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Abstract: Sparse recovery of fluid flows using data-driven proper orthogonal
decomposition (POD) basis is systematically explored in this work. Fluid flows are
manifestations of nonlinear multiscale PDE dynamical systems with inherent scale
separation that impact the system dimensionality. Given that sparse reconstruction is
inherently an ill-posed problem, the most successful approaches require the knowledge of
the underlying basis space spanning the manifold in which the system resides. In this
study, we employ an approach that learns basis from singular value decomposition (SVD)
of training data to reconstruct sparsely sensed information. This results in a set of four
control parameters for sparse recovery, namely, the choice of basis, system dimension
required for sufficiently accurate reconstruction, sensor budget and their placement. The
choice of control parameters implicitly determines the choice of algorithm as either [,
minimization reconstruction or sparsity promoting /; norm minimization reconstruction.
In this work, we systematically explore the implications of these control parameters on
reconstruction accuracy so that practical recommendations can be identified. We observe
that greedy-smart sensor placement provides the best balance of computational complexity
and robust reconstruction for marginally oversampled cases which happens to be the most
challenging regime in the explored parameter design space.

Keywords: sparse reconstruction, sensors, cylinder flow, SVD, POD, compressive sensing

1. Introduction

Multiscale fluid flow phenomena in engineering and geophysical settings are invariably data-sparse,
i.e. there are more scales to resolve than there are sensors. A major goal is to recover more information
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about the dynamical system through reconstruction of the higher dimensional state. To expand on
this view, for many practical fluid flow applications, accurate simulations may not be feasible for a
multitude of reasons including, lack of accurate models, unknown governing equations or extremely
complex boundary conditions. In such situations, measurement data represents the absolute truth and
is often acquired from very few probes that limits potential for in-depth analysis. A common recourse
is to combine such sparse measurements with underlying knowledge of the flow system, either in the
form of idealized simulations or phenomenology or knowledge of a sparse basis to recover detailed
information. The former approach is termed as data assimilation while we refer to the latter as Sparse
Reconstruction (SR). On the other hand, simulations typically represent a data surplus setting that offer
the best avenue for analysis of realistic flows as one can identify and visualize coherent structures,
perform well converged statistical analysis including quantification of spatiotemporal coherence and
scale content due to the high density of data probes in the form of computational grid points. With
growth in computing power, they often generate big data contributing to an ever growing demand for
quick analytics and machine learning tools [1] to both sparsify, i.e. dimensionality reduction [2-5]
and reconstruct the data without loss of information. Thus, tools for encoding information into
a low-dimensional feature space (convolution) complement sparse recovery tools that help decode
compressed information (deconvolution). This in essence is a key aspect of leveraging machine learning
for fluid flow analysis [6,7]. This work contributes to the broad area of reconstructing high resolution
fields from sparse data.

A primary target of this work is to address the practical problems of flow sensing and control in
the field or a laboratory where a few affordable probes are expected to sense effectively. Recent
advances in compressive sensing (CS) [8—11] have opened the possibility of direct sparse sampling [6]
of data in real-time without having to collect high resolution information and then downsample. Of
course, in the case of direct sampling, there is need to consider a generic basis in which the data has
a high probability of being sparse in. Whereas, in the case of collecting high resolution information
and then down sampling, one can learn optimal basis from data. Thus, decoding and reconstruction
from sparse data have been gaining popularity in their various manifestations such as Gappy Proper
Orthogonal Decomposition (GPOD) [12,13], Fourier-based Compressive Sensing (CS) [8-11] and
Gaussian kernel-based Kriging [14—16]. A parallel application of such ideas is in the acceleration of
nonlinear model order reduction using sparse sampling as hyper-reduction [17-20] tools. Most literature
on this topic of sparse recovery focus on theoretical guarantees and estimation of performance bounds
or application-driven demonstrations [6,7]. The contribution from this work is three-fold. Firstly, we
develop a systematic framework for characterizing the SR performance in terms of accuracy of data
recovery that can shed light on practical usage limitations and help with simulation design. Secondly,
we explore how these SR methods interact and potentially gain from greedy and smart sensor placement.
Thirdly, putting these together, we present a systematic assessment of the interplay between system
dimensionality (i.e. a measure of the chosen system complexity), sensor quantity (budget) and their
placement and provide recommendations for use in practice for fluid flow applications. As a first step in
this direction, we focus our efforts on SR of low-dimensional transient wake flow behind a cylinder at

laminar Reynolds numbers (Re = 100).
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Sparse reconstruction (SR) is inherently ill-posed, under-determined inverse problem where the
number of constraints (i.e., sensor quantity) are much less than the number of unknowns (i.e., high
resolution field). However, if the underlying system is sparse in a feature (space of basis coefficients)
space then the probability of recovering a unique solution increases by solving the reconstruction
problem in this lower-dimensional space. The core theoretical developments of such ideas and their

first practical applications happened in the realm of image compression and restoration [10,21].

Sparse Reconstruction with Data-driven Basis: Data recovery techniques based on Karhunen-Loeve
(K-L) procedure with least squares (/3) error minimization , also known as Gappy POD or GPOD [12,13,
17], was originally developed in the nineties to recover marred faces [17] in images. The fundamental
idea is to utilize the POD basis computed offline from the data ensemble to encode the reconstruction
problem into a low-dimensional feature space. This way, the sparse data can be used to recover the
sparse unknowns in the space of POD coefficients by minimizing the [, errors. If the data-driven POD
basis are not known a priori, an iterative formulation [12,17] to successively approximate the POD
basis and the coefficients was proposed with limited success. While this approach has been shown to
work in principle [12,14,22], it is prone to numerical instabilities and inefficiency. Advancements in the
form of a progressive iterative reconstruction framework [14] are effective, but impractical for real-time
application. In fact, all the aforementioned issues are related to the POD-basis being data-driven and
therefore, can represent the data optimally but not easily generalizable. This requires that they be
known a priori - a stringent requirement for many practical systems as training data is rarely available
and even when it is, it may not effectively (i.e. relevant to) the prediction regime. Such limitations
make data-driven basis hard to use for practical sparse sensing-based reconstruction. Nevertheless, they
find tremendous value in data-driven modeling (machine learning, Koopman operator models [23,24])
applications and nonlinear model order reduction [4] of systems that are statistically stationary where

training data is available and tends to remain relevant to the system as it evolves.

Sparse Reconstruction with Generic Basis: A way to bypass the above limitations is to use generic
basis such as wavelets [25] or Fourier functions. Such choices assume that most practical systems are
relatively sparse with respect to these basis choices although not optimal. This is particularly true for
image processing applications but may not be optimal for fluid flows whose dynamics obey PDEs (and
may include sharp gradients). While avoiding the cost of computing the basis offline, such approaches
run into sparsity issues as the basis do not optimally encode the underlying dynamical system. In other
words, larger the basis, more sensors are needed for complete and accurate reconstruction. Thus, once
again the reconstruction problem is ill-posed because the basis space is not sufficiently low-dimensional
resulting in the flow being under sampled. To bypass this, one needs to look for a sparse solution which
is usually not realized through [> error minimization approaches. The magic of Compressive Sensing
(CS) [8-11] is in its ability to overcome this constraint by seeking a solution that can be less sparse than
the dimensionality of the chosen feature space using /;-norm regularized least-squares reconstruction.
Such methods have been successfully applied in image processing using Fourier or wavelet basis and
also to fundamental fluid flows [6,7,26-29]. Compressive sensing essentially looks for a regularized

sparse solution using /; norm minimization of the sparse coefficients by solving a computationally
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manageable convex optimization problem. Such sparsity promoting /; regularized reconstruction can
also be combined with data-driven POD basis to overcome the aforementioned limitations. Successful
attempts at this include reconstruction of sparse PIV data [6] and pressure measurements around a
cylinder surface [7]. To bypass the limitations from using data-driven POD basis for SR, one often
tends to build a library of POD modes from precursor training simulation or measurement data over a
range of flow parameters (e.g. Reynolds numbers) and leverage /; regularized reconstruction to identify
the most relevant K -sparse solution. Building such a library of POD modes is a one-time investment for
a chosen class of flows. Such a framework has been attempted in [7] where POD modes from simulations
over a range of Reynolds (/2e) numbers of a cylinder wake flow were used to populate a library of bases
and then used to classify the flow regime based on sparse measurements.

In order to carry out a systematic analysis of interplay between the various SR control parameters,
namely, desired reconstruction dimension, sensor budget and their placement, we limit ourselves to
primarily /[, minimization approaches (except for comparative analysis where we use [; ) and four
different sensor placement methods including random sampling (as used in [30]), QR with column
pivoting [31,32], Discrete Empirical Interpolation Method (DEIM) [18] and explicit condition number
minimization [13]. The suitability of these choices are numerically explored in a discretized parameter
space of sensor budget and system dimension. The rest of manuscript is organized as follows. In section 2
we review the basics of sparse reconstruction theory (sec. 2.1), computation of data-driven POD basis
(sec. 2.2), role of measurement locations (sec. 2.3), algorithms for sensor placement (sec. 2.4) and sparse
recovery (sec. 2.5). In section 3 we discuss how the training data is generated and also summarize the
outcomes form sensor placement using the different approaches. In section 4 we discuss the results from
our analysis of the SR of the cylinder wake flow using both POD and ELM basis. This is followed by a

summary of major conclusions from this study in section 5.

