

Article

Quadrature current compensation in non-sinusoidal circuits using geometric algebra and evolutionary algorithms

Francisco G. Montoya ^{1*}, Alfredo Alcayde ¹, Francisco M. Arrabal-Campos ¹, Raul Baños ¹

¹ Dept. of Engineering, University of Almeria, Spain; pagilm@ual.es aalcayde@ual.es fmarrabal@ual.es and rbanos@ual.es

* Correspondence: pagilm@ual.es; Tel.: +34 950 214501

Academic Editor: name

Version February 7, 2019 submitted to Energies

Abstract: Non-linear loads in circuits cause the appearance of harmonic disturbances both in voltage and current. In order to minimize the effects of these disturbances and, therefore, to control over the flow of electricity between the source and the load, they are often used passive or active filters. Nevertheless, determining the type of filter and the characteristics of their elements is not a trivial task. In fact, the development of algorithms for calculating the parameters of filters is still an open question. This paper analyzes the use of genetic algorithms to maximize the power factor compensation in non-sinusoidal circuits using passive filters, while concepts of geometric algebra theory are used to represent the flow of power in the circuits. According to the results obtained in different case studies, it can be concluded that the genetic algorithm obtain high quality solutions that could be generalized to similar problems of any dimension.

Keywords: Power factor compensation; non-sinusoidal circuits; geometric algebra; evolutionary algorithms.

1. Introduction

The introduction of distributed generation and microgrids in power networks allow an efficient energy management and integration with renewable energy sources [1]. However, these grids include an increasing number of power electronic devices and non-linear electronic loads, such as power inverters, cycloconverters, speed drives, batteries, household appliances, among others. These non-linear loads increase the harmonic disturbances both in voltage and current, then causing detrimental effects to the supply system and user equipment [2]. As consequence, these grids are seriously affected by events that degrade the power quality [3], and provoke excessive heating, protection faults and inefficiencies in the transmission of energy [4], it becomes a critical task to determine precisely the electrical energy balances on the microgrid.

Different authors have presented models and theories in the past [5–7], but while all them coincide in the study of the sinusoidal case, there are some controversy in the analysis of non-sinusoidal systems with a high harmonic content, such as modern microgrids. In particular, well-known theories such as those proposed by Budeanu [8] and Fryze [9], have been questioned by different authors after demonstrating inconsistency and errors [10–12]. Therefore, it is important to investigate how to improve the compensation of the power factor in non-sinusoidal systems in presence of harmonics. Some investigations have highlighted that algorithms for calculating the parameters of filters has rarely been discussed [13], although in recent years some authors have applied computational optimization methods, including meta-heuristic approaches for optimizing filter parameters in circuits having

32 harmonic distortion [2,14–16]. More specifically, genetic algorithms have been successfully applied in
 33 [17–19].

34 In this paper, an evolutionary algorithm is used to optimize the type and characteristics of passive
 35 filters for power factor compensation. The rest of the paper is organized as follows: Section 2 introduces
 36 some basic ideas about geometric algebra and its application to power systems. Section 3 describes the
 37 problem at hand and the genetic algorithm used as solution method. Section 4 presents the empirical
 38 study, while the main conclusions obtained are detailed in Section 5.

39 2. Geometric algebra and power systems

40 Traditionally, electrical engineers have been taught to solve sinusoidal electrical circuits using
 41 complex number algebra, exactly as Steinmetz theory [20] introduced in the 19th century. It stated that
 42 differential equations in time domain can be transformed into algebra equations in complex domain.
 43 Under these assumptions, the apparent power can be expressed as:

$$\vec{S} = \vec{U}\vec{I}^* = P + jQ \quad (1)$$

44 where P is the active power, Q is the reactive power and j is unit imaginary number.

45 The limitations of the algebra of complex numbers and the impossibility to apply the principle of
 46 conservation of energy to the apparent power quantity [21], has caused that some researchers propose
 47 alternative circuit analysis techniques, including those based on geometric algebra [22].

48 2.1. Basic definitions of geometric algebra

49 Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century
 50 and is considered as a unified language for mathematics and physics. It is based on the notion of
 51 an invertible product of vectors that captures the geometric relationship between two vectors, i.e.,
 52 their relative magnitudes and the angle between them [23]. Some investigations have defined the
 53 properties of geometric algebra [24,25] applied to physics and engineering. Traditional concepts such
 54 as vector, spinor, complex numbers or quaternions are naturally explained as members of subspaces in
 55 geometric algebra. It can be easily extended in any number of dimensions, being this one of its main
 56 strengths. Because these are geometrical objects, they all have direction, sense and magnitude. The
 57 basics of GA properties are based on well established definitions around vectors. For example, a vector
 58 $\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2$ (a segment with direction and sense) can be multiplied by a vector $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2$ in
 59 different ways, so the result has different meanings. In (2), the inner product is defined and the result
 60 is a scalar.

Figure 1. Outer product of vectors \mathbf{a} and \mathbf{b} . The result is a vector \mathbf{n} , perpendicular to the plane formed by \mathbf{a} and \mathbf{b}

$$\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \varphi = \sum \alpha_i \beta_i \quad (2)$$

In (3) a new product is defined, the wedge product. The main difference with its cousin the *outer* product (see figure 1) is that the result is neither a scalar nor a vector, but a new quantity called **bivector**.

$$\mathbf{a} \wedge \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \sin \varphi \mathbf{e}_1 \mathbf{e}_2 \quad (3)$$

61 A bivector is known to have direction, sense and magnitude in the same way a vector has. It
 62 defines an area enclosed by the parallelogram formed by both vectors (see figure 2). This product
 63 complies with the anti-commutative property, i.e. $\mathbf{a} \wedge \mathbf{b} = -\mathbf{b} \wedge \mathbf{a}$. A bivector is a key concept in
 64 geometrical algebra and cannot be found in linear algebra or ~~vectorial~~ vector calculus. The outer
 65 product of two vectors ~~produce~~ produces a new entity in a plane that can be operated like vectors, i.e.,
 66 ~~add~~ addition, product or even inverse. Like vectors, a bivector can be written as the linear combination
 67 of a base of bivectors.

