Density Elimination for Semilinear Substructural Logics ${ }^{\text {W }}$

SanMin Wang
Faculty of Science, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China
Email:wangsanmin@hotmail.com

Abstract

We present a uniform method of density elimination for several semilinear substructural logics. Especially, the density elimination for the involutive uninorm logic IUL is proved. Then the standard completeness of IUL follows as a lemma by virtue of previous work by Metcalfe and Montagna.

Keywords: Density elimination, Involutive uninorm logic, Standard completeness of IUL, Semilinear substructural logics, Fuzzy logic
2000 MSC: 03B50, 03F05, 03B52, 03B47

Contents

1. Introduction .. 2
2. Preliminaries 5
3. Proof of the main theorem: A computational example .. 7

4. Extraction of Elimination Rules 26
5. Separation of one branch 31

6. The proof of Main theorem 45
7. Final remarks and open problems .. 46

References .. 47
Appendices 47
A.1. Why do we adopt Avron-style hypersequent calculi? 47
A.2. Why do we need the constrained external contraction rule? 48
A.3. Why do we need the separation of branches? 49
A.4. Some questions about Theorem 8.2 49
A.5. Illustrations of notations and algorithms 50
A.5.1. Illustration of two cases of (COM) in the proof of Lemma 5.6 50
A.5.2 Illustration of Construction 6.1 51
A.5.3. Illustration of Notation 6.10 and Construction 6.11 51
A.5.4. Illustration of Theorem 8.2 52

[^0]

1. Introduction

The problem of the completeness of Łukasiewicz infinite-valued logic (\mathbf{L} for short) was posed by Łukasiewicz and Tarski in the 1930s. It was twenty-eight years later that it was syntactically solved by Rose and Rosser [20]. Chang [4] developed at almost the same time a theory of algebraic systems for \mathbf{L}, which is called MV-algebras, with an attempt to make MV-algebras correspond to $\mathbf{\lfloor}$ as Boolean algebras to the classical two-valued logic. Chang [5] subsequently finished another proof for the completeness of \mathbf{L} by virtue of his $\mathbf{M V}$-algebras.

It was Chang who observed that the key role in the structure theory of MV-algebras is not locally finite MV-algebras but linearly ordered ones. The observation was formalized by Hájek
[12] who showing the completeness for his basic fuzzy logic (BL for short) with respect to linearly ordered BL-algebras. Starting with the structure of BL-algebras, Hájek [13] reduced the problem of the standard completeness of BL to two formulas to be provable in BL. Here and thereafter, by the standard completeness we mean that logics are complete with respect to algebras with lattice reduct [0,1]. Cignoli et al. [6] subsequently proved the standard completeness of $\mathbf{B L}$, i.e., $\mathbf{B L}$ is the logic of continuous t -norms and their residua.

Hajek's approach toward fuzzy logic has been extended by Esteva and Godo in [9], where the authors introduced the logic MTL which aims at capturing the tautologies of left-continuous tnorms and their residua. The standard completeness of MTL was proved by Jenei and Montagna in [15], where the major step is to embed linearly ordered MTL-algebras into the dense ones under the situation that the structure of MTL-algebras has been unknown as yet.

Esteva and Godo's work was further promoted by Metcalfe and Montagna [16] who introduced the uninorm logic UL and involutive uninorm logic IUL which aim at capturing tautologies of left-continuous uninorms and their residua and those of involutive left-continuous ones, respectively. Recently, Cintula and Noguera [8] introduced semilinear substructural logics which are substructural logics complete with respect to linearly ordered models. Almost all well-known families of fuzzy logics such as $\mathbf{L}, \mathbf{B L}, \mathbf{M T L}, \mathbf{U L}$ and IUL belong to the class of semilinear substructural logics.

Metcalfe and Montagna's method to prove standard completeness for UL and its extensions is of proof theory in nature and consists of two key steps. Firstly, they extended UL with the density rule of Takeuti and Titani [21]:

$$
\frac{\Gamma \vdash(A \rightarrow p) \vee(p \rightarrow B) \vee C}{\Gamma \vdash(A \rightarrow B) \vee C}(D)
$$

where p does not occur in Γ, A, B or C, and then prove the logics with (D) are complete with respect to algebras with lattice reduct $[0,1]$. Secondly, they give a syntactic elimination of (D) that was formulated as a rule of the corresponding hypersequent calculus.

Hypersequents are a natural generalization of sequents which were introduced independently by Avron [1] and Pottinger [19] and have proved to be particularly suitable for logics with prelinearity [2, 16]. Following the spirit of Gentzen's cut elimination, Metcalfe and Montagna succeeded to eliminate the density rule for GUL and several extensions of GUL by induction on the height of a derivation of the premise and shifting applications of the rule upwards, but failed for GIUL and therefore left it as an open problem.

There are several relevant works about the standard completeness of IUL as follows. With an attempt to prove the standard completeness of IUL, we generalized Jenei and Montagna's method for IMTL in [22], but our effort was only partially successful. It seems that the subtle reason why it does not work for UL and IUL is the failure of FMP of these systems [23]. Jenei [14] constructed several classes of involutive FL_{e}-algebras, as he said, in order to gain a better insight into the algebraic semantic of the substructural logic IUL, and also to the longstanding open problem about its standard completeness. Ciabattoni and Metcalfe [7] introduced the method of density elimination by substitutions which is applicable to a general classes of (first-order) hypersequent calculi but fails to the case of GIUL.

We reconsidered Metcalfe and Montagna's proof-theoretic method to investigate the standard completeness of IUL, because they have proved the standard completeness of UL by their method and we can't prove such a result by the Jenei and Montagna's model-theoretic method. In order to prove the density elimination for GUL, they prove that the following generalized density rule $\left(\mathcal{D}_{1}\right)$:

$$
\frac{G_{0} \equiv\left\{\Gamma_{i}, \lambda_{i} p \Rightarrow \Delta_{i}\right\}_{i=1 \cdots n}\left|\left\{\Sigma_{k},\left(\mu_{k}+1\right) p \Rightarrow p\right\}_{k=1 \cdots o}\right|\left\{\Pi_{j} \Rightarrow p\right\}_{j=1 \cdots m}}{\mathcal{D}_{1}\left(G_{0}\right) \equiv\left\{\Gamma_{i}, \lambda_{i} \Pi_{j} \Rightarrow \Delta_{i}\right\}_{j=1 \cdots n}^{j=1 \cdots m} \mid\left\{\Sigma_{k}, \mu_{k} \Pi_{j} \Rightarrow t\right\}_{k=1 \cdots o}^{j=1 \cdots m}}\left(\mathcal{D}_{1}\right)
$$

is admissible for GUL, where they set two constraints to the form of G_{0} : (i) $n, m \geqslant 1$ and $\lambda_{i} \geqslant 1$ for some $1 \leqslant i \leqslant n$; (ii) p does not occur in $\Gamma_{i}, \Delta_{i}, \Pi_{j}, \Sigma_{k}$ for $i=1 \cdots n, j=1 \cdots m, k=1 \cdots o$.

