Quantum chemical and kinetic study on radical/molecule formation mechanism of pre-intermediates for PCTA/PT/DT/DFs from 2-chlorothiophenol and 2-chlorophenol precursors

Chenpeng Zuo1, Hetong Wang1, Wenxiao Pan2, Siyuan Zheng1, Fei Xu1,3 *, Qingzhu Zhang1

1 Environment Research Institute, Shandong University, Qingdao 266237, P. R. China; zuochenpeng@126.com, Kishi_Wang@163.com, zhengsiyuan1991@126.com, xufei@sdu.edu.cn, zqz@sdu.edu.cn
2 State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China; wxpan@rcees.ac.cn
3 Shenzhen Research Institute, Shandong University, Shenzhen 518057, P. R. China
* Correspondence: xufei@sdu.edu.cn; Tel.: +86-532-58631992

Abstract: Polychlorinated phenoxythiins (PCPTs), polychlorinated dibenzothiophenes (PCDTs), and polychlorinated thianthrenes (PCTAs) are sulfur analogues of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/DFs). Chlorothiophenols (CTPs) and chlorophenols (CPs) are key precursors to form PCTA/PT/DTs, which can form chloro(thio)phenoxy radical, sulfydryl/hydryl-substituted phenyl radical and (thio)phenoxyl diradicals. The available radical/radical PCTA/DT formation mechanism failed to explain the higher concentration of PCDTs than that of PCTAs under the pyrolysis or combustion conditions. Thus in this work, a detailed thermodynamics and kinetic calculations were carried out to investigate the pre-intermediates formation for PCTA/PT/DTs from radial/molecule coupling of 2-C(T)P with their key radical species. Our study found that the radial/molecule mechanism can thermodynamically and kinetically contribute to the gas-phase formation of PCTA/PT/DT/s. The S/C coupling modes to form thioether-(thio)enol intermediates are preferable over the O/C coupling modes to form ether-(thio)enol intermediates. Thus, although the radial/molecule coupling of chlorophenoxy radical with 2-C(T)P have no effect on the PCDD/PTs formation, the radial/molecule coupling of chlorothiophenoxy radical with 2-C(T)P play an important role in the PCDT/PT formation. Most importantly, the pre-PCDT intermediates formation pathways from the coupling of sulfydryl/hydryl-substituted phenyl radical with 2-C(T)P and the coupling of (thio)phenoxyl diradicals with 2-C(T)P are more favorable to pre-PCTA/PT intermediates formation pathways from the coupling of chlorothiophenoxy radical with 2-C(T)P, which can give reasonable explanation for the high PCDT-to-PCTA ratio in the environment.

Keywords: PCTA/PT/DTs; Formation mechanism; Radical/molecule coupling; Density functional theory; Rate constant

1. Introduction

Polychlorinated thianthrenes/dibenzothiophenes (PCTA/DTs) are polychlorinated dibenzo-p-dioxins/dibenzofurans (PCDD/DFs) analogues with the oxygen atoms substituted by the sulfur atoms, which have given rise to environmental public and regulatory concern. PCTA/DTs are found as mixtures of 75 PCTA and 135 PCDT isomers, which have similar geochemical behavior, toxicity, persistent, lipophilic and physicochemical properties as PCDD/DFs [1–7]. PCTA/DTs have been
widely detected in the different environmental samples, such as aquatic organisms [8], soil and sediment [9,10], pulp bleaching [11], wastes from petroleum refineries [12], petroleum spills [13], especially in some high temperature pyrolysis or combustion conditions such as incineration of municipal waste and fly ash [14,15], stack gas [16] and metal reclamation industry [17]. The concentrations of PCDTs in fly ash and in stack gas samples are found to be much higher than those observed in some pulp mill effluents [18]. Sinkkone et al. reported the concentrations of TCDBTs, TeCDBTs and PeCDBTs in gas phase samples from the aluminium smelter to be in the range of 40–850 ng/nm³, 9–370 ng/nm³ and 1–155 ng/nm³, respectively, and the amount approach the concentration of PCDD/DFs in emissions and wastes [17]. Similar as PCDD/DFs, PCTA/DTs were never intentionally synthesized for commercial purposes, but formed as byproducts from the thermal and combustion conditions. Polychlorinated phenoxathiins (PCPTs) are also one group of chlorinated tricyclic aromatic heterocycles which can be identified as PCDD analogues with one oxygen substituted by sulfur atom or PCTAs with one sulfur substituted by oxygen atom. It is reported that PCPTs have thermodynamic properties, persistence and environmental mobility as PCTA/DTs, which can be viewed as dioxin-like compounds [19]. Although corresponding researches pertinent to the formation of PCPTs are not as much as PCDD/DFs and PCTA/DTs, the structural and property resemble of PCPTs with PCDD/DFs and PCTA/DTs reveals their formation possible similarity. For example, PCPTs have been proved to form with PCTAs and PCDTs in combustion experiments [20]. Ferrario et al. stated that phenoxathiins can be converted to dibenzofuran by heating with metallic copper at 250 °C [21]. Hence, the information about formation mechanism of PCTA/PT/DTs under combustion and thermal processes are required, which can serve as a basis for minimizing PCTA/PT/DTs emissions and hinder their harm to the human and environment.

A careful examination of the literature shows that two heterogeneous PCTA/DT formation pathways were proposed: formation reactions from elemental carbon, sulfur and chlorine and sulfur-containing pesticides [22] and formation reactions from chemical precursors [23–27], which is the most direct route to the formation of PCTA/DTs. Among different precursors, chlorothiophenols (CTPs) are demonstrated to be the most important precursors of PCTA/DTs, which is consistent with the widely recognized fact that chlorophenols (CPs) are identified to be predominant precursors of PCDD/DFs [23,24,28]. CTPs are used in large quantities in various chemical industries, such as in manufacturing of dyes, insecticides, printing inks, pharmaceuticals, and polyvinyl chloride [29], while CPs are released from direct application as biocides, leaching from wood products, synthesis during bleaching operations, and emissions from operating facilities [30,31]. Under high-temperature conditions, CTPs can readily form chlorothiophenoxy radical (CTPRs) as well as sulfydryl-substituted phenyl radical and the thiophenoxyl diradical by losing the sulfydryl-H, the H/Cl atom combine to the carbon in the adjacent position of the carbon with -SH group, and both the sulfydryl-H and the ortho-substituted H/Cl, respectively, via abstraction reactions by H, OH, Cl, or O(3P) radicals. Although sulfydryl-substituted phenyl radicals and thiophenoxyl diradicals have not yet been detected in combustion and thermal processes, their oxygenated counterparts hydroxyl-substituted phenyl radicals and phenoxyl diradicals have been identified and proposed to be potential precursors from PCDD/DF formation [32–35]. Yu et al. and Pan et al. has carried out theoretical studies and proved the formation feasibility of sulfydryl-substituted phenyl radicals and thiophenoxyl diradicals from CTPs and that of hydroxyl-substituted phenyl radicals and phenoxyl diradicals from CPs, and proved their energetically favorable contribution to PCTA/PT and PCDD/DF formation, respectively [27,36].

