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Abstract: Non-linear loads in circuits cause the appearance of harmonic disturbances both in voltage
and current. In order to minimize the effects of these disturbances and, therefore, to control over
the flow of electricity between the source and the load, they are often used passive or active filters.
Nevertheless, determining the type of filter and the characteristics of their elements is not a trivial task.
In fact, the development of algorithms for calculating the parameters of filters is still an open question.
This paper analyzes the use of genetic algorithms to maximize the power factor compensation in
non-sinusoidal circuits using passive filters, while concepts of geometric algebra theory are used to
represent the flow of power in the circuits. According to the results obtained in different case studies,
it can be concluded that the genetic algorithm obtain high quality solutions that could be generalized
to similar problems of any dimension.

Keywords: Power factor compensation; non-sinusoidal circuits; geometric algebra; evolutionary
algorithms.

1. Introduction

The introduction of distributed generation and microgrids in power networks allow an efficient
energy management and integration with renewable energy sources [1]. However, these grids
include an increasing number of power electronic devices and non-linear electronic loads, such
as power inverters, cycloconverters, speed drives, batteries, household appliances, among others.
These non-linear loads increase the harmonic disturbances both in voltage and current, then causing
detrimental effects to the supply system and user equipment [2]. As consequence, these grids are
seriously affected by events that degrade the power quality [3], and provoke excessive heating,
protection faults and inefficiencies in the transmission of energy [4], it becomes a critical task to
determine precisely the electrical energy balances on the microgrid.

Different authors have presented models and theories in the past [5-7], but while all them coincide
in the study of the sinusoidal case, there are some controversy in the analysis of non-sinusoidal systems
with a high harmonic content, such as modern microgrids. In particular, well-known theories such
as those proposed by Budeanu [8] and Fryze [9], have been questioned by different authors after
demonstrating inconsistency and errors [10-12]. Therefore, it is important to investigate how to
improve the compensation of the power factor in non-sinusoidal systems in presence of harmonics.
Some investigations have highlighted that algorithms for calculating the parameters of filters has rarely
been discussed [13], although in recent years some authors have applied computational optimization
methods, including meta-heuristic approaches for optimizing filter parameters in circuits having

Submitted to Energies, pages 1 —19 www.mdpi.com/journal/energies
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harmonic distortion [2,14-16]. More specifically, genetic algorithms have been successfully applied in
17-19].

In this paper, an evolutionary algorithm is used to optimize the type and characteristics of passive
filters for power factor compensation. The rest of the paper is organized as follows: Section 2 introduces
some basic ideas about geometric algebra and its application to power systems. Section 3 describes the
problem at hand and the genetic algorithm used as solution method. Section 4 presents the empirical
study, while the main conclusions obtained are detailed in Section 5.

2. Geometric algebra and power systems

Traditionally, electrical engineers have been taught to solve sinusoidal electrical circuits using
complex number algebra, exactly as Steinmetz theory [20] introduced in the 19th century. It stated that
differential equations in time domain can be transformed into algebra equations in complex domain.
Under these assumptions, the apparent power can be expressed as:

S=UIr"=pP+jQ (1)

where P is the active power, Q is the reactive power and j is unit imaginary number.

The limitations of the algebra of complex numbers and the impossibility to apply the principle of
conservation of energy to the apparent power quantity [21], has caused that some researchers propose
alternative circuit analysis techniques, including those based on geometric algebra [22].

2.1. Basic definitions of geometric algebra

Geometric algebra has its origins in the work of Clifford and Grassman in the 19th century
and is considered as a unified language for mathematics and physics. It is based on the notion of
an invertible product of vectors that captures the geometric relationship between two vectors, i.e.,
their relative magnitudes and the angle between them [23]. Some investigations have defined the
properties of geometric algebra [24,25] applied to physics and engineering. Traditional concepts such
as vector, spinor, complex numbers or quaternions are naturally explained as members of subspaces in
geometric algebra. It can be easily extended in any number of dimensions, being this one of its main
strengths. Because these are geometrical objects, they all have direction, sense and magnitude. The
basics of GA properties are based on well established definitions around vectors. For example, a vector
a = ae1 + agep (a segment with direction and sense) can be multiplied by a vector b = B1e1 + Baez in
different ways, so the result has different meanings. In (2), the inner product is defined and the result
is a scalar.