Figure 2. Representation of a bivector $\mathbf{a} \wedge \mathbf{b}$

68 Finally, the third product between vectors is defined in (4) as the **geometric product** and can be
 69 described as one of the major contributions in geometric algebra. Not only vectors can be multiplied
 70 geometrically, but bivectors and other entities, in general, can be used.

$$\mathbf{a}\mathbf{b} = \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b} \quad (4)$$

71 The result is a linear combination of the inner product and the wedge product. Equation (4) can
 72 be expanded to further find out new insights.

$$\mathbf{A} = \mathbf{a}\mathbf{b} = \langle \mathbf{A} \rangle_0 + \langle \mathbf{A} \rangle_2 = (\alpha_1 \beta_1 + \alpha_2 \beta_2) + (\alpha_1 \beta_2 - \alpha_2 \beta_1) \mathbf{e}_1 \mathbf{e}_2 \quad (5)$$

73 where $\langle \mathbf{A} \rangle_0$ is the scalar part and $\langle \mathbf{A} \rangle_2$ is the bivector part.

74 2.2. *Applications* Application of geometric algebra to power systems

75 Recently, several ~~investigations~~ researches have proven that geometric algebra or Clifford 's-algebra
 76 is a powerful and flexible tool for representing the flow of energy or power in electrical systems [22,26].
 77 Some authors have motivated the use of power theory based on geometric algebra as Physics' unifying
 78 language, such that electrical magnitudes can be interpreted as Clifford multivectors [27]. More

79 specifically, Clifford 's-algebra is a valid mathematical tool to address the multicomponent nature of
 80 power in non-sinusoidal contexts [28–30] and has been used for analysis of harmonics [31].

81 The concept of non-active, reactive or distorted power acquires a meaning that is more in line
 82 with its mathematical significance, making it possible to better understand energy balances and to
 83 verify the principle of energy conservation. Nevertheless, some authors have highlighted that the
 84 verification of the energy conservation law is only possible in sinusoidal situations [32]. To overcome
 85 these drawbacks, these authors proposed a new circuit analysis approach using geometric algebra to
 86 develop the most general proof of energy conservation in industrial building loads, with capability
 87 of calculating the voltage, current, and net apparent power in electrical systems in non-sinusoidal
 88 situations.

89 Different authors have proposed definitions to represent non-active power for distorted currents
 90 and voltages in electrical systems, although no single representation has been universally accepted.
 91 For example, in [33] presented a non-active power multivector from the most advanced multivectorial
 92 power theory based on the geometric algebra with the aim of analyzing the compensation of disturbing
 93 loads is presented, including the harmonic loads load compensation, identification, and metering 7,
 94 between other applications. Other investigations researches have shown that geometric algebra can be
 95 applied to analyze the apparent power defined in a multi-line poly-phase system having transmission
 96 lines with frequency-dependency under non-sinusoidal conditions [34].

97 2.2.1. Geometric apparent power

98 As several authors have shown, under non-sinusoidal conditions the use of apparent power loses
 99 its meaning and even involves under non-sinusoidal conditions, involving erroneous calculation of
 100 energy flows between loads the load and source. In contrast, [35] proposes the use of a new term
 101 called net apparent power or geometric apparent power \mathbf{M} . This concept is the result of the geometric
 102 product of geometric tension and current as in voltage and current in \mathcal{G}_N domain (6).

$$103 \quad \mathbf{M} = \mathbf{u}\mathbf{i} = \mathbf{u} \cdot \mathbf{i} + \mathbf{u} \wedge \mathbf{i} \quad (6)$$

104 which result in a scalar and a bivector when the voltage and current are sinusoids

$$105 \quad \mathbf{M} = \langle \mathbf{M} \rangle_0 + \langle \mathbf{M} \rangle_2 \quad (7)$$

106 It can be easily shown from (7) and (1) that

$$107 \quad \begin{aligned} P &= \langle \mathbf{M} \rangle_0 \\ Q &= \|\langle \mathbf{M} \rangle_2\| \end{aligned} \quad (8)$$

108 so $\langle \mathbf{M} \rangle_0$ is the active power derived from the scalar part and $\|\langle \mathbf{M} \rangle_2\|$ is the reactive power derived
from the bivector part of the net apparent power multivector.

109 For the non-sinusoidal case, i.e., when harmonics are present in the voltage and/or current, the
 110 apparent power loses its validity and only \mathbf{M} can reflect the exact flow of energy in the circuit. Consider
 a general voltage waveform $u(t)$

$$111 \quad u(t) = \sum_{i=1}^n u_i(t) = \alpha_1 \cos(\omega t) + \beta_1 \sin(\omega t) + \sum_{h=2}^l \alpha_h \cos(h\omega t) + \sum_{h=2}^k \beta_h \sin(h\omega t) \quad (9)$$

112 that we can transfer to the geometric domain as using [35]

$$\begin{aligned}
\varphi_{c1}(t) &= \sqrt{2} \cos \omega t \longleftrightarrow e_1 \\
\varphi_{s1}(t) &= \sqrt{2} \sin \omega t \longleftrightarrow -e_2 \\
\varphi_{c2}(t) &= \sqrt{2} \cos 2\omega t \longleftrightarrow e_2 e_3 \\
\varphi_{s2}(t) &= \sqrt{2} \sin 2\omega t \longleftrightarrow e_1 e_3 \\
&\vdots \\
\varphi_{cn}(t) &= \sqrt{2} \cos n\omega t \longleftrightarrow \bigwedge_{i=2}^{n+1} e_i \\
\varphi_{sn}(t) &= \sqrt{2} \sin n\omega t \longleftrightarrow \bigwedge_{\substack{i=1 \\ i \neq 2}}^{n+1} e_i
\end{aligned} \tag{10}$$

