::aés y(t) >

— D Kdd—zgz

Figure 1. A PID controller [46]. The prediction error e(t) is given by the difference between a reference
signal r(t), y, in our formulation, and the output y(t) of a process. The different terms, one proportional
to the error (P term), one integrating the error over time (I term) and one differentiating it (D term),
drive the control signal u(t).

10 implementation. One of the major challenges on the other hand, lies with the tuning of parameters
w1 ky, ki, kg, that have to be adapted to deal with different (often conflicting) constraints on the regulation
12 process [36,44].

us  2.1. The performance-robustness trade-off

114 The presence of conflicting criteria for the design of PID controller is a well known issue in the
us control theory literature, often referred to as the performance-robustness trade-off [38,44,47-49]. A
ue  controller needs to optimise pre-specified performance criteria while, at the same time, preserving some
ur level of robustness in face of uncertainty and unexpected conditions during the regulation process.
us In recent attempts to formalise and standardise these general principles [38,44], the performance of a
us  controller has been proposed to be evaluated through:

120 ¢ load disturbance response, how a controller reacts to changes in external inputs, e.g. a step input,
121 o set-point response, how a controller responds to different set-points over time,
122 e measurement noise response, how noise on the observations impacts the regulation process,

123 while robustness to be assessed on:

124 e robustness to model uncertainty, how uncertainty on the plant/environment dynamics affects
125 the controller.

12 The goal of a general methodology for the design and tuning of PID controllers is to bring together
127 these (and possibly more) criteria into a formal and tractable framework that can be used for a large
128 class of problems. One possible example is presented in [48] (see also [50,51] for other attempts). This
120 methodology is based on the maximisation of the integral gain (equivalent to the minimisation of
130 the integral of the error from the set-point, see [36]), subject to constraints derived from a frequency
1:1 domain analysis related to the Nyquist stability criterion applied to the controlled system [48]. In
132 this work, we propose our formulation also as a general framework for the design and tuning of
133 PID controllers leveraging the straightforward interpretation of the performance-robustness trade-off
13 for PID controllers in terms of uncertainty parameters (i.e. precisions or inverse variances) in the
135 variational free energy.

13s 3. The active inference framework

According to the free energy principle, living system must minimise the surprisal, or
self-information, of their observations [4,9,10,19], defined as:

—Inp(p|m) ®)
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where 1 is a set of sensory inputs conditioned on an agent m. Surprisal, in general, can in fact differ
from agent to agent, with states that are favourable for a fish (in water), different from those favourable
for a bird (out of water) (see [52] for a review on the value of information). According to the FEP, agents
that minimise the surprisal of their sensory states over time will also minimise the entropy of their
sensations, thus limiting the number of states they can physically occupy [4,19]. This minimisation is,
however, intractable in any practical scenario since surprisal can be seen as the negative log-model
evidence or negative log-marginal likelihood of observations ¢, with (omitting m for simplicity from
now on) the marginal likelihood or model evidence expressed as:

p@) = [ p(p,0) 0. ()

This integral is defined over all possible hidden variables, ¢, of observations ¢. In many cases, the
marginalisation is intractable since the latent space of # may be high dimensional or the distribution
may have a complex (analytical) form. In statistical mechanics, an approximation under variational
formulations transforms this into an optimisation problem. The approximation goes by several names,
including variational Bayes and ensemble learning [53,54], and constitutes the mathematical basis of
the free energy principle. Using variational Bayes, surprisal can then be decomposed into [54]:

—Inp(yp) = F — Dxe(q(9) || p(8]9)), ®)

where

D ((8) || p(8ly)) = [ (8)n -T2 o, ©

M¢
is the Kullback-Leibler (KL) divergence [55], or relative entropy [54], an asymmetrical non-negative
measure of the difference between two probability distributions. The first one, p(9|¢), represents the
posterior distribution specifying the probability of hidden states, causes and parameters (&) given
observations ¢, while the second one g(9), is the variational or recognition density which encodes
currents beliefs over hidden variables ¢. The latter is introduced with the idea of approximating
the (also) intractable posterior p(d|y) with a simpler distribution, q(9), and then minimising their
difference through the KL divergence: when the difference is zero (following Jensen’s inequality the
divergence is always non-negative [54]), () is a perfect description of p(d|y). Analogously, from the
point of view of an agent, its goal is to explain the hidden states, causes and parameters ¢ of sensations
by approximating the posterior p(8|¢) with a known distribution, q(8). The first term in equation 5

can be written as
F= / 4(8) In

and is defined as (variational) free energy [8,12,56,57] for its mathematical analogies with free energy
in thermodynamics, or [54] (negative) evidence lower bound in machine learning. Since the KL
divergence is always non-negative we arrive at

19)) do @)

Dxw(q(®) |[ p(d[¢)) = 0= F > —Inp(y) ®)

which demonstrates that variational free energy is an upper bound to surprisal, since by minimising F
we are guaranteed to minimise — In p(¢). To evaluate the variational free energy F, we must formalise
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a recognition density q(¢) and a generative density p(9, ¢) specific to an agent. Starting from the latter,
we define a generative model formulated as a one dimensional generalised state-space model [12]:

p=g(x,0)+z ¥=x"=f(x,0) +w
Y = gx(x,0)x" + go(x,0)0" +2' ¥ =" = fe(x,0)x' + fo(x,0)0" + ')
lIJN — gx(x/ v)x” +gv(x/ U)U// +Z// x// — x/// — fx(xlv)x,/ +fv(x/ ?J)U// +w//) (9)