We may regard $\left(\mathcal{D}_{1}\right)$ as a procedure whose input and output are the premise and conclusion of $\left(\mathcal{D}_{1}\right)$, respectively. We denote the conclusion of $\left(\mathcal{D}_{1}\right)$ by $\mathcal{D}_{1}\left(G_{0}\right)$ when its premise is G_{0}. Observe that Metcalfe and Montagna had succeeded to define the suitable conclusion for almost arbitrary premise in $\left(\mathcal{D}_{1}\right)$, but it seems impossible for GIUL (See Section 3 for an example). We then define the following generalized density rule $\left(\mathcal{D}_{0}\right)$ for

GL $\in\{$ GUL, GIUL, GMTL, GIMTL $\}$

and prove its admissibility in Section 9.
Theorem 1.1 (Main theorem). Let $n, m \geqslant 1$, p does not occur in $G^{\prime}, \Gamma_{i}, \Delta_{i}, \Pi_{j}$ or Σ_{j} for all $1 \leqslant i \leqslant n, 1 \leqslant j \leqslant m$. Then the strong density rule

$$
\frac{G_{0} \equiv G^{\prime}\left|\left\{\Gamma_{i}, p \Rightarrow \Delta_{i}\right\}_{i=1 \cdots n}\right|\left\{\Pi_{j} \Rightarrow p, \Sigma_{j}\right\}_{j=1 \cdots m}}{\mathcal{D}_{0}\left(G_{0}\right) \equiv G^{\prime} \mid\left\{\Gamma_{i}, \Pi_{j} \Rightarrow \Delta_{i}, \Sigma_{j}\right\}_{i=1 \cdots n ; j=1 \cdots m}}\left(\mathcal{D}_{0}\right)
$$

is admissible in $\mathbf{G L}$.
In proving the admissibility of $\left(\mathcal{D}_{1}\right)$, Metcalfe and Montagna made some restriction on the proof τ of G_{0}, i.e., converted τ into an r-proof. The reason why they need an r-proof is that they set the constraint (i) to G_{0}. We may imagine the restriction on τ and the constraints to G_{0} as two pallets of a balance, i.e., one is strong if another is weak and vice versa. Observe that we select the weakest form of G_{0} in $\left(\mathcal{D}_{0}\right)$ that guarantees the validity of (D). Then it is natural that we need make the strongest restriction on the proof τ of G_{0}. But it seems extremely difficult to follow such a way to prove the admissibility of (\mathcal{D}_{0}).

In order to overcome such a difficulty, we first of all choose Avron-style hypersequent calculi as the underlying systems (See A.1). Let τ be a cut-free proof of G_{0} in GL. Starting with τ, we construct a proof τ^{*} of $G \mid G^{*}$ in a restricted subsystem $\mathbf{G L}_{\Omega}$ of $\mathbf{G L}$ by a systematic novel manipulations in Section 4. Roughly speaking, each sequent of G is a copy of some sequent of G_{0}, and each sequent of G^{*} is a copy of some contraction sequent in τ. In Section 5 , we define the generalized density rule (\mathcal{D}) in $\mathbf{G L}_{\Omega}$ and prove that it is admissible.

Now, starting with $G \mid G^{*}$ and its proof τ^{*}, we construct a proof $\tau^{\star \boldsymbol{\alpha}}$ of $G^{\text {su }}$ in $\mathbf{G L}_{\Omega}$ such that each sequent of $G^{\text {sh }}$ is a copy of some sequent of G. Then $\vdash \mathbf{G L}_{\Omega} \mathcal{D}\left(G^{\natural}\right)$ by the admissibility of (\mathcal{D}). Then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$ by Lemma 9.1. Hence the density elimination theorem holds in $\mathbf{G L}$. Especially, the standard completeness of IUL follows from Theorem 62 of [16].
$G^{\text {出 }}$ is constructed by eliminating $(p E C)$-sequents in $G \mid G^{*}$ one by one. In order to control the process, we introduce the set $I=\left\{H_{i_{1}}^{c} \cdots, H_{i_{m}}^{c}\right\}$ of $(p E C)$-nodes of τ^{*} and the set \mathbf{I} of the branches relative to I and construct $G_{\mathbf{I}}^{\boldsymbol{\omega}}$ such that $G_{\mathbf{I}}^{\text {ふ }}$ doesn't contain ($p E C$)-sequents lower than any node in I, i.e., $S_{j}^{c} \in G_{\mathbf{I}}^{\breve{\sim}}$ implies $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$. The procedure is called the separation algorithm of branches in which we introduce another novel manipulation and call it derivation-grafting operation in Section 7, 8.

2. Preliminaries

In this section, we recall the basic definitions and results involved, which are mainly from [16]. Substructural fuzzy logics are based on a countable propositional language with formulas FOR built inductively as usual from a set of propositional variables VAR, binary connectives $\odot, \rightarrow, \wedge, \vee$, and constants $\perp, \mathrm{\top}, t, f$ with definable connective $\neg A:=A \rightarrow f$.

Definition 2.1. ($[1,16])$ A sequent is an ordered pair (Γ, Δ) of finite multisets (possibly empty) of formulas, which we denote by $\Gamma \Rightarrow \Delta . \Gamma$ and Δ are called the antecedent and succedents, respectively, of the sequent and each formula in Γ and Δ is called a sequent-formula. A hypersequent G is a finite multiset of the form $\Gamma_{1} \Rightarrow \Delta_{1}|\cdots| \Gamma_{n} \Rightarrow \Delta_{n}$, where each $\Gamma_{i} \Rightarrow \Delta_{i}$ is a sequent and is called a component of G for each $1 \leqslant i \leqslant n$. If Δ_{i} contains at most one formula for $i=1 \cdots n$, then the hypersequent is single-conclusion, otherwise it is multiple-conclusion.

Definition 2.2. Let S be a sequent and $G=S_{1}|\cdots| S_{m}$ a hypersequent. We say that $S \in G$ if S is one of S_{1}, \cdots, S_{m}.