111 where $\bigwedge e_i$ represents the product of n vectors. Using (10), any waveform $x(t)$ can be translated to
112 the geometric domain \mathcal{G}_N , so the final result for the voltage is

$$u = \alpha_1 e_1 - \beta_1 e_2 + \sum_{h=2}^l \left[\alpha_h \bigwedge_{i=2}^{h+1} e_i \right] + \sum_{h=2}^k \left[\beta_h \bigwedge_{i=1, i \neq 2}^{h+1} e_i \right] \tag{11}$$

113 In (11), the transformation given in [35] has been used and is ~~not~~ reproduced here to ~~avoid~~
114 ~~repeating due to space limitations~~ make this paper more readable. [35] also demonstrates that the
115 admittance of typical passive load is $Y_h = G_h + B_h e_1 e_2$, so the harmonic current associated to h -th
116 voltage harmonic is

$$i_h = (G_h + B_h e_1 e_2) u_h \tag{12}$$

117 and the total current

$$i = \sum_{h=1}^n i_h = i_g + i_b \tag{13}$$

118 where i_g is the *in-phase* current where i_b is the quadrature current. The geometric apparent power is
119 then

$$M = ui = M_g + M_b = P + CN_d + M_b \tag{14}$$

120 where M_g is the *in-phase* geometric apparent power, CN_d is the degraded power ~~and (summation of~~
121 ~~cross-frequency products between voltage and current) and~~ M_b is the quadrature geometric apparent
122 power.

123 Based on equation (14) and (8) the power factor in \mathcal{G}_N domain can be defined as

$$pf = \frac{P}{\|M\|} = \frac{\langle M \rangle_0}{\sqrt{\langle M^\dagger M \rangle_0}} \tag{15}$$

124 in contrast to the classical approach where S is used. As demonstrated by [21], S and M are
125 different concepts for non-sinusoidal scenarios, but reduces to the same in the sinusoidal case. Other

126 power theories like Czarnecki's based their power factor definition on the concept of apparent power
127 S , so it leads to different power factor results in non-sinusoidal situations.

128 3. Problem description and solution strategy

129 This section describes the proposed problem in this research and details the characteristics of the
130 genetic algorithm used to solve it.

131 3.1. Problem description

132 Power systems operating under harmonic distortion must be optimized to reduce power losses
133 and improve power quality [36,37]. Whether the system is linear or non-linear, it is necessary to
134 provide reactances in parallel with the load in order to reduce these harmonics. The typical design of
135 compensators is based on the knowledge of the susceptances of the system to different frequencies [38],
136 something that is not easy to achieve when you have highly distorted systems. The main objective of
137 non active power compensation is to minimize the source RMS current [5]. However, it is not a trivial
138 task since it involves to determine which type of filter and characteristics of their components is more
139 suitable for compensation purposes in a given circuit. For example, a capacitor with an optimal value
140 connected in parallel to the load is an easy solution but this does not produce the absolute minimum
141 of the distortion power [39], while other alternatives could improve it.

142 Some studies have highlighted that algorithms for calculating the parameters of filters has not
143 been studied in detail [13], although some authors have implemented optimization algorithms for
144 optimizing the configuration of the filters in circuits having harmonic distortion. For example, in [15]
145 it was proposed a genetic algorithm to minimize current total harmonic distortion using LC passive
146 harmonic filters. Other recent studies have applied swarm intelligence methods to comparatively
147 evaluate single-tuned, double-tuned, triple-tuned, damped-double tuned and C-type filters in order
148 to improve the loading capability of a set of transformers under non-sinusoidal conditions [16]. In
149 addition to the use of passive filters, some studies proposed algorithms for estimating the optimal
150 parameters of active and hybrid filters. For example, in [2] it was proposed the use of direct neural
151 intelligent techniques to improve performance of a shunt active filters. In other recent studies, it
152 has been proposed the use of differential evolution (DE) algorithms to optimize the parameters of
153 hybrid filters (combining active and passive filters) in order to minimize harmonic pollution [14].
154 The problem to be solved ~~consists on determining the~~ involves the determination of the most suitable
155 type of passive filter and ~~the its~~ parameters to minimize the source RMS current I_s in order to get the
156 optimal value I_{scr} .

Figure 3. [Flowchart of the genetic algorithm.](#)

157 3.2. Solution approach

158 Genetic algorithms are optimization methods based on principles of natural selection and genetics
 159 [40]. Figure 3 shows the flowchart describing the operation of the genetic algorithm. It consists of a
 160 set (population) of solutions, each of which is called individual or phenotype, that evolve to reach
 161 solutions of high quality in terms of a fitness function. As an initialization step, genetic algorithm
 162 randomly generates a set of solutions to a problem (a population of genomes). **Each individual is**
 163 **often represented by strings of 0s and 1s, called chromosomes or genotype.** As Figure 4 shows, each
 164 individual is represented by a string of real numbers. Specifically, the data structure of each individual
 165 consists of three possible values for inductors L (Henry) and three possible values for capacitors C
 166 (Farad). All or some of these values will be considered in the optimization process depending on
 167 the filter choosed, which will be specified in the FT field (filter type), as described below. The actual
 168 values that can be assigned to inductors and capacitors are preset between two limits (upper and
 169 lower), so that the search space of the evolutionary algorithm is limited within reasonable margins.
 170 After calculating the fitness values for all solutions in a current population, the individuals for mating
 171 pool are selected using the operator of reproduction according to a given fitness function defined for
 172 the problem to be solved. **In our problem the fitness function is**

$$\min f(L, C) = I_s(L, C) \quad (16)$$

173 where I_s is the source current calculated according to geometric algebra operations. These selection
 174 strategies aim to introduce a certain degree of elitism in the population. These solutions evolve by
 175 applying mutation and crossover operators that modify the genotype of the individuals. Offspring

176 solutions substitute some old solutions of the population, and the new generation of individuals
 177 repeats the evolution process until a termination criterion is fulfilled (e.g. a maximum number of
 178 generations has been reached).