Similar as the formation of PCDD/DFs from CPs precursor, the homogeneous gas-phase formation of PCTA/DTs was proposed that involve radical/radical condensation of CTPRs and radical/molecule recombination of CTPR and CTP [23–25,37–40]. Dar et al. have presented that radical/radical coupling are thermodynamically comparable over radical/molecule recombination for the PCTA/DT formation [23,24]. Therefore, following the radical/radical routes, a serious theoretical studies on PCTA/DT formation mechanisms from the coupling of 2-CTPRs, 2,4,5-TCTPRs, 2,4-DCTPRs and 2,4,6-TCPRs were proposed by Dar et al. and our group [23–26]. These studies found that the the PCTA formation was much easier than the PCDT formation owning to the fact that the
PCTA formation can occur via one less elementary step than PCDT formation and the potential barrier of the rate-determining step of PCTA formation is about 10 kcal/mol lower than that of PCDT formation [23–26]. However, this conclusion failed to give reasonable explanation for the much higher concentration of PCDTs than that of PCTAs under the pyrolysis or combustion conditions [16,17]. For instance, the concentration of tetrachlorobenzothiophene (TeCDT) was detected to be approximately 5~40 times greater than that of tetrachlorothianthrene (TeCTA) in stack gas samples from waste incineration samples [16]. Sinkkone et al. observed that the mean concentrations of trichlorobenzothiophene (TCDT) (8.944 ng/g) in some ash and slag samples was much higher than that of triachlorothianthrene (TCTA) (0.052 ng/g) [17]. This great discrepancy prompted us to turn our attention back to the radical/molecule mechanism, which has long been overlooked to the PCTA/DT formation and may be contribute to the high PCDT-to-PCTA ratio. Firstly, the radical/molecule mechanism from 2-CTPR with 2-CTP was calculated using B3LYP method by Dar et al. [23,24], which ignored the electron correlation and may overestimate the energy values. Secondly, recent research by Pan et al. found that the radical/molecule mechanisms from phenyl radicals and phenoxyl diradicals with 2-CP solely lead to the formation of PCDF, which greatly well account for the experimental observation of the high PCDF-to-PCDD ratio from CPs as precursors both in gas-phase and particle mediated conditions [41]. Along the same line of inquiry, the radical/molecule mechanisms from sulfdryl-substituted phenyl and thiophenoxyl diradicals with CTPs were inspired to be further studied and compared with the oxygen substituted reactions. Thirdly, considering the structure and property similarity of PCPTs with PCTA/DDs and the coexistence of CTPs and CPs, it is of significance to study the PCPT formation from cross-condensation from CPs with CTP relative radicals or CTPs with CP relative radicals. High correlation between the PCTA/DTs, PCDD/DFs and PCPTs revealed their similar formation mechanism [14,20,21,42,43]. As far as we know, there is no information available on the radical/molecule mechanisms for the PCTA/DT formation from sulfdryl-substituted phenyl and thiophenoxyl diradicals with CTPs, as well as the radical/molecule mechanisms for the PCPT formation from CP and CTP as precursors.

Therefore, in this study, we present a systematic theoretical study on the initial pathways of PCTA/PT/DT formation from the condensation reactions of 2-CP/2-CTP with chlorinated phenoxy radical 2-chlorophenoxy (CPR1) and chlorinated thiophenoxy radical 2-chlorothiophenoxy (CTPR1), phenyl radicals 2-hydroxylphenyl (PR2) and 2-sulfdrylphenyl (TPR2), chlorinated phenyl radicals 2-hydroxyl-3-chloro-phenyl (CPR2) and 2-sulfydryl-3-chloro-phenyl (CTPR2), phenoxyl diradical (PDR) and thiophenoxyl diradical (TPDR), chlorinated phenoxyl diradical (CPDR) and chlorinated thiophenoxyl diradical (CTPDR) (shown in Figure 1). 2-CTP and 2-CP were selected as model compounds because they are simplest and most representative CTPs and CPs precursors to produce PCTA/PT/DT/DFs. The kinetic data and rate constants were evaluated over a wide temperature range of 600~1200 K and fitted into Arrhenius formulas to improve and optimize PCTA/DT formation mathematical models. This work provides new mechanism for the formation of PCTA/DTs to explain the higher concentration of PCDTs than that of PCTAs in the environment, and explores plausible mechanism for the formation of dioxin-like compounds PCPTs. The contribution to PCTA/PT/DT/DF formation from different radical/molecule condensation reactions was sorted and compared with radical/radical mechanism from self-coupling of 2,4-dichlorothiophenoxy (2,4-DCTPRs) in our previous work [26] and the formation of PCDD/DFs from oxygen substituted precursors [41].

2. Results

2.1. Formation of radical species C(T)PR1, C(T)PR2, C(T)PDR, (T)PR2 and (T)PDR from 2-CTP and 2-CP molecules
Figure 1. Formation of radical species C(T)PR1, C(T)PR2, C(T)PDR, (T)PR2 and (T)PDR embedded with the potential barriers ΔE (in kcal/mol) and reaction heats ΔH (in kcal/mol) from reactions of 2-CTP (a) and 2-CP (b) with H/OH radicals, respectively. ΔH is calculated at 0 K.

The formation of 2-chlorothiophenoxy (CTPR1), 2-sulfydryl-3-chloro-phenyl (CTPR2), chlorinated thiophenoxy diradical (CTPDR), 2-sulfydrylphenyl radical (TPR2), thiophenoxy diradical (TPDR) derived from 2-chlorothiophenol (2-CTP) and the formation of 2-chlorophenoxy (CPR1), 2-hydroxyl-3-chloro-phenyl (CPR2), chlorinated phenoxyl diradical (CPDR), 2-hydroxylphenyl radical (PR2), phenoxyl diradical (PDR) derived from 2-chlorophenol (2-CP) are the initial and key step in the radical/molecule formation of PCTA/PT/DT/DFs. In combustion and thermal processes, these radicals may be generated by means of H or Cl extraction reactions of 2-C(T)P by the active radicals H, OH, Cl or O(3P) which exist abundantly in high temperature conditions. The potential barriers (ΔE) and the reaction heat (ΔH) which were calculated at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level operating in the formation of C(T)PR1,
C(T)PR2, C(T)PDR, (T)PR2 and (T)PDR from 2-C(T)P abstracted by the H and OH is given in the Figure 1(a) and (b). In Figure 1, data of sulfydryl/hydroxyl-H abstraction of 2-C(T)P by H and OH were cited from our previous studies at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level [44–46] Pan et al. and Yu et al. also studied the formation of C(T)PR1, C(T)PR2, C(T)PDR, (T)PDR2 and (T)PDR from 2-C(T)P molecules abstracted by H radical at the BB1K/6-311+G(3df,2p)//BB1K/6-311G(d,p) level [27,41]. Similar abstraction reactions by OH radical were added in this study. Notably, Our value at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level match well with Pan and Yu’s data at the BB1K/6-311+G(3df,2p)//BB1K/6-311G(d,p) level, and the maximum relative error remains within 1.03 kcal/mol for potential barriers (ΔE) and less than 0.90 kcal/mol for reaction heats (ΔH). From this results, the same accuracy can be expected for other species involved in this study. As can be seen in Figure 1, the chlorinated phenoxy/thiophenoxy radicals C(T)PR1 arises from cleavage of or sulfydryl S-H bond or hydroxyl O-H bond from the precursor 2-C(T)P. Moreover, the sulfydryl-substituted/hydroxyl-substituted phenyl radicals (T)PR2 and C(T)PR2 derive from dissociation of the Cl or H atom combine to the carton in the adjacent position of the carbon with the sulfydryl/hydroxyl group. Additionally, the phenoxyl/thiophenoxyl diradicals (T)PDR and C(T)PDR are sourced from loss both of the or sulfydryl-H or hydroxyl-H and the ortho-substituted Cl or H atom. All the optimized geometries for 2-C(T)P and related radicals are shown in Figure 2.

![Figure 2](https://example.com/figure2.png)

Figure 2. Optimized structures of 2-CP and 2-CTP molecules and related radicals in this paper: 2-chlorophenol (2-CP), 2-chlorophenoxy (CPR1), 2-hydroxyl-3-chloro-phenyl (CPR2), chlorinated phenoxy diradical (CPDR), 2-hydroxyphenyl radical (PR2), phenoxyl diradical (PDR), 2-chlorothiophenol (2-CTP), 2-chlorothiophenoxy (CTPR1), 2-sulfydryl-3-chloro-phenyl (CTPR2), chlorinated thiophenoxyl diradical (CTPDR), 2-sulfydrylphenyl radical (TPR2), thiophenoxyl diradical (TPDR). All the values are in Å.

2.2. Formation of pre-intermediates of PCTA/PT/DT/DFs via radical/molecule coupling reactions

The radical/radical or molecule/recombination of C(T)P and C(T)PRs plays a crucial role in the the homogeneous gas-phase formation of PCTA/PT/DTs. The radical/molecule coupling reaction routes via cross-condensation of 2-C(T)P molecule with chlorinated (thio)phenoxy radicals C(T)PR1, chlorinated or unchlorinated hydroxyl(sulfydryl)-substituted phenyl radicals C(T)PR2/(T)PR2 and chlorinated or unchlorinated (thio)phenoxy diradicals C(T)PDR/(T)PDR are exhibited in Figures 3–5, respectively. The potential barrier ΔE (in kcal/mol) and reaction heats ΔH (in kcal/mol) are calculated at the MPWB1K/6-311+G(3df,2p)//MPWB1K/6-31+G(d,p) level in Figures 3–5. In order to comparing with the PCDD/DF formation from 2-CP and corresponding oxygen substituted radicals from Pan’s study [41], the radical/molecule coupling reaction routes via cross-
condensation of 2-CP with chlorophenoxy radical CPR1, chlorinated or unchlorinated hydroxyl-substituted phenyl radicals CPR2/PR2 and phenoxyl diradicals CPDR/PDR are calculated at MPWB1K/6-311+G(3d,2p)/MPWB1K/6-31+G(d,p) level and presented in Figures S1. Several typical optimized transition state geometries in PCTA/PT/DT/DF formation are shown in Figure S3.