where ¢ are the observations and ¢ = {x,v,6, v}, with x as the hidden states and v as the exogenous
inputs, while 6 and 7 follow a partition in terms of parameters and hyperparameters defined in [12]
and are specified later to simplify the notation now. Functions g(-) and f(-) map hidden states/inputs
to observations and the dynamics of hidden states/inputs respectively. The prime symbols, e.g.
x’,x",x""" are used to define higher orders of motion of a variable. Generalised coordinates of motion
are introduced to represent non-Markovian continuous stochastic processes based on Stratonovich
calculus, with strictly non-zero autocorrelation functions [12,58,59]. Ito’s formulation of stochastic
processes, on the other hand, is based on Wiener noise, where the autocorrelation can be seen as
strictly equal to a delta function [59,60]. In general, the Stratonovich formulation is preferred in
physics, where it is assumed that perfect white noise does not exist in the real world [61], while Ito’s
calculus is extensively used in mathematics/economics for its definition preserving the Martingale
property [62]. It is proposed that models of biological systems should be based on the Stratonovich
derivation [12], to accommodate more realistic properties of the physical world (i.e. non-Markovian
processes). Using the Stratonovich interpretation, random processes can be described as analytic (i.e.
differentiable) and become better approximations of real-world (weakly) coloured noise [60,63,64]. In
this formulation, standard state-space models are extended, describing dynamics and observations for
higher “orders of motion” encoding, altogether, a trajectory for each variable. The more traditional
state-space description is based on Markovian processes (i.e. white noise) and can be seen as a special
case of generalised state-space models defined here and in, for instance, [8,12]. When coloured noise
is introduced, one should either define a high order autoregressive process expressed in terms of
white noise [65] or embrace the Stratonovich formulation defining all the necessary equations in a
state-space form [12]. The higher “orders of motion” introduced here can be thought of as quantities
specifying “velocity” (e.g. ()’), “acceleration” (e.g. (1)), etc. for each variable, which is neglected
in more standard formulations. For practical purposes, in equation (9) we also made a local linearity
approximation on higher orders of motion suppressing nonlinear terms [8,12]. We introduce then a
more compact form:

¢ =g(x0)+2 ¥ =f(%0)+ (10)

where the tilde sign (e.g. 1) summarises a variable and its higher orders of motion (e.g. ¥ =
{w, ¢, ¢",...}). The stochastic model in equation (9) can then be described in terms of a generative
density:

P(¢,%,3,0,7v) = P({|%,5;6,7)P(%,5;6,7) (11)

In this case, we also make the conditional dependence on 8, y explicit, defining 6 as slowly changing
parameters coupling hidden states and causes to observations, and hyperparameters 7y as encoding
properties of random fluctuations/noise @ and z. P(|x, v; 6, ) is a likelihood function describing the
measurement law in equation (10), while the prior P(%, 3; 6, ) describes the system’s dynamics. Under
the Laplace approximation [66,67], the form of the recognition density g(¢) is specified in terms of a
Gaussian distribution centred around the estimated mode (i.e. the mean for a Gaussian distributions)
which can be evaluated using an extension of the EM algorithm [56,57]. Furthermore, (co)variances
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can be solved analytically in terms of the Hessian of the free energy evaluated at the mode [8,67,68].
The variational free energy in equation (7) can then be simplified, without constants, to [8]:

F~ —InP(y,%,730,7) (12)

I=fig

where the condition & = jiy represents the fact that the generative density P({, %,7;6,~) will be
approximated by a Gaussian distribution centred around the best estimates fiy of the unknown &,
following the Laplace method implemented in a variational context [66]. With Gaussian assumptions
on random variables Z and @ in equation equation (10), the likelihood and prior in equation (11) are
also Gaussian, and the variational free energy can be expressed as:

F A % {nz (1/3 (i, ﬁv))z + g (;4; — F(fis, ﬁv))z —In (ﬂzﬂw)} (13)

where ¥ and ¢ are replaced by their sufficient statistics, means/modes iy, fi,, and sensory and
dynamics/process precisions 7z, 77y, Or inverse variances, of random variables Z and @. Following
[12,56], the optimisation of the (Laplace-encoded) free energy with respect to expected hidden states
fix, equivalent to estimation or perception, can be implemented via a gradient descent:

. F
Vx—DVx—E (14)

while, considering how, from the perspective of agent, only observations ¢ are affected by actions a
(i.e. p(a)), control or action can be cast as:

9F  JF 3P

=T agaa (19

137 representing a set of coupled differential equations describing a closed sensorimotor loop in terms
13¢  of a physically plausible minimisation scheme [12]. The first equation includes a term Dji, that
130 represents the “mode of the motion” (also the mean for Gaussian variables) in the minimisation
10 Of states in generalised coordinates of motion [8,12,69], with D as a differential operator “shifting”
11 the order of motion of fiy such that Djiy = ji%,. More intuitively, since we are now minimising the
12 components of a generalised state representing a trajectory rather than a static state, variables are in a
13 moving frame of reference in the phase-space, and the minimisation is achieved when the temporal
12 dynamics of the gradient descent match the ensemble dynamics of the estimates of hidden states, so
s for jiy = fi, rather than for ji, = 0 (which assumes that the mode of the motion is zero, as in standard
s state-space formulations with Markov assumptions). In the second equation, active inference makes
17 the assumption that agents have innate knowledge of the mapping between actions a and observations
s 1 (i.e. 9P /9a) as reflex arcs, acquired on an evolutionary time scale, see [13,15] for discussion.

10 4. Results

1o 4.1. PID control as active inference

To implement PID control as a process of active inference, we will first describe an agent’s
generative model as a generalised linear state-space model of second order (i.e. only two higher orders
of motion, anything beyond that is zero-mean Gaussian noise):

p=x+z x=x"=—a(x+0v)+w
¢/:xl+zl .X'/:x//:_w(x/_i_v/)_'_w/

1’0// — x/l +Z” x// — xl// — _DC(.XH +vl/) +w/l
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where a € 0 is a parameter. As previously suggested, with a Gaussian assumption on Z, @, the
likelihood is reduced to:

P(§|%,5,0,7) = P(§%6,7) = N(fix, 07) (16)
where we assume no direct dependence of observations § on external inputs @, while the prior is
described by:

P(x,0;6,7) = P(%(0;0,7)P(0;6,7) (17)
with

0,7

P(5;0,7) = N(jx, 03) (18)

The Laplace-encoded variational free energy in equation (13) then becomes:

1 2 2 2 2
Frs [m (=) e (@ — i)+ 70 (9 — )+ (i i =0 )
" !/ ! 2 " " 2 2

+ Tty (Vx + D‘(.ux - Ux)) + Tty (.ux =+ “(Vx —Nx )) —In (7TZ7Tw7TZ/7Tw/ Ty nw”) (19)
To simplify our formulation, we assume that precisions 75 tend to infinity (i.e. no uncertainty on
the priors for 9), so that P(;6,v) in equation (18) becomes a delta function and inputs 7 reduce
to their prior expectations jy, i.e. fi, = f7jx. With this simplification, prior precisions 715 and
respective predictions errors (fi, — 7jx) are not included in our formulation (see [56,57] for more

general treatments). By applying the gradient descent described in equation (14) and equation (15) to
our free energy functional, we then get the following update equations for perception (estimation):

fix =pyx — [ — 7T (IP - #x) + Ttk (y; +a(px — Ux))}

e =t = | = (= 1)+ e (3 = 10+ (3 s = )|

iy =py = [ — 7 (9 = i) e (1l = ) ) + 7 (] + e - 17;))] (20)
and for action (control):