179 **Flowchart of the genetic algorithm:**

180 In this paper we have adapted a genetic algorithm solver for mixed-integer or continuous-variable
 181 optimization, constrained or unconstrained, included in the MATLAB Global Optimization Toolbox
 182 [41]. This toolbox allows to solve smooth or non-smooth optimization problems with constraints using
 183 different mutation and crossover operators. The original source code has been adapted to deal with
 184 the problem at hand. It also has been adapted to take into account the particularities of the proposed
 185 problem through GA. More specifically, an opensource implementation of GA "Clifford multivector
 186 toolbox" has been used, available at <https://sourceforge.net/projects/clifford-multivector-toolbox/>.
 187 A preliminary sensitivity analysis has been performed to determine the parameters of the algorithm,
 188 such that the values used in our study are: Population size: 100 individuals; crossover rate: 0.8;
 189 mutation rate: 0.2; selection criteria: roulette wheel selection; termination criteria: 50 iterations.

Figure 4. Chromosome representation for the population. Note that the genes are real values for L, C and integer for FT (Filter Type).

190 **4. Empirical study**

191 This section presents the results obtained by the genetic algorithm in three different case studies.

192 **4.1. Case studies**

193 • Czarnecki's case study [39]: This example consists of simple circuit with a harmonic polluted
 194 ideal voltage source of normalized frequency $\omega = 1$ rad/s

$$u(t) = 100\sqrt{2} \cos t + 50\sqrt{2} \cos 2t + 30\sqrt{2} \cos 3t \quad (17)$$

195 with an active power $P = 344.23$ W. Figure 5(a) shows this ideal source the circuit load, while
 196 Figure 5(b) shows the solution found by Czarnecki with $L_1 = 5.906$ H, $L_2 = 19$ H, $C_1 = 0.034$ F
 197 and $C_2 = 0.012$ F, who compensate the reactive power of the harmonic components by the 1-port
 198 X of a precalculated admittance. The method proposed by Czarnecki was able to compensate the
 199 source RMS current to 3.10 A from the initial 12.24 A [39].

200 Using (10), the voltage in \mathcal{G}_N domain can be expressed as

$$u = 100e_1 + 50e_{23} + 30e_{234} \quad (18)$$

(a) Circuit proposed by Czarnecki

(b) Compensator layout

Figure 5. Load and compensator used by Czarnecki *s-in* [39].

201 • Castro-Nuñez and Castro-Puche's case study [22][26]: This example *(already studied by*
 202 *Czarnecki)* consists of a circuit with a highly distorted voltage source *with fundamental plus 2*
 203 *harmonics* and a linear load, being the voltage *multivector*:

$$u = -100e_2 + \frac{100}{11} \bigwedge_{i=1, i \neq 2}^{12} e_i + \frac{100}{13} \bigwedge_{i=1, i \neq 2}^{14} e_i$$

$$u(t) = 100\sqrt{2} \sin t + \frac{100}{11} \sqrt{2} \sin 11t + \frac{100}{13} \sqrt{2} \sin 13t \quad (19)$$

204 with $\|I_s\| = \|I\| = 44.7242 \text{ A}$, which translates to

$$u = -100e_2 + \frac{100}{11} \bigwedge_{i=1, i \neq 2}^{12} e_i + \frac{100}{13} \bigwedge_{i=1, i \neq 2}^{14} e_i \quad (20)$$

205 where the uncompensated current is 44.72 A . Figure 6a shows the circuit with the distorted
 206 voltage source and the linear load, while Figure 6b displays the compensator for this linear load.
 207 This compensator design *The compensator design by Castro-Nuñez* reduced the source RMS
 208 current to 20.1008 ~~20.10~~ A [22].

Figure 6. Circuit with distorted voltage source and a linear load used by Castro-Nuñez and Castro-Puche [22].

- Castilla's case study [33]: This example consists of a circuit with a ~~source of periodical n-sinusoidal voltage with frequency of 50 Hz and distorted voltage source with three harmonics~~ given by:

$$u(t) = 200\sqrt{2} \cos \omega t + 200\sqrt{2} \cos 3\omega t - 30 \cos(3\omega t - 30) + 100\sqrt{2} \cos 5\omega t \cos(5\omega t + 30). \quad (21)$$

~~with which translates to~~

$$u = 200e_2 + 100\sqrt{3}e_{234} + 100e_{134} + 50\sqrt{3}e_{23456} - 50e_{13456} \quad (22)$$

~~with an uncompensated RMS current of $\|I\| = 4.21 \text{ A}$.~~

~~A.~~ Although the structure of this compensator was not described in the paper published by Castilla [33], this author indicated that it reduced the source ~~current (RMS values)~~ ~~RMS current~~ to 3.21 A.

~~4.2. Filters optimized by the genetic algorithm~~ Filter optimization

~~The genetic algorithm has been adapted to manage different types of filters, including widely used in the literature for compensating purposes and mitigation of current harmonics. Based on equation (12), the admittance for a general load Y_L and harmonic h , is equal to~~

$$Y_{l_h} = G_{l_h} + B_{l_h} e_1 e_2 = G_{l_h} + B_{l_h} e_{12} \quad (23)$$

²²¹ If we connect a pure reactive impedance in parallel with the load for current compensation, its
²²² admittance Y_{cp_h} will be

$$Y_{cp_h} = B_{cp_h} e_{12} \quad (24)$$

²²³ For example, if we choose a simple LC series compensator, we have

$$\begin{aligned} Z_h &= X_{L_h} + X_{C_h} = -hL\omega e_{12} + \frac{1}{h\omega C} e_{12} \\ Y_h &= \frac{1}{Z_h} = \frac{1}{\left(-hL\omega + \frac{1}{h\omega C}\right) e_{12}} = \frac{h\omega C}{h^2\omega^2 LC - 1} e_{12} \end{aligned} \quad (25)$$

²²⁴ So we need to make equal $B_{cp} = -B_L$ for every harmonic h to fully compensate the quadrature term. For the optimal case, the total current i is reduced to i_g since $i_b + i_{cp}$ is equal to 0 after applying ²²⁵ Kirchhoff laws.