Figure 3. Pre-PCTA/PT/DT/DF formation routes embedded with the potential barriers ΔE (in kcal/mol) and reaction heats ΔH (in kcal/mol) from the cross-condensation reactions of CPR1 with 2-CTP (a), CTPR1 with 2-CTP (b) and CTPR1 with 2-CP (c). ΔH is calculated at 0 K.

2.2.1. Coupling reaction of C(T)PR1 with 2-C(T)P
In Figure 3, the cross-condensation reactions of CPR1 with 2-CTP, CTPR1 with 2-CTP and CPR1 with 2-CP are depicted in Figure 3(a), Figure 3(b) and Figure 3(c), respectively. There exhibit four kinds of sulfur/oxygen-carbon coupling modes (S/C or O/C for short): (1) the coupling of the phenolic oxygen with the ortho carbon bonded to hydrogen of 2-C(T)P molecule (O/σ-CH for short), (2) the coupling of the thiophenolic sulfur with the ortho carbon bonded to hydrogen of 2-C(T)P molecule (S/σ-CH for short), (3) the coupling of the phenolic oxygen with the ortho carbon bonded to chlorine of 2-C(T)P molecule (O/σ-CCI for short) and (4) the coupling of the thiophenolic sulfur with the ortho carbon bonded to chlorine of 2-C(T)P molecule (S/σ-CCI for short). In Figure 3, all the four coupling modes produce four (thio)ether-(thio)enol structures: IM1 are formed from the O/σ-CH coupling, IM2 are produced from O/σ-CCI coupling, IM7 and IM13 are generated from the S/σ-CH coupling, and the IM8 and IM14 are shaped from the S/σ-CCI coupling. The O/σ-CH and S/σ-CH couplings are stepwise reactions, while the O/σ-CCI and S/σ-CCI couplings are one-step synergetic reactions accompanied by the Cl elimination reactions. These intermediates are pre-intermediates for the formation of PCTA/PTs.

There are four kinds of carbon–carbon coupling modes to produce twelve (thio)enol-(thio)keto adducts: (1) the coupling of carbon (hydrogen)-centered radical and carbon (hydrogen)-centered molecule (C•/CαH for short), (2) the coupling of carbon (chlorine)-centered radical and carbon (hydrogen)-centered molecule (CsCl/CαH for short), (3) the coupling of carbon (hydrogen)-centered radical and carbon (chlorine)-centered molecule (CsH/CsCl for short), and (4) the coupling of carbon (chlorine)-centered radical and carbon (chlorine)-centered molecule (CsCl/CsCl for short). In Figure 3, the IM4, IM10 and IM16 are generated from CsH/CsH coupling. The IM3, IM9 and IM15 are formed from CsCl/CsH coupling, the IM5, IM11 and IM17 are generated from the CsH/CsCl coupling, and the IM6, IM12 and IM18 are built from the CsCl/CsCl coupling. The CsH/CsCl and CsCl/CsCl couplings are also accompanied by a synchronously elimination of Cl atom. These intermediates serve as building foundation for analogues of PCDT/DF structures.

2.2.2. Coupling reactions of C(T)PR2 and (T)PR2 with 2-C(T)P

The pre-PCDT/DF formation reaction pathways for cross-couplings between CPR2 and 2-CTP, between CTPR2 and 2-CTP, between CPR2 and 2-CP, between PR2 and 2-CTP, between TPR2 and 2-CTP, and between TPR2 and 2-CP embedded with the potential barriers ΔE (in kcal/mol) and reaction heats ΔH (in kcal/mol) are illustrated in Figure 4(a)–(i), respectively. After the ortho-H/Cl abstraction in benzene ring of 2-CP and 2-CTP, there exits the extremely high reactivity carbon (radical)-centered hydroxy(sulfydryl)-substituted phenyl radicals[47,48], C(T)PR2 and (T)PR2, which may attack the 2-C(T)P molecule by two C-C coupling modes to (thio)keto-(thio)enol intermediates: (1) the coupling of carbon (radical)-centered radical and carbon (hydrogen)-centered molecule (C•/CH for short), and (2) the coupling of carbon (radical)-centered radical and carbon (chlorine)-centered molecule (C•/CCI for short). The C•/CCI coupling is synergetic reactions with the Cl elimination occurring at the same time. Six intermediates (IM19, IM21, IM23, IM25, IM27 and IM29) are afforded by C•/CH coupling, and five other intermediates (IM20, IM22, IM24, IM26 and IM28) are produced by C•/CCI coupling. All the eleven intermediates can result in the formation of PCDT/DFs, which are not the precursors for PCTA/PTs owning to the absence of O/S centered radicals in C(T)PR2 and (T)PR2.

2.2.3. Coupling reactions of C(T)PDR and (T)PDR with 2-C(T)P

In this section, the condensation reaction pathways between CPDR and 2-CTP, between CTPDR and 2-CTP, between CPDR and 2-CP, between PR2 and 2-CTP, between TPR2 and 2-CTP and between TPD and 2-CP are discussed and the corresponding results are respectively illustrated in Figure 5(a)–(i). C(T)PDR and (T)PDR are diradicals with two typical radical sites located at the (thio)phenoxy-O or S atom and the ortho (thio)phenyl C atom. In Figure 5(a) and (d). The O-C coupling is comprised of two modes (O/σ-CH and O/σ-CCI) to form ether-thioenol adducts and two kinds of C-C coupling modes (C•/CH and C•/CCI) to form dihydroxybiphenyl molecules. In Figure 5(b), (c), (e) and (f), there are two kinds of S-C coupling modes (S/σ-CH and S/σ-CCI) to form ether-
thioenol adducts and two kinds of carbon-carbon coupling modes (C•/CH and C•/CCl) to form ketothioenol molecules. The O/σ-CCl, S/σ-CCl and C•/CCl couplings are synergetic reactions accompanied by the Cl elimination occurring at the same time. The O/C or S/C condensations are endothermic reactions, and the C/C coupling are exothermic. As can be seen in Figure 5, the O/C coupling pathways affords four species IM32, IM33, IM44 and IM45, and the S/C coupling produces eight intermediates IM36, IM37, IM40, IM41, IM48, IM49, IM52 and IM53, which would be followed by the abstraction of H, ring closure and SH/OH elimination of to form PCDT/DFs. The C/C coupling pathways affords four species IM30, IM31, IM34, IM35, IM38, IM39, IM42, IM43, IM46, IM47, IM50 and IM51 which would be followed by the abstraction of H, ring closure and intramolecular elimination of SH/OH elimination to form PCDT/DFs.

Figure 4. Pre-PCDT/DF formation routes embedded with the potential barriers ΔE (in kcal/mol) and reaction heats ΔH (in kcal/mol) from the coupled reactions of CPR2 with 2-CTP (a), CTPR2 with 2-CTP (b) and CTPR2 with 2-CP (c), PR2 with 2-CTP (d), TPR2 with 2-CTP (e) and TPR2 and 2-CP (f). ΔH is calculated at 0 K.
Figure 5. Pre-PCDT/DF formation routes embedded with the potential barriers ΔE (in kcal/mol) and reaction heats ΔH (in kcal/mol) from the coupled reactions of CPDR with 2-CTP (a), CTPDR with 2-CTP (b) and CTPDR with 2-CP (c), PDR with 2-CTP (d), TPDR with 2-CTP (e) and TPDR and 2-CP (f). ΔH is calculated at 0 K.
2.3. Rate constant calculations

The kinetic parameters of pre-PCTA/PT/DT/DF formation routes is significant to construct the
formation kinetic model to predict the potential emission and harm to the environment. The rate
constants of the formation of the pre-PCTA/PT/DT/DF intermediates from cross-condensation
reactions of 2-C(T)P molecules with related radicals were calculated by using conventional transition
state theory (TST) method with one-dimensional Wigner’s formalism contribution in the temperature
range of 600–1200 K [49,50]. The calculated rate constants every 100 K are shown in Table S2 of
Supplementary Materials from 600–1200 K.