Figure 1. Outer product of vectors a and b. The result is a vector n, perpendicular to the plane formed
by a and b
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a-b=|alll|b] cosp =} aip; @

In (3) a new product is defined, the wedge product. The main difference with its cousin the
outer product (see figure 1) is that the result is neither a scalar nor a vector, but a new quantity called
bivector.

a/Nb = |[all[|b]sin g ere ®)

A bivector is known to have direction, sense and magnitude in the same way a vector has. It
defines an area enclosed by the parallelogram formed by both vectors (see figure 2). This product
complies with the anti-commutative property, i.e. a Ab = —b A a. A bivector is a key concept in
geometrical algebra and cannot be found in linear algebra or vecterial-vector calculus. The outer
product of two vectors produce-produces a new entity in a plane that can be operated like vectors, i.e.,
addaddition, product or even inverse. Like vectors, a bivector can be written as the linear combination
of a base of bivectors.

laxb

s
€2 /
p /
4 7’
’
’
7

€] b

Figure 2. Representation of a bivector a A b

Finally, the third product between vectors is defined in (4) as the geometric product and can be
described as one of the major contributions in geometric algebra. Not only vectors can be multiplied
geometrically, but bivectors and other entities, in general, can be used.

ab=a-b+aAb 4)

The result is a linear combination of the inner product and the wedge product. Equation (4) can
be expanded to further find out new insights.

A=ab=(A)o+ (A) = (01p1 + a2p2) + (1182 — a2p1)ere2 )

where (A) is the scalar part and (A); is the bivector part.

2.2. Applieations-Application of geometric algebra to power systems

Recently, several investigationsresearchs have proven that geometric algebra or Clifford ‘s-algebra
is a powerful and flexible tool for representing the flow of energy or power in electrical systems [22,26].
Some authors have motivated the use of power theory based on geometric algebra as Physics” unifying
language, such that electrical magnitudes can be interpreted as Clifford multivectors [27]. More
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specifically, Clifford “s-algebra is a valid mathematical tool to address the multicomponent nature of
power in non-sinusoidal contexts [28-30] and has been used for analysis of harmonics [31].

The concept of non-active, reactive or distorted power acquires a meaning that is more in line
with its mathematical significance, making it possible to better understand energy balances and to
verify the principle of energy conservation. Nevertheless, some authors have highlighted that the
verification of the energy conservation law is only possible in sinusoidal situations [32]. To overcome
these drawbacks, these authors proposed a new circuit analysis approach using geometric algebra to
develop the most general proof of energy conservation in industrial building loads, with capability
of calculating the voltage, current, and net apparent power in electrical systems in non-sinusoidal
situations.

Different authors have proposed definitions to represent non-active power for distorted currents
and voltages in electrical systems, although no single representation has been universally accepted.
For example, in [33] presented-a non-active power multivector from the most advanced multivectorial
power theory based on the geometric algebra with the aim of analyzing the compensation of disturbing
loads is presented, including the harmonic leads-load compensation, identification, and metering ;
between other applications. Other investigationsresearches have shown that geometric algebra can be
applied to analyze the apparent power defined in a multi-line-poly-phase system having transmission
lines with frequency-dependency under non-sinusoidal conditions [34].

2.2.1. Geometric apparent power

As several authors have shown, undernon-sinusoidal-conditions-the use of apparent power loses
its meaning and-even-invelves-under non-sinusoidal conditions, involving erroneous calculation of
energy flows between loads-the load and source. In contrast, [35] proposes the use of a new term
called net apparent power or geometric apparent power M. This concept is the result of the geometric

product of geemetrie-tensionand-eurrent-asin-voltage and current in G domain (6).