²²⁶ The following configurations were used based on very well-known type of filters:

- ²²⁸ • C-type filter: it is mainly used for suppressing the low order of harmonics [13].

Figure 7. C-type filter.

- ²²⁹ • Series LC-type filter: this filter is also considered to reduce line current harmonics [42].

Figure 8. Series LC-type filter.

- ²³⁰ • Parallel LC-type filter: it provides low impedance shunt branches to the load's harmonic current, which allows to reduce the harmonic current flowing into the line [42].

Figure 9. Parallel LC-type filter.

- ²³² • Triple tuned filter: This type of filter is electrically equivalent to three ²³³ parallel-connected tuned filters parallel tuned filters connected in series [43].

Figure 10. Triple tune filter.

234 • Foster's filter: this filter combines in parallel single L-type and C-type filters and also parallel
 235 LC-type filters.

Figure 11. Foster's filter.

236 • Czarnecki's 4-elements filter: it is a filter that combines two L and two C elements using a
 237 series/parallel configuration [39].

Figure 12. Czarnecki's 4-elements filter.

238 4.3. *Simulation results*

239 Tables 1, 2, and 3 show the results obtained by the genetic algorithm in the three case studies
 240 described above, being the RMS current through the supply source (I_{scp}), the objective to be minimized.
 241 The best, mean and standard deviation of 10 independent runs is provided.

Table 1. Compensated RMS current (I_{scp}) obtained by the genetic algorithm in Czarnecki's case study [39].

	Type of Filter					
	C	Series LC	Parallel LC	Triple tune	Foster	Czarnecki 4
Best (A)	12.2409	7.5015	12.7235	3.0954	3.0948	3.0987
Mean (A)	12.2415	7.5017	12.7249	3.1040	3.1079	3.1454
Std. dev.	0.0008	0.0002	0.0011	0.0124	0.0155	0.0468

242 As it can be seen in Table 1, in the case study proposed by Czarnecki [39], the filters "Triple
 243 tune", "Foster" and "Czarnecki 4" obtain high quality results, while "C-type", "Series LC", and "Parallel
 244 LC" filters are far from the optimal solution. Some similar conclusions are obtained when analyzing
 245 the data from Table 2, corresponding to the circuit proposed by Castro-Nuñez and Castro-Puche's
 246 [22]. It is important to point out that better results are obtained in the case of Castro-Nuñez with
 247 the same choice of compensator (20.02 A vs. 20.10 A), although Castro-Nuñez does not specify the
 248 criterion for choosing the values of the L and C components, apart from discretionary choosing an LC
 249 series type compensator. Finally, the analysis of the results provided in Table 3 regarding to the filter
 250 proposed by Castilla [33], indicate that "Triple tune", "Foster", "Czarnecki", and the series LC-type filter
 251 obtain high quality solutions. In summary, the genetic algorithm is able not only to equal but also to
 252 slightly improve the results obtained in these three case studies, which demonstrates that evolutionary
 253 approaches can be used to compensate the source current in different circuits using a variety of filters.

Table 2. Compensated RMS current (I_{scp}) obtained by the genetic algorithm in Castro-Nuñez and Castro-Puche's case study [22].

	Type of Filter					
	C	Series LC	Parallel LC	Triple tune	Foster	Czarnecki 4
Best (A)	38.0511	20.0275	75.5999	20.0288	20.0094	20.0271
Mean (A)	38.0513	20.0313	75.7476	20.5668	20.0807	20.0415
Std. dev.	0.0003	0.0030	0.1411	0.7039	0.0617	0.0150

Table 3. Compensated RMS current (I_{scp}) obtained by the genetic algorithm in Castilla's case study. [33].

	Type of Filter					
	C	Series LC	Parallel LC	Triple tune	Foster	Czarnecki 4
Best (A)	3.7938	3.5236	3.8242	3.2024	3.2131	3.5268
Mean (A)	3.7938	3.5437	3.8242	3.2613	3.2722	3.5313
Std. dev.	0.0000	0.0210	0.0000	0.0369	0.0304	0.0067

254 Table 4 shows the optimal values achieved for the 3 cases of study and the 6 proposed filters.
 255 The optimal current is also included for readability purposes.

Table 4. Optimal values for L,C achieved by the genetic algorithm for the 3 cases of study and the 6 proposed filters.

Czarnecki							Castro-Nuñez							Castilla						
	C	Series LC	Parallel LC	Triple Tune	Foster	Czarnecki 4		C	Series LC	Parallel LC	Triple Tune	Foster	Czarnecki 4		C	Series LC	Parallel LC	Triple Tune	Foster	Czarnecki 4
L_1 (H)	-	10.2116	99.995	0.794	17.457	5.906	-	1.953	2.000	0.256	1.511	1.977	-	15.6537	10.000	0.082	10.000	9.998		
L_2 (H)	-	-	-	0.724	6.555	19.000	-	-	-	0.063	1.641	-	-	-	-	0.072	6.651	9.903		
L_3 (H)	-	-	-	1.920	5.945	-	-	-	-	0.020	1.198	0.320	-	-	-	-	0.021	0.660	-	
C_1 (μ F)	0.010	43373.492	13.0128	264930.386	2991.689	34530.000	135667.470	224040.6422	304711.7123	650723.116	21800.000	172388.219	7.157	0.636	7.291	20.098	5.797	2.079		
C_2 (μ F)	-	-	-	106280.564	59192.627	12880.000	-	-	-	985889.243	366000.000	50406.350	-	-	-	-	165.469	1.451	16.065	
C_3 (μ F)	-	-	-	586142.767	26682.668	-	-	-	-	89338.809	107600.000	-	-	-	-	-	21.464	0.844	-	
I_{opt} (A)	12.240	7.501	12.723	3.095	3.094	3.098	38.051	20.027	75.599	20.028	20.009	20.027	3.793	3.523	3.824	3.202	3.213	3.526		