To be used more effectively, the rate constants were fitted, and Arrhenius formulas are given in Table 1 for the pre-PCTA/PT/DT/DF intermediates formation routes from cross-condensation of 2-C(T)P with C(T)PR1, C(T)PR2 and (T)PR2 radicals and Table 2 for the pre-PCDT/DF intermediates formation routes from cross-couplings of 2-C(T)P with C(T)PDR and (T)PDR radicals. The pre-exponential factor, the activation energy and the rate constants can be obtained from these Arrhenius formulas. The average rate constant (1000 K) for the three coupling modes, i.e., for the O/C type, S/C type and C/C type coupling reactions are listed in Tables 3.

Table 1. Arrhenius formulas for pre-PCTA/PT/DT/DF formation routes from the cross-condensation reactions of 2-C(T)P with C(T)PR1, C(T)PR2 and (T)PR2 over the temperature range of 600–1200 K.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Arrhenius Formulas</th>
<th>Arrhenius Formulas</th>
<th>Arrhenius Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPR1 → 2-CTP → IM1 via TS29</td>
<td>k(T) = (2.09 × 10^{-15}) exp (−11163/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 → 2-CTP → IM2 + Cl via TS30</td>
<td>k(T) = (1.79 × 10^{-15}) exp (−12526/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 → 2-CTP → IM3 via TS31</td>
<td>k(T) = (1.43 × 10^{-15}) exp (−17118/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 → 2-CTP → IM4 + Cl via TS32</td>
<td>k(T) = (3.90 × 10^{-15}) exp (−15840/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 → 2-CTP → IM5 via TS33</td>
<td>k(T) = (1.42 × 10^{-15}) exp (−17613/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 → 2-CTP → IM6 + Cl TS34</td>
<td>k(T) = (1.21 × 10^{-16}) exp (−19231/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CTP → IM7 via TS35</td>
<td>k(T) = (2.37 × 10^{-15}) exp (−2233/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CTP → IM8 via TS36</td>
<td>k(T) = (1.22 × 10^{-15}) exp (−4093/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CTP → IM9 via TS37</td>
<td>k(T) = (1.40 × 10^{-15}) exp (−19723/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CTP → IM10 via TS38</td>
<td>k(T) = (5.33 × 10^{-15}) exp (−18080/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CTP → IM11 via TS39</td>
<td>k(T) = (1.99 × 10^{-15}) exp (−19993/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CTP → IM12 + Cl TS40</td>
<td>k(T) = (5.24 × 10^{-16}) exp (−22527/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CP → IM13 via TS41</td>
<td>k(T) = (1.14 × 10^{-14}) exp (−2790/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CP → IM14 + Cl via TS42</td>
<td>k(T) = (1.01 × 10^{-14}) exp (−4524/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CP → IM15 via TS43</td>
<td>k(T) = (6.13 × 10^{-15}) exp (−19327/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CP → IM16 + Cl via TS44</td>
<td>k(T) = (1.06 × 10^{-14}) exp (−17908/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CP → IM17 via TS45</td>
<td>k(T) = (4.46 × 10^{-15}) exp (−19296/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR1 + 2-CP → IM18 + Cl TS46</td>
<td>k(T) = (1.29 × 10^{-15}) exp (−21760/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR2 + 2-CTP → IM19 via TS47</td>
<td>k(T) = (1.42 × 10^{-14}) exp (−3082/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR2 + 2-CTP → IM20 + Cl via TS48</td>
<td>k(T) = (3.37 × 10^{-15}) exp (−6141/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR2 + 2-CTP → IM21 via TS49</td>
<td>k(T) = (7.46 × 10^{-15}) exp (−3994/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR2 + 2-CTP → IM22 + Cl via TS50</td>
<td>k(T) = (1.20 × 10^{-15}) exp (−7520/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR2 + 2-CP → IM23 via TS51</td>
<td>k(T) = (3.19 × 10^{-14}) exp (−4022/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPR2 + 2-CP → IM24 + Cl TS52</td>
<td>k(T) = (5.48 × 10^{-15}) exp (−6518/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR2 + 2-CTP → IM25 via TS53</td>
<td>k(T) = (1.26 × 10^{-14}) exp (−3668/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PR2 + 2-CTP → IM26 + Cl via TS54</td>
<td>k(T) = (1.53 × 10^{-15}) exp (−5987/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPR2 + 2-CTP → IM27 via TS55</td>
<td>k(T) = (1.21 × 10^{-14}) exp (−4148/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPR2 + 2-CTP → IM28 + Cl via TS56</td>
<td>k(T) = (1.21 × 10^{-15}) exp (−7993/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPR2 + 2-CP → IM29 via TS57</td>
<td>k(T) = (4.85 × 10^{-14}) exp (−3879/T)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TPR2 + 2-CP → IM26 + Cl via TS58</td>
<td>k(T) = (9.06 × 10^{-15}) exp (−6757/T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CPR1 abstracted by H (12.43 kcal/mol), while the potential barrier for the formation of CPR1 abstracted by H (3.41 kcal/mol) is much lower than that for the formation of CPR2. However, for the formation of CTPR1 and CPR1, the potential barrier for the formation of CPR1 is much lower than that for the formation of CPR2. Analogically, the potential barrier and reaction heat for the formation of CTPR2 are is quite comparable to those for the formation of PR2 abstracted by both H and OH radicals. Analogically, the potential barrier and reaction heat for the formation of CTPR2 are is quite comparable to those for the formation of PR2 abstracted by both H and OH radicals.

Table 2. Arrhenius formulas for pre-PCTA/PT/DT/DF formation routes from the cross-condensation reactions of 2-C(T)P with C(T)PDR and (T)PDR over the temperature range of 600–1200 K. (unit is cm³ molecule⁻¹ s⁻¹)

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Arrhenius Formulas</th>
<th>Arrhenius Formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPDR + 2-CTP → IM30 via TS59</td>
<td>$k(T) = (3.33 \times 10^{-14}) \exp(-2430/T)$</td>
<td></td>
</tr>
<tr>
<td>CPDR + 2-CTP → IM31 + Cl via TS60</td>
<td>$k(T) = (8.91 \times 10^{-13}) \exp(-5222/T)$</td>
<td></td>
</tr>
<tr>
<td>CPDR + 2-CTP → IM32 via TS61</td>
<td>$k(T) = (2.36 \times 10^{-13}) \exp(-11424/T)$</td>
<td></td>
</tr>
<tr>
<td>CPDR + 2-CTP → IM33 + Cl via TS62</td>
<td>$k(T) = (5.26 \times 10^{-13}) \exp(-12811/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM34 via TS63</td>
<td>$k(T) = (1.05 \times 10^{-13}) \exp(-3225/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM35 + Cl via TS64</td>
<td>$k(T) = (2.45 \times 10^{-13}) \exp(-7902/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM36 via TS65</td>
<td>$k(T) = (5.65 \times 10^{-13}) \exp(-5904/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM37 + Cl via TS66</td>
<td>$k(T) = (2.03 \times 10^{-13}) \exp(-8446/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM38 via TS67</td>
<td>$k(T) = (1.43 \times 10^{-13}) \exp(-3672/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM39 + Cl via TS68</td>
<td>$k(T) = (1.72 \times 10^{-13}) \exp(-6042/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM40 via TS69</td>
<td>$k(T) = (1.31 \times 10^{-13}) \exp(-6256/T)$</td>
<td></td>
</tr>
<tr>
<td>CTPDR + 2-CTP → IM41 + Cl via TS70</td>
<td>$k(T) = (1.04 \times 10^{-13}) \exp(-8632/T)$</td>
<td></td>
</tr>
<tr>
<td>PDR + 2-CTP → IM42 via TS71</td>
<td>$k(T) = (3.51 \times 10^{-14}) \exp(-2775/T)$</td>
<td></td>
</tr>
<tr>
<td>PDR + 2-CTP → IM43 + Cl via TS72</td>
<td>$k(T) = (4.24 \times 10^{-13}) \exp(-5424/T)$</td>
<td></td>
</tr>
<tr>
<td>PDR + 2-CTP → IM44 via TS73</td>
<td>$k(T) = (6.46 \times 10^{-13}) \exp(-11909/T)$</td>
<td></td>
</tr>
<tr>
<td>PDR + 2-CTP → IM45 + Cl via TS74</td>
<td>$k(T) = (2.54 \times 10^{-14}) \exp(-13132/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM46 via TS75</td>
<td>$k(T) = (1.37 \times 10^{-14}) \exp(-3265/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM47 + Cl via TS76</td>
<td>$k(T) = (1.88 \times 10^{-13}) \exp(-7484/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM48 via TS77</td>
<td>$k(T) = (4.21 \times 10^{-14}) \exp(-6501/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM49 + Cl via TS78</td>
<td>$k(T) = (7.95 \times 10^{-15}) \exp(-8890/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM50 via TS79</td>
<td>$k(T) = (8.93 \times 10^{-14}) \exp(-3646/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM51 + Cl via TS80</td>
<td>$k(T) = (9.45 \times 10^{-13}) \exp(-5768/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM52 via TS81</td>
<td>$k(T) = (2.02 \times 10^{-14}) \exp(-6885/T)$</td>
<td></td>
</tr>
<tr>
<td>TPDR + 2-CTP → IM53 + Cl via TS82</td>
<td>$k(T) = (3.08 \times 10^{-14}) \exp(-9091/T)$</td>
<td></td>
</tr>
</tbody>
</table>