2. Formulating the Sparse Reconstruction Problem

Given a high resolution data representing the state of the flow system at any given instant denoted
by z € RY, its corresponding sparse representation given by # € RY with P < N. Then, the sparse
reconstruction problem is to recover z, when given  along with information of the sensor locations in the

form the measurement matrix C' € RP*N

as shown in eqn. (1). The measurement matrix C' determines
how the sparse data 7 is collected from x. Variables P and /N are the number of sparse measurements

and the dimension of the high resolution field, respectively.
Tz =Cux. (1)

In this article, we focus on vectors x that have a sparse representation in a basis space ® € RV*K
such that K < N and yielding x = ®a. Naturally, when one loses the information about the system,
the recovery of said information is not absolute as the reconstruction problem is ill-posed, i.e., more
unknowns than equations in eqn. (1). Thus the most straightforward approach to recover z is by
computing the inverse of C using a least-squares error minimization procedure as shown in eqn. (2).

However, this does not result in stable solutions as the system is ill-posed (under-determined).

C'i=uz. 2)
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2.1. Sparse Reconstruction Theory

The theory of sparse reconstruction has strong foundations in the field of inverse problems [33] with
applications in diverse fields of study such as a geophysics [34,35] and image processing [36,37]. In this
section, we formulate the reconstruction problem which has been presented in CS literature [8,10,38—40].
Many signals tend to be “compressible", i.e., they are sparse in some K -sparse basis ® as shown below:

Ny
T = Z pia; or x = Pa, 3)
i=1

where ® € RV*M and ¢ € R with K non-zero elements. In the sparse reconstruction formulation
above, ® € RY*M i used instead of & € RV*K as the K most relevant basis vectors for a given data
are not identified a priori. Consequently, a more exhaustive basis set of dimension N, ~ P > K is
typically employed. To recover /N-dimensional data, one can atmost use N basis vectors, i.e., NV, < N.
In practice, the dimension of the candidate basis space need not be NV and can be represented by N, << N
as only K (< N,) of them are needed to represent the acquired signal up to a desired quality. This is
typically the case when ® is composed of optimal data-driven basis vectors such as POD modes. The
reconstruction problem is then recast as identification of these K sparse coefficients.

In many practical situations, ® and K along with N, N are input by the user. Standard fransform
coding [25] practice in image compression involves collecting a high resolution sample, transforming
it to a Fourier or wavelet basis space where the data is sparse, retain the K most relevant coefficients
while discarding the rest of the information. This is the basis of JPEG and JPEG-2000 compression
standards [25]. The sample and then compress mechanism still requires acquisition of high resolution
samples and processing them before reducing the dimensionality. This is highly challenging as handling
large amounts of data is difficult in practice due to demands on processing power, storage, and time.
Compressive sensing [8,10,38—40] focuses on direct sparse sensing based inference of the K -sparse
coefficients by essentially combining the steps in equations 1 and 3 as below:

7 =C®a = 0aq, “4)

where ® € RP*™ is the map between the basis coefficients a that represent the data in a feature space
and the sparse measurements,  in physical space. The challenge in solving for = using the under
determined eqn. (1) is that C'is ill-conditioned and z in itself is not sparse. However, when x is sparse
in @, the reconstruction using © in eqn. (4) becomes practically feasible (for P 2 K) by solving for
a. Thus, one effectively seeks a K -sparse a with P constraints (given by ) using established methods

from linear algebra and constrained optimization.
2.1.1. Case 1: For K = N,

For the over determined system with P > K = N, a is estimated using a regularized least squares
solution based on the normal equation as a = ()47 = (@7© + AI )_1 ©77 for a chosen \. This
is obtained by minimizing the appropriate cost function given by J..;s = ||& — Oal|3 + A||a||3. This
regularized least-squares solution procedure for the overdetermined case is nearly identical to the original
GPOD algorithm developed by Everson and Sirovich [17] if @ is chosen as the POD basis. However,
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2 in GPOD contains zeros as placeholders for all the missing elements whereas the above formulation
retains only the measured data points.

When P < K = N, and the system is under-determined with non-unique solutions, one looks for a
minimum norm reconstruction of a. This is achieved by minimizing the corresponding s-norm of a (s
chosen appropriately) and z is then recovered from eqn. (3). s chosen as 2 yields the minimum /> norm
reconstruction of x by penalizing the larger elements of a. The [s-regularized method finds an a that
minimizes the expression shown in eqn. (5).

lo norm minimization reconstruction : a = argmin ||a’||, such that ®a’ = & 5)
I, cost function to be minimized : min{7 (¥ — Oa) + ||a||3}
One can solve for 7 and a in eqn. (5) using Lagrange multipliers approach to yield a solution that is a
right pseudo-inverse of © as in eqn. (6) below as long as © has a full rank of P:

et

a=(0)"z=0"(ee") i (6)
2.1.2. Case 2: For K < N,

When K < N, one typically looks for a sparse solution of a. The /[, norm minimization and
[y regularization approaches discussed above provide numerical stability, but do not produce sparse
solutions. A natural way to enhance sparsity of a is to minimize ||d’||o, i.e., minimize the number of
non-zero elements such that ©a’ = 7 is satisfied. It has been shown [41] that with P = K +1 (P > K in
general) independent measurements, one can recover the sparse coefficients with high probability using
minimum [y, norm reconstruction. This condition can be heuristically interpreted as each measurement
needing to excite a different basis vector ¢; so that its coefficient a; can be optimally identified. If two or
more measurements excite the same basis ¢; then additional measurements may be needed to produce
acceptable reconstruction. On the other hand, for P < K independent measurements, the probability of
recovering the sparse solution is highly diminished. Nevertheless, [o-reconstruction is a computationally
complex, np-complete and poorly conditioned problem with no stability guarantees.

[1 norm minimization reconstruction : a = argmin ||a’(|; such that ®d' = & .

I, cost function to be minimized : min{||Z — Gal|3 + A||al|;} @

The popularity of compressed sensing arises on account of the theoretical advances [42—45]
guaranteeing near-exact reconstruction of the uncompressed information by solving for the K sparsest
coefficients using /; norm minimization methods. The [; reconstruction is a relatively simpler convex
optimization problem (as compared to [y) and solvable using linear programming techniques for basis
pursuit [8,38,46] and shrinkage methods [47]. Theoretically, one can perform the simplistic brute force
search to locate the largest K coefficients of a that satisfy eqn. (7), but the computational effort increases
exponentially with dimension. To overcome this burden, a host of greedy algorithms [9,11,48] have been
developed to solve the /; norm minimization problem in eqn. (7) with complexity O(N?3) for N, ~ N.
However, this approach requires P > O(Klog(N,/K)) measurements [8,38,42] to reconstruct the

K-sparse vectors with high probability. The schematic illustration of both /5 and /;-based formulations
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Figure 1. Schematic illustration of /5 (left) and /; (right) minimization reconstruction for
sparse recovery using a single-pixel measurement matrix. The numerical values in C' are
represented by colors: black (1), white (0). The other colors represent numbers that are
neither 0 nor 1. In the above schematics # € RY, C' € RP*N, & € RY*M and ¢ € RM,
where N, < N. The number of colored cells in a represents the system sparsity K. K = N,
for l, and K < N, for [;.

are presented in Figure 1.

Solving the /; minimization problem shown in eqn. (7) is complicated relative to the /5 minimization
solution described in eqn. (5). This is because, unlike the cost function to be minimized in eqn. (5), the
cost function in eqn. (7) is not differentiable when a; = 0 which necessitates an iterative solution instead
of a closed form solution. Further, the minimization of the [; cost function is also an unconstrained
optimization problem that is commonly converted into a constrained optimization as shown in eqn. (8).

Here ¢ is a user defined sparsity knob to ‘shrink’ the coefficients.

I, norm constrained minimization : min ||Z — ©al|3 such that ||al|; <t (8)

This constrained optimization in eqn. (8) is quadratic in a and therefore, a quadratic programming
problem with the feasible region bounded by polyhedron (in the space of a). There exists two classes
of [, solution methodologies: (i) least absolute selection and shrinkage operator or LASSO [47] and (ii)
basis pursuit denoising [46]. LASSO and its variant essentially convert the constrained formulation into a
set of linear constraints. Recently popular approaches include greedy methods such as optimal matching
pursuit(OMP) [11,27] and interior point methods [49]. An intuitive iterative sequential least-squares
thresholding framework is used by Brunton et al. [50]. The idea here is to achieve ‘shrinkage’ by
repeatedly zeroing out the coefficients smaller than a given choice of hyperparameter.

In summary, the reconstruction framework is characterized by three parameters, Ny, /i, P. N is the
candidate basis dimension employed for this reconstruction which is bounded by N, ie. N, < N.
K represents the desired reconstruction sparsity and chosen such that if these features are predicted
accurately, then the achieved reconstruction meets a desired quality. The more sparse a system, the
smaller K is for a desired reconstruction quality and is specified by the user based on knowledge of the
system. P represents the available sensor quantity as input to the problem. NV is the preferred dimension
of the reconstructed state. The interplay of N, K, and P determine the choice of algorithm employed,
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i.e., whether the reconstruction is based on least squares minimization, [, norm minimization or sparsity
enabling /; approaches as summarized in Table 1.