M=ui=u-i+uli 6)

which result in a scalar and a bivector when the voltage and current are sinusoids

M = (M) + (M) @)

It can be easily shown from (7) and (1) that

P = (M)o

8
Q = (M ®

so (M) is the active power derived from the scalar part and ||{M)-|| is the reactive power derived
from the bivector part of the net apparent power multivector.

For the non-sinusoidal case, i.e., when harmonics are present in the voltage and/or current, the
apparent power loses its validity and only M can reflect the exact flow of energy in the circuit. Consider
a general voltage waveform u(t)

l k

u(t) = i ui(t) = ay cos(wt) + Py sin(wt) + Y ay cos(hwt) + Y By sin(hwt) ©)
i=1 h=2 h=2

that we can transfer to the geometric domain as-using [35]
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pc1(t) = V2coswt <+ e
ps1(t) = V2sinwt +—  —es
P2 (t) = V2cos2wt < eze3

Ps2(t) = V2sin2wt <+ eqe3 (10)

n+1
Pen(t) = V2cosnwt < A e;
i=

n+1
@sn(t) = V2sinnwt «— /\ e;

1;&2

where A e; represents the product of n vectors. Using (10), any waveform x(t) can be translated to

the geometric domain , so the final result for the voltage is

h+1 h+1
u=uwje; — Brex + Z ap, /\ ei| + Z n \ e (11)
i= 11962

In (11), the transformation given in [35] has been used and is net-reproduced here to aveic

repeating-due-to-space-limitationsmake this paper more readable. [35] also demonstrates that the
admittance of typical passive load is ¥;, = G, + Bjejez, so the harmonic current associated to h-th

voltage harmonic is

i, = (Gy, + Brerea)uy, (12)
and the total current
n
i=) iy =ig+ip (13)
h=1

where i is the in-phase current where iy, is the quadrature current. The geometric apparent power is
then

M = ui = Mg+ M, = P+ CNy+ M, (14)

where Mg is the in-phase geometric apparent power, CNjy is the degraded power ane-(summation of
cross-frequency products between voltage and current) and M, is the quadrature geometric apparent

power.
Based on equation (14) and (8) the power factor in domain can be defined as

_ Py
P T T,

(15)

in contrast to the clasical approach where S is used. As demonstrated by [21], S and M are

different concepts for non-sinusoidal scenarios, but reduces to the same in the sinudoidal case. Other
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ower theories like Czarnecki’s based their power factor definition on the concept of apparent power
S, so it leads to different power factor results in non-sinusoidal situations.

3. Problem description and solution strategy

This section describes the proposed problem in this research and details the characteristics of the
genetic algorithm used to solve it.

3.1. Problem description

Power systems operating under harmonic distortion must be optimized to reduce power losses
and improve power quality [36,37]. Whether the system is linear or non-linear, it is necessary to
provide reactances in parallel with the load in order to reduce these harmonics. The typical design of
compensators is based on the knowledge of the susceptances of the system to different frequencies [38],
something that is not easy to achieve when you have highly distorted systems. The main objective of
non active power compensation is to minimize the source RMS current [5]. However, it is not a trivial
task since it involves to determine which type of filter and characteristics of their components is more
suitable for compensation purposes in a given circuit. For example, a capacitor with an optimal value
connected in parallel to the load is an easy solution but this does not produce the absolute minimum
of the distortion power [39], while other alternatives could improve it.