Table 3. Average rate constants calculated at 1000 K for pre-PCTA/PT/DT/DF formation routes from the cross-condensation reactions between C(T)PR1 with 2-C(T)P, between C(T)PR2 and (T)PDR with 2-C(T)P, and between C(T)PR1 and (T)PDR with 2-C(T)P. (unit is cm³ molecule⁻¹ s⁻¹)

<table>
<thead>
<tr>
<th>C(T)PR1 with 2-C(T)P</th>
<th>C(T)PR2 and (T)PDR with 2-C(T)P</th>
<th>C(T)PR1 and (T)PDR with 2-C(T)P</th>
</tr>
</thead>
<tbody>
<tr>
<td>C/C type</td>
<td>O/C type</td>
<td>S/C type</td>
</tr>
<tr>
<td>7.28 × 10⁻²³</td>
<td>1.75 × 10⁻²⁰</td>
<td>2.60 × 10⁻¹⁶</td>
</tr>
<tr>
<td>C/C type</td>
<td>O/C type</td>
<td>S/C type</td>
</tr>
<tr>
<td>2.34 × 10⁻¹⁶</td>
<td>9.82 × 10⁻¹⁶</td>
<td>3.24 × 10⁻²⁰</td>
</tr>
<tr>
<td>C/C type</td>
<td>O/C type</td>
<td>S/C type</td>
</tr>
<tr>
<td>1.59 × 10⁻¹⁷</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Discussion

3.1. Formation of radical species C(T)PR1, C(T)PR2, C(T)PDR, (T)PR2 and (T)PDR from 2-CTP and 2-CP molecules

From Figure 1, the potential barrier and reaction heat for the formation of TPR2 are rather comparable with those for the formation of PR2 abstracted by both H and OH radicals. Analogically, the potential barrier and reaction heat for the formation of CTPR2 are is quite comparable to those for the formation of CPR2. However, for the formation of CTPR1 and CPR1, the potential barrier for the formation of CTPR1 abstracted by H (3.41 kcal/mol) is much lower than that for the formation of CPR1 abstracted by H (12.43 kcal/mol), while the the potential barrier for the formation of CTPR1 abstracted by H (3.41 kcal/mol) is much lower than that for the formation of CPR1 abstracted by H (12.43 kcal/mol)
abstracted by OH (8.67 kcal/mol) is much higher than that for the formation of CPR1 abstracted by OH (3.20 kcal/mol). This indicates that the sulfydryl-substitution or hydroxyl-substitution of phenyl have no influence on the phenyl-H or phenyl-Cl abstraction, but greatly affect the sulfydryl-H and hydroxyl-H abstraction by H and OH. Moreover, the formation for CTPI abstracted by H and OH requires lower potential barriers and much more exothermic than the formation for TPR2 and CTPR2 abstracted by H and OH, which means that thiophenoxy radical CTPI radical is more labile to form and more stable than the sulfydryl-substituted phenyl radicals TPR2 and CTPR2. Similarly, the formation of phenoxy radical CPR1 is energetically preferred to the formation of phenyl radicals PR2 and CPR2.

CTPDR/TPDR can be formed from both CTPI and CTPR2/TPR2. Obviously, the potential barriers of CTPDR/TPDR formation from CTPR2/TPR2 abstracted by H and OH radicals are much lower than that of CTPDR/TPDR formation from CTPI. In addition, the reactions of CTPDR/TPDR formation from CTPR2/TPR2 release more energy than that those of CTPDR/TPDR formation from CTPI. For example, the CTPDR formation from CTPR2 abstracted by H has much lower potential barrier and more exothermic (ΔE 3.33 kcal/mol, ΔH -21.96 kcal/mol) than that of CTPDR formation from CPR1 abstracted by H (ΔE 9.49 kcal/mol, ΔH 2.55 kcal/mol). This imply that CTPDR/TPDR is more likely to form through CTPR2/TPR2 than through CTPI abstracted by H and OH radicals. Similarly, CPDR/PDR is more readily to produce through CPR2/PR2 than through CPR1. For example, the CPDR formation from CPR2 abstracted by OH has much lower potential barrier and more exothermic (ΔE 2.01 kcal/mol, ΔH -29.02 kcal/mol) than that of CPDR formation from CPR1 abstracted by OH (ΔE 3.54 kcal/mol, ΔH -3.89 kcal/mol). Comparing the CTPDR formation from CTPI and CTPR2 with CPDR formation from CPR1 and CPR2 shows that CTPDR formation can take place by requiring lower potential barriers and releasing more heats than the corresponding CPDR formation reactions, which demonstrates that CTPDR formation reactions are more labile than CPDR formation reactions.

It should be noted in Figure 1 that the potential barriers operating in the formation of C(T)PR1, C(T)PR2, C(T)PDR, (T)PR2 and (T)PDR fall within -2.57 to -43.99 kcal/mol, which could be overcome under high temperature conditions. The initial radicals C(T)PR1, C(T)PR2, C(T)PDR, (T)PR2 and (T)PDR can be easily formed under the pyrolysis or combustion conditions. The result obtained in this respect suggests that these radical species may be generated in the same temperature condition and it is of great possibility to create effective collisions between the radicals and molecules.

3.2. Formation of pre-intermediates of PCTA/PT/DT/DFs via radical/molecule coupling reactions

3.2.1. Coupling reaction of C(T)PR1 with 2-C(T)P

As presented in Figure 3, for the O(S)/C couplings, the O/σ-CH coupling is enthalpically more comparable than O/σ-CCl, and S/σ-CH couplings is favored over S/σ-CCl coupling. For instance, the potential barrier of S/σ-CH and S/σ-CCl couplings of CTPR1 with 2-CTP in Figure 3(b) is 0.43 and 4.28 kcal/mol, respectively; the reaction heat of S/σ-CH and S/σ-CCl couplings of CTPR1 with 2-CTP in Figure 3(b) is -0.48 and 10.65 kcal/mol. Furthermore, the ranking of the four carbon–carbon coupling modes is as follows: C$_2$H/C$_2$H > C$_3$H/C$_3$H > C$_4$H/C$_4$H > C$_5$H/C$_5$H. For example, the potential barriers for the formation of IM10 from C$_3$H/C$_3$H, the formation of IM9 from C$_4$H/C$_4$H, the formation of IM11 from C$_4$H/C$_4$H and the formation of IM12 from CCl/CCl in Figure 3(b) is 31.88, 35.00, 35.59, and 40.58 kcal/mol, respectively; their reaction heats is 32.28, 35.41, 39.88 and 50.55 kcal/mol, respectively.