0= {m () 3—15 + 7 (9 — pi) aa—l/; + 7 (9" = ) a;pa“} : (21)

The mapping of these equations to a PID control scheme becomes more clear under a few simplifying
assumptions. First, we assume strong priors on the causes of proprioceptive observations .
Intuitively, these priors are used to define actions that change the observations to better fit the agent’s
desires, i.e. the target of the PID controller. This is implemented in the weighting mechanism of
prediction errors by precisions in equation (19); see also [13,26,70] for similar discussions on the
role of precisions for behaviour. In our derivation, weighted prediction errors on system dynamics,
7t (fi + fix — 7jx ), will be weighted more than weighted errors on observations, 7z (¢ — iy ). To achieve

1 For consistency with previous formulations, e.g. [8,13,15], we will define y as proprioceptive observations. Proprioception is

the sense of position and movement of different parts of our body. For the car model we introduce later, this is equivalent
for instance to readings of the velocity of the car.
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this, we decrease sensory precisions 71z on proprioceptive observations, effectively biasing the gradient
descent procedure towards minimising errors on the prior dynamics [70]. Secondly, we set the decay
parameter & to a large value (theoretically & — oo, in practice & = 10° in our simulations), obtaining a
set of differential equations including only terms of order a? for perception:

flx R — Tyl (“(l/‘x - ’7x)>
i~ = e (i = 7k )
i~ = g (a1 22)

This can be interpreted as an agent encoding beliefs in a world that quickly settles to a desired
equilibrium state. This assumption effectively decouples orders of generalised motion, with higher
embedding orders not affecting the minimisation of lower ones in equation (20), since terms from
lower orders are modulated by « directly. The remaining terms effectively impose constraints on
the generalised motion only close to equilibrium, playing a minor role in the control process away
from the target/equilibrium (the more interesting part of regulation). These terms are necessary for
the system to settle to a proper steady state when (jiy — 7jx) — 0 and maintain consistency across
generalised orders of motion for small fluctuations at steady state, but have virtually no influence at
all in conditions far from equilibrium. Following equation (22), at steady state, expectations on hidden
states fi, are mainly driven by priors 7y:

ﬁx = ﬁx (23)

but are still not met by appropriate changes in observations ¢ which effectively implement the
regulation around the desired target. To minimise free energy in presence of strong priors, this agent
will necessarily have to modify its observations 1 to better match expectations fix, which in turn are
shaped by priors (i.e. desires) 7j,. Effectively, the agent “imposes” its desires on the world, acting
to minimise the prediction errors arising at the proprioceptive sensory layers. In essence, an active
inference agent implements set-point regulation by behaving to make its sensations accord with its
strong priors/desires. After these assumptions, action can be written as:

Q0 — {7-(2 (1/; — 17x> 3—15 + 1ty (1/,/ _ ,7;) %—1’5 + T <¢H B 17;,) 85/:’] (24)

where we still need to specify partial derivatives di/da. As discussed in [13], this step highlights
the fundamental differences between the FEP and the more traditional forward/inverse models
formulation of control problems in biological systems [71,72]. While these derivatives help in the
definition of an inverse model (i.e. finding the correct action for a desired output), unlike more
traditional approaches, active inference does not involve a mapping from hidden states £ to actions
a, but is cast in terms of (proprioceptive) sensory data ¢ directly, This is thought to simplify the
problem: from a mapping between unknown hidden states and actions, to a mapping between known
proprioceptive observations § and actions a. It is claimed that this provides an easier implementation
for an inverse model [15], one that is grounded in an extrinsic frame of reference, i.e. the real world
(1), rather than in a intrinsic one in terms of hidden states (%) to be inferred first. To achieve PID-like
control, we assume that the agent adopts the simplest (i.e. linear) relationship between its actions
(controls) and their effects on sensory input across all orders of motion:

alp alpl alP//

—_— = — = = 1 . 2

da da da @9)
This reflects a very simple reflex-arc-like mechanism that is triggered every time a proprioceptive
prediction is generated: positive actions (linearly) increase the values of the sensed variables ¢, while
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negative actions decrease them. There is, however, an apparent inconsistency here that we need to
dissolve: the proprioceptive input ¢ and its higher order states ¢, ¢’ are all linearly dependent with
respect to actions a as represented in equation (25). While an action may not change position, velocity
and acceleration of a variable in the same way, a generative model doesn’t need to perfectly describe
the system to regulate: these derivatives only encode sensorimotor dependencies that allow for, in
this case, sub-optimal control. In the same way, PID controllers are, in most cases, effective but only
approximate solutions for control [36,73]. This allows us to understand the encoding of an inverse
model from the perspective of an agent (i.e. the controller) rather than assuming a perfect, objective
mapping from sensations to actions that reflects exactly how actions affect sensory input [13]. This
also points at possible investigations of generative/inverse models in simpler living systems where
accurate models are not perhaps needed, and where strategies like PID control are implemented
[39-41]. By combining equation (24) and equation (25), action can then be simplified to:

i 70 (1 — ) + 70 (1 — ') + 70 (7 — 97) (26)
which is consistent with the “velocity form” or algorithm of a PID controller [36]:

. d i
= ki(yr =) + ko (vr =) +ka gz (vr —v) - 27)