Some studies have highlighted that algorithms for calculating the parameters of filters has not
been studied in detail [13], although some authors have implemented optimization algorithms for
optimizing the configuration of the filters in circuits having harmonic distortion. For example, in [15]
it was proposed a genetic algorithm to minimize current total harmonic distortion using LC passive
harmonic filters. Other recent studies have applied swarm intelligence methods to comparatively
evaluate single-tuned, double-tuned, triple-tuned, damped-double tuned and C-type filters in order
to improve the loading capability of a set of transformers under non-sinusoidal conditions [16]. In
addition to the use of passive filters, some studies proposed algorithms for estimating the optimal
parameters of active and hybrid filters. For example, in [2] it was proposed the use of direct neural
intelligent techniques to improve performance of a shunt active filters. In other recent studies, it
has been proposed the use of differential evolution (DE) algorithms to optimize the parameters of
hybrid filters (combining active and passive filters) in order to minimize harmonic pollution [14].
The problem to be solved eonsists-on-determining-the-involves the determination of the most suitable
type of passive filter and the-its parameters to minimize the source RMS current I in order to get the
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Set parameters
{pop size, crossover and mutation rates, etc.)

l

Generate initial population
{initial chromosomes)

Fitness value calculation
(individuals)
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1
|
|
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l
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l

termination criterion
satisfied?

YES Return the best
solution

Figure 3. Flowchart of the genetic algorithm.

3.2. Solution approach

Genetic algorithms are optimization methods based on principles of natural selection and genetics
[40]. Figure 3 shows the flowchart describing the operation of the genetic algorithm. It consists of a
set (population) of solutions, each of which is called individual or phenotype, that evolve to reach
solutions of high quality in terms of a fitness function. As an initialization step, genetic algorithm
randomly generates a set of solutions to a problem (a populatlon of genomes). Each-individualis

. —As Figure 4 shows, each
individual is represented by a string of real numbers. Specifically, the data structure of each individual
consists of three possible values for inductors L (Henry) and three possible values for capacitors C
(Farad). All or some of these values will be considered in the optimization process depending on

the filter choosed, which will be specified in the FT field (filter e), as described below. The actual
values that can be assigned to inductors and capacitors are preset between two limits (upper and

lower), so that the search space of the evolutionary algorithm is limited within reasonable margins.

After calculating the fitness values for all solutions in a current population, the individuals for mating
pool are selected using the operator of reproduction according to a given fitness function defined for

the problem to be solved. In our problem the fitness function is

min_f(L,€) = K(L,C) a6)

where I is the source current calculated according to geometric algebra operations. These selection

strategies aim to introduce a certain degree of elitism in the population. These solutions evolve by
applying mutation and crossover operators that modify the genotype of the individuals. Offspring
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1

3

s solutions substitute some old solutions of the population, and the new generation of individuals
» repeats the evolution process until a termination criterion is fulfilled (e.g. a maximum number of
w7s  generations has been reached).

170 Hleowechart-of the geneticalgorithm-

180 In this paper we have adapted a genetic algorithm solver for mixed-integer or continuous-variable
1e1  Optimization, constrained or unconstrained, included in the MATLAB Global Optimization Toolbox
12 [41]. This toolbox allows to solve smooth or non-smooth optimization problems with constraints using
13 different mutation and crossover operators. The original source code has been adapted to deal with

12a the problem at hand. It also has been adapted to take into account the particularities of the proposed

1ss  problem through GA. More specifically, an opensource implementation of GA "Clifford multivector
1ss  toolbox" has been used, available at https:/ /sourceforge.net/projects/ clifford-multivector-toolbox/.

1z A preliminary sensitivity analysis has been performed to determine the parameters of the algorithm,
1es  such that the values used in our study are: Population size: 100 individuals; crossover rate: 0.8;

-
3

180 Iutation rate: 0.2; selection criteria: roulette wheel selection; termination criteria: 50 iterations.

POPULATION

'|L|C|L|C|L|C|FT|
Individual 1

[ ]

T
Individual 2 i

»

T

\ Individual N

Figure 4. Chromosome representation for the population. Note that the genes are real values for L, C

and integer for FT (Filter Type).