In Figure 3(a), the potential barriers involved in O/C coupling modes to form ether-thioenol type intermediates process amounting to 18.59 to 21.19 kcal/mol, which are generally lower than those operating in the C/C coupling modes (27.73 to 35.82 kcal/mol) to form biphenyl intermediates. In addition, the O/C coupling modes (11.45 to 17.84 kcal/mol) are less endoergic than the C-C coupling modes (25.8 to 41.17 kcal/mol). Therefore, the O/C coupling modes to form pre-PCPT intermediates are energetically preferable over the C/C coupling modes to form pre-PCDF intermediates in Figure 3(a). Similar conclusion could be obtained in the CPR1+2-CP reactions in Figure S1(a) of Supplementary.
3.2.2. Coupling reactions of C(T)PR2 and (T)PR2 with 2-C(T)P

The coupling reactions of C(T)PR2 with 2-C(T)P or (T)PR2 with 2-C(T)P can only occur the C-C
intermediates. In other words, the radical/molecule coupling of C(T)PR1 with 2-C(T)P is difficult to
occur in the C/C coupling. The combination reactions of C(T)PR1 with 2-C(T)P tend to take place via
the phenoxy oxygen or thiophenoxy sulfur sites and to produce (thio)ether-(thio)enol type
intermediates analogues, which process via elimination of H, (thio)phenolic H abstraction, ring close
and Cl elimination steps and eventually lead to the formation of PCTA/PTs [41]. To sum up, the
ranking of the S/C or O/S coupling to form pre-PCTA/PT/DDs intermediates is as follows: CTPR1+2-
CTP > CTPR1+2-CP >> CPR1+2-CP ≈ CPR1+2-CTP.

In particular, the S/C coupling require overcoming dramatically lower potential barriers
(0.43-4.28 kcal/mol in Figure 3(b) and 1.25-4.52 kcal/mol in Figure 3(c)) than O/C coupling
(18.59-21.19 kcal/mol in Figure 3(a) and 19.53-20.87 kcal/mol in Figure S1(a)) by approximate 20
kcal/mol. In addition, the S/C coupling are less endoergic (-0.48-10.65 kcal/mol in Figure 3(b) and
0.51-9.53 kcal/mol in Figure 3(c)) than the O/C coupling (11.45-17.84 kcal/mol in Figure 3(a) and
13.18-19.10 kcal/mol in Figure S1(a)). Thus, the S/C coupling modes are overwhelmingly superior to
the O/C coupling, which indicates that the formation of thioether-enol type intermediates is much
greater than that of ether-thioenol type intermediates. In other words, the thiophenolic sulfur centered
radical/molecule coupling is more labile to happen than the phenolic oxygen centered
radical/molecule coupling. Based on this results, we could deduce that although the radical/molecule
coupling is uncompetitive comparing with the radial/radical coupling for PCDD formation from CPs
by the literature opinions [41], the radical/molecule coupling can play an important role in the
PCTA/PT formation from CTPs and CPs. Specially, the radical/molecule coupling formation of PCPTs
can be only achieved via the route of sulfur-centred thiophenoxy radical attack to 2-CP, but not the
route of oxygen-centred phenoxy radical attack to 2-CTP.

The coupling reaction of CTPR1 with 2-CTP were also studied by Dar et al. at the B3LYP/6-
311+G(d,p) level [23,24]. Two obvious differences were observed: (1) The S/σ-CCI couplings of CTPR1
with 2-CTP requires crossing a potential barrier of 15.6 kcal/mol in the study of Dar et al. [23,24],
whereas the potential barrier 4.28 kcal/mol in our study; (2) Another coupling mode reported by Dar
et al. is different from the S/σ-CH coupling mode in our study. The coupling mode provided by Dar
et al. was accompanied by the elimination of HCl with a greatly potential barrier 26.4 kcal/mol,
whereas the S/σ-CH couplings occur with no atom loss and with a trivial potential barrier (0.43
kcal/mol). The S/σ-CH couplings reported in our study are energetically more favorable than the
coupling mode reported by Dar et al. [23,24]. The discrepancy for S/σ-CCI couplings may arise from
the different calculation levels. The energies of Dar et al. are calculated at the B3LYP level [23,24],
while our energy calculations are carried out at the MPWB1K level. It is well known that B3LYP
method do not consider the electronic correlation and systematically overestimates or underestimates
barrier heights. In order to further compare with the S/σ-CCI coupling mode proposed by Dar et al.
[23,24], we checked the transition state structures of S/σ-CCI coupling. Figure S2 in supplementary
materials shows configurations of transition states from the S/C coupling of CTPR1 with 2-CTP
located by Dar et al. and us [24]. The -SH in TS-6 reported by Dar et al. point to the direction far away
from Cl atom, whereas -SH in TS36 in our study point to Cl atom and form an intramolecular H bond,
which could stable the structure and reduce the potential barrier [24]. Thus, the energy value of S/σ-
CCI coupling in our study may be more accurate than that from Dar et al. The potential barriers of
S/C coupling in our study (0.43 and 4.28 kcal/mol) are greatly lower than those from Dar et al. (26.4
and 15.6 kcal/mol). The almost barrierless energy value in our study indicate that the
radical/molecular coupling of CTPR with CP are nearly comparable with the correponding steps
involved in the radical/radical reactions of CTPRs [26], and can contribute to the PCTA formation,
which has been ignored by Dar et al. [23,24].
PCDT/DFs. It is evident from Figure 4 that the C•/CH coupling can take place much easier than the C•/CCI coupling. For example, all C•/CH coupling show in Figure 4 can occur encountering potential barriers range from 1.93 to 4.14 kcal/mol, which are much lower than those of C•/CCI coupling (8.25–12.26 kcal/mol). In addition, the C•/CH coupling are estimated to release heats by –27.63–24.94 kcal/mol, which are much more exothermic than C•/CCI coupling by –19.72–16.79 kcal/mol. It is also interesting to compare to the formation potential of four kinds of C(T)PR2 with 2-C(T)P couplings and four kinds of (T)PR2 with 2-C(T)P couplings. According to Figure 4 and Figure S1(b) and (d), the formation potential ranking of C(T)PR2 with 2-C(T)P couplings is CPR2 + 2-CTP > CPR2 + 2-CP > CTPR2 + 2-CP > CTPR2 + 2-CTP; the formation potential ranking of (T)PR2 with 2-C(T)P couplings is PR2 + 2-CP > PR2 + 2-CTP > TPR2 + 2-CP > TPR2 + 2-CTP. All the potential barriers of C•/CH coupling in Figure 4 are so small that they could be easily overcome in high temperature conditions, which means that the radical/molecule coupling of C(T)PR2 and (T)PR2 with 2-C(T)P can compete with the radical/radical combination reactions. Additionally, the similar thermodynamic values for the pre-PCDT formation from CTPR2/TPR2 with 2-CTP and pre-PCDF formation from CPR2/PR2 with 2-CP in Figure S1 imply the oxygen or sulfur substitution make consistent effect on the PCDT/DF formation. All the results provide the facts that the sulfonyl/hydroxyl-substituted phenyl radicals can initiate the feasible reactions to form pre-PCDT/DF intermediates, following by the elimination of H, phenolic H abstraction, ring close and elimination of OH/SH to produce PCDT/DFs.

3.2.3. Coupling reactions of C(T)PDR and (T)PDR with 2-C(T)P

Similar as the O(S)/C couplings from C(T)PR1 with 2-C(T)P in Figure 3, the O(S)/o-CH couplings is enthalpically preferred to O(S)/ω-CCI. For example, in Figure 5(b), the S/ω-CH coupling from CTPDR + 2-CTP coupling (ΔE 7.50 kcal/mol, ΔH 7.21 kcal/mol) can occur encountering much lower potential barrier and is less endothermic than O/ω-CH coupling (ΔE 12.16 kcal/mol, ΔH 17.91 kcal/mol), which means the S/ω-CH coupling are more feasible than O/ω-CH coupling. Furthermore, analogous to the C•/CH coupling from C(T)PR2 and (T)PR2 with 2-C(T)P in Figure 4, the C•/CH coupling can occur much easier than the C•/CCI coupling from the C(T)PDR and (T)PDR with 2-C(T)P in Figure 5. For example, in Figure 5(b), the C•/CH coupling from CTPDR + 2-CTP coupling (ΔE 2.27 kcal/mol, ΔH –24.80 kcal/mol) requires much lower potential barrier and is more exothermic than C•/CCI coupling (ΔE 11.78 kcal/mol, ΔH –9.30 kcal/mol). This implies the IM34 from C•/CH coupling is much easier to form than IM35 from C•/CCI coupling. To sum up, in Figure 5, the formation of IM30, IM32, IM34, IM36, IM38, IM40, IM42, IM44, IM46, IM48, IM50 and IM52 are much easier to form than IM31, IM32, IM35, IM37, IM39, IM41, IM43, IM45, IM47, IM49, IM51 and IM53, respectively. O(S)/ω-CH couplings can be followed by the elimination of H, ring closure and elimination of OH/SH to form PCDT/DFs, while the C•/CH coupling can be followed by the abstraction of H, ring closure and intramolecular elimination of OH/SH elimination to form PCDT/DFs.