Notation 2.3. Let G_{1} and G_{2} be two hypersequents. We will assume from now on that all set terminology refers to multisets, adopting the conventions of writing Γ, Δ for the multiset union of Γ and Δ, A for the singleton multiset $\{A\}$, and $\lambda \Gamma$ for the multiset union of λ copies of Γ for $\lambda \in \mathbf{N}$. By $G_{1} \subseteq G_{2}$ we mean that $S \in G_{2}$ for all $S \in G_{1}$ and the multiplicity of S in G_{1} is not more than that of S in G_{2}. We will use $G_{1}=G_{2}, G_{1} \cap G_{2}, G_{1} \cup G_{2}, G_{1} \backslash G_{2}$ by their standard meaning for multisets by default and we will declare when we use them for sets. We sometimes n copies
write $S_{1}|\cdots| S_{m}$ and $G \mid \overbrace{S|\cdots| S}$ as $\left\{S_{1}, \cdots, S_{m}\right\}, G \mid S^{n}\left(\right.$ or $\left.G \mid\{S\}^{n}\right)$, respectively.
Definition 2.4. ([1]) A hypersequent rule is an ordered pair consisting of a sequence of hypersequents G_{1}, \cdots, G_{n} called the premises (upper hypersequents) of the rule, and a hypersequent G called the conclusion (lower hypersequent), written by $\frac{G_{1} \cdots G_{n}}{G}$. If $n=0$, then the rule has no premise and is called an initial sequent. The single-conclusion version of a rule adds the restriction that both the premises and conclusion must be single-conclusion; otherwise the rule is multiple-conclusion.

Definition 2.5. ([16]) GUL and GIUL consist of the single-conclusion and multiple-conclusion versions of the following initial sequents and rules, respectively:

Initial Sequents

$$
\overline{A \Rightarrow A}(I D) \quad \overline{\Gamma \Rightarrow \mathrm{T}, \Delta}\left(\mathrm{~T}_{r}\right) \quad \overline{\Gamma, \perp \Rightarrow \Delta}\left(\perp_{l}\right) \quad \overline{\Rightarrow t}\left(t_{r}\right) \quad \overline{f \Rightarrow}\left(f_{l}\right)
$$

Structural Rules

$$
\begin{gathered}
\frac{G|\Gamma \Rightarrow A| \Gamma \Rightarrow A}{G \mid \Gamma \Rightarrow A}(E C) \quad \frac{G}{G \mid \Gamma \Rightarrow A}(E W) \\
\frac{G_{1} \mid \Gamma_{1}, \Pi_{1} \Rightarrow \Sigma_{1}, \Delta_{1}}{G_{1}\left|G_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2} \mid \Pi_{2}, \Pi_{2} \Rightarrow \Sigma_{1}, \Sigma_{2}}(C O M)
\end{gathered}
$$

Logical Rules

$$
\begin{aligned}
& \begin{array}{c}
\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma, t, \Rightarrow \Delta}\left(t_{l}\right) \\
\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma \Rightarrow f, \Delta}\left(f_{r}\right), ~
\end{array} \\
& \frac{G_{1}\left|\Gamma_{1} \Rightarrow A, \Delta_{1} \quad G_{2}\right| \Gamma_{2}, B \Rightarrow \Delta_{2}}{G_{1}\left|G_{2}\right| \Gamma_{1}, \Gamma_{2}, A \rightarrow B \Rightarrow \Delta_{1}, \Delta_{2}}\left(\rightarrow_{l}\right) \\
& \frac{G \mid \Gamma, A, B \Rightarrow \Delta}{G \mid \Gamma, A \odot B \Rightarrow \Delta}\left(\odot_{l}\right) \\
& \frac{G \mid \Gamma, A \Rightarrow \Delta}{G \mid \Gamma, A \wedge B \Rightarrow \Delta}\left(\wedge_{l r}\right) \\
& \frac{G_{1}\left|\Gamma \Rightarrow A, \Delta \quad G_{2}\right| \Gamma \Rightarrow B, \Delta}{G_{1}\left|G_{2}\right| \Gamma \Rightarrow A \wedge B, \Delta}\left(\wedge_{r}\right) \\
& \frac{G \mid \Gamma \Rightarrow B, \Delta}{G \mid \Gamma \Rightarrow A \vee B, \Delta}\left(\vee_{r l}\right) \\
& \frac{G \mid \Gamma, A \Rightarrow B, \Delta}{G \mid \Gamma \Rightarrow A \rightarrow B, \Delta}\left(\rightarrow_{r}\right) \\
& \frac{G_{1}\left|\Gamma_{1} \Rightarrow A, \Delta_{1} G_{2}\right| \Gamma_{2} \Rightarrow B, \Delta_{2}}{G_{1}\left|G_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow A \odot B, \Delta_{1}, \Delta_{2}}\left(\odot_{r}\right) \\
& \frac{G \mid \Gamma, B \Rightarrow \Delta}{G \mid \Gamma, A \wedge B \Rightarrow \Delta}\left(\wedge_{l l}\right) \\
& \frac{G \mid \Gamma \Rightarrow A, \Delta}{G \mid \Gamma \Rightarrow A \vee B, \Delta}\left(\vee_{r r}\right) \\
& \frac{G_{1}\left|\Gamma, A \Rightarrow \Delta \quad G_{2}\right| \Gamma, B \Rightarrow \Delta}{G_{1}\left|G_{2}\right| \Gamma, A \vee B \Rightarrow \Delta}\left(\vee_{l}\right)
\end{aligned}
$$

Cut Rule

$$
\frac{G_{1}\left|\Gamma_{1}, A \Rightarrow \Delta_{1} \quad G_{2}\right| \Gamma_{2} \Rightarrow A, \Delta_{2}}{G_{1}\left|G_{2}\right| \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}(C U T)
$$

Definition 2.6. ([16]) GMTL and GIMTL are GUL and GIUL plus the single conclusion and multiple-conclusion versions, respectively, of:

$$
\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma, A \Rightarrow \Delta}(W L), \frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma \Rightarrow A, \Delta}(W R) .
$$

Definition 2.7. (i) $(I) \in\left\{\left(t_{l}\right),\left(f_{r}\right),\left(\rightarrow_{r}\right),\left(\odot_{l}\right),\left(\wedge_{l r}\right),\left(\wedge_{l l}\right),\left(\vee_{r r}\right),\left(\vee_{r l}\right),(W L),(W R)\right\}$ and $(I I) \in\left\{\left(\rightarrow_{l}\right),\left(\odot_{r}\right),\left(\wedge_{r}\right),\left(\vee_{l}\right),(C O M)\right\}$;
(ii) By $\frac{G^{\prime}\left|S^{\prime} \quad G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I)$ (or $\frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid H^{\prime}}(I)$) we denote an instance of a two-premise rule (II) (or one-premise rule (I)) of $\mathbf{G L}$, where S^{\prime} and $S^{\prime \prime}$ are its focus sequents and H^{\prime} is its principle sequent (for $\left(\rightarrow_{l}\right),\left(\odot_{r}\right),\left(\wedge_{r}\right)$ and $\left.\left(\vee_{l}\right)\right)$ or hypersequent (for $(C O M),\left(\wedge_{r w}\right)$ and $\left(\vee_{l w}\right)$, see Definition 4.2).