10 4. Empirical study

191 This section presents the results obtained by the genetic algorithm in three different case studies.

102 4.1. Case studies

193 ¢ Czarnecki’s case study [39]: This example consists of simple circuit with a harmonic polluted
108 ideal voltage source of normalized frequency w = 1rad/s

u(t) = 100v/2 cos t 4 50v/2 cos 2t + 30v/2 cos 3t (17)
105 with an active power P = 344.23 W. Figure 5(a) shows this-ideal-soureethe circuit load, while
196 Figure 5(b) shows the solution found by Czarnecki with L; = 5.906H, L, = 19H, C; = 0.034F
197 and C; = 0.012F, who compensate the reactive power of the harmonic components by the 1-port
108 X of a precalculated admitance. The method proposed by Czarnecki was able to compensate the
109 source RMS current to 3.10 A from the initial 12.24 A [39].
200 Using (10), the voltage in domain can be expressed as

u = 100e1 + 50ez3 + 30e2s (18)
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05H 0.502
o—m 1
6 H
1/12F ——
10

(a) Circuit proposed by Czarnecki

Ly
o i

Ly

G

. I

(b) Compensator layout

Figure 5. Load and compensator used by Czarnecki “s-in [39].

¢ Castro-Nufiez and Castro-Puche’s case study {22}[26]: This example (already studied b

Czarnecki) consists of a circuit with a highly distorted voltage source with fundamental plus 2
harmonics and a linear load, being the voltage multivector:

12 14
100 100
u=-100e+ 37 A\ ety N\ e
i=1,i#2 i=1,i#2
100 100
u(t) =100V2sint + —-V2sin 11t + —=v/2sin 13t (19)
sT=Trnr="44% ~which translates to
12 14
100 100
u:—100e2+ﬁ. /\ eit I3 /\ e; (20)
i=1,i#2 i=1,i#2

where the uncompensated current is 44.72 A. Figure 6a shows the circuit with the distorted
voltage source and the linear load, while Figure 6b displays the compensator for this linear load.

This-compensator-design-The compensator design by Castro-Nufiez reduced the source RMS
current to 26-1068-20.10 A [22].
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Compensator Load

| |
1 :
' & R=1Q) |
+ | |
e(t)) 3 |
| !
' ZL=2H |
| |
(a) Circuit proposed by Castro-Nufiez

Compensators Load
Rl | |
T ) . |
p e CPC | | |
o ' Z R=1Q)
A ‘ |
(M) 1 |
! | !
‘ B L=2H,
«= FTT T 5™
I X |

(b) Compensators proposed by Castro-Nufiez (L, Ccp) and Czarnecki (CPC)

Figure 6. Circuit with distorted voltage source and a linear load used by Castro-Nufiez and
Castro-Puche [22].

¢ Castilla’s case study [33]: This example consists of a circuit with a seuree—of-periodical

#-sinusoidal-voltage-with-frequency-of 50-Hz-and-distorted voltage source with three harmonics
given by:

u(t) = 200v/2 cos wt + 200v/2cos 3wt — 30M + 100v/2cos Swtm. (21)

with-which translates to_

u = 200¢ + 100V 3e534 + 100e134 + 501/ 3ea3456 — 50e1aass (22)

with an uncompensated RMS current of ||I|| =4.21 {A)-

A. Although the structure of this compensator was not described in the paper published by
Castilla [33], this author indicated that it reduced the source eurrent{RMS-valies)-RMS current
to 3.21 A.

4.2. Filters-optimized-by-the-genetic-algorithmEilter optimization

The genetic algorithm has been adapted to manage different types of filters ;-inelueingwidely used

in the literature for compensating purposes and mitigation of current harmonics. Based on equation
12), the admittance for a general load Y; and harmonic /1, is equal to

Yy, =Gy, + Bje1es = Gl;, + By e12 (23)
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221 If we connect a pure reactive impedance in parallel with the load for current compensation, its
22 admittance Y, will be

Yep, = Beperz @)

223 For example, if we choose a simple LC series compensator, we have

1
Zy, =X, + Xch = —hLweqy + meu
y, _ 1 1 hwC (25)
h= 5 = = 12
Z 1 h2w?2LC — 1
h (7]/114(0 + m) e12 w?LC

224 So we need to make equal B., = — B for every harmonic / to fully compensate the quadrature

225 term. For the opmital case, the total current i is reduced to i, since iy, + i, is equal to 0 after applyin

227 The following configurations were used based on very well-known type of filters:
220 o C-type filter: it is is mainly used for suppressing the low order of harmonics [13].
L

-

Figure 7. C-type filter.