Table 1. The choice of sparse reconstruction algorithm based on problem design using

parameters P (sensor sparsity), /X (targeted reconstruction sparsity) and /V, (candidate basis

dimension).
Case K — Nj Relationship P — K Relationship Algorithm Reconstructed Dimension
1 K=N, P>K least squares (I2) K
2 K=N, P<K min. norm recons. (1) or (I2) P
3 K < N P>K min. norm recons. (/1) K

All of the above sparse recovery estimations are conditional upon the measurements (rows of C')
being incoherent with respect to the sparse basis ®. This is usually accomplished by using a random
choice of sensor placement, especially when @ is made up of Fourier functions or wavelets. If the basis
functions ® are orthonormal, such as wavelet or POD basis (with inherent hierarchy), one can discard
the majority of the small coefficients in a (setting them as zeros) and still retain reasonably accurate
reconstruction. The mathematical explanation for this has been previously shown in [10]. However, it
should be noted that incoherency is a necessary, but not sufficient condition for exact reconstruction.
Exact reconstruction requires optimal sensor placement to capture the most information for a given flow
field. In this study, we assess the interplay between sensor quantity, quality and desired system sparsity

for POD-based sparse reconstruction.

2.2. Data-driven Basis Computation using POD

In the SR framework, basis such as POD modes, Fourier functions, and wavelets [8,10] can be used to
generate low-dimensional representations for both [/, and /;-based methods. While an exhaustive study
on the effect of different choices on reconstruction performance is potentially useful, in this study we
focus on POD-based SR. A similar effort has been reported in [6] where a comparison between discrete
cosine transform and POD bases was performed.

Proper orthogonal decomposition (POD), also known as Principal Components Analysis (PCA) or
Singular Value Decomposition (SVD), is a dimensionality reduction technique that computes a linear
combination of low-dimensional basis functions (POD modes) and weights (POD coefficients) from
snapshots of experimental or numerical data [2,4] through eigen-decomposition of the spatial correlation
tensor of the data. It was introduced in the turbulence community by Lumley [51] to extract coherent
structures in turbulent flows. The resulting singular vectors or POD modes represent an orthogonal
basis that maximizes the energy capture from the flow field. For this reason, such eigenfunctions are
considered optimal in terms of energy capture and other optimality constraints are theoretically possible.
Taking advantage of the orthogonality, one can project these POD basis onto each snapshot of data in a
Galerkin sense to deduce coefficients that represent evolution over time in the POD feature space. The
optimality of the POD basis also allows one to effectively reconstruct the full field information with
knowledge of very few coefficients, a feature that is attractive for solving sparse reconstruction problems
such as in eqn. (4). However, this is contingent on the spectrum of the spatial correlation tensor of the data
having sufficiently rapid decay of the eigenvalues, i.e. it supports a low-dimensional representation. This
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is typically not true in the case of turbulent flows with very gradual decay of energy across the singular
values. Further, in such dynamical systems, the small scales with low-energy can still be dynamically
important and will need to be reconstructed, thus requiring significant number of sensors.

Since the eigen-decomposition of the spatial correlation tensor of the flow field requires handling
a system of dimension NV, it requires significant computational expense. An alternative method is to
compute the POD modes using the method of snapshots [52] where the eigen-decomposition problem
is reformulated in a reduced dimension (assuming the number of snapshots in time is smaller than the
spatial dimension) framework as summarized below. Consider that X € RV*M (different from x € R”)
is the full field representation with only the fluctuating part, i.e., the temporal mean is taken out of the
data. NN is the dimension of the full field representation and M is the number of snapshots. The procedure

involves computation of the temporal correlation matrix C); as:
Cu=X"X. 9)

The resulting correlation matrix C,; € RM*M

is symmetric and an eigendecomposition problem can be
formulated as:
CuV =VA, (10)

where the eigenvectors are given in V' = [vy,v9,...,up] and the diagonal elements of A are the
eigenvalues [A1, g, ..., Ajs]. Typically, both the eigenvalues and corresponding eigenvectors are sorted
in descending order such as A\; > Ay > ... > Ay;. The POD modes ® and coefficients a can then be

computed as
P =XVVA-L (11)

One can represent the field X as a linear combination of the POD modes ® as shown in eqn. (3) and
leverage orthogonality to compute the Moore-Penrose pseudo-inverse, i.e., ®' = ®7, and compute the

POD coefficients, a € RM*M as shown in eqn. (12),
a=o"X. (12)

It is worth mentioning that subtracting the temporal mean from the input data is not critical to the
success of this procedure. In fact, retaining the mean of the data during SVD computation generates an
extra mean mode which modifies the energy spectrum. For the low-dimensional cylinder wake used in
this study,the dominant mode when performing SVD with mean captures 98% energy whereas for the
SVD without mean, the dominant mode captures 49% energy. Based on our experience over the course
of this research study, these choices have minimal impact on the reconstruction performance. In fact,
during practice, one does not use POD basis with the mean removed as the sparse data includes the mean
that is not known a priori.

Using the snapshot procedure for the POD/SVD computation fixes the maximum number of POD
basis vectors to M which is typically much smaller than the dimension of full state vector, N. If one
wants to reduce the dimension further, then a criterion based on energy capture is devised so that the
modes carrying the least amount of energy fruncated to dimension X < M. For many common fluid
flows, using the first few POD modes and coefficients are sufficient to capture almost all the relevant
dynamics. However, for turbulent flows with large-scale separation, a significant number of POD modes
will need to be retained.
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2.3. Measurement Locations, Data Basis and Incoherence

Recalling from subsection 2.1, the reconstruction performance is strongly tied to the measurement
matrix, C' being necessarily incoherent with respect to the low-dimensional basis ® [10] and this is
usually accomplished by using random elements to populate the matrix. In practice, one can adopt two
types of random sampling of the data, namely, single-pixel measurement [7,53,54] or random projections
used in compressive sensing [8,10,39]. Typically, single-pixel measurement refers to measuring
information at chosen spatial locations such as measurements by unmanned aerial systems (UAS) in
the atmospheric fields or point probes. The resulting matrix C'is structured as C < [e,,, €g,, .., €5, )7,
where e, is column vector with zeros except at the index p where it assumes a value of 1.

Another popular choice of measurements employed in the compressive sensing or image processing
community is random projections where the measurement matrix is populated using random numbers
based on a chosen distribution (Gaussian, Bernoulli) on to which the full state data is projected. In theory,
the random matrix is highly likely to be incoherent with any generic basis [10], and hence suitable
for sparse recovery purposes. However, for most fluid flow and other practical sensing applications,
the sparse data is usually sourced from point measurements. Irrespective of the approach adopted,
the measurement matrix C' (eqns. (1)-(2)) and basis ® should be incoherent to ensure optimal sparse
reconstruction. This essentially implies that one should have sufficient measurements distributed in
space to excite the different modes relevant to the data being reconstructed. Mathematically, this is
related to C'® being full rank and invertible. There exist metrics to estimate the extent of coherency
between C' and & in the form of an coherency number, p as shown in eqn. (13) [55],

W(C,®) = VN - max [(ci, ;)] (13)
where ¢; is a row vector in C (i.e. ¢; = ¢,,) and ¢; is a column vector of ®. y typically ranges from
1 (incoherent) to v/N (coherent). The smaller the 1, the less measurements one needs to reconstruct
the data using minimum norm approaches. This is because the coherency parameter enters as the
pre-factor in the lower-bound for the sensor quantity in [;-based CS for accurate recovery. There
exist optimal sensor placement algorithms such as K-means clustering, the data-driven Online sparse
Gaussian Processes [56], physics-based approaches based on inflection in the modal shapes [57] and
mathematical approaches [13] that minimize condition number of ® and maximize determinant of the
Fisher information matrix [58]. A thorough study on the role of sensor placement on reconstruction
quality is much needed and is an active topic of research. In this study, we assess three different
greedy approaches for nearly optimal sensor placement in sparse recovery applications, namely, the
Discrete Empirical Interpolation Method (DEIM) [18,59], iterative condition number minimization [60]
and the reduced matrix () R-factorization with column pivoting as reviewed in [61]. We compare these
approaches with outcomes from a random sensor placement that can be easily implemented using random
number generators in Matlab. To ensure the resulting measurement matrices are incoherent with respect

to the POD basis, we also estimate the coherency numbers in the following discussion.

2.4. Algorithms for Sensor Placement
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In this section, we summarize the different sensor placement algorithms employed in this research
study. Optimal sensor placement for a given data, especially for a flow field that evolves over time is
highly challenging and is an ongoing topic of active research. The goal of optimal point sensor placement
for reconstruction is to identify and activate only a few rows of the basis matrix ® that effectively
conditions the matrix © (for P = K = N,) or its variants M = @70 or M = @O )depending on if
P> K = Nyor P < K = N, respectively). This is schematically illustrated in fig. 2.

B o
.
TR P

[T T

§ B mEn

Figure 2. Schematic illustration of sparse sensor placement. The pastel colored rectangles
represent rows activated by the sensors denoted in the measurement matrix through dark

squares.

To design smart sensor placement, one needs an optimization criteria which in this case is to minimize
reconstruction error when using a small number of sensors which, of course depends on the choice of
basis ®. Since reconstruction from sparse data in general requires inversion of ® or M, most smart
sensing strategies are designed to improve the condition of ®, M for inversion purposes by optimizing
their spectral content in the form of its determinant, trace, spectral radius or condition number. A
direct method of optimizing such metrics requires searching over the different possible sensor selections
resulting in combinatorial complexity. Thankfully, there exist a variety of greedy algorithms [13,18,62]
that have been shown to be successful in the context of fluid flow data.