Definition 2.8. ([16]) $\mathbf{G} \mathbf{L}^{\mathrm{D}}$ is $\mathbf{G L}$ extended with the following density rule:

$$
\frac{G\left|\Gamma_{1}, p \Rightarrow \Delta_{1}\right| \Gamma_{2} \Rightarrow p, \Delta_{2}}{G \mid \Gamma_{1}, \Gamma_{2} \Rightarrow \Delta_{1}, \Delta_{2}}(D)
$$

where p does not occur in $G, \Gamma_{1}, \Gamma_{2}, \Delta_{1}$ or Δ_{2}.
Definition 2.9. ([1]) A derivation τ of a hypersequent G from hypersequents G_{1}, \cdots, G_{n} in a hypersequent calculus $\mathbf{G L}$ is a labeled tree with the root labeled by G, leaves labeled initial sequents or some G_{1}, \cdots, G_{n}, and for each node labeled G_{0}^{\prime} with parent nodes labeled $G_{1}^{\prime}, \cdots, G_{m}^{\prime}$ (where possibly $m=0$), $\frac{G_{1}^{\prime} \cdots G_{m}^{\prime}}{G_{0}^{\prime}}$ is an instance of a rule of $\mathbf{G L}$.

Notation 2.10. (i) $\frac{G_{1} \cdots G_{n}}{G_{0}}\langle\tau\rangle$ denotes that τ is a derivation of G_{0} from G_{1}, \cdots, G_{n};
(ii) Let H be a hypersequent. $H \in \tau$ denotes that H is a node of τ. We call H a leaf hypersequent if H is a leaf of τ, the root hypersequent if it is the root of τ. $\frac{G_{1}^{\prime} \cdots G_{m}^{\prime}}{G_{0}^{\prime}} \in \tau$ denotes that $G_{0}^{\prime} \in \tau$ and its parent nodes are $G_{1}^{\prime}, \cdots, G_{m}^{\prime}$;
(iii) Let $H \in \tau$ then $\tau(H)$ denotes the subtree of τ rooted at H;
(iv) τ determines a partial order \leqslant_{τ} with the root as the least element. $H_{1} \| H_{2}$ denotes $H_{1} \not_{\tau}$ H_{2} and $H_{2} \forall_{\tau} H_{1}$ for any $H_{1}, H_{2} \in \tau$. By $H_{1}=_{\tau} H_{2}$ we mean that H_{1} is the same node as H_{2} in τ. We sometimes write \leqslant_{τ} as \leqslant;
(v) An inference of the form $\frac{G^{\prime} \mid S^{n}}{G^{\prime} \mid S} \in \tau$ is called the full external contraction and denoted by $\left(E C^{*}\right)$, if $n \geqslant 2, G^{\prime} \mid S^{n}$ is not a lower hypersequent of an application of $(E C)$ whose contraction sequent is S, and $G^{\prime} \mid S$ not an upper one in τ.

Definition 2.11. Let τ be a derivation of G and $H \in \tau$. The thread $T h_{\tau}(H)$ of τ at H is a sequence H_{0}, \cdots, H_{n} of node hypersequents of τ such that $H_{0}={ }_{\tau} H, H_{n}={ }_{\tau} G, \frac{H_{k}}{H_{k+1}} \in \tau$ or there exists $G^{\prime} \in \tau$ such that $\frac{H_{k} \quad G^{\prime}}{H_{k+1}}$ or $\frac{G^{\prime} \quad H_{k}}{H_{k+1}}$ in τ for all $0 \leqslant k \leqslant n-1$.
Proposition 2.12. Let $H_{1}, H_{2} \in \tau$. Then
(i) $H_{1} \leqslant H_{2}$ if and only if $H_{1} \in T h_{\tau}\left(H_{2}\right)$;
(ii) $H_{1} \| H_{2}$ and $H_{1} \leqslant H_{3}$ imply $H_{2} \| H_{3}$;
(iii) $H_{1} \leqslant H_{3}$ and $H_{2} \leqslant H_{3}$ imply $H_{1} \# H_{2}$.

We need the following definition to give each node of τ an identification number, which is used in Construction 6.1 to differentiate sequents in a hypersequent in a proof.

Definition 2.13. ([A.5.2]) Let $H \in \tau$ and $\operatorname{Th}(H)=\left(H_{0}, \cdots, H_{n}\right)$. Let $b_{n}:=1$,

$$
b_{k}:= \begin{cases}1 & \text { if } \frac{G^{\prime} H_{k}}{H_{k+1}} \in \tau, \\ 0 & \text { if } \frac{H_{k}}{H_{k+1}} \in \tau \text { or } \frac{H_{k} G^{\prime}}{H_{k+1}} \in \tau\end{cases}
$$

for all $0 \leqslant k \leqslant n-1$. Then $\mathcal{P}(H):=\sum_{k=0}^{k=n} 2^{k} b_{k}$ and call it the position of H in τ.
Definition 2.14. A rule is admissible for a calculus $\mathbf{G L}$ if whenever its premises are derivable in $\mathbf{G L}$, then so is its conclusion.

Lemma 2.15. ([16]) Cut-elimination holds for GL, i.e., proofs using (CUT) can be transformed syntactically into proofs not using (CUT).

3. Proof of the main theorem: A computational example

In this section, we present an example to illustrate the proof of Main theorem.
Let $G_{0} \equiv \Rightarrow p, B|B \Rightarrow p, \neg A \odot \neg A| p \Rightarrow C \mid C, p \Rightarrow A \odot A$. G_{0} is a theorem of IUL and a cut-free proof τ of G_{0} is shown in Figure 1, where we use an additional rule $\frac{\Gamma, A \Rightarrow \Delta}{\Gamma \Rightarrow \neg A, \Delta}\left(\neg_{r}\right)$ for simplicity.