The table 5 shows a summary comparison for each of the problems solved showing current values without compensation I_s , the optimum current I_{opt} , that provided by each author I_{auth} and the optimum current obtained by applying the technique used in this work $I_{GA_{cp}}$. The value of the power factor for each of the above situations is also indicated. It should be noted that the power factor may differ between what is calculated by complex numbers and what is calculated by geometric algebra due to the different nature of the apparent power S and the geometric apparent power M . For the first case, the power factor is calculated as P/S while for the second case it is P/M . For example, for the Czarnecki case study, the apparent power S without compensating is worth 1,417 VA while compensated is worth 358.8 VA. However, using geometric algebra the power M is worth 1,842 VA and compensated is worth 359.25 VA. It should be noted that the final result of the compensation is quite similar since the proposed example is of low complexity as it only has 3 harmonics and low order. If we take into account the case of Castro-Nuñez or Castilla, the power of the proposed method is verified since with only 2 elements (LC filter series) or 3 elements, an almost optimal compensated current is obtained, unlike the original proposal of the author where the filter involved has many more elements and therefore, much less economic. It should also be noted that the methodology proposed by Castro-Nuñez indicates the path to follow when it comes to compensate for the correct power terms, M_b , which is not possible to cancel with the traditional power theory because it doesn't account for those terms arising from crossed products between voltage and currents.

Table 5. Comparison table for currents and power factor

	Current				Power factor				
	I_s	I_{opt}	I_{auth}	$I_{GA_{cp}}$	PF_s	PF_{opt}	PF_{auth}	PF_{GA}	$PF_{GA_{cp}}$
Czarnecki	12.24	3.09	3.10	3.09	0.240	1.00	0.958	0.186	0.958
Castro-Nuñez	44.72	20.00	20.10	20.00	0.444	1.00	0.958	0.444	0.992
Castilla	4.21	3.20	3.21	3.20	0.630	1.00	1.000	0.630	1.000

5. Conclusions

In recent years, different authors have shown that geometric algebra, also known as Clifford algebra, can be applied to analyze electric circuits. Having in mind that different studies have shown that geometric algebra is more appropriate than the algebra of complex numbers for the analysis of circuits with non-sinusoidal sources and linear loads, this investigation is an important contribution in estimating the type of filter and its parameters to optimize the reactive power compensation quadrature current in electrical circuits. The which leads to the compensation of new power terms like quadrature apparent power M_b not included in the commonly accepted definition of electrical power standards. The traditional compensation of reactive power is exceeded by the compensation of cross products between current and voltage that have not been previously taken into account. The proposed approach is based on the use of a genetic algorithm which is able to optimize the parameters of different types of passive filters. In particular, six widely-used filters (single-tuned, double-tuned, triple-tuned, damped-double tuned and C-type ones) by regarding their contribution on the loading capability improvement of the transformers under non-sinusoidal conditions.

The results obtained in three test circuits found in the literature show that the application of genetic algorithms based on geometric algebra representations are powerful methods that are able to equal or even improve the results previously obtained by other authors using analytical methods. These results open the door to investigate in the use of computational optimization methods for compensating the reactive power in complex circuits. As future work, it is planned to extend the analysis to larger circuits using these and other type of filters. Furthermore, multi-objective optimization methods will be considered to simultaneously optimize the reactive power compensation and to minimize the economic cost of the filters.

296 **Appendix**297 *A. General concepts*

298 Given an ortho-normal base $\{\sigma_k\}$ with $k = 1, \dots, N$ for a vector space \mathbb{R}^N , it is possible to define
 299 a new space called geometrical algebra \mathcal{G}_N . This new space is characterized by bases not only
 300 composed of $\{\sigma_k\}$, but also of external products between these vectors. For example, in the case of a
 301 3D Euclidean space, there is an ortho-normal base $\{\sigma_1, \sigma_2, \sigma_3\}$ where $\sigma_u^2 = 1$. Applying the concept of
 302 Grassmann product or exterior product, you get

$$\sigma_l \wedge \sigma_m = \sigma_l \sigma_m \sigma_{lm} \quad (26)$$

303 which is a new entity, different from a scalar or a vector because

$$\begin{aligned} (\sigma_l \sigma_m)^2 &= (\sigma_l \sigma_m)(\sigma_l \sigma_m) = \sigma_l (\sigma_m \sigma_l) \sigma_m = \sigma_l (-\sigma_l \sigma_m) \sigma_m = \\ &= -(\sigma_l \sigma_l)^2 (\sigma_m \sigma_m)^2 = -(1)(1) = -1 \end{aligned} \quad (27)$$

304 $\sigma_l \sigma_m$ squares to -1 so we can conclude that we are facing a new element, which is called a bivector.
 305 In the same way, the external product of more than 3 vectors is called trivector, and in general, the
 306 product of k vectors is called k -vector. In this way, algebra \mathcal{G}_3 can be developed with the base

$$\{1, \sigma_1, \sigma_2, \sigma_3, \sigma_{12}, \sigma_{13}, \sigma_{23}, \sigma_{123}\} \quad (28)$$

307 Generally speaking, the elements of a geometric algebra are called multivectors (M) and can be
 308 expressed as a linear combination of the different bases

$$M = \langle M \rangle_0 + \langle M \rangle_1 + \langle M \rangle_2 + \dots + \langle M \rangle_n = \sum_{k=0}^n \langle M \rangle_k \quad (29)$$

309 where each $\langle M \rangle_k$ is an element of grade k , representing scalars (grade 0), vectors (grade 1),
 310 bivectors (grade 2) or in general, k -vectors (grade k).