151 Velocity forms are used in control problems where, for instance, integration is provided by an external
152 mechanism outside the controller [36,73]. Furthermore, velocity algorithms are the most natural form
153 for the implementation of integral control to avoid windup effects of the integral term, emerging when
1ss  actuators can’t regulate an indiscriminate accumulation of steady-state error in the integral term due
15 to physical limitations [36,74]. This algorithm is usually described using discrete systems to avoid the
1ss definition of the derivative of random variables, often assumed to be white noise in the Ito’s sense
157 (i.e. Markovian processes). In the continuous case, if the variable y is a Markov process, its time
1ss  derivative is in fact not well defined. For this form to exist in continuous systems, y must be a smooth
10 (stochastic) process. Effectively, this drops the Markov assumption of white noise and implements
10 the same definition of analytic (i.e. differentiable) noise related to Stratonovich calculus and the
161 generalised coordinates of motion we described earlier. The presence of extra prediction errors beyond
162 the traditional negative feedback (proportional term) can, in this light, be seen as a natural consequence
163 Of considering linear non-Markovian processes with simple reflex mechanisms responding to position,
16s  velocity and acceleration in the generalised motion phase space (see equation (25)). To ensure that the
165 active inference implementation approximates the velocity form of PID control we still need to clarify
166 the relationship between the generalised coordinates of motion in equation (26) and the differential
167 Operators d/dt, d?/dt? in equation (27). As pointed out in previous work, when the variational free
16s  energy is minimised, the two of them are equal since the motion of the mode becomes the mode of the
160 motion [8,56]. To simplify our formulation and show PID control more directly, we can consider the
1o case for 7}, = 5}/ = 0, defining the more standard set-point control where a desired or set-trajectory
11 collapses to a single set-point in the state-space and equivalent, in the velocity form, to the case where
w2 Y, is a constant and dy, /dt = d%y, /dt*> = 0.

173 To show an implementation of PID control through active inference we use a standard model
17 of cruise control, i.e. a car trying to maintain a certain velocity over time 2. While only a toy model,
175 the intuitions and results we derive can easily be transferred to the regulation of proteins in bacterial
176 chemotaxis [39] or yeast osmoregulation [75], and more generally to any homeostatic mechanism [34],
177 especially when including limited knowledge of external forces [76]. In this setup, a controller receives
17e  the speed of the car as an input and adapts the throttle of the vehicle based on a negative feedback

2 Qur code is available at https:/ /github.com /mbaltieri/PIDControl ActivelnferenceFEP.
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17 mechanism to achieve the desired, or target, cruising velocity. In real-world scenarios, this mechanism
10 Needs to be robust in presence of external disturbances, essentially represented by changes in the
11 slope of the road, wind blowing, etc., see Fig. 2d. For simplicity, we will use the model based on the
12 formulation in [73], see also Appendix A. In this particular instance, we will provide a simple proof of
13 concept, simplifying PID to PI control as in [73], hence implementing only a first order generalised
1sa  state-space model (see equation (16)). The controller receives noisy readings ¢, ¢’ of the true velocity
15 and acceleration of the car, x, x’, following the formulation in equation (16). The controller is provided
1 With a Gaussian prior in generalised coordinates encoding desired velocity and acceleration with
1z means 17y = 10 km/h, 7}, = 0 km/h?. This prior represents a target trajectory for the agent that, as we
1. Saw in equation (26), will be equivalent to integral and proportional terms of a PI controller in velocity
form. The recognition dynamics ([69]) are then specified in equation (20) and equation (21).

50 Car velocity 100 Car acceleration
—— Sensed velocity, g —— Sensed acceleration, ¢’
40 —— Expec. of velocity, py 80 —— Expec. of acceleration,
_ 60
g 30 T 40
g 2
g 20 é 20
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> 104y i { Nx g —2%0 U
0 -40
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&7?
_ I
€2 @7
iE‘ (wind)
S o
= \~
] .
o (varying slope)
S -2
<
-4
0 50 100 150 200 250 300
Time (s)
(d)
()
Figure 2. A cruise controller based on PI control under active inference. (a) The response of the car
velocity over time with a target state, or prior in our formulation, #, = 10 km/h, #,, = 0 km/ h2. (b)
The acceleration of the car over time with a specified prior 175, = 0 km/h?. (c) The external force v,
introduced at t = 150s, models a sudden change in the environmental conditions, for instance wind or
change in slope. Action obtained via the minimisation of variational free energy with respect to 4 and
counteracts the effects of v. The motor action is never zero since we assume a constant slope, A = 4°
(see table A1, Appendix A). (d) The model car we implemented, where v could be thought as a sudden
wind or a changing slope.
189
190 In Fig. 2 we show the behaviour of a standard simulation of active inference implementing PI-like

11 control for the controller of the speed of a car. The sensory and process precisions 7z, 71y are fixed,
192 to show here only the basic disturbance rejection property of PID controllers [36,76]. In Fig. 2a, after
103 the car is exposed to some new external condition (e.g. wind) represented in Fig. 2c and not encoded
104 in the controller’s generative model, the regulation process brings the velocity of the car back to the
105 desired state after a short transition period. Fig. 2b shows how sudden changes in the acceleration of
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we the car are quickly cancelled out in accord with the specified prior 7% = 0 km/h2. The action of the car
17 is then shown, as one would expect [76], to counteract the external force v, Fig. 2c.

18 4.2. Responses to external and internal changes

199 It is often desirable for a PID regulator to provide different responses to external perturbations
200 (e.g. wind), which should be rather rapid, and to internal updates (e.g. a shift in target velocity)
20 which should be relatively smooth [36,45], see also section 2.1. It is not, however, trivial to identify
202 and isolate parameters that contribute to these effects [37,77,78], and thus to tune these properties
203 independently. It has been suggested that in order to achieve such decoupling, a controller with two
20 degrees of freedom is necessary [45,77]. Such controller can be thought to contain a feedforward
20s model of the dynamics of the observed/regulated system [73]. In our implementation, this is elegantly
206 achieved by construction, since active inference is based on generative (forward) models. Specifically,
207 'we can fix the response to external forces by setting the expected sensory precisions 7; (i.e. PI gains)
20 but then independently tune the response to changes in the setpoint by altering the expected process
precisions 7y on the priors, see Fig. 3a and Fig. 3b.