Note that we denote three applications of $(E C)$ in τ respectively by $(E C)_{1},(E C)_{2},(E C)_{3}$ and three $\left(\odot_{r}\right)$ by $\left(\odot_{r}\right)_{1},\left(\odot_{r}\right)_{2}$ and $\left(\odot_{r}\right)_{3}$.

$$
\begin{gathered}
\frac{p \Rightarrow p \quad A \Rightarrow A}{A \Rightarrow p \mid p \Rightarrow A}(C O M) \frac{p \Rightarrow p \quad A \Rightarrow A}{A \Rightarrow p \mid p \Rightarrow A}(C O M) \\
\hline A \Rightarrow p|A \Rightarrow p| p, p \Rightarrow A \odot A \\
\hline A \Rightarrow p \mid p, p \Rightarrow A \odot A \\
\Rightarrow p, \neg A \mid p, p \Rightarrow A \odot A \\
\hline
\end{gathered}(E C)_{1}\left(_{1}\right)
$$

$$
\begin{gathered}
\frac{p \Rightarrow p \quad A \Rightarrow A}{A \Rightarrow p \mid p \Rightarrow A}(\text { COM }) \frac{p \Rightarrow p \quad A \Rightarrow A}{A \Rightarrow p \mid p \Rightarrow A}(\text { COM }) \\
\hline A \Rightarrow p|A \Rightarrow p| p, p \Rightarrow A \odot A \\
\hline A \Rightarrow p \mid p, p \Rightarrow A \odot A \\
\Rightarrow p, \neg A \mid p, p \Rightarrow A \odot A \\
\hline
\end{gathered}(E C)_{2}{ }_{2}\left(\neg_{r}\right)
$$

(continued)

FIGURE 1 A proof τ of G_{0}
By applying (D) to free combinations of all sequents in $\Rightarrow p, B \mid B \Rightarrow p, \neg A \odot \neg A$ and in $p \Rightarrow$ $C \mid C, p \Rightarrow A \odot A$, we get that $H_{0} \equiv \Rightarrow B, C|C \Rightarrow A \odot A, B| B \Rightarrow C, \neg A \odot \neg A \mid C, B \Rightarrow A \odot A, \neg A \odot \neg A$. H_{0} is a theorem of IUL and a cut-free proof ρ of H_{0} is shown in Figure 2. It supports the validity of the generalized density rule $\left(\mathcal{D}_{0}\right)$ in Section 1 , as an instance of $\left(\mathcal{D}_{0}\right)$.

Figure 2 a proof ρ of H_{0}
Our task is to construct ρ, starting from τ. The tree structure of ρ is more complicated than that of τ. Compared with UL, MTL and IMTL, there is no one-to-one correspondence between nodes in τ and ρ.

Following the method given by G. Metcalfe and F. Montagna, we need to define a generalized density rule for IUL. We denote such an expected unknown rule by $\left(\mathcal{D}_{x}\right)$ for convenience. Then $\mathcal{D}_{x}(H)$ must be definable for all $H \in \tau$. Naturally, $\mathcal{D}_{x}(p \Rightarrow p)=\Rightarrow t ; \mathcal{D}_{x}(A \Rightarrow p \mid p \Rightarrow A)=A \Rightarrow$ $A ; \mathcal{D}_{x}(\Rightarrow p, \neg A \mid p, p \Rightarrow A \odot A)=\Rightarrow \neg A, \neg A, A \odot A ; \mathcal{D}_{x}(\Rightarrow p, B|B \Rightarrow p, \neg A \odot \neg A| p, p \Rightarrow A \odot A)=\Rightarrow$ $B, B, A \odot A|B, B \Rightarrow A \odot A, \neg A \odot \neg A, \neg A \odot \neg A| B \Rightarrow A \odot A, B, \neg A \odot \neg A ; \mathcal{D}_{x}\left(G_{0}\right)=\mathcal{D}_{0}\left(G_{0}\right)=H_{0}$.

However, we couldn't find a suitable way to define $\mathcal{D}_{x}\left(H_{\times \times}\right)$and $\mathcal{D}_{x}\left(H_{\times}\right)$for $H_{\times \times}$and H_{\times}in τ, see Figure 1. This is the biggest difficulty we encounter in the case of IUL such that it is hard to prove density elimination for IUL. A possible way is to define $\mathcal{D}_{x}(\Rightarrow p, p, \neg A \odot \neg A \mid p, p \Rightarrow A \odot A)$ as $\Rightarrow t, A \odot A, \neg A \odot \neg A$. Unfortunately, it is not a theorem of IUL.

Notice that two upper hypersequents $\Rightarrow p, \neg A \mid p, p \Rightarrow A \odot A$ of $\left(\odot_{r}\right)_{3}$ are permissible inputs of $\left(\mathcal{D}_{x}\right)$. Why is $H_{\times \times}$an invalid input? One reason is that, two applications $(E C)_{1}$ and $(E C)_{2}$ cut off two sequents $A \Rightarrow p$ such that two $p^{\prime} s$ disappear in all nodes lower than upper hypersequent of $(E C)_{1}$ or $(E C)_{2}$, including $H_{x \times x}$. These make occurrences of $p^{\prime} s$ to be incomplete in $H_{x \times}$. We then perform the following operation in order to get complete occurrences of $p^{\prime} s$ in $H_{\times \times \times}$.

Step 1 (Preprocessing of τ). Firstly, we replace H with $H \mid S^{\prime}$ for all $\frac{G^{\prime}\left|S^{\prime}\right| S^{\prime}}{G^{\prime} \mid S^{\prime}}(E C)_{k} \in \tau$, $H \leqslant G^{\prime} \mid S^{\prime}$ then replace $\frac{G^{\prime}\left|S^{\prime}\right| S^{\prime}}{G^{\prime}\left|S^{\prime}\right| S^{\prime}}(E C)_{k}$ with $G^{\prime}\left|S^{\prime}\right| S^{\prime}$ for all $k=1,2,3$. Then we construct a proof without $(E C)$, which we denote by τ_{1}, as shown in Figure 3. We call such manipulations
sequent-inserting operations, which eliminate applications of $(E C)$ in τ.

FIGURE 3 A proof τ_{1}
However, we also can't define $\mathcal{D}_{x}\left(H_{\times x}^{\prime}\right)$ for $H_{\times x}^{\prime} \in \tau_{1}$ in that $\Rightarrow p, p, \neg A \odot \neg A \mid p, p \Rightarrow A \odot A \subseteq$ $H_{x \times}^{\prime}$. The reason is that the origins of $p^{\prime} s$ in $H_{x x}^{\prime}$ are indistinguishable if we regard all leaves in the form $p \Rightarrow p$ as the origins of $p^{\prime} s$ which occur in the inner node. For example, we don't know which p comes from the left subtree of $\tau_{1}\left(H_{x \times}^{\prime}\right)$ and which from the right subtree in two occurrences of $p^{\prime} s$ in $\Rightarrow p, p, \neg A \odot \neg A \in H_{\times \times}^{\prime}$. We then perform the following operation in order to make all occurrences of $p^{\prime} s$ in $H_{x x}^{\prime}$ distinguishable.