2.4.1. Random Sensor Placement

The most simple and efficient sensor placement strategy is to sample at random locations. This
is commonly accomplished using a random number generator for the sensor locations, accomplished
easily using packages such as Matlab or Python with functions such as randperm(). In this study, we
sample from simulation data by choosing the first P values from a random permutation of the entire
data of dimension /N. We note that it is equally effective to adopt ideas such as K-means clustering as
was employed in [63]. Since the experiments performed in this study use highly sparse measurements
relative to the total number of grid points, i.e., P < N to mimic practical data acquisition, we focus on
random single-pixel measurements. To better assess the effectiveness of such sensor placement methods,
we generate multiple realizations by changing the seed of the random number generator. The outcomes
are then quantified in terms of the mean as well as the outliers. This particular choice of sensor placement
is designed to serve as an inexpensive benchmark to compare against other greedy sampling methods.
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2.4.2. Minimization of Matrix Condition Number (MCN)

As shown in sec. 2.1.1, the success of the reconstruction effort for X' = N, is tied to the accuracy
of the inverse computation of M = ©@7® or M = ©®O? (depending on whether the system is over
determined (P > K = N,) or under determined (P < K = N;)). Therefore, if M = O70O or
M = OO has full column or row rank respectively along with a reasonable condition number, then the
estimated inverse has a chance to be accurate. This approach focuses on sensor placement (through the
construction of C') that minimizes the condition number of M or x(M). The condition number is directly
related to the orthogonality of ® and the presence of significant diagonal entries in M . Therefore, this
algorithm can be viewed as placing sensors at locations that display significant flow dynamics and also
preserve the orthogonality of the POD modes. From a mathematical perspective, the condition number
represents the ratio of maximum and minimum singular values of ® or M. Therefore, for large x(M),
the errors tend to be amplified with respect to the signal. As shown by Willcox [13], and Yildrim et
al. [62] such a method compares favorably to more physics-based approaches [57] where sensors are
placed at the extrema of dominant POD modes although the latter method is computationally efficient.
Such a heuristic approach has been used by Bayon de Noyer [64] to locate effective sensor locations for
feedback control to alleviate tail buffeting of a high performance twin tail craft. However, the formulation
based on condition number minimization of M (see eqn. (26)) is considered more reliable. The key steps
of this MCN algorithm is listed below for completeness.

(i) Consider all possible placement points, evaluate M for each point, choose the point that minimizes

condition number of M i.e. k(M).

(i) With the previous sensor locations set, loop over all possible remaining placement points. For each

point, update the mask vector, evaluate M, and choose the point that minimizes x(M).
(i11) In same way as (i1) find all remaining sensor locations.

A slightly more efficient version of this algorithm is presented by Willcox [60] where the first sensor
point is chosen as the location that maximizes the sum of the difference between the diagonal and
off-diagonal entries of M. The rest of the algorithm is similar to that presented above.

2.4.3. QR Factorization with Column Pivoting

The reduced matrix QR factorization [31] decomposes any given real matrix A € R>*T with full

column rank into a unitary matrix Q@ € R5*7 and an upper triangular matrix R € R7*T. Therefore,

it follows that |det (A)| = |det (Q) - det (R)| = |det (R)| = Hrii = ‘H/\Z where 7;; are the

7 7

diagonal entries of R and ); are the eigenvalues. It is easy to show that minimizing the condition

number of A is related to optimizing the spectral characteristics of the matrix such as the determinant

or spectral radius, i.e., maximize Hrii . In general, the R from a reduced matrix ()R factorization

7
has diagonal values, r; in no particular sequence. However, when combined with column pivoting, we

have AD = QR, where D € R”*T is a square column permutation matrix containing ones and zeros.
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The resulting QR decomposition outcome can be controlled through the pivoting procedure such that the
diagonal values of R, r;; form a decreasing sequence. Therefore, pivoting provides a smart approach for
‘submatrix volume maximization’ and in turn maximize the absolute value of the determinant [32] by
reordering the columns of A. This approach can easily be extended for sensor placement by leveraging
the connections between the permutation matrix D and the point sensor measurement matrix C' in fig. 2
and eqn. (4).

For the case with P = K, the reconstruction problem in eqn. (4) requires inversion of the square
matrix ® = C'®,. For improved reconstruction, the determinant of ® needs to be maximized through
sensor placement which in turn is expected to reduce (and maybe minimize) the condition number. One
can see that for a square matrix the following relationship is true.

det (©) = det (") = det (®,C"). (14)

Therefore, reduced matrix QR factorization of ®7 € REX*" with column pivoting will yield

®'D=QR (15)

where D € RY*¥ is a square permutation matrix. The right hand side of eqn. (14) will be maximized
for a given sensor quantity P if C is chosen as the first P rows of D?. The index locations of ones in
each row of C' are denoted by |01, 02, 03, - - . , 0P].

For the case of oversampled case with P > K, © is a tall and slender matrix whose inversion
(section 2.1.1) is typically handled using a least squares minimization. The left (Moore-Penrose)
pseudoinverse requires computing the inverse of the square matrix. M = @T® ¢ RX*¥_ Therefore, the
sensor placement that increases the probability of accurate reconstruction should maximize det (G)TG))
so that condition number of M is bounded. Specifically, we will have the following:

K K
det (M) = det (070) = [ 0: (070©) = [[ 0: (00") =[] 0: (C®12LCT).  (16)
i i=1 i=1

Leveraging the relationships in eqn. (16), we see that maximizing the determinant of M = @%@ can be

realized by maximizing det (<I> K@};CT) by using a reduced matrix QR factorization as shown below
(®,®.")D = QR, (17)

and once again choosing C' as the first P rows of the N x N square matrix given by DT. The index
locations of ones in each row of C' are denoted by [o1, 02, 03, - - - , 0P]-

The algorithm of greedy sensor selection for an oversampled case using a given tailored basis ® i and
number of sensors P is summarized below:

2.4.4. Discrete Empirical Interpolation Method (DEIM)

All the above smart sensor placement methods focus on minimizing the condition number directly or
indirectly controlling it through the determinant of the matrix to the inverted. The discrete empirical
interpolation method or DEIM is a discrete variant of the Empirical Interpolation Method (EIM)

originally presented by Barrault et al. [65] and subsequently extended to nonlinear model order
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Algorithm 1: Greedy Sensor Selection using QR Factorization with Column Pivoting
input : Data-driven basis, ®

Number of sensors, PP
output: Measurement Matrix C
if (P = K) then
‘ [01, 02, - . ., 0p] < Reduced Matrix QR Column Pivoting of ®;” ;
3 elseif (P > K) then
‘ [01, 02, - - ., 0p] < Reduced Matrix QR Column Pivoting of ®,®,” ;
5 C < [€p,, €0 --er €0,]" Where e, =1[0,...,0, 1 _,0,...,0]"

~
Qi

-

[

-

reduction applications by Chaturantabut and Sorensen [18,59]. Here, one recursively learns the
interpolation points (with indices ;) at locations carrying maximum linear dependence error estimated
at previously estimated interpolation points.

The primary idea behind DEIM is to estimate a high-dimensional state using information at sparsely
sampled interpolation points. Such techniques (other examples being Gappy POD [17] and missing
point estimation or MPE [20]) are popular as hyper-reduction tools that bypass expensive nonlinear term
computations in model order reduction. Naturally, one can adopt these interpolation points for sensor
placement in sparse reconstruction applications. To illustrate this, the POD-based DEIM approximation
of order M (number of interpolation points) for w(t) in the space spanned by the basis ¥ € RV*M jg
given by

u = Uh(t) (18)

where b(t) is coefficient vector, b(t) € R™. When using POD bases, ¥, one can simply estimate
b(t) = WTu(t), but this requires dealing with the higher dimensional state vectors € R” that are
computationally comparable to high-fidelity models even when using projection-based reduced order
models. Hyper-reduction strategies [19] bypass this issue by estimating the approximate coefficients
b(t) using carefully chosen set of M interpolation points instead of the full (/N-dimensional) state so
that computational cost scales with M. Specifically, one chooses M interpolation points corresponding
to indices [0;....., 0], 0;i € N to form a M-by-M linear system DTWb(t) = D7 u(t), where

the interpolation or measurement matrix is given by D = [e,,....,e,,,] € RY*M with columns
eo; = [0,...,0, 1 ,0,...,0]" € RY. The DEIM approximation of u(t) then becomes
Qi
uppu(t) = ¥(D'W) " Dlu(t), (19)
——————
N x M M x1

where ¥(DTW)~! can be precomputed once to yield a N x M matrix while D7 u(t) represents
M-dimensional representation of the state denoting the interpolation points. This way, one avoids
repeated computation of the high-dimensional w(¢). One can easily see the connections between DEIM
approximation and the sparse reconstructed state xgz = ®a with a obtained using eqns. (5)-(8) using
C = DT, Therefore, estimating the interpolation points (D7) is similar to estimating the sparse
measurement locations in C. The indices p;....., o)y are estimated recursively from the input basis

{(Dj}j”il using the algorithm 2 from [18]. The process starts from selecting the first interpolation
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Algorithm 2: Discrete Empirical Interpolation Method (DEIM)
input : {(IDj}jj\il C RY linearly independent

output: 5= [p;....., op|T € RM
1 [|pl, 01] = max{|®:|}
2 @ =[], D = [e,],0= [o]
3 for j =2to M do
4 | Solve (DT®)a = D"®; fora
5 r==o; — ®a
6 | lol, o) = max (i)

7| ®[®d)], D« [De,), i [9]
o)

s end

index 01 € {1,2,..., N} using the first input POD basis |®;|. The remaining interpolation indices
{0j, j = 2,3,...,M} are selected such that they correspond to the largest magnitude of |r| where
r = ®;, — Pa is the residual error between current input basis and its interpolation ®a obtained using
{®y, Py, P3...P;_1} at the indices {01, 02, 03 . .. 0j—1}. This step is given by line 5 of the algorithm 2.
In lines 1 & 6, the ‘max’ function is similar to that available in MATLAB and |p| = |r,,|. The residual
represents a measure of the linear independence of ®; with respect to the basis vectors ahead of this in
the sequence and the interpolation point is at the maximum absolute value of this measure. Naturally,
the realized ¢; depends on the choice of basis ®; and their sequence. The ordering of the input basis
is not critical for the QR-pivoting based approach. The linear independence of the input basis ensures
the above procedure is well-defined, i.e. DT ® is non singular and p # 0 for all iterations. By using
POD basis as the input, the linear independence and hierarchy (i.e. basis ordered in terms of decreasing
singular values) characteristics are guaranteed which in turn ensures that the sparse interpolation indices
are hierarchical and non repeating.