311 *B. Geometric operations*

The geometric product is the cornerstone of geometric algebra and is indebted to the contributions of Grassman and Clifford. It is defined as the sum of the scalar product and the external product, and for the case of 2 vectors $v_i \text{ y } v_j$

$$v_i v_j = v_i \cdot v_j + v_i \wedge v_j \quad (30)$$

312 for the base vectors $\sigma_i \text{ y } \sigma_j$ con $i \neq j$, we get bivectors

$$\sigma_i \sigma_j = \sigma_i \cdot \sigma_j + \sigma_i \wedge \sigma_j = \sigma_i \wedge \sigma_j = \sigma_{ij} \quad (31)$$

313 base vectors anticommute for $i \neq j$ because

$$\sigma_i \sigma_j = \sigma_i \wedge \sigma_j = -\sigma_j \wedge \sigma_i = -\sigma_{ji} \quad (32)$$

314 On the other hand, unlike vectors which squares to 1, bivectors squares to -1

$$\sigma_{ij} \sigma_{ij} = \sigma_i \sigma_j \sigma_i \sigma_j = -\sigma_j \sigma_i \sigma_i \sigma_j = -\sigma_j \sigma_j = -1 \quad (33)$$

³¹⁵ Finally, we detail some important operations that are used extensively in multivector operations.
³¹⁶ One of these properties is the reversion or M^{dagger} which consists of

$$M^{\dagger} = \sum_{k=0}^n \langle M^{\dagger} \rangle_k = (-1)^{k(k-1)/2} \langle M \rangle_k \quad (34)$$

³¹⁷ The norm of a multivector M ($\|M\|$) is always a scalar and can be obtained

$$\|M\| = \sqrt{\langle M^{\dagger} M \rangle_0} = \sqrt{\langle M M^{\dagger} \rangle_0} = \sum_k \langle \langle M \rangle_k \langle M^{\dagger} \rangle_k \rangle_0 \quad (35)$$

³¹⁸ **Author Contributions:** Conceptualization, FGM and RB; Methodology, RB; Software, AA and FAC; Validation, AA, RB and FAC; Formal Analysis, FGM; Investigation, FGM and AA; Resources, FAC; Data Curation, RB; Writing—Original Draft Preparation, RB, FGM and FAC; Writing—Review & Editing, FGM, AA, FAC and RB; ³²¹ Visualization, FGM; Supervision, FGM; Project Administration, FGM and AA

³²² **Funding:** This research received no external funding

³²³ **Acknowledgments:** The authors want to acknowledge the CEIA3 campus for the support on this work

³²⁴ **Conflicts of Interest:** The authors declare no conflict of interest.

³²⁵ References

- ³²⁶ Fang, X.; Misra, S.; Xue, G.; Yang, D. Smart grid—The new and improved power grid: A survey. *IEEE communications surveys & tutorials* **2012**, *14*, 944–980.
- ³²⁷ Merabet, L.; Saad, S.; Abdeslam, D.O.; Merkle, J. Direct neural method for harmonic currents estimation using adaptive linear element. *Electric Power Systems Research* **2017**, *152*, 61–70.
- ³²⁸ Bollen, M.H.; Das, R.; Djokic, S.; Ciufo, P.; Meyer, J.; Rönnberg, S.K.; Zavodam, F. Power quality concerns in implementing smart distribution-grid applications. *IEEE Transactions on Smart Grid* **2017**, *8*, 391–399.
- ³²⁹ Bouzid, A.M.; Guerrero, J.M.; Cheriti, A.; Bouhamida, M.; Sicard, P.; Benghanem, M. A survey on control of electric power distributed generation systems for microgrid applications. *Renewable and Sustainable Energy Reviews* **2015**, *44*, 751–766.
- ³³⁰ Czarnecki, L.S.; Pearce, S.E. Compensation objectives and currents' physical components-based generation of reference signals for shunt switching compensator control. *IET Power Electronics* **2009**, *2*, 33–41.
- ³³¹ Willems, J.L. Budeanu's reactive power and related concepts revisited. *IEEE Transactions on Instrumentation and Measurement* **2011**, *60*, 1182–1186.
- ³³² De Léon, F.; Cohen, J. AC power theory from Poynting theorem: Accurate identification of instantaneous power components in nonlinear-switched circuits. *IEEE Transactions on Power Delivery* **2010**, *25*, 2104–2112.
- ³³³ Budeanu, C. *Puissances réactives et fictives*; Number 2, Impr. Cultura nationala, 1927.
- ³³⁴ Staudt, V. Fryze-Buchholz-Depenbrock: A time-domain power theory. *Nonsinusoidal Currents and Compensation*, 2008. ISNCC 2008. International School on. IEEE, 2008, pp. 1–12.
- ³³⁵ Czarnecki, L.S. What is wrong with the Budeanu concept of reactive and distortion power and why it should be abandoned. *IEEE Transactions on Instrumentation and measurement* **1987**, *1001*, 834–837.
- ³³⁶ Czarnecki, L. Budeanu and fryze: Two frameworks for interpreting power properties of circuits with nonsinusoidal voltages and currents Budeanu und Fryze-Zwei Ansätze zur Interpretation der Leistungen in Stromkreisen mit nichtsinusförmigen Spannungen und Strömen. *Electrical Engineering* **1997**, *80*, 359–367.
- ³³⁷ Czarnecki, L.S. Currents' physical components (CPC) concept: A fundamental of power theory. *Nonsinusoidal Currents and Compensation*, 2008. ISNCC 2008. International School on. IEEE, 2008, pp. 1–11.
- ³³⁸ Xiao, Y.; Zhao, J.; Mao, S. Theory for the design of C-type filter. *Harmonics and Quality of Power*, 2004. 11th International Conference on. IEEE, 2004, pp. 11–15.
- ³³⁹ Biswas, P.P.; Suganthan, P.N.; Amaratunga, G.A. Minimizing harmonic distortion in power system with optimal design of hybrid active power filter using differential evolution. *Applied Soft Computing* **2017**, *61*, 486–496.

357 15. Li, W.; Man, Y.; Li, G. Optimal parameter design of input filters for general purpose inverter based on
358 genetic algorithm. *Applied Mathematics and Computation* **2008**, *205*, 697–705.

359 16. Karadeniz, A.; Balci, M.E. Comparative evaluation of common passive filter types regarding maximization
360 of transformer's loading capability under non-sinusoidal conditions. *Electric Power Systems Research* **2018**,
361 *158*, 324–334.

362 17. Chen, Y.M. Passive filter design using genetic algorithms. *IEEE transactions on industrial electronics* **2003**,
363 *50*, 202–207.