Car velocity - Load disturbance Car velocity - Set-point change

20.0
14
17.5
12
. 15.0
g10 o ’ v e R € 15 "
g ! g7 S :
X g < .
> I >10.0 nx‘
8 new ext. input 3 N
. o
s 6 3 75 t
> > new target
4
—— Sensed velocity, y,; m, = exp(-24.0) 5.0 —— Sensed velocity, y,; m, = exp(-24.0)
2 —— Sensed velocity, y; my = exp(-22.0) 25 —— Sensed velocity, y;; my = exp(-22.0)
—— Sensed velocity, y,; m, = exp(-24.0) —— Sensed velocity, y; m, = exp(-20.0)
0] 0.0
0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0 0.0 2.5 5.0 7.5 10.0 125 15.0 17.5 20.0
Time (s) Time (s)
(a) (b)

Figure 3. Different responses to load disturbances and set-point changes. The simulations were
300s long, with an external disturbance/different target velocity introduced at t = 150s. Here
we report only a 20 seconds time window around the change in conditions. (a) The same load
disturbance (v = 3.0km/h?) is applied with varying expected process precisions 71 where 7, =
{exp(—24), exp(—22),exp(—20)}. Expected sensory log-precisions 7tz are fixed over the duration
of the simulations, with u,, = 1. (b) A similar example for changes in the target velocity of the
car, from 77, = 13km/h to 5y = 10km/h, tested on varying expected process precisions 7t where
w = {exp(—24), exp(—22),exp(—20)}.

210 In the limit for process prediction errors 7y (ji} + a(jix — 7jx)) much larger than the sensory
211 ones 7z (P — i) and with fixed expected sensory precisions 7z, the response to load disturbances
=2 is invariant (Fig. 3a). A new target velocity for the car creates different responses with varying
as 7T = {exp(—24),exp(—22),exp(—20)} 3. Larger 715 values imply an expected low uncertainty on
2a  the dynamics (i.e. changes to the set-point are not encoded and therefore not expected) and are met
x5 almost instantaneously with an update of expected hidden states i, matched by suitable actions a.
zs On the other hand, smaller 7t5 account for higher variance/uncertainty and thus changes in the target
217 velocity are to be expected, making the transitions to new reference values slower, as seen in Fig. 3b.

3 Precisions on higher embedding orders are built, in both cases, using a smoothness (i.e. decay) factor of 1/2, see [12].
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ze 4.3. Optimal tuning of PID gains

210 One of the main goals of modern design principles for PID controllers is to find appropriate tuning
220 rules for the gains on the prediction errors: proportional, integral and derivative terms. However,
2 existing approaches are often limited [37,38,44,48,78]. In general, the proportional term must bring a
222 system to the target state in the first place, the integral of the error should promptly deal with errors
=23 generated by steady state inputs not accounted by a model [76], while the derivative term should
224 reduce the fluctuations by controlling changes in the derivative of a variable [73]. In our car example,
225 this could mean for example controlling the velocity of the vehicle in spite of changes such as the
226 presence of wind or variations in slope of the road (I term) and avoiding unnecessary changes in
227 accelerations close to the target (D term, even if sometimes not used for cruise control problems [73]).
22s  In our treatment of PID controllers as approximate Bayesian inference, the controllers” gains k;, kp, kg
220 become equivalent to sensory precisions 7, 7T/, 7,1, cf. equation (26) and equation (27). Following
20 [12,56,57], we thus propose to optimise these precisions to minimise the path integral of variational free
21 energy (or free action), assuming that parameters and hyperparameters change on a much slower time
222 scale. To do so, we extend our previous formulation and replace fixed sensory precisions 71, 7,1, 77,1
233 with expected sensory precisions i, , fr,, fir,, derived from a Laplace approximation applied not only
23s  to hidden states x but extended also to these hyperparameters, now considered as random variables to
235 be estimated, rather than fixed quantities [56,57].

Active inference provides then an analytical criterion for the tuning of PID gains in the temporal
domain, where otherwise mostly empirical methods or complex methods in the frequency domain
have insofar been proposed [36,38,47,48]. In frameworks used to implement active inference, such as
DEM [12,56], parameters and hyperparameters are usually assumed to be conditionally independent
of hidden states based on a strict separation of time scales (i.e. a mean-field approximation). This
assumption prescribes a minimisation scheme with respect to the path-integral of free energy, or
free action, requiring the explicit integration of this functional over time. In our work, however, for
the purposes of building an online self-tuning controller, we will treat expected sensory precisions
as conditionally dependent but changing on a much slower time-scale with respect to states x,
using a second order online update scheme based on generalised filtering [57]. The controller gains,
Wr,, Wr,, Wr,, Will thus be updated specifying instantaneous changes of the curvature of expected
precisions with respect to variational free energy rather than first order updates with respect to free
action:

B oF
ir,

fin: = (28)
Expected precisions j,;, should however be non-negative since variances need to be positive, a fact
also consistent with the negative feedback principle behind PID controllers (i.e. negative expected
precisions would apply a positive feedback). To include this constraint, following [66] we thus
parametrise sensory precisions 77z (and consequently expected sensory precisions ) in the generative
model as:

Tz = exp (7z) (29)

creating, effectively, log-normal priors and making them strictly positive thanks to the exponential
mapping of hyperparameters . The scheme in equation (28) is then replaced by one in terms of
expected sensory log-precisions ji,,:

oF

-5 (30)
aV’Yz'

fly: =
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For practical purposes, the second order system presented in equation (30) is usually reduced to a
simpler set of first order differential equations [8]:

]’l')’i :]’l{}’i

JoF
L 31)
‘u'Yz a]’l"rz ‘u'Yz

where p/)_ is a prior on the motion of hyperparameters 7 which encodes a “damping” term for the
minimisation of free energy F *. This term enforces hyperparameters to converge to a solution close to
the real steady state thanks to a drag term for x > 0 °. The parametrisation of expected precisions in
terms of log-precisions 1z, in fact, makes the derivative of the free energy with respect to log-precisions
strictly positive (dF/dvy: > 0), not providing a steady-state solution for the gradient descent [57].
This “damping” term stabilises the solution, reducing the inevitable oscillations around the real
equilibrium of the system. Given the free energy defined in equation (19), with exp(,,) replacing
75, the minimisation of expected sensory log-precisions (or “log- PID gains”) is prescribed by the
following equations:

ﬁ'Yz :P‘fh
oF 1
o _ I — 2 _ — /
Iu'yz - a#')’z K,u% 2 {exp (‘M%)(lp .ux) 1} K‘u'yz
iy, =M.
PR e
oF 1
S O AV e
]’l’}‘zf - a#'yz, K]’l'yz/ 2 [exp (V'YZ/)(lp ,ux) 1:| K:u’yz/
o =W,
2 Fyan
oF 1
o I o2 4|
‘u'}’z” - al’l’)‘z// KV’YZ// - 2 |:exp (‘u')/zll)(l)b Vx) 1i| Kau’}’zn (32)

23 This scheme introduces a new mechanism for the tuning of the gains of a PID controller, allowing

237 the controller to adapt to adverse and unexpected conditions in an optimal way, in order to avoid
238 oscillations around the target state.