2.5. Sparse Recovery (SR) Framework

The reconstruction algorithm used in this work based on the Gappy POD or GPOD framework [17]
and can be viewed as an [, minimization solution of the sparse recovery problem summarized through
eqns. (4),(5) and (6) with ® composed of K < M basis vectors, i.e. dimension of a i1s K < M. At
this point, we remind the reader of naming conventions adopted in this paper: the instantaneous j* full
flow state is denoted by z; € RY, whereas the entire set consisting of M snapshots is assembled into a
matrix form denoted by X € RV*M_ This discussion focuses on single snapshot reconstruction as the
extension to multiple snapshots is trivial, i.e. each snapshot can be reconstructed sequentially or in some
cases be grouped together as a batch. This allows for such algorithms to be parallelized easily.

The primary difference between the SR framework in eqn. (4) as used in compressive sensing or
DEIM-based approaches and GPOD [12,13,17,66] as shown in eqn. (21) is the construction of the
measurement matrix C' and the sparse measurement vector Z;. In SR (eqn. (4)), the down sampled
state 7; € R is a compressed version containing only the measured data, whereas in GPOD, z; € RY
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18 a masked version of the full state vector, i.e. values outside of the P measured locations are zeroed
out to generate a filtered version of x;. For high resolution data z; € R" with chosen basis ®; € RY,

the low-dimensional features, a’ € R¥ are obtained from the relationship shown below:
K .
i=1

The masked (incomplete) data 7; € RY, corresponding measurement matrix C' and mask vector m €
RY are related by:
i'j =<m-x; >= ij, 2D

where ¢ € RY*N_ Therefore, the GPOD algorithm results in a larger measurement matrix with
numerous rows full of zeros as shown in fig. 3 (compare with fig. 1). To bypass the complexity of
handling this N x N matrix, a mask vector, m € N x 1 with 1s and Os operates on z; through a
point-wise multiplication operator < - >. To illustrate, the point-wise multiplication is represented
as T; =< m; - x; > for each snapshot j = 1..M where each element of z; multiplies with the
corresponding element of m ;. This is applicable when each data snapshot, z; has its own measurement
mask m; which is a useful way to represent the evolution of sparse sensor locations over time. The SR
formulation in eq. (4) can also support time varying sensor placement, but would require a compression

matrix, C; € R”*Y that changes with each snapshot. The goal of the SR procedure is to recover the full

X C

Figure 3. Schematic of GPOD formulation for sparse recovery. The numerical values
represented by the colored blocks: black (1), white (0), color(other numbers).

data from the masked data given in eqn. (22) by approximating the coefficients @’ (in the I, sense) with
basis, @, learned offline using training data (snapshots of the full field data).

Bjam; Y ald; (22)

The coefficient vector a’/ cannot be computed by direct projection of Z; onto ® as these are not designed
to optimally represent the sparse data. Instead, one needs to obtain the “best" approximation of the

coefficient @/, by minimizing the error &; in the I5 sense as show in eqn. (23).

K 2

=1 2
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In eqn. (23) we see that m; acts on each column of ® through a point-wise multiplication operation
which is equivalent to masking each basis vector ®,. The above formulation is valid for a single snapshot
reconstruction where the mask vector, m; could change with every snapshot z; for j = 1..M and the
error £; represents the single snapshot reconstruction error to be minimized in order to estimate the
approximate coefficients a’. It can easily be seen from below that one will have to minimize the different
&;’s sequentially to learn the entire coefficient matrix, @ € R**M for all the M snapshots. Denoting the
masked basis functions as ®; =< m; - ®; >, eq. (23) is rewritten as in eqn. (24).

(24)

2

In the above, ® is analogous to ® = C® in eq. (4). To minimize &;, one computes the derivative with

respect to a; and equated to zero as below:

0
o0

The result is the linear normal equation given by eqn. (26)

£) =0. (25)

Ma’ = f7, (26)
where My ko = @kl, <f>k2> orM = ®7® and fij = (7, <T>i> or fi = @Tf:j. The reconstructed solution
is given by eqn. (27) below:

K
Tj=Y o, (27)
k=1
Algorithm 3 summarizes the above SR framework assuming the basis functions (®;) are known. The

above solution procedure for sparse recovery is the same as that described in section 2.1 except for the

dimensions of the Z and C.

Algorithm 3: Least Squares (/5) Sparse Reconstruction with basis ®.

input : Full data ensemble X € RV*M
RN x M

Incomplete data vector X e
the mask vector m € RY.,
output: Approximated full data vector X € RV*M
1 for each snapshot index 7 < M do
2 Build a least squares problem: Ma’ = f7 (eqn. (26)) as below;

3 Compute masked basis function: ® = mP;
4 Compute matrix M = &7 ®;
5 Compute vector: fi= @Tfj;

6 | Solve @’ from the least squares problem: Ma’ = f7 (eqn. (26));

7 Reconstruct the approximated solution z; = ®a’ (eqn. (27)).

s end
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2.6. Algorithmic Complexity

The cost of computing the POD basis is O(N x M?) where N is the full state dimension and M,
the number of snapshots. The cost of sparse reconstruction turns out to be O(N x K x M) for both
the methods, where the K < M is the system dimension chosen for reconstruction. Naturally, for many
practical problems with an underlying low-dimensional structure, POD is expected to result in a smaller
K than any other choice of basis. This helps reduce the sensor quantity requirement and reconstruction
cost. Further, since the number of snapshots (M) is also tied to the desired basis dimension (), a larger
K requires a larger M and in turn a higher cost to generate the basis.

The complexity of the sensor placement depends on the choice of method adopted. Using QR
factorization with column pivoting, the cost of sensor placement for a N x N matrix is O(N?) and
O(NM?) for a N x M matrix. The DEIM method carries a complexity of O(NM?) when retaining
M POD modes and identifying M sensors with a state dimension of N. The MCN algorithm requires
an expensive combinatorial search to find the sensor location that minimizes the condition number of
M € RM*M in each possible sweep. This results in a computational cost of O(N?M?3) for identifying
M sensors. These estimates are consistent with our observation that the DEIM and QR-pivoting
approaches yield results in very short time.

3. Data Generation for Numerical Experiments

3.1. Low-dimensional Cylinder Wake Flows

Studies of cylinder wakes [24,67—69] have attracted considerable interest from the model reduction
and dynamical systems communities for its particularly rich flow physics content, encompassing many
of the complexities of nonlinear flow systems, while easy to simulate accurately on the computer using
established CFD tools. In this study, we explore data-driven sparse reconstruction for the cylinder
wake flow at Reynolds numbers with unsteady wakes in the range of Re = 100 — 1000. To generate
two-dimensional cylinder flow data, we adopt the spectral Galerkin method [70] to solve incompressible
Naiver-Stokes equations, as shown in Eq. (28) below:

ou Ou
T ) 28
Ox * oy (280
P
Ou Oy 0 08 oy, (28b)

ot ox oy ox

% + u% + vg—;} = _(Z_]; + vV, (28¢)
where u and v are horizontal and vertical velocity components. P is the pressure field, and v is the
fluid viscosity. The rectangular domain used for this flow problem is —25D < x < 45D and —20D <
y < 20D, where D is the diameter of the cylinder. For the purposes of this study, data from a reduced
domain, i.e., —2D < z < 10D and —3D < y < 3D, is used. The mesh was designed to sufficiently
resolve the thin shear layers near the surface of the cylinder and transit wake physics downstream. For

the case of Re = 100 the grid includes 24, 000 points whereas for Re = 1000 the grid is refined to
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include approximately 95, 000 points for the sampled flow region. The computational method employed
is a fourth order spectral expansion within each element in each direction. The sampling rate for each

snapshot output is chosen as At = (.2 seconds.
3.1.1. Cylinder Wake Limit-cycle Dynamics

In this section, we explore sparse reconstruction of unsteady wake flows with well-developed periodic
vortex shedding behavior. The GPOD type algorithm is chosen over the traditional Compressive
sensing-based SR formulations to bypass the need for maintaining a separate measurement matrix,
especially when employing point sensors to mimic realistic data acquisition. The first three POD
modes and coefficients are computed and shown in figure 5 and 6, respectively. Similar to the velocity
field visualized in figure 4, the dominant POD modes (mode 1 and mode 2) capture the symmetric
vortex shedding patterns at various length scales for all the cases. The vestiges of onset of instability
at higher Re numbers (Re = 1000) is observed from the asymmetry in mode 3. This is consistent
with the observations in [71], where the laminar vortex shedding happens at around Re = 47, and
becomes unstable at ~ 190 which deforms the small-scale structures at higher POD modes. On the
other hand, the temporal evolution of POD coefficients show periodic limit-cycle behavior for all the
Re numbers with the characteristic frequencies increasing with Re as shown in fig. 6. The dependence
of sparse reconstruction performance on Re is beyond the scope this article although we expect the
system dimensionality to increase with e as the shear layers become thinner and consequently, require
increased spatial sampling to capture all the relevant scales of motion. Instead, in this work we operate
with narrower focus, i.e., explore and quantify how sparse reconstruction performance (in terms of error
metrics) depend on sensor quantity, their placement and model dimensionality. With this in mind, we
focus the analysis in the rest of the paper to a single Reynolds number, Re = 100. In this study, we
choose 300 snapshots of data corresponding to a Reynolds number, Re = 100, corresponding to a
non-dimensional time (1" = %) of T'" = 60 with uniform temporal spacing of d1" = 0.2s. T = 60
corresponds to multiple (= 10 — 15) cycles of periodic vortex shedding behavior.