364 18. Klemcka, R. Passive Power Filter Design Using Genetic Algorithm. *Electrical Review* **2013**, *5*, 294–301.

365 19. Lachichi, A.; Junyent-Ferre, A.; Green, T. LCL Filter Design Optimization for LV Modular Multilevel
366 Converters in Hybrid ac/dc Microgrids Application. 2018 International Conference on Electrical Sciences
367 and Technologies in Maghreb (CISTEM). IEEE, 2018, pp. 1–5.

368 20. Steinmetz, C.P. *Theory and calculation of alternating current phenomena*; Vol. 4, McGraw-Hill Book Company,
369 Incorporated, 1916.

370 21. Castro-Núñez, M.; Londoño-Monsalve, D.; Castro-Puche, R. M, the conservative power quantity based on
371 the flow of energy. *The Journal of Engineering* **2016**, *2016*, 269–276.

372 22. Castro-Nunez, M.; Castro-Puche, R. The IEEE Standard 1459, the CPC power theory, and geometric algebra
373 in circuits with nonsinusoidal sources and linear loads. *IEEE Transactions on Circuits and Systems I: Regular
374 Papers* **2012**, *59*, 2980–2990.

375 23. Sangston, K.J. Geometry of complex data. *IEEE Aerospace and Electronic Systems Magazine* **2016**, *31*, 32–69.

376 24. Hestenes, D.; Sobczyk, G. *Clifford algebra to geometric calculus: a unified language for mathematics and physics
377 (fundamental theories of physics)*; Kluwer Academic Publishers, 1987.

378 25. Chappell, J.M.; Drake, S.P.; Seidel, C.L.; Gunn, L.J.; Iqbal, A.; Allison, A.; Abbott, D. Geometric algebra for
379 electrical and electronic engineers. *Proceedings of the IEEE* **2014**, *102*, 1340–1363.

380 26. Castro-Nunez, M.; Castro-Puche, R. Advantages of geometric algebra over complex numbers in the
381 analysis of networks with nonsinusoidal sources and linear loads. *IEEE Transactions on Circuits and Systems
382 I: Regular Papers* **2012**, *59*, 2056–2064.

383 27. Petroianu, A.I. A geometric algebra reformulation and interpretation of Steinmetz's symbolic method and
384 his power expression in alternating current electrical circuits. *Electrical Engineering* **2015**, *97*, 175–180.

385 28. Menti, A.; Zacharias, T.; Milius-Argitis, J. Geometric algebra: a powerful tool for representing power under
386 nonsinusoidal conditions. *IEEE Transactions on Circuits and Systems I: Regular Papers* **2007**, *54*, 601–609.

387 29. Castilla, M.; Bravo, J.C.; Ordonez, M. Geometric algebra: a multivectorial proof of Tellegen's theorem in
388 multiterminal networks. *IET circuits, devices & systems* **2008**, *2*, 383–390.

389 30. Castilla, M.; Bravo, J.C.; Ordonez, M.; Montaño, J.C. Clifford theory: a geometrical interpretation
390 of multivectorial apparent power. *IEEE Transactions on Circuits and Systems I: Regular Papers* **2008**,
391 *55*, 3358–3367.

392 31. Gilbert, J.E.; Gilbert, J.; Murray, M. *Clifford algebras and Dirac operators in harmonic analysis*; Vol. 26,
393 Cambridge University Press, 1991.

394 32. Bravo, J.C.; Castilla, M.V. Energy Conservation Law in Industrial Architecture: An Approach through
395 Geometric Algebra. *Symmetry* **2016**, *8*, 92.

396 33. Castilla, M.V. Control of disturbing loads in residential and commercial buildings via geometric algebra.
397 *The Scientific World Journal* **2013**, *2013*.

398 34. Jeon, S.J. Representation of Apparent Power of Non-sinusoidal Multi-line Power System Using Geometric
399 Algebra. *The Transactions of The Korean Institute of Electrical Engineers* **2009**, *58*, 2064–2070.

400 35. Castro-Núñez, M.; Castro-Puche, R.; Nowicki, E. The use of geometric algebra in circuit analysis and its
401 impact on the definition of power. Nonsinusoidal Currents and Compensation (ISNCC), 2010 International
402 School on. IEEE, 2010, pp. 89–95.

403 36. Henderson, R.D.; Rose, P.J. Harmonics: The effects on power quality and transformers. *IEEE transactions
404 on industry applications* **1994**, *30*, 528–532.

405 37. De La Rosa, F. *Harmonics and power systems*; CRC press Boca Raton, 2006.

406 38. El-Saadany, E.; Zeineldin, H. An optimum reactance one-port compensator for harmonic mitigation.
407 *Electrical Power Quality and Utilisation. Journal* **2005**, *11*, 77–82.

408 39. Czarnecki, L.S. Minimisation of distortion power of nonsinusoidal sources applied to linear loads. IEE
409 Proceedings C-Generation, Transmission and Distribution. IET, 1981, Vol. 128, pp. 208–210.

410 40. Holland, J.H. *Adaptation in natural and artificial systems: an introductory analysis with applications to*
411 *biology, control, and artificial intelligence*, 1975.

412 41. Mathworks. *Genetic algorithm solver. MATLAB Global Optimization Toolbox*, 2018.

413 42. Peng, F.Z.; Su, G.J.; Farquharson, G. A series LC filter for harmonic compensation of AC drives. *Power*
414 *Electronics Specialists Conference*, 1999. PESC 99. 30th Annual IEEE. IEEE, 1999, Vol. 1, pp. 213–218.

415 43. Bartzsch, C.; Huang, H.; Roessel, R.; Sadek, K. Triple tuned harmonic filters—design principle and operating
416 *experience*. *Power System Technology*, 2002. *Proceedings. PowerCon 2002. International Conference on*.
417 *IEEE*, 2002, Vol. 1, pp. 542–546.

418 © 2019 by the authors. Submitted to *Energies* for possible open access publication under the terms and conditions
419 of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).