In Fig. 4 the controller for the car velocity is initialised with suboptimal sensory log-precisions

Hys, i.e. log-PI gains. The parameters were initially not updated (Fig. 4d) to allow the controller to

settle around the desired state, see Fig. 4a. The adaptation begins at + = 30s and is stopped at t = 150s,

when an external force is introduced, to test the response of the controller after the gains have been

optimised. With the adaptation process, the controller becomes more responsive when facing external

disturbances (cf. Fig. 2), quickly and effectively counteracted by prompt changes in controls, see Fig. 4c.

As a trade-off, the variances of the velocity and the acceleration are however increased, see Fig. 4a and

see Fig. 4b. The optimisation of the gains through u.,,, without extra constraints (if not the stopping

condition we imposed at t = 150s, after the adaptation reaches a steady-state) effectively introduces an

extremely responsive controller: cancelling out the effects of unwanted external inputs, such as wind in

our cruise control example, but also more sensitive to measurement noise. In Fig. 5 we show summary

statistics with the results of the adaptation of the gains. Following the examples in Fig. 2 and Fig. 4, we

simulated 20 different cars with expected sensory log-precisions y.,. sampled uniformly in the interval

[—4, —2] and expected process log-precisions ji,,, in the interval [-23, —21]. We initially maintained

(i.e. no adaptation) the same hyperparameters and introduced a load disturbance at t = 150s, then

4 In[57] we can see that this is equivalent to the introduction of a prior p(¥) on the motion of ¥ to be zero (i.e. zero mean)

with precision 2x.

5 k= 5in our simulations
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Figure 4. Optimising PID gains as expected sensory log-precisions j.,,. This example shows the
control of the car velocity before and after the optimisation of y., (before and after the vertical dash
dot black line) is introduced. (a) The velocity of the car. (b) The acceleration of the car. (c) The action of
the car, with an external disturbance introduced at t = 150s. (d) The optimisation of expected sensory
precisions i, and their convergence to an equilibrium state, after which the optimisation is stopped
before introducing an external force. The blue line represents the true log-precision of observation
noise in the system, v, = v, = 5.

repeated the simulations (20 cars) with the same initial conditions allowing for the adaptation of
expected sensory log-precisions as log-PI gains after t = 30s, as in Fig. 4. Following [79], we measured
the performance of the controllers by defining the integral absolute error (IAE):

IAE = /t+T|e(t)| dt (33)
t

239 between two zero-crossings: the last time the velocity was at the target value before a disturbance is
2e0 introduced, assumed to be t = 150 in our case, and the first time the velocity goes back to the target
21 after a disturbance is introduced (t + 7). To compute t + T, we took into account the stochasticity of
22 the system and errors due to numerical approximations, considering the case for the real velocity to be
2e3  within a 0.5 km/h interval away from the target value. The IAE captures the impact of oscillations
a2 on the regulation problem by integrating the error over the temporal interval where the car is pushed
2es away from its target due to some disturbance (for more general discussions on its role and uses see
26 [30]). As we can see in Fig. 5, the IAE converges to a single value for all cars (taking into account our
2az  approximation of a £0.5 km/h interval while measuring it) and is clearly lower when the adaptation
2es mechanism for expected sensory log-precisions is introduced, making the controller very responsive
200 to external forces and thus reducing the time away from the target velocity, see Fig. 4 for an example.
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Figure 5. Performance of PID controllers with and without adaptation of the gains based on the
minimisation of free energy. The integral absolute error (IAE) is used to measure the effects of the
oscillations introduced by a single load disturbance at t = 150s (see text for the exact definition of the
IAE).

250 5. Discussion

251 In this work we developed a minimal account of regulation and control mechanisms based on
=2 active inference, a process theory for perception, action and higher order functions expressed via
23 the minimisation of variational free energy [4,8,10,13]. Our implementation constitutes an example
2ss  Of the parsimonious, action-oriented models described in [24,25], connecting them to methods from
25 classic control theory. We focused in particular on Proportional-Integral-Derivative (PID) control, both
=6 extensively used in industry [36-38,78] and more recently emerging as a model of robust feedback
27 mechanisms in biology, implemented for instance by bacteria [39], amoeba [40] and gene networks
ze  [41], and in psychology [42]. PID controllers are ubiquitous in engineering mostly due to the fact that
250 one needs only little knowledge of the process to regulate. In the biological sciences, this mechanism is
260 thought to be easily implemented even at a molecular level [43] and to constitute a possible account
201 for limited knowledge of the external world in simple agents [76].

262 Following our previous work on minimal generative models [26], we showed that this mechanism
263 corresponds, in active inference terms, to linear generative models for agents that only approximate
2ea properties of the world dynamics. Specifically, our model describes linear dynamics for a single
2es hidden or latent state and a linear mapping from the hidden state to an observed variable, representing
26s  knowledge of the world that is potentially far removed from the real complexity behind observations
267 and their hidden variables. To implement such model, we defined a generative model that only
2ee approximates the environment of an agent and showed how under a set of assumptions including
260 analytic (i.e. non-Markovian, differentiable) Gaussian noise and linear dynamics, this recapitulates PID
20 control. A crucial component of our formulation is the presence of low sensory precision parameters on
ann proprioceptive prediction errors of our free energy function or equivalently, high expected variance of
22 proprioceptive signals. These low precisions play two roles during the minimisation of free energy: (1)
2rs  they implement control signals as predictions of proprioceptive input influenced by strong priors (i.e.
z7a  desires) rather than by observations, see equation (24) and [13], and (2) they reflect a belief that there
275 are large exogenous fluctuations (low precision = high variance) in the observed proprioceptive input.
276 This last point can be seen as the well known property of the Integral term [73,76] of PID controllers,
27 dealing with unexpected external input (i.e. large exogenous fluctuations). The model represented by
27s  derivatives 09 /da encodes then how actions a approximately affect observed proprioceptive sensations
270 1P, with an agent implementing a sensorimotor mapping that does not match the real dynamics of
2s0  actions applied to the environment. The formulation in equation (20) and equation (21) can in general
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201 be applied to different tasks, in the same way PID control is used in different problems without specific
202 knowledge of the system to regulate.