- -
0 ’ o5 0 - " |lo
= N |
0 5 10

(a) Re =100 (b) Re = 1000

5

'
N

0 5 10

Figure 4. Color contour snapshots of the instantaneous stream-wise velocity component for
the cylinder flow at Re = 100 and Re = 1000.
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Figure 5. Isocontours of the three most energetic modes (from left to right) for the cylinder
flow at Re = 100 and Re = 1000.
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Figure 6. Time evolution of the first three POD coefficients (Top: a;; Middle: as; Bottom:
ag) for the cylinder flow at different Re number (Re = 100 (Blue), 300 (Orange), 800
(Green), 1000 (Red)) in the periodic vortex shedding regime.

3.1.2. Smart Sensor Placement in Cylinder Wake

Figure 7 summarizes the realized sensor placement with a budget of 200 sensors using four different
algorithms: (i) random algorithm in sec. 2.4.1; (i1) QR factorization with column pivoting that maximizes
the determinant capture for a given P as discussed in sec. 2.4.3; (ii1) discrete empirical interpolation
method (DEIM) in sec. 2.4.4 and (iv) explicit condition number minimization through an iterative
combinatorial search (sec. 2.4.2). All these sensor placement algorithms use POD bases computed using
the 300 snapshots of data containing both u and v velocity components. As expected, the random sensor
placement in fig. 7(a) samples the entire domain without bias although the regions with higher grid
density tend to be sampled more frequently. This includes the region close to the cylinder surface where
the mesh resolution is high to capture the thin shear layers accurately. On the other hand, the three
‘smart’ sensor placement algorithms and shown fig. 7(b)-7(d) identify locations either in the wake and
also on the cylinder surface. The QR-Pivot and the DEIM methods identify a cluster of centers about
two diameters downstream of the cylinder. Further downstream, the computed centers split into two
narrow ‘tail’-like regions on either side of the wake centerline. On the other hand, the MCN framework

(fig. 7(d)) identifies only five sensors in the wake, mostly downstream while a overwhelming number are
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(c) Discrete Empirical Interpolation Method (DEIM) (d) Explicit Condition Number Minimization (MCN)

Figure 7. Sensor locations learned form different choices of methods considered in this work
including both random as well as smart algorithms for the cylinder wake flow (e = 100).

These image show the most relevant 200 sensors, i.e. (P = 200).

predicted on the cylinder surface. This is potentially indicative of the low-dimensional characteristic of
the wake flow where only a few POD modes are needed to capture a significant portion of the energy.

4. Sparse Reconstruction of Canonical Fluid Flows

In this section, we explore sparse reconstruction of cylinder wake flow at Re = 100 using the above
SR infrastructure based on the GPOD formulation as against the traditional SR formulation. This choice
is purely a matter of convenience and helps bypass the need for maintaining a separate measurement
matrix (resulting in memory savings). In all the oversampled cases reported in this section, Tikhonov
regularization is employed to reduce overfitting.

4.1. Sparse Reconstruction (SR) Experiments and Analysis

For this a priori assessment of SR performance we reconstruct sparse data from simulations where the
full field representation is available. The sparse sensor locations are chosen as single point measurements
using a variety of sensor placement methods as discussed in section 3.1.2 and these locations are fixed
for the ensemble of snapshots used for the reconstruction (i.e. we do not consider dynamic sensor
placement). Reconstruction performance is evaluated by comparing the original simulated field with
that from SR using POD as the choice of basis across the entire ensemble of numerical experiments.
Of course, using such a data-driven basis requires availability of data so that one can compute the basis
vectors a priori. In practice, one would have to build a library of basis vectors from data that can in
turn be used for sparse recovery and is currently being developed within our team. In this we undertake
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this approach in order to focus on assessing the relative roles of system dimensionality (/), sensor
sparsity (P) and sensor placement (C') for the POD-based SR. In particular, we aim to accomplish the
following through this study: (i) check if oversampling relative to desired system dimension (P > K)
is sufficient condition for accurate reconstruction of the fluid flow for this POD-based [, reconstruction;
(i1) understand how sensor placement impacts reconstruction quality for different choice of basis.

To learn the data-driven POD basis we employ the method of snapshots [52] as shown in
eqns. (9)-(12). For the numerical experiments described here, the data-driven basis and coefficients are
obtained from the full data ensemble, i.e., M = 300 snapshots corresponding to 7" = 60 non-dimensional
times. This gives rise to at most M basis for use in the reconstruction process in eqn. (3), i.e. a
candidate basis dimension of N, = M. As shown in table 1, the choice of algorithms depend on
the choice of system dimensionality (/), data sparsity () and dimension of the candidate basis space,
N,. Recalling from the earlier discussion in section 2, we see that P > K would require an [, method
for a desired reconstruction sparsity /K as long as P > N,. In case of POD-based SR, the basis are
energy optimal for the training data and hence, contain built-in sparsity. That is, as long as the basis is
relevant for the flow to be reconstructed, retaining only the most energetic modes (basis) should generate
the best possible reconstruction for the given sensor placement and quantity. Therefore, the POD basis
need to be generated once and the reconstructed system dimension is determined by just choosing to
retain the first few modes in the sequence. For generic basis with no built-in ordering of when using
a library of basis with no clear classification available a priori, one requires to search for the & most
significant basis amongst the maximum possible dimension of N, = M using sparsity promoting [,
methods. /5 methods such as the iterative thresholding algorithms [27,72] require multiple solutions of
the least-squares problem before a sparse solution is realized. This results in necessary, but increased

computational cost.

4.2. Comparison of lo and l; Sparse Reconstruction using Energy-ordered POD Basis

In this subsection, we verify the equivalence between [, reconstruction using energy ordered POD
basis and sparsity promoting /; — minimization reconstruction for the cylinder wake data when presented
the same sparse sensor data. The success of this verification will imply that the chosen POD basis ordered
in terms of energy of the training data is also relevant to the data being reconstructed and also validate the
accuracy of our /; implementation. In such cases, choosing the A -most relevant basis for reconstruction
is trivial (and efficient) as one chooses the first or last A modes (as against searching for the sparsest
K modes using [;) as the candidate basis for /5 reconstruction provided sufficient sparse data, P > K,
is available. To verify this, we consider two cases of reconstruction for the limit-cycle cylinder wake
at Re = 100. Case (a): P > K, K = N, and using least squares reconstruction; Case (b): P > K,
K < N, < M and employs [, reconstruction using optimal matching pursuit. Figure 8 and table 2
compares the reconstructed fields and the K predicted weights for the two cases for a single snapshot
corresponding to 7" = 0.2. In this study we use a greedy optimal matching pursuit algorithm for the I,
norm minimization, CoOSAMP as described by Needell and Tropp in [11].

The above results confirm the equivalence of these two approaches for POD-based reconstruction of

cylinder wake flows considered in this study. It is worth noting that /; should be the preferred choice
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Table 2. caption

Re K P N, B

[, 100 10 40 10 101
[, 100 10 40 20 101

= POD projected
= SCR/,-B=101

= SCR/;-B=101

(©

Figure 8. Comparison of the sparse reconstruction using both /; and [, minimization
methods for basis that is ordered in terms of energy content. The reconstructed and actual
flowfields at T = 0.2 are compared in (a) for /s and (b) /;. The corresponding POD features

from both methods are shown in (c).

when the relevance of sparse data to the candidate basis space is unclear. For the rest of this paper, we
will leverage energy hierarchy of the candidate POD basis and adopt the SR problem formulation using
a [y minimization algorithm with K = N,,. In other words, the candidate basis space is chosen based on

the desired reconstructed field dimension and not fixed.

4.3. Sparsity and Energy Metrics

For this SR study, we explore the conditions for accurate recovery of information in terms of data
sparsity (P) and system sparsity (/') which also represents the dimensionality of the system in a given
basis space. In other words, sparsity represents the size of a given basis space needed to capture a
desired amount of energy. As long as the measurements are incoherent with respect to the basis ®
and the system is overdetermined, i.e., P > K, one should be able to invert ® to recover the higher
dimensional state, X. From earlier discussions in section 2, we know P > K is a sufficient condition for
accurate reconstruction using /o minimization. Thus, both interpretations require a minimum quantity
of sensor data for accurate reconstruction and is verified through numerical experiments in section 4.4.
In this section, we describe how the different system sparsity metrics, X = N, are chosen for the
numerical experiments with both POD and ELM basis. Since the basis spaces are different, a good way

to compare system dimensions is through the energy captured by the respective basis representations.
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Figure 9. Schematic shows the cumulative energy capture corresponding to various system
sparsity levels, K, (i.e. the number of POD modes) for cylinder flow at Re = 100 to
1000. The bottom figure is a magnified version of the top figure for Ex. For Re =
100, 300, 800, 1000: Kg5 = [2,2,3,4] and Kq9 = [5, 6, 6, 6], respectively.