We assign the unique identification number to each leaf in the form $p \Rightarrow p \in \tau_{1}$ and transfer these identification numbers from leaves to the root, as shown in Figure 4. We denote the proof of $G \mid G^{*}$ resulting from this step by τ^{*}, where $G \equiv \Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C \mid C, p_{2} \Rightarrow A \odot A$ in which each sequent is a copy of some sequent in G_{0} and $G^{*} \equiv A \Rightarrow p_{1}\left|A \Rightarrow p_{3}\right| p_{3}, p_{4} \Rightarrow A \odot A$ in which each sequent is a copy of some external contraction sequent in $(E C)$-node of τ. We call such manipulations eigenvariable-labeling operations, which make us to trace eigenvariables in τ.

FIGURE 4 A proof τ^{*} of $G \mid G^{*}$
Then all occurrences of p in τ^{*} are distinguishable and we regard them as distinct eigenvariables (See Definition 4.16 (i)). Firstly, by selecting p_{1} as the eigenvariable and applying (D) to $G \mid G^{*}$, we get

$$
G^{\prime} \equiv A \Rightarrow C\left|\Rightarrow p_{2}, B\right| B \Rightarrow p_{4}, \neg A \odot \neg A\left|C, p_{2} \Rightarrow A \odot A\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A
$$

Secondly, by selecting p_{2} and applying (D) to G^{\prime}, we get

$$
G^{\prime \prime} \equiv A \Rightarrow C\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| C \Rightarrow B, A \odot A\left|A \Rightarrow p_{3}\right| p_{3}, p_{4} \Rightarrow A \odot A .
$$

Repeatedly, we get

$$
G^{\prime \prime \prime \prime} \equiv A \Rightarrow C|A, B \Rightarrow A \odot A, \neg A \odot \neg A| C \Rightarrow A \odot A, B .
$$

We define such iterative applications of (D) as \mathcal{D}-rule (See Definition 5.4). Lemma 5.8 shows that $\vdash_{\text {GIUL }} \mathcal{D}\left(G \mid G^{*}\right)$ if $\vdash_{\text {GIUL }} G \mid G^{*}$. Then we obtain $\vdash_{\text {GIUL }} \mathcal{D}\left(G \mid G^{*}\right)$, i.e., $\vdash_{\text {GIUL }} G^{\prime \prime \prime \prime}$.

A miracle happens here! The difficulty that we encountered in GIUL is overcome by converting $H_{\times \times}^{\prime}=A \Rightarrow p|\Rightarrow p, p, \neg A \odot \neg A| p, p \Rightarrow A \odot A|A \Rightarrow p| p, p \Rightarrow A \odot A$ into $A \Rightarrow p_{1} \mid \Rightarrow$ $p_{2}, p_{4}, \neg A \odot \neg A\left|p_{1}, p_{2} \Rightarrow A \odot A\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A$ and using (\mathcal{D}) to replace $\left(\mathcal{D}_{x}\right)$.

Why do we assign the unique identification number to each $p \Rightarrow p \in \tau_{1}$? We would return back to the same situation as that of τ_{1} if we assign the same indices to all $p \Rightarrow p \in \tau_{1}$ or, replace $p_{3} \Rightarrow p_{3}$ and $p_{4} \Rightarrow p_{4}$ by $p_{2} \Rightarrow p_{2}$ in τ^{*}.

Note that $\mathcal{D}\left(G \mid G^{*}\right)=H_{1}$. So we have built up a one-one correspondence between the proof τ^{*} of $G \mid G^{*}$ and that of H_{1}. Observe that each sequent in G^{*} is not a copy of any sequent in G_{0}. In the following steps, we work on eliminating these sequents in G^{*}.

Step 2 (Extraction of Elimination Rules). We select $A \Rightarrow p_{2}$ as the focus sequent in H_{1}^{c} in τ^{*} and keep $A \Rightarrow p_{1}$ unchanged from H_{1}^{c} downward to $G \mid G^{*}$ (See Figure 4). So we extract a derivation from $A \Rightarrow p_{2}$ by pruning some sequents (or hypersequents) in τ^{*}, which we denote by $\tau_{H_{1}: A \Rightarrow p_{2}}^{*}$, as shown in Figure 5.

$$
\begin{array}{|}
\frac{p_{3} \Rightarrow p_{3} A \Rightarrow A}{A \Rightarrow p_{3} \mid p_{3} \Rightarrow A} \xlongequal{\frac{p_{4} \Rightarrow p_{4} A \Rightarrow A}{A \Rightarrow p_{4} \mid p_{4} \Rightarrow A}} \\
B \Rightarrow B \frac{A \Rightarrow p_{2}}{\Rightarrow p_{2}, \neg A} \frac{A p_{3}\left|A \Rightarrow p_{4}\right| p_{3}, p_{4} \Rightarrow A \odot A}{A \Rightarrow p_{3}\left|\Rightarrow p_{4}, \neg A\right| p_{3}, p_{4} \Rightarrow A \odot A} \\
\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A \\
\hline
\end{array}
$$

FIGURE 5 A derivation $\tau_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}$ from $A \Rightarrow p_{2}$
A derivation $\tau_{H_{1}^{c}: A \Rightarrow p_{1}}^{*}$ from $A \Rightarrow p_{1}$ is constructed by replacing p_{2} with p_{1}, p_{3} with p_{5} and p_{4} with p_{6} in $\tau_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}$, as shown in Figure 6. Notice that we assign new identification numbers to new occurrences of p in $\tau_{H_{1}: A \Rightarrow p_{1}}^{*}$.