263 The generative model we used is expressed in generalised coordinates of motion, a mathematical
2sa  construct used to build non-Markovian continuous stochastic models based on Stratonovich calculus.
zes Their importance has been expressed before [12,56,57], for the treatment of real world processes
286 best approximated by continuous models and for which Markov assumptions don’t really hold (see
207 also [69] for discussion). The definition of a generalised state-space model provides then a series of
2ee  Weighted prediction errors and their higher orders of motion from the start, with PID control emerging
200 as the consequence of an agent trying to impose its desired prior dynamics on the world via the
200 approximate control of its observations on different embedding orders (for I, P and D terms). In
201 this light, the ubiquitous efficacy of PID control may thus reflect the fact that the simplest models of
202 controlled dynamics are first-order approximations to generalised motion. This simplicity is mandated
203 because the minimisation of free energy is equivalent to the maximisation of model evidence, which
204 can be expressed as accuracy minus complexity [10,24]. On this view, PID control emerges via the
20 implementation of constrained (parsimonious, minimum complexity) generative models that are,
206 Under some constraints, the most effective (maximum accuracy) for a task.

207 In the control theory literature, many tuning rules for PID gains have been proposed (e.g.
208 Ziegler-Nichols, IMC, etc., see [36,38] for a review) and used in different applications [36-38,48,78],
200 however most of them produce quite different results, highlighting their inherent fit to only one of
s0 many different goals of the control problem. With our active inference formulation, we argue that
so1  different criteria can and should be expressed within the same set of equations in order to better
302 understand their implications for a system. Modern approaches to the study of PID controllers propose
;03 four points as fundamental features to be considered for the design of a controller [44]:

load disturbance response
set-point response
measurement noise response
robustness to model uncertainty.

w
o
)

e O o o

s In our formulation, these criteria can be interpreted using precision (inverse variance) parameters of
;00 different prediction errors in the variational free energy, expressing the the uncertainty associated to
observations and priors, as reported in table 1, see also Appendix B for further reference.

Table 1. Active inference as a general framework for PID controllers.

Criterion Mapped to  Advantages in active inference

Intuitively expressed via the expected inverse variance
Load disturbance of the observations (i.e. precision), with low variance
response W implying a fast response and vice versa (see section 4.2

and section 4.3)

Natural formulation of PID controllers with two degrees of
Uy freedom derived from sensory and process precisions and

expressed as a Bayesian inference process (see section 4.2)

Straightforward interpretation of PID gains as (expected)
U inverse variances of different embedding orders of

measurement noise (see Appendix B)

Direct mapping of model uncertainty to expected
Uy variances of the fluctuations, representing unknown

dynamics, of the system to control (see Appendix B)

Set-point change
response

Measurement noise
response

Robustness to
model uncertainty

311 After establishing the equivalence between PID control and linear approximations of generalised
s12 motion in generative models, we showed that the controllers’ gains, k;, kp, kg, are in our formulation
u3  equivalent to expected precisions, yix,, i, , ir_,, for which a minimisation scheme is provided in
s [12,56,57]. The basic version of this optimisation produces also promising results in presence of
as  time-varying measurement (white) noise in the simulated car (see Fig. Al in Appendix B). If the
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a6 adaptation is halted on a system with fixed measurement noise, it can be used to effectively deal with
a1z load disturbances, external forces acting against a system reaching his target (see Fig. 4), e.g. a change
a1e  in chemicals concentration for a bacterium.

319 Future extensions could provide a more principled way of dealing with these two (and possibly
s20 other) conflicting cases, an issue that can be solved by introducing suitable hyperpriors (priors on
sz hyperparameters) expressing the confidence of a system regarding changes in measurement noise
sz via the use of precisions on hyperpriors [12]. High confidence (i.e. high precision on hyperpriors)
;23 would imply that a system should quickly react to sudden changes, both in measurement noise and
224 other disturbances, since they are unexpected. On the other hand, low confidence (i.e. low precision
s2s  on hyperpriors) would make a system’s reaction to new conditions slower since such changes are
226 expected. A trade-off between these conditions, with appropriate knowledge of a system or a class of
sz systems introduced in the form of hyperpriors, would then make the process completely automatised,
s2s  taking advantage of, for instance, empirical Bayes for learning such hyperpriors [10]. By extending
;20 Our proposition with priors on precisions we can also, in principle, cast more criteria for the controller,
10 expressing different requirements for more complex regulation processes. Given the fact that any
a1 optimality criterion can be recast as a prior, following the complete class theorem [80,81], as long as
32 'we know how to represent these rules as priors for the controller, we can provide any combination of
s33  requirements and tune the parameters in a straightforward fashion.

s3a 6. Conclusion

335 PID controllers are robust controllers used as a model of regulation for noisy and non-stationary
;6 processes in different engineering fields [38,73]. More recently, they have also been proposed as
sz behavioural models of adaptive learning in humans [42] and as mechanistic explanations of different
:3e  functions of systems in microbiology [39-41]. Their utmost relevance to the natural sciences is becoming
330 clear, with implementations now proposed at the level of simple biomolecular interactions [43,82].
sa0  PID controllers are renowned for their simplicity and straightforward interpretation in control theory,
sa1 however a general interpretation in probabilistic frameworks (e.g. Bayesian inference) is still missing.
342 Active inference has been proposed as a general mathematical theory of life and cognition
sa3  according to the minimisation of variational free energy [10]. On this view, biological agents are
;as  seen as homeostatic systems maintaining their existence via the the minimisation of free energy. This
as  process is implemented via the estimation and prediction of latent variables in the world (equivalent to
w6 perception) and the control of sensory inputs with behaviours accommodating normative constraints
a7 of an agent. Active inference is often described as an extension of optimal control theory with deep
e connections to Bayesian inference [15]. While methods such as PID control are still widely adopted
a0 as models of biological systems, it is unclear how general theories such as active inference connect
350 to practical implementation of homeostatic principles such as PID control. In this work we proposed
51 a way to connect these two perspectives showing how PID controllers can be seen as a special case
52 of active inference. This account is based on the definition of a linear generative model for an agent
;53 approximating the dynamics of its environment, potentially very different from the information
ssa  represented by the model. The model is expressed in generalised coordinates of motion [8,12,69] with
sss  prediction errors at different embedding orders for integral, proportional and derivative components
s emerging naturally as a consequence of an agent assuming non-Markovian dynamics on its sensory
sz input. Through the use of active inference we also proposed the implementation of a mechanism
sss  for the optimisation of the gains of a PID controller, i.e. the weights of different prediction errors,
0 NOw interpreted as precision parameters encoding the uncertainty of different variables from the
0 perspective of an agent.
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s Appendix A The car model