For POD one easily defines a cumulative energy fraction captured by the K most energetic modes, E,
using the corresponding singular values of the data as shown in eqn. (29).

K
Ak

Ex = x 100. 29

. ;(A1+A2+...+>\M) 2%

In the above, the singular values, A are computed from eqn. (10), and M is the total number of
possible eigenvalues for M snapshots. As a result, the energy fraction Ex corresponding to sparsity
K for the different flow Reynolds numbers, Re, is shown in Figure 9. For the cylinder flow case
with Re = 100, one requires two and five POD modes to capture 95% and 99% of the energy content
respectively, indicative of the low dimensional dynamics. We denote the mode numbers corresponding
to 95% and 99% of the energy capture as Ko; and Kog respectively. In this case, we compute
errf? = || X — ®79Paf9P||,. where ®79P, and af 9P represent the matrix comprising of K

POD bases and the corresponding coefficients for the different snapshots respectively. To assess SR

performance across different flow regimes (that have different Ky5) with different values of K we define
a normalized system dimension, K* = K/Ko5 and a normalized sensor sparsity, P* = P/Kgs. This
allows us to design an ensemble of numerical experiments in the discretized P* — K™ space and the
outcomes can be generalized beyond the current study. In this work, the design space is populated over
the range 1 < K* < 6and 1 < P* < 12 for POD-based SR with K bounded by the total number of
snapshots, M = 300. The lower bound of one is chosen such that the minimally accurate reconstruction
captures 95% of the energy. If one desires a different reconstruction norm, then Ky5 can be changed
to K, without loss of generality and the corresponding K -space modified accordingly. Alternately,
one can choose K, the normalized energy fraction metric to represent the desired energy capture as a
fraction of Eg,,, but is not used in this study.
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To quantify the /5 reconstruction performance, we define the mean squared error as shown in eqn. (30)
below,
11 M N
SR _ v SR\2

7j=1 =1
where X is the true data, and X % is the reconstructed field from sparse measurements as per algorithm 3.
N and M represent the state and snapshot dimensions and related to indices ¢ and j, respectively.
Similarly, the mean squared error el and e[ for the full reconstruction from the POD basis can be

computed as:

€ics, = iiiiw = X 3D
fe T MN j=1 i=1 v " ’
M N
bl — 11 DY (- XY (32)
M N j=1 i=1 ! " 7

where X 7' is the full field reconstruction using exactly computed POD coefficients a. For POD this is
simply a = ®7 X as per eqn. (12). K} is the normalized system dimension (i.e. number of POD modes
normalized by Kos) corresponding to 95% energy capture and K* = K /Ky represents the desired
reconstructed system dimension. Note that K. = Ko5/Kg5 = 1 is trivially seen to be one for this case.

Using the above definitions, we can now generate normalized versions of the absolute (¢;) and relative
(e2) errors as shown in eqn. (33). ¢ represents the SR error normalized by the corresponding full
reconstruction error for 95% energy capture. e, represents the normalized error relative to the desired
reconstruction accuracy for the chosen system reconstruction dimension, K. These two error metrics are
chosen so as to achieve the twin goals of assessing the overall quality of the SR in a normalized sense
(e1) and the best possible reconstruction accuracy for the chosen problem set-up (i.e P, K). Thus, if the
best possible reconstruction for a given K is realized then e, will take the same value across different
K*. This error metric is used to assess relative dependence of P* on K* for the chosen flow field. On
the other hand, €; provides an absolute estimate of the reconstruction accuracy for a given flow system
so that minimal values of P*, K* needed to achieve a desired accuracy can be identified.

SR SR
o eK*,P* o EK*,P* (33)
€ = R 2T T FR
Kg, K*

4.4. Sparse Reconstruction of Cylinder Wakes

As one of the goals of this study is to establish the baseline SR quality using POD basis we performed
a series of nearly one thousand SR experiments corresponding to different points in the P* — K* design
space and spread over the different sensor placements. The underlying goal through this work is to bare
the aspects of interplay between the various SR control variables, namely, reconstruction dimension, K,
sensor quantity, PP and the choice of sensor placement method (which affects C'). In all these numerical
experiments, the sensor placement is fixed across the range of snapshots as is the case in stationary
sensing.
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Figure 10. Isocontours of the normalized mean squared POD-based sparse reconstruction
errors (I, norm) corresponding to the sensor placement with maximum and minimum errors
from the chosen ensemble of random sensor arrangements. The average error across the
entire ensemble of ten random sensor placements is also shown. Left: normalized absolute

error metric, €;. Right: normalized relative error metric, €s.
4.4.1. Sparse Reconstruction Accuracy

By computing the errors as described in section 4.3 across the K — P* space, the contours of ¢;
and e, are generated for both the random as well as greedy sensor placements in figures 10 and 11. As

the random sensor placement can lead to high variability between realizations, we estimate multiple sets
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Figure 11. Isocontours of the normalized mean squared POD-based sparse reconstruction
errors ([, norm) corresponding to the different greedy sensor placement methods. Left:
normalized absolute error metric, ¢;. Right: normalized relative error metric, €5. (MCN:
Minimum Condition Number)

of sensor locations corresponding to different seeds (as denoted by /5 in this article). Specifically, we
compute the SR errors from ten different random seeds and the corresponding reconstruction errors are
presented in terms of the mean, maximum and minimum (based on the average over the K* — P* space)
in fig. 10. For the greedy ‘smart’ sensor placements a single realization is representative of the method
and corresponding error contours for €; and €, are shown (fig. 11). For ease of interpretation, the contour
levels in both these figures are made consistent along with appropriately normalizing the error metrics.
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The relative error metric €, (the right column in Figure 10 and 11), shows that the smaller errors
(predominantly blue regions) are located in the region where P* > K™ and approximately separated
from the rest of the K* — P* space using a black diagonal line. This indicates that the oversampled
SR problem with P > K, i.e. having more sensors than the dimensionality chosen to reconstruct the
system yields good results in terms of e, while for small P*, the normalized relative error can reach
as high as O(10' — 10?). Since €, is normalized by the error contained in the exact K-dimensional
POD reconstruction, this metric represents how effectively the sparse sensor data can approximate the
K -dimensional solution using /> minimization for the given sensor quantity and placement. In principle,
the exact K -sparse POD reconstruction is the best possible outcome to expect irrespective of how much
sensor data is available as long as K = N,. Another way of looking at this is that by constraining the SR
problem by choosing a relevant POD basis with knowledge of the energy hierarchy, the [, reconstruction
approaches the [, minimization solution, i.e. the K -sparsest basis are selected by default. Of course, this
is not feasible in practical situations where the basis relevance (and its ordering) to the data is not known
a priori. We also observe that as expected €; contours adhere to a L-shaped structure indicating that
absolute normalized error reduces as both PP and K increase due to oversampling and increased system
dimension. In practice, €; is the more useful metric for planning and designing the sparse recovery
framework for a given flow system, provided the system dimension, i.e. Kg; or K, is known.

While qualitatively accurate reconstruction is almost always observed for the higher values of P* and
K for the different sensor placements, there appear to be exceptions in the form of higher reconstruction
errors even when P* > K*. This is observed for both the random sensor placement as well as smart
sensing approaches. In fact, for the random sensor placement method, a small portion of €5 in the
region abutting the P* = K* line shows nearly an order of magnitude higher error, O(10") (colored
as yellow in Figure 10) as compared to rest of the region with expected values of O(1). This trend
is observed for the greedy sensor placement methods as well, particularly QR-pivoting and MCN. In
general, the greedy sensor placement methods show better reconstruction performance when compared
to random approaches in the regions surrounding P* ~ K*. This is not surprising given that oversampled
(P* > K¥) or under-sampled (P* < K™) reconstruction will invariably generate low and high errors
respectively. It is only when operating in the transition region that separates under-sampling from
over-sampling that sensor placement becomes important.

4.4.2. Assessment of Sensor Placement

Among the three greedy sensor placement methods experimented in this work, DEIM provides the
most reliable reconstruction (fig. 11 (c,d)) and closely followed by QR factorization with column pivoting
(fig. 11 (a,b)). MCN method which explicitly minimizes the condition number of M shows good
reconstruction accuracy for smaller values of K™ until about K* ~ 4 — 5 (see fig. 11 (e,f)). The
anomalous inaccuracy that is observed for reconstruction dimensions beyond K* ~ 5 is due to very
few sensors being generated in the wake downstream of the cylinder as seen in fig. 7(d). For this fluid
flow, the dominant dynamics occur in the wake and MCN produces very few sensors in this region which
under-samples the flow field for higher dimensional reconstruction.

Although the error metrics serve as a useful indicator of performance, we show the exact comparison

of the instantaneous sparse reconstructed flow contours (along with the exact field) and the estimated
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Figure 12. 1°* row (Random 3 = 101), 3" row (QR-Pivot), 5" row (DEIM) and 7" (MCN)
row: we show the line contour comparison of streamwise velocity between the actual CFD
solution field (blue) and the POD-based SR reconstruction (red) for Re = 100 at P* = 10
and K* = 1,2,3. 2" row (Random 3 = 101), 4"* row (QR with column pivoting), 6"
row (DEIM) and 8 row (MCN) show the corresponding projected (full reconstruction) and

sparse recovered coefficients a from the SR algorithm.


http://dx.doi.org/10.20944/preprints201902.0196.v1
https://doi.org/10.3390/fluids4020109

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 21 February 2019 d0i:10.20944/preprints201902.0196.v1

30

Table 3. Sparse reconstruction performance quantification for different sensor location
selection method for periodic cylinder flows at Re = 100. €; is the SR error normalized
by the exact reconstruction error corresponding to a dimension of Kg;. €5 is the SR error

normalized by the exact reconstruction error corresponding to a dimension of K.