FIGURE 6 A derivation $\tau_{H_{1}^{c}: A \Rightarrow p_{1}}^{*}$ from $A \Rightarrow p_{1}$
Next, we apply $\tau_{H_{1}^{c}: A \Rightarrow p_{1}}^{*}$ to $A \Rightarrow p_{1}$ in $G \mid G^{*}$. Then we construct a proof $\tau_{H_{1}^{c}: G \mid G^{*}}^{\sim(1)}$, as shown in Figure 7, where $G^{\prime} \equiv G \mid G^{*} \backslash\left\{A \Rightarrow p_{1}\right\}$.

$$
\begin{array}{|r}
\hline \frac{p_{5} \Rightarrow p_{5} A \Rightarrow A}{A \Rightarrow p_{5} \mid p_{5} \Rightarrow A}
\end{array} \begin{aligned}
& p_{6} \Rightarrow p_{6} A \Rightarrow A \\
& A \Rightarrow p_{6} \mid p_{6} \Rightarrow A \\
& B \Rightarrow B \\
& \frac{G^{\prime} \mid A \Rightarrow p_{1}}{G^{\prime} \mid \Rightarrow p_{1}, \neg A} \\
& \frac{A \Rightarrow p_{5}\left|A \Rightarrow p_{6}\right| p_{5}, p_{6} \Rightarrow A \odot A}{A \Rightarrow p_{5}\left|\Rightarrow p_{6}, \neg A\right| p_{5}, p_{6} \Rightarrow A \odot A} \\
& \frac{G^{\prime}\left|\Rightarrow p_{1}, p_{6}, \neg A \odot \neg A\right| A \Rightarrow p_{5} \mid p_{5}, p_{6} \Rightarrow A \odot A}{G_{H_{1} \cdot G \mid G^{*}}^{\curvearrowleft(1)}} \equiv G^{\prime}\left|\Rightarrow p_{1}, B\right| B \Rightarrow p_{6}, \neg A \odot \neg A\left|A \Rightarrow p_{5}\right| p_{5}, p_{6} \Rightarrow A \odot A \\
& \hline
\end{aligned}
$$

FIGURE 7 A proof $\tau_{H_{1}^{c}: G \mid G^{*}}^{\hbar(1)}$ of $G_{H_{1}^{4}: G \mid G^{*}}^{\hbar(1)}$
However, $G_{H_{1}^{c}: G \mid G^{*}}^{\hbar(1)}=\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow$ $A \odot A\left|\Rightarrow p_{1}, B\right| B \Rightarrow p_{6}, \neg A \odot \neg A\left|A \Rightarrow p_{5}\right| p_{5}, p_{6} \Rightarrow A \odot A$ contains more copies of sequents from G^{*} and seems more complex than $G \mid G^{*}$. We will present a unified method to tackle with it in the following steps. Other derivations are shown in Figures 8, 9, 10, 11.

$$
\begin{array}{r}
A \Rightarrow p_{1}\left|\Rightarrow p_{2}, \neg A\right| p_{1}, p_{2} \Rightarrow A \odot A \stackrel{A \Rightarrow p_{4}}{\Rightarrow p_{4}, \neg A} \\
C \Rightarrow C \frac{B \Rightarrow p_{1}\left|\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A\right| p_{1}, p_{2} \Rightarrow A \odot A}{A \Rightarrow p_{1} \Rightarrow A} \begin{array}{l}
A \Rightarrow p_{1}|\Rightarrow B| B \Rightarrow p_{4}, \neg A \odot \neg A \mid p_{1}, p_{2} \Rightarrow A \odot A \\
A \Rightarrow p_{1}\left|\Rightarrow p_{2}, B\right| B \Rightarrow p_{4}, \neg A \odot \neg A\left|p_{1} \Rightarrow C\right| C, p_{2} \Rightarrow A \odot A
\end{array} \\
\hline
\end{array}
$$

FIGURE 8 A derivation $\tau_{H_{2}^{c}: A \Rightarrow p_{4}}^{*}$ from $A \Rightarrow p_{4}$

$$
\begin{array}{r}
A \Rightarrow p_{5}\left|\Rightarrow p_{6}, \neg A\right| p_{5}, p_{6} \Rightarrow A \odot A \frac{A \Rightarrow p_{3}}{\Rightarrow p_{3}, \neg A} \\
C \Rightarrow C \frac{B \Rightarrow p_{5}\left|\Rightarrow p_{6}, p_{3}, \neg A \odot \neg A\right| p_{5}, p_{6} \Rightarrow A \odot A}{A \Rightarrow p_{5}\left|\Rightarrow p_{6}, B\right| B \Rightarrow p_{3}, \neg A \odot \neg A \mid p_{5}, p_{6} \Rightarrow A \odot A} \\
A \Rightarrow p_{5}\left|\Rightarrow p_{6}, B\right| B \Rightarrow p_{3}, \neg A \odot \neg A\left|p_{5} \Rightarrow C\right| C, p_{6} \Rightarrow A \odot A
\end{array}
$$

FIGURE 9 A derivation $\tau_{H_{2}^{c}: A \Rightarrow p_{3}}^{*}$ from $A \Rightarrow p_{3}$

$$
\begin{array}{ll}
B \Rightarrow B \frac{\frac{A \Rightarrow p_{2}}{\Rightarrow p_{2}, \neg A} \frac{A \Rightarrow p_{4}}{\Rightarrow p_{4}, \neg A}}{\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A} & \quad B \Rightarrow B \frac{\frac{A \Rightarrow p_{5}}{\Rightarrow p_{5}, \neg A} \frac{A \Rightarrow p_{3}}{\Rightarrow p_{3}, \neg A}}{\Rightarrow p_{2}, B \mid B \Rightarrow p_{4}, \neg A \odot \neg A} \\
& \Rightarrow p_{3}, \neg A \odot \neg A \mid B \Rightarrow p_{3}, \neg A \odot \neg A \\
\hline
\end{array}
$$

FIGURE $10 \quad \tau_{\left\{H_{1}^{c}: A \Rightarrow p_{2}, H_{2}^{c}: A \Rightarrow p_{4}\right\}}^{*}$ and $\tau_{\left\{H_{1}^{c}: A \Rightarrow p_{5}, H_{2}^{c}: A \Rightarrow p_{3}\right\}}^{*}$

$$
\frac{C \Rightarrow C \quad p_{1}, p_{2} \Rightarrow A \odot A}{p_{1} \Rightarrow C \mid C, p_{2} \Rightarrow A \odot A} \quad \frac{C \Rightarrow C \quad p_{3}, p_{4} \Rightarrow A \odot A}{p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A}
$$

$$
\begin{aligned}
& C \Rightarrow C \quad p_{5}, p_{6} \Rightarrow A \odot A \\
& p_{5} \Rightarrow C \mid C, p_{6} \Rightarrow A \odot A
\end{aligned}
$$