220 * Series LC-type filter: this filter is also considered to reduce line current harmonics [42].

L

C

-

Figure 8. Series LC-type filter.

230 e Parallel LC-type filter: it provides low impedance shunt branches to the load’s harmonic current,
231 which allows to reduce the harmonic current flowing into the line [42].
C L

Figure 9. Parallel LC-type filter.

232 ¢ Triple tuned filter: This type of filter is electrically equivalent to three parallel-connectedtuned
filters-parallel tuned filters connected in series [43].
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G L3
G Ly
G Ly

Figure 10. Triple tune filter.

234 ¢ Foster’s filter: this filter combines in parallel single L-type and C-type filters and also parallel

235 LC—type filters.
3 )

Figure 11. Foster’s filter.

236 * Czarnecki’s 4-elements filter: it is a filter that combines two L and two C elements using a
237 series/parallel configuration [39].
Ly
o—MN—
Ly
(& R—
G
S B

Figure 12. Czarnecki’s 4-elements filter.

238 4.3. Simulation results

230 Tables 1, 2, and 3 show the results obtained by the genetic algorithm in the three case studies
2e0 described above, being the RMS current through the supply source {{sep);-the objective to be minimized.
2a1 The best, mean and standard deviation of 10 independent runs is-are provided.

Table 1. Compensated RMS current (Iscp) obtained by the genetic algorithm in Czarnecki’s case study

[39].
Type of Filter
C Series LC  Parallel LC  Triple tune  Foster Czarnecki4
Best (A) 12.2409 7.5015 12.7235 3.0954 3.0948 3.0987
Mean (A) 12.2415 7.5017 12.7249 3.1040 3.1079 3.1454

Std. dew. 0.0008 0.0002 0.0011 0.0124 0.0155 0.0468
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242 As it can be seen in Table 1, in the case study proposed by Czarnecki [39], the filters "Triple
2a3  tune", "Foster" and "Czarnecki 4" obtain high quality results, while "C-type", "Series LC", and "Parallel
2ea  LC" filters are far from the optimal solution. Some similar conclusions are obtained when analyzing
2es  the date from Table 2, corresponding to the circuit proposed by Castro-Nufiez and Castro-Puche’s

20 [22]. . It is important to point out that better results are obtained in the case of Castro-Nunez with
2a7  the same choice of compensator (20.02 A vs. 20.10 A), although Castro-Nurfiez does not specify the

2s  criterion for choosing the values of the L and C components, apart from discretionary choosing an LC
200 series type compensator. Finally, the analysis of the results provided in Table 3 regarding to the filter
20 proposed by Castilla [33], indicate that "Triple tune", "Foster", "Czarnecki", and the series LC-type filter
21 Obtain high quality solutions. In summary, the genetic algorithm is able not only to equal but also to
252 slightly improve the results obtained in these three case studies, which demonstrates that evolutionary

23 approaches can be used to compensate the source current in different circuits using a variety of filters.

Table 2. Compensated RMS current (Iscp) obtained by the genetic algorithm in Castro-Nufiez and
Castro-Puche’s case study [22].

Type of Filter
C Series LC  Parallel LC  Triple tune Foster =~ Czarnecki 4
Best (A) 38.0511  20.0275 75.5999 20.0288 20.0094 20.0271
Mean (A) 38.0513  20.0313 75.7476 20.5668 20.0807 20.0415
Std. dev. 0.0003 0.0030 0.1411 0.7039 0.0617 0.0150

Table 3. Compensated RMS current (Iscp) obtained by the genetic algorithm in Castilla’s case study.