As illustrated in Figure 5, in terms of the enthalpically preferred C•/CH and O(S)/ω-CH couplings from C(T)PDR and (T)PDR with 2-C(T)P, the C•/CH coupling modes to form pre-PCDT/DF intermediates are more comparable the O(S)/o-CH couplings modes to form pre-PCDT/DF intermediates. For instance, in Figure 5(a) and (d) the potential barriers involved in C•/CH modes to form keto-thioenol intermediates (0.61–1.29 kcal/mol) are generally lower than those involved in the corresponding O/ω-CH coupling modes (19.0–19.95 kcal/mol) to form ether-thioenol type intermediates. In addition, the C•/CH coupling modes are strongly exothermic by –27.41–27.36 kcal/mol, while the O/ω-CH coupling are endothermic amounting to 9.71–10.30 kcal/mol in Figure 5(a) and (d). This is consistent with the values of CPDR + 2-CP and PDR + 2-CP couplings in Figure S1(c) and (e) of Supplementary Materials and totally contrary to the conclusion of CPR1 with 2-C(T)P in Figure 3 and Figure S1(a) that the O/C coupling are favored over the C/C coupling. To sum up, the most feasible pathway in each condensation in Figure 5(a)–(f) is the C•/CH coupling to form pre-PCDT/DF intermediates. In other words, IM30, IM34, IM36, IM42, IM46 and IM50 are the main intermediates from reactions of C(T)PDR and (T)PDR with 2-C(T)P. Obviously, according to Figure 5 and Figure S1(c) and (e), the formation potential ranking of most feasible routes from C(T)PDR with
2-(T)P coupling is CPDR + 2-CTP > CPDR + 2-CP > CTPDR + 2-CTP > CTPDR + 2-CP; the formation potential ranking of of most feasible routes from(T)PDR with 2-(T)P couplings is PDR + 2-CP > TPD + 2-CTP > TPDR + 2-CP.

In Figure 5, a much lower potential barrier is involved in the S/C couplings than that required in the O/C condensations by about 10 kcal/mol indicating that the S/C coupling pathways are more comparable than the O/C pathways. This agrees well with the conclusion above that the S/C coupling modes are overwhelmingly superior to the the O/C coupling modes. In contrary, the oxygen or sulfur substitution have little effect on the C•/CH or C•/CCl coupling, as the potential barriers and reaction heats of these coupling are similar, which is consistent with the coupling reactions of C(T)PR2 and (T)PR2 with 2-(T)P.

3.2.4. Comparing the reactions of (thio)phenoxy radicals with 2-(T)P couplings, sulfydryl/hydroxyl-substituted phenyl radicals with 2-(T)P couplings and (thio)phenoxy diradicals with 2-(T)P couplings

To sum up, the thiophenoxy radicals with 2-(T)P couplings in Figure 3 mainly produce the pre-PCTA/PT intermediates, with the potential barriers involved falling within 0.43 to 4.52 kcal/mol and reaction heats ranging from −0.48 to 10.65 kcal/mol. The sulfydryl/hydroxyl-substituted phenyl radicals with 2-(T)P couplings in Figure 4 and the (thio)phenoxy diradicals with 2-(T)P couplings in Figure 5 can only generate PCDT/DF products. The potential barriers of the energetically favorable C•/CH coupling in Figure 4 are ranged from 1.93−4.14 kcal/mol, accompanied by reaction heats varying from −27.63−24.94 kcal/mol. The potential barriers of the energetically more comparable C•/CH coupling in Figure 5 are amounted from 0.61−2.84 kcal/mol, and are simultaneously associated with strong exothermicities in the range of −27.41−24.16 kcal/mol. Thus, the radical/molecule coupling of the three kinds radicals with 2-(T)P demands virtually the same potential barriers. However, the pre-PCDT/DF intermediates formation from the sulfydryl/hydroxyl-substituted phenyl radicals with 2-(T)P couplings and (thio)phenoxy diradicals with 2-(T)P couplings are much more exothermic than the pre-PCTA/PT intermediates formation from thiophenoxy radicals with 2-(T)P couplings. It is evident that the pre-PCDT/DF intermediates are more easier to form and more stable than the pre-PCTA/PT intermediates. Thus, the PCDT/DFs are much more liable to form than PCTA/PTs from the radical/molecule coupling from 2-(T)P as precursors. In particular, for the formation of PCTA/DTs from the three radical/molecule couplings from 2-CTP, the pre-PCDT intermediates formation pathways (ΔE 2.27−4.14 kcal/mol, ΔH −25.88−24.80 kcal/mol) in Figure 4(b) and (e) and Figure 5(b) and (e) are overwhelmingly superior to the the pre-PCTA intermediates formation pathways (ΔE 0.43−4.28 kcal/mol, ΔH −0.48−10.65 kcal/mol) in Figure 3(b). This provides reasonable explanation for the high PCDT-to-PCTA ratio under the pyrolysis or combustion conditions [16,17].

3.3. Rate constant calculations

The thermodynamic analysis of formation from reactions of C(T)PR1 with 2-(T)P and C(T)PDR and (T)PDR with 2-(T)P shows that S/C coupling are preferred over O/C coupling. Comparing of the average calculated TST rate constants in these two couplings also approved this conclusion. For example, in Table 3, at 1000 K, the average TST rate constant for S/C coupling from reactions of C(T)PR1 with 2-(T)P is 2.60 × 10−16 cm³ molecule⁻¹ s⁻¹, which is larger than the value 1.75 × 10⁻²⁰ cm³ molecule⁻¹ s⁻¹ for O/C coupling from reactions of C(T)PR1 with 2-(T)P. Analogously, the average TST rate constant for S/C coupling from reactions of C(T)PDR and (T)PDR with 2-(T)P (1.59 × 10⁻¹⁷ cm³ molecule⁻¹ s⁻¹) is kinetically larger than that of O/C coupling from reactions of C(T)PDR and (T)PDR with 2-(T)P (3.24 × 10⁻²⁰ cm³ molecule⁻¹ s⁻¹).

As presented in Table 1, Table 2 and Table S2 of Supplementary Materials, the TST rate constants for C•/CH coupling are larger than those of C•/CCl coupling from coupling reactions of C(T)PR2 and (T)PR2 with 2-(T)P and coupling reactions of C(T)PDR and (T)PDR with 2-(T)P over the whole studied temperature range. For instance, at 1000 K, the TST rate constants for the formation of IM19, IM21, IM23, IM25, IM27 and IM29 from C•/CH coupling are 6.32 × 10⁻¹⁵, 1.33 × 10⁻¹⁶, 5.54 × 10⁻¹⁶, 3.11
× 10^{-16}, 1.84 × 10^{-16} and 9.70 × 10^{-16}, while the values are 7.01 × 10^{-15}, 6.31 × 10^{-15}, 7.82 × 10^{-15}, 3.72 × 10^{-15},
3.95 × 10^{-19} and 1.02 × 10^{-17} for the formation of IM20, IM22, IM24, IM26, IM28, IM26 from C•/CCl
coupling in Table 1 and Table S2 of Supplementary Materials. In addition, at 800 K, the TST rate
constants for the C•/CH coupling reaction of CTPDR + 2-CTP → IM34 via TS63 (1.73 × 10^{-16} cm^{-3}
molecule^{-1}s^{-1}) is larger than that of for the C•/CCl reaction of CTPDR + 2-CTP → IM35 via TS64 (1.15
× 10^{-15} cm^{-3} molecule^{-1}s^{-1}) in Table 2 and Table S2 of Supplementary Materials. This perfectly matches
the thermodynamic analysis above that C•/CH coupling are kinetically more efficient than the
C•/CCl coupling.

Similarly, the kinetic data also confirm the thermodynamic analysis from reactions of
C(T)PR1 with 2-C(T)P and C(T)PDR and (T)PDR with 2-C(T)P that the S/σ-CH coupling is more
readily to occur than the S/σ-CCl coupling over the whole studied temperature range. For instance,
at 800 K, the TST rate constants for the S/σ-CH coupling reaction of CTPR1 + 2-CTP → IM7 via TS35
is 1.34 × 10^{-16} cm^{-3} molecule^{-1}s^{-1}, which is larger than the calculated value for the S/σ-CCl reaction of
CTPR1 + 2-CTP → IM8 via TS36 is 7.14 × 10^{-18} cm^{-3} molecule^{-1}s^{-1} in Table 1 and Table S2 of
Supplementary Materials. In addition, at 1000 K, the TST rate constants for the S/σ-CH coupling
reaction of CTPDR + 2-CTP → IM36 via TS65 (1.49 × 10^{-17} cm^{-3} molecule^{-1}s^{-1}) is larger than that of for
the S/σ-CCl reaction of CTPDR + 2-CTP → IM37 via TS66 (4.20 × 10^{-19} cm^{-3} molecule^{-1}s^{-1}) in Table 2
and Table S2 of Supplementary Materials.