Method K P K* P* Ly, Ly €1 €9
2 20 1.0 10.0 2.548 2306 1.08E+00 1.08E+00
Random(s =101) 4 20 2.0 10.0 2.548 3.247 6.71E-01 1.23E+00
6 20 3.0 10.0 2548 4.186 3.17E-01 1.96E+00
2 20 1.0 10.0 2.520 3.794 1.04E+00 1.04E+00
QR-Pivoting 4 20 2.0 100 3917 3.794 6.05E-01 1.11E+00
6 20 3.0 10.0 3917 4.506 1.88E-01 1.16E+00
2 20 1.0 10.0 2.323 3.720 1.00E+00 1.00E+00
DEIM 4 20 2.0 10.0 3.685 3.867 5.56E-01 1.02E+00
6 20 3.0 10.0 3.685 4.562 1.69E-01 1.05E+00
2 20 1.0 100 1.090 2213 1.15E+00 1.15E+00
MCN 4 20 2.0 100 1476 3.502 8.70E-01 1.59E+00
6 20 3.0 100 1476 3.725 2.76E-01 1.71E+00

POD weights, a comparison with that for the full data reconstruction in fig. 12. In particular, we show
results for an over-sampled case P* = 10 for different reconstruction dimension, K* = 1,2, 3 where
all the different error contours in figs. 10 and 11 show low error metrics. As expected, the quality of
the isocontour reconstruction improves with increasing /*. Further, amongst the different experiments
for a given over-sampled P*, K*, the DEIM and QR with column pivoting provide the most accurate
sparse estimation of the POD coefficients (a), especially for the higher K*. The relative inaccuracy of
the MCN framework in the estimation of a is observed even for these carefully chosen design points with
low average error metrics although the discrepancies are barely noticeable. For such low-dimensional
wake flows, these small errors in @ amplify the discrepancy in the full field reconstruction. The relevant
quantifications including the sensor quantity, placement method, reconstruction dimension and error
metrics for these select dissection cases are summarized in table 3. In addition, we also estimate the
coherency parameter for each of these cases. The computed 1 values are O(1) indicating that the rows of
the measurement matrix are sufficiently incoherent with respect to the POD basis on average. On careful,
examination, we observe that the coherency parameters for the QR-pivoting and DEIM placements are
higher than the random sensor placement. This again is not surprising as these approaches take advantage
of the underlying physical structure as contained in the POD modes to determine sensor placement.

4.4.3. Sparse Reconstruction with Marginally Oversampled Sensors

We observed earlier that the importance of data-driven sensor placement will be felt most when the
sensor quantity is comparable to the targeted reconstruction dimension, i.e. P* ~ K*. To verify this,
we dissect the instantaneous snapshot reconstruction corresponding to K* = 5 and P* = 6 as shown
in fig. 13. The plots in the left column of this figure denote the sensor locations, the middle column
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represents the instantaneous reconstructed fields (compared with the exact contours) and the right column
shows the predicted and exact POD coefficients. As expected, the greedy smart sensor placements
perform better at reconstruction when compared to random sensor placement which is evident from
inaccuracy in the reconstructed coefficients (see figs. 13(c,f,i,]) . This is because, the smart sensors
are placed at locations that are physically relevant while the random placement as shown in fig. 13
results in under-sampling of the wake region. While not all random sensor placement will generate bad
reconstructions, we see strong variability in the error metrics between realizations as a consequence. This
is clearly evident from fig. 10 where the variability from different choices of random sensor placement
is captured primarily in the under-smapled and marginally oversampled regions of the P* — K™ design

space.
4.4.4. Sparse Reconstruction with Highly Oversampled Sensors

In the limit of oversampling, i.e. P* > K*, one expects all these different methods to perform
accurately as it is not hard even using purely random placement to populate the physically relevant
regions. However, we observe surprising inaccuracies with the MCN method in the limit of large
P. We dissect this observation using a single design point, K{* = 6, P* = 10 (as shown in fig. 14)
for which the sparse recovery should be close to exact when applied to this low-dimensional wake
flow. Figure 14 shows the sensor locations for each of the different algorithms in the left column,
instantaneous reconstructed fields (compared with the exact contours) in the middle column and the
predicted POD coefficients compared with the exact values in the right column. We easily see that the
sensor combinations corresponding to random, DEIM and QR with column pivoting produce identical
results while the sensors based on condition number minimization generates erroneous outcomes. The
reasons for this is not hard to decipher as the MCN estimates only six sensors in the wake of the cylinder
and any additional sensors that are generated happen to be located on the cylinder surface. This in turn
effectively under samples the system although P = 20, i.e. 20 sensors were used. This is clearly
illustrated in fig. 15 where the sensor locations identified for different budgets with P* = 4,7,10
are shown for QR with column pivoting, DEIM and MCN. These plots show that MCN generates all
the sensors in the wake region for P* = 4 and subsequent increase in the budget does not produce
meaningful additions. For this low-dimensional system, K = 5 modes captures 99% of the energy, the
least condition number of M appears to be estimated when sensors are placed at locations where the

field values are zero. More investigation is needed to identify the causes that underlie this observation.

5. Conclusion

In this work, we have developed a framework for systematic assessment of sparse reconstruction (SR)
performance using flow normalized error metrics and basis/sensor dimension. Using this, we explore
the interplay of sensor quantity, their placement and system dimension using optimal data-driven basis
from proper orthogonal decomposition for reconstruction from sparse data of canonical low-dimensional
wake flows. It is well known that sparse solutions are sought in such SR problems as the candidate basis
is typically generic and exhaustive. While such generic candidate basis have a good probability of

representing the data, the hierarchy of its relevance to the flow system of interest is not known a priori.
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Figure 13. Dissection of instantaneous snapshot reconstruction for a marginally
oversampled case (K* = 5, P* = 6) . The figure shows the different sensor locations (left
column), overlaid true and reconstructed solutions (middle column), and the reconstructed
coefficients a (right column) using POD-based SR for Re = 100. The different rows
correspond to the different sensor placement: random sensor placement with seed § =
150 (1°* row), QR factorization with column pivoting (2"¢ row), DEIM (3"¢ row) and
Minimum condition number (MCN) sensor placement (4" row). The corresponding
error quantifications are as follows. 1% row: €,=2.46E-01 and €,=8.18E+00. 2" row:
€,=5.20E-02 and €,=2.37E+00. 3" row: ¢;=4.44E-02 and €,=1.47E+00. 4" row:
€1=8.04E-02 and €,=2.67E+00.

In this study, we used a priori generated POD-basis along with knowledge of its energy hierarchy and
relevance to the given (full state) flow system for sparse recovery. This allows us to bypass the need for
more expensive /; norm minimization with [ approaches of complexity O (/N K M) as long as the same
relevance exists for the sparse measurements. To verify this, we explicitly show that given basis relevance
and ordering for the full flow state, /; methods using optimal matching pursuit and /; minimization (with
the first K basis) using least squares yield the same K -sparse reconstruction from very few random
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Figure 14. Dissection of instantaneous snapshot reconstruction for a highly oversampled
case (K* = 6,P* = 10) .The figure shows the different sensor locations (left column),
overlaid true and reconstructed solutions (middle column), and the reconstructed coefficients
a (right column) using POD-based SR for Re = 100. The different rows correspond to
the different sensor placement: random sensor placement with seed 5 = 150 (1% row),
QR factorization with column pivoting (2"¢ row), DEIM (3¢ row) and Minimum condition
number (MCN) sensor placement (4" row). The corresponding error quantifications are as
follows. 1%t row: €,=5.73E-02 and e,=3.43E+00. 2"¢ row: €;=3.01E-02 and e,=1.80E+00.
374 row: €;=1.98E-02 and e5=1.19E+00. 4" row: ¢;=9.77E-01 and ¢,=58.60E+00.

measurements. In addition, we also observe from systematic analysis of error metrics over a carefully
designed parameter (P* — K*) space that even marginal oversampling, i.e. P Z K is sufficient for
accurate full state recovery using /s SR with high probability which is akin to the requirement for
minimization. We reiterate here that this study is not intended to advocate the use [, over sparsity
promoting /; methods and acknowledge that the latter is the sensible choice in practical situations where
knowledge of the underlying system is scarce.
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Figure 15. Incremental evolution of sensor placement using the different greedy sensor
placement methods (QR-pivoting (left), DEIM (middle) and MCN (right)) as P* = P/Ko;
is increased. We show plots for three different cases corresponding to P* = 4,7, 10 in each

of the rows.

We further expand the P — K design space to include the effect of data-driven sensor placement
with the following candidates: random sensing and greedy-smart sensing algorithms such as DEIM,
QR with column pivoting and explicit condition number minimization or MCN. We observe that while
the random sampling methods show highly variable errors for marginal oversampling, greedy-smart
sensor placement show consistently accurate recovery under these conditions. In the limit of heavy
oversampling, the MCN method produces diminishing returns as seen from the wake flow example
reported in this study. This can be ascribed to the inability of MCN to generate meaningful sensors
in dynamically relevant regions of the flow beyond a small threshold. More research is necessary to
delineate the causes for this behavior. Considering the computational complexity of learning sensors
from data and the propensity for reliable sparse reconstruction, QR factorization with column pivoting
and DEIM (in that order) turn out to be the best alternatives to purely random sampling.
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