[33].
Type of Filter
C Series LC  Parallel LC  Triple tune  Foster Czarnecki4
Best (A) 3.7938 3.5236 3.8242 3.2024 3.2131 3.5268
Mean (A) 3.7938 3.5437 3.8242 3.2613 3.2722 3.5313
Std. dew. 0.0000 0.0210 0.0000 0.0369 0.0304 0.0067
254 Table 4 shows the optimal values achieved for the 3 cases of study and the 6 proposed filters.

255 The optimal current is also included for readability purposes.



Table 4. Optimal values for L,C achieved by the genetic algorithm for the 3 cases of study and the 6 proposed filters.

Czarnecki Castro-Nuiiez Castilla
C  SeriesLC Parallel LC  Triple Tune Foster ~ Czarnecki 4 C Series LC  Parallel LC  Triple Tune Foster ~ Czarnecki 4 C  SeriesLC Parallel LC Triple Tune Foster ~Czarnecki4
Ly (H) - 10.2116 99.995 0.794 17.457 5.906 - 1.953 2.000 0.256 1.511 1.977 - 15.6537 10.000 0.082  10.000 9.998
Ly (H) - - - 0.724 6.555 19.000 - - - 0.063 1.641 - - - - 0.072  6.651 9.903
Lz (H) - - - 1.920 5.945 - - - - 0.020 1.198 0.320 - - - 0.021  0.660 -
Ci (uF)  0.010 43373.492 13.0128  264930.386  2991.689 34530.000 135667.470  224040.6422 304711.7123  650723.116 ~ 21800.000 172388219 7.157 0.636 7.291 20.098  5.797 2.079
Co (uF) - - - 106280.564  59192.627 12880.000 - - - 985889.243  366000.000 50406.350 - - - 165469 1451 16.065
Cs (uF) - - - 586142.767  26682.668 - - - - 89338.809  107600.000 - - - - 21464  0.844 -
Lopt (A)  12.240 7.501 12.723 3.095 3.094 3.098 38.051 20.027 75.599 20.028 20.009 20.027 3.793 3.523 3.824 3.202 3.213 3.526
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The table 5 shows a_summary comparison for each of the problems solved showing current
values without compensation Iy, the optimum current oy, that provided by each author I,y and the
optimum current obtained by applying the technique used in this work I 4,,. The value of the power
factor for each of the above situations is also indicated. It should be noted that the power factor may
differ between what is calculated by complex numbers and what is calculated by geometric algebra
due to the different nature of the apparent power S and the geometric apparent power M. For the
first case, the power factor is calculated as P/S while for the second case it is P/M. For example,
for the Czarnecki case study, the apparent power S without compensating is worth 1,417 VA while
compensated is worth 358.8 VA. However, using geometric algebra the power M is worth 1,842 VA
and compensated is worth 359.25 VA, It should be noted that the final result of the compensation
is quite similar since the proposed example is of low complexity as it only has 3 harmonics and low
order. If we take into account the case of Castro-Nufiez or Castilla, the power of the proposed method
is verified since with only 2 elements (LC filter series) or 3 elements, an almost optimal compensated
current is obtained, unlike the original proposal of the author where the filter involved has many
more elements and therefore, much less economic. It should also be noted that the methodology
proposed by Castro-Nufez indicates the path to follow when it comes to compensate for the correct
power terms, M, which is not possible to cancel with the traditional power theory because it doesn’t
account for those terms arising from crossed products between voltage and currents.