The equation of motion of the car is:

d?s

dt (AD)

where s is the position, F the force generated by the engine and F; a disturbance force that accounts
for a gravitational component Fg, a rolling friction F, and an aerodynamic drag F,, such that F; =
Fg + F, + F, see again Fig. 2d. The forces will be modelled as following:

F =rga(t)Tu (1 - ﬁ(wi - 1)2)

m

Fy =mgsin A (A2)

F =mgC;sgns
F, = 1p C A8
2
seo  with all the constants and variables reported and explained in table A1.

Table Al. Cruise control problem, constants and variables.

Description Value
s(t) car position -
re  gear ratio divided by wheel radius 12
a(t)  control -

370

371

372

379

380

381

T, ~ maximum torque 190Nm
B motor constant 0.4
w  engine speed X0
wpy  speed that gives maximum torque  420rad/s
m  car mass 100kg
g  gravitational acceleration 9.81m /s>
A slope of the road 4°
C,  coefficient of rolling friction 0.01
o density of the air 1.3kg/m3
C;  aerodynamic drag coefficient 0.32
A frontal area of the car 2.4m?

Appendix B Measurement noise and model uncertainty in active inference

Nowadays, it is common to include two more desiderata for the design of PID controllers (see
section 2 and [44]) in order to characterise and tune their response to (1) different types of measurement
noise and (2) their robustness to model uncertainty, inherent in simple approximate controllers [38,44].
In our example, these properties map, respectively, to the response of a car given time-varying noise
and to the available knowledge of a system, e.g. the working range of a controller or the type of
disturbances affecting the car.

In particular, the former describes the behaviour of a PID controller in presence of noise on the
observed variables by modulating the decay of different prediction errors in equation (26). It is known
that this response is (in the limit for f — oo and with the assumption of a system at equilibrium)
inversely proportional to the integral gain [36,38]. In our case however, we have a more general and
trivial relationship where the integral gain k; is, by construction, equivalent to the inverse variance
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sz (i.e. precision) of the measurement noise 71;, see equation (26) and equation (27). The remaining gains
sss kp, kg can then be seen as encoding the uncertainty (i.e. precision) of higher orders of motion when the
;s IMeasurement noise is effectively coloured, otherwise just approximating possible correlations of the
sss  Observed data over time.

386 On the other hand, the robustness to model uncertainty is related to expected process
se7  log-precisions p.,, encoding (again by construction) the amplitude of fluctuations due to unknown
see  effects on the dynamics [12]. By modulating the prior dynamics of a system, these hyperparameters
0 assume then a double role, they can either: (1) passively describe (estimate) the dynamics of a system (cf.
300 Kalman filters [83]) or (2) actively impose desired trajectories on observations that can be implemented
;01 through actions on the world, as explained in section 4.1. With these conditions at the extremes,
sz a spectrum of intermediate behaviours is also possible, with i, enacting different sensorimotor
303 couplings by weighting the importance of objective information and desired states/priors of a system.
308 In the majority of the formulations of control problems, the properties of measurement noise and
305 model uncertainty (especially their (co)variance) are assumed to be constant over time. Often, these
106 parameters need also to be adapted to different systems since their properties are likely to be different.
sz In section 4.3, we proposed an optimisation method for the gains of a PID controller based on active
s0s  inference that here we exploit for time changing properties of the noise of a system, and that we show
300 in an example when the measurement noise suddenly increases. In our car example, we could think of

a drop in performance of the sensors recording velocity.

-

W
n

Variance (a.u.)
!\J N w
o w o

=
w

=

Adaptation 'interrupted Continual édaptation

=
=)

Figure Al. Performance of PID controllers with a sudden increase in measurement noise. 20 cars
simulated in the case where measurement noise is increased at t = 150s during the 300s simulations.
We report aggregate results with the variance from the target value measured over the last 25%
(225 < t < 300s) of a simulation. We show (1) the case for adaptation of the gains of the PI controller
(through expected sensory log-precisions, or log-PI gains, ,,) interrupted before the measurement
noise drastically changes, and (2) the case where the adaptation process persists for the entire duration
of the simulations.

401 We simulated 20 cars for 300s with adaptation of expected sensory log-precisions (or log-PI gains)
a2 Jiy,, introduced at t = 30s and stopped at t = 150s. At t = 150s we then decreased the log-precision of
203 Mmeasurement noise (n.b. not the expectation on the log-precision) from v, = 5 to 7y, = 2 for the rest of
a4 the simulations to simulate the partial failure of a sensor, and stopped the adaptation process. We then
a5 simulated 20 cars where adaptation was not halted after the increased measurement noise. To represent
s the difference, we measured the variance of the real velocity of the cars (without measurement noise
207 to avoid biases), from t = 225s to t = 300s to allow the velocity to settle after the transient due to
s0s the sudden change. Agent that kept adapting their gains are shown to be more robust to persistent
a0 changes in noise, see Fig. Al.


http://dx.doi.org/10.20944/preprints201902.0246.v1
http://dx.doi.org/10.3390/e21030257

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 27 February 2019 d0i:10.20944/preprints201902.0246.v1

419

420

421

422

423

424

434

435

436

437

438

439

449

450

451

452

453

454

455

21 of 23

In the case of model uncertainty, given the dual role of ., explained above, i.e. encoding prior
dynamics reflecting both real properties of the environment and desired trajectories imposed on the
system to regulate, it is harder to show the update of expected precisions without compromising the
control of the car. The optimisation of variational free energy is, in fact, not intrinsically biased towards
the control of a system, i.e. we externally imposed that as a condition for the agent. While having more
flexible priors, an agent could potentially begin to account for uncertainty in the world rather than
forcibly change its observations to reach its target.
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