4. Materials and Methods

4.1. Density Functional Theory

All the quantum chemical calculations on the structure, frequency and energy of related
substances such as reactants, products, intermediates, transition state were performed by using the
Gaussian 09 program by using MPWB1K method [51]. The MPWB1K method is one of the best
efficient and high-precision configuration optimization and frequency calculation method relative to
computational cost [52], and has been successfully performed for formation of PCDT/TAs from 2,4-DCTP as precursor [26]. Geometries were optimized at the MPWB1K/6-31+G(d,p) level of theory. The
obtained structures were confirmed as stable configuration or transition state by using corresponding
frequency calculation at the same level. The intrinsic reaction coordinate (IRC) was calculated at the
MPWB1K/6-31+G(d,p) level to verify that the transition state connects to the right minima along the
reaction path [53]. In order to get more precise energy values, a more flexible basis set, 6-311+G(3df,2p), was employed to determine the single point energies, including zero-point energy
correction (ZPE).

4.2. Kinetic Calculation

The kinetic and statistical thermodynamic (KiSThelP) program, a cross-platform free open-
source program developed to estimate molecule and reaction properties from electronic structure
data, was used to calculate the reaction rate constants [49]. KiSThelP offers a range of features that
can be helpful for users more experienced in computational kinetics. The conventional transition state
theory (TST) method was applied to calculate the rate constants for all the radical/molecule
combination reactions in the typical temperature of incinerator (from 600–1200 K). The effect of
quantum tunneling on rate constants was considered based on the one-dimensional Wigner's
formalism as implemented in the KiSThelP program [50].

5. Conclusion

In the study the radical/molecule initial formation pathways of PCTA/PT/DT/DFs from the
cross-condensation reactions of chloro(thio)phenoxy radical, sulphydryl/hydryl-substituted phenyl
radical and (thio)phenoxy diradical with 2-C(T)P were investigated theoretically using DFT
electronic structure theory at the MPWB1K/6-31+G(d,p)//MPWB1K/6-31+G(d,p) level. The kinetic
calculation was performed and the rate constants were calculated over the temperature range of
600–1200 K using the conventional transition state theory (TST) method, which can afford accurate
input parameters for the dioxin formation models. The values were compared with the previous studies on the radical/radical formation mechanism of PCTA/DFs from CTPRs and the radical/molecule formation mechanism of PCDFs from oxygen substituted radicals with CP [26]. Our study found that the radical/molecule mechanism can contribute to the gas-phase formation of PCTA/PT/DT/DFs under the pyrolysis or combustion conditions, which has been ignored before. The previous work [26] indicated that the radical/molecule coupling of chlorophenoxy radical, hydroyl-substituted phenyl radical and phenoxyl diradical with 2-CP can only form pre-PCDFs intermediates, and the O/C coupling to form pre-PCDDs intermediates failed to occur. However, we found in this study that the radical/molecule coupling of sulfur substituted chlorothiophenoxy radical, sulfydryl-substituted phenyl radical and thiophenoxyl diradical with 2-CP could contribute to both the formation of pre-PCDTs and pre-PCTA intermediates. Four conclusions can be summarized as follows:

(1) The S/C coupling modes are preferable over the O/C coupling modes. The S/C coupling modes can form pre-PCTAs and pre-PCPTs intermediates in the coupling of chloro(thio)phenoxy radical with 2-C(T)P and form pre-PCDTs intermediates in the coupling of (thio)phenoxyl diradical with 2-C(T)P.

(2) For the self-coupling of 2-CTP and corresponding sulfur substituted radicals, the pre-PCTA intermediates can only be produced from the coupling of chlorothiophenoxy radical with 2-CTP, and the pre-PCTA intermediates can be formed both the coupling of sulfydryl-substituted phenyl radical with 2-CTP and the coupling of thiophenoxyl diradical with 2-CTP. The pre-PCDT intermediates formation pathways are more favorable to the pre-PCTA intermediates formation pathways, which, to some extent, can give reasonable explanation for the high PCDT-to-PCTA ratio under the pyrolysis or combustion conditions.

(3) The (S)/o-CH couplings are energetically more comparable than the S(O)/o-CCl couplings, and the C•/CH coupling can take place much easier than the C•/CCI coupling to form the (thio)keto-(thio)enol intermediates.

(4) In the coupling of chloro(thio)phenoxy radical with 2-C(T)P, the S/C coupling to form pre-PCTA/PFTs intermediates are more readily to occur than the C/C coupling to form pre-PCDT/DFs intermediates. However the trend is contrast in the coupling of (thio)phenoxyl diradical with 2-C(T)P that C/C coupling are more easier to happen than the S/C coupling, both of which can contribute to the formation of pre-PCDT/DFs intermediates.

Supplementary Materials: Pre-PCDD/DF formation pathways embedded with the potential barriers ΔE and reaction heats ΔH from the coupling reactions of CPR1 with 2-CP, CPR2 with 2-CP and CPDR with 2-CP, CPR2 with 2-CP and PDR with 2-CP. The optimized geometries for transition states for pre-PCTA formation routes from the S/C coupling of cross-condensation reactions of CPR1 with 2-CTP. Optimized geometries for transition states of the coupling reactions of CPR1 with 2-CTP, CPR2 with 2-CTP, CPDR with 2-CTP, CPR1 with 2-CP and PDR with 2-CP. Imaginary frequencies, zero point energies and total energies for transition states involved in the formation of pre-PCTA/PT/DT/DF intermediates. TST rate constants for for pre-PCTA/PT/DT/DF formation routes from the cross-condensation reactions of 2-C(T)P with C(T)PR1, C(T)PR2 and (T)PDR, and C(T)PDR and (T)PDR over the temperature range of 600–1200 K. Cartesian coordinates for transition states, reactions, intermediate and products involved in the formation routes of pre-intermediates for PCTA/PT/DT/DFs. Supplementary materials can be found at www.mdpi.com/xxx/s1.

Author Contributions: Chenpeng Zuo designed and performed the mechanism calculations, then wrote the manuscript; Chenpeng Zuo, Hetong Wang and Siyuan Zheng performed the kinetic calculation. Chenpeng Zuo, Wenxiao Pan, Fei Xu and Qingzhu Zhang all analyzed the data in the manuscript.

Funding: This work was supported by NSFC (National Natural Science Foundation of China, project Nos. 21677089, Shenzhen Science and Technology Research and Development Funds (project Nos. JCYJ20160510165106371), FRFSDU(The Fundamental Research Funds of Shandong University, project Nos. 2016WLJH51, 2017C033), China Postdoctoral Science Foundation funded project (project Nos. 2017M612277, 2017T100493), SKLCERA (The open foundation of state key laboratory of environmental criteria and risk assessment, Chinese research academy of environmental sciences No. 2016OF09).

Conflicts of Interest: The authors declare no conflict of interest.
Abbreviations

PCDTs polychlorinated dibenzothiophenes
PCPTs polychlorinated phenoxathiins
PCTAs polychlorinated thianthrenes
PCDDs polychlorinated dibenzo-p-dioxins
PCDFs polychlorinated dibenzofurans
2-CP 2-chlorophenol
2-CTP 2-chlorothiophenol
CPR1 2-chlorophenoxy
CPR2 2-hydroxyl-3-chloro-phenyl
CPDR chlorinated phenoxy diradical
PR2 2-hydroxylphenyl radical
PDR phenoxyl diradical
CTPR1 2-chlorothiophenoxy
CTPR2 2-sulfydryl-3-chloro-phenyl
CTPDR chlorinated thiophenoxyl diradical
TPR2 2-sulfydrylphenyl radical
TPDR thiophenoxyl diradical
TST transition state theory
IRC intrinsic reaction coordinate
KiSThelP kinetic and statistical thermodynamic
ZPE zero-point energy

References