Table 5. Comparison table for currents and power factor

Current Power factor
I lopt  lawn Ica,  PFs PFpt  PFywm PFga PFga,
Czarnecki 12.24 3.09 3.10 3.09 0.240 1.00 0.958 0.186 0.958
Castro-Nuiez 44.72 20.00 20.10 20.00 0.444 1.00 0.958 0.444 0.992
Castilla 4.21 3.20 3.21 3.20 0.630 1.00 1.000 0.630 1.000

5. Conclusions

In recent years, different authors have shown that geometric algebra, also known as Clifford
algebra, can be applied to analyze electric circuits. Having in mind that different studies have shown
that geometric algebra is more appropriate than the algebra of complex numbers for the analysis of
circuits with non-sinusoidal sources and linear loads, this investigation is an important contribution

in estimating the type of filter and its parameters to optimize the reactive-power-compensation
quadrature current in electrical circuits —The-which leads to the compensation of new power terms
like quadrature apparent power My, not included in the commonly accepted definition of electrical
power standards. The traditional compensation of reactive power is exceeded by the compensation

of cross products between current and voltage that have not been previously taken into account. The
proposed approach is based on the use of a genetic algorithm which is able to optimize the parameters

of different types of passive filters. In particular, six widely-used filters (single-tuned, double-tuned,
triple-tuned, damped-double tuned and C-type ones by regarding their contribution on the loading
capability improvement of the transformers under non-sinusoidal conditions.

The results obtained in three test circuits found in the literature show that the application of genetic
algorithms based on geometric algebra representations are powerful methods that are able to equal or
even improve the results previously obtained by other authors using analytical methods. These results
open the door to investigate in the use of computational optimization methods for compensating
the reactive power in complex circuits. As future work, it is planned to extend the analysis to larger
circuits using these and other type of filters. Furthermore, multi-objective optimization methods
will be considered to simultaneously optimize the reactive power compensation and to minimize the
economic cost of the filters.
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Appendix

A. General concepts

Given an ortho-normal base {¢x} with k = 1,..... N for a vector space R it is possible to define
a new_space called geometrical algebra .. This new space is characterized by bases not only
composed of {gx}, but also of external products between these vectors. For example, in the case of a
3D Euclidean space, there is an ortho-normal base {71,273} where ¢ = 1. Applying the concept of
Grassmann product or exterior product, you get.

TN T = O Tm T (26)

which is a new entity, different from a scalar or a vector because

7= (010m) (010m) = 01(0m07)Om = 01(—010m ) O =

= _(UlUl)z(UmUm)z = _(1)(1) =-1

(010m) 27)

070, squares to —1 so we can conclude that we are facing a new element, which is called a bivector.
In the same way, the external product of more than 3 vectors is called trivector, and in general, the
roduct of k vectors is called k-vector. In this way, alegebra Gz can be developed with the base

{191, 92, 93,912, 913, 723, T123 (28)

Generally speaking, the elements of a geometric algebra are called multivectors (M) and can be
expressed as a linear combination of the different bases

M = (M)o+ (M)1 + (M)z + ... + (M), = ) _(M); (29)

where each (M), is an element of grade k, representing scalars (grade 0), vectors (grade 1),
bivectors (grade 2) or in general, k-vectors (grade k).
B. Geometric operations

The geometric product is the cornerstone of geometric algebra and is indebted to the
contributions of Grassman and Clifford. It is defined as the sum of the scalar product and the external

roduct, and for the case of 2 vectors v; v v;

SR RN 30

for the base vectors ¢; v 0; con i # j, we get bivectors

0'i0'j=(fi~0'j+(7i/\0']‘=0'i/\0']'=0'i]' (31)
base vectors anticommute for i # | because
O'iO'jZO'i/\O']‘Z—U'jAU'iZ—U']'i (32)

On the other hand, unlike vectors which squares to 1, bivectors squares to -1

0',']'(7',']' = U'i(T]'U'i(Tj = —0']'0','0'1'0']' = —0']'0']' =-1 (33)
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Finally, we detail some important operations that are used extensively in multivector operations.

One of these properties is the reversion or M988¢" which consists of

M= Y (MY = (1) D2y, (34)
k=0

The norm of a multivector M (|| M]||) is always a scalar and can be obtained

1] = /(M1 M)g = (MM, = T (MM 35)
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