FIGURE $11 \quad \tau_{H_{3}^{c} \cdot p_{1}, p_{2} \Rightarrow A \odot A}^{*}, \tau_{H_{3}^{c}: p_{3}, p_{4} \Rightarrow A \odot A}^{*}$ and $\tau_{H_{3}^{c}: p_{5}, p_{6} \Rightarrow A \odot A}^{*}$
Step 3 (Separation of one branch). A proof $\tau_{H_{1}^{c}: G \mid G^{*}}^{\grave{\lambda}(2)}$ is constructed by applying sequentially

$$
\tau_{H_{3}^{c} \cdot p_{3}, p_{4} \Rightarrow A \odot A}^{*}, \tau_{H_{3}^{c} \cdot p_{5}, p_{6} \Rightarrow A \odot A}^{*}
$$

to $p_{3}, p_{4} \Rightarrow A \odot A$ and $p_{5}, p_{6} \Rightarrow A \odot A$ in $G_{H_{1}^{:}: G \mid G^{*}}^{\stackrel{i}{(1)}}$, as shown in Figure 12 , where $G^{\prime \prime} \equiv$ $G_{H_{1}^{(\cdot} \cdot G \mid G^{*}}^{2 \tilde{(1)}} \backslash\left\{p_{3}, p_{4} \Rightarrow A \odot A, p_{5}, p_{6} \Rightarrow A \odot A\right\}$

$$
\begin{gathered}
C \Rightarrow C \frac{C \Rightarrow C \quad G^{\prime \prime}\left|p_{3}, p_{4} \Rightarrow A \odot A\right| p_{5}, p_{6} \Rightarrow A \odot A}{G^{\prime \prime}\left|p_{3} \Rightarrow C\right| C, p_{4} \Rightarrow A \odot A \mid p_{5}, p_{6} \Rightarrow A \odot A} \\
\frac{G_{H_{1}^{c} \cdot G \mid G^{*}}^{\text {¿(2) }} \equiv G^{\prime \prime}\left|p_{3} \Rightarrow C\right| C, p_{4} \Rightarrow A \odot A\left|p_{5} \Rightarrow C\right| C, p_{6} \Rightarrow A \odot A}{}
\end{gathered}
$$

FIGURE 12 A proof $\tau_{H_{:}^{c}: G \mid G^{*}}^{¿(2)}$ of $G_{H_{1}^{c}: G \mid G^{*}}^{\text {¿(2) }}$

$$
\begin{gathered}
G_{H_{:}^{c} G \mid G^{*}}^{\stackrel{\iota}{c}(2)}=p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| A \Rightarrow p_{3}\left|\Rightarrow p_{1}, B\right| \\
B \Rightarrow p_{6}, \neg A \odot \neg A\left|A \Rightarrow p_{5}\right| p_{3} \Rightarrow C\left|C, p_{4} \Rightarrow A \odot A\right| p_{5} \Rightarrow C \mid C, p_{6} \Rightarrow A \odot A .
\end{gathered}
$$

Notice that

$$
\begin{aligned}
& \mathcal{D}\left(B \Rightarrow p_{4}, \neg A \odot \neg A\left|A \Rightarrow p_{3}\right| p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A\right) \\
= & \mathcal{D}\left(B \Rightarrow p_{6}, \neg A \odot \neg A\left|A \Rightarrow p_{5}\right| p_{5} \Rightarrow C \mid C, p_{6} \Rightarrow A \odot A\right) \\
= & A \Rightarrow C \mid C, B \Rightarrow A \odot A, \neg A \odot \neg A .
\end{aligned}
$$

Then it is permissible to cut off the part

$$
B \Rightarrow p_{6}, \neg A \odot \neg A\left|A \Rightarrow p_{5}\right| p_{5} \Rightarrow C \mid C, p_{6} \Rightarrow A \odot A
$$

of $G_{H_{1}^{c} \cdot G \mid G^{*}}^{\boldsymbol{\mu}(2)}$, which corresponds to applying $(E C)$ to $\mathcal{D}\left(G_{H_{1}^{c}: G \mid G^{*}}^{\mathfrak{\mu}(2)}\right)$. We regard such a manipulation as a constrained contraction rule applied to $G_{H_{1}^{c}: G \mid G^{*}}^{\hbar(2)}$ and denote it by $\left(E C_{\Omega}\right)$. Define $G_{H_{1}^{c}: G \mid G^{*}}^{\grave{\iota}}$ to be

$$
\begin{gathered}
\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| \\
A \Rightarrow p_{3}\left|\Rightarrow p_{1}, B\right| p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A .
\end{gathered}
$$

$$
\vdash_{\text {GIUL }} \mathcal{D}\left(G_{H_{1}^{c} \cdot G \mid G^{*}}^{\mu_{2}}\right)
$$

under the condition

$$
\vdash \vdash_{\mathbf{G I U L}} \mathcal{D}\left(G_{H_{1}^{c} \cdot G \mid G^{*}}^{\hat{\mathrm{s}}(2)}\right) .
$$

A change happens here! There is only one sequent which is a copy of a sequent in G^{*} in $G_{H_{1}^{c} G \mid G^{*}}^{\dot{\iota}}{ }^{*}$ It is simpler than $G \mid G^{*}$. So we are moving forward. The above procedure is called the separation of $G \mid G^{*}$ as a branch of H_{1}^{c} and reformulated as follows (See Section 7 for details).

The separation of $G \mid G^{*}$ as a branch of H_{2}^{c} is constructed by a similar procedure as follows.

Note that $\mathcal{D}\left(G_{H_{1}^{c}: G \mid G^{*}}^{\grave{\omega}}\right)=H_{2}$ and $\mathcal{D}\left(G_{H_{2}^{c}: G \mid G^{*}}^{\grave{\mu}}\right)=H_{3}$. So we have built up one-one correspondences between proofs of $G_{H_{1}^{c}: G \mid G^{*}}^{\text {ヶt }}, G_{H_{1}^{c} \cdot G \mid G^{*}}^{\text {¿े}}$ and those of H_{2}, H_{3}.

Step 3 (Separation algorithm of multiple branches). We will prove $\vdash_{\text {gill }} \mathcal{D}_{0}\left(G_{0}\right)$ in a direct way, i.e., only the major step of Theorem 8.2 is presented in the following. (See A.5.4 for a complete illustration.) Recall that

$$
\begin{gathered}
G_{H_{1}^{c} \cdot G \mid G^{*}}^{\gtrless \gtrless}=\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| \\
A \Rightarrow p_{3}\left|\Rightarrow p_{1}, B\right| p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A, \\
G_{H_{2}^{c}: G \mid G^{*}}^{\text {¿ }}=A \Rightarrow p_{1}\left|\Rightarrow p_{2}, B\right| B \Rightarrow p_{4}, \neg A \odot \neg A\left|p_{1} \Rightarrow C\right| C, p_{2} \Rightarrow A \odot A \mid \\
B \Rightarrow p_{3}, \neg A \odot \neg A\left|p_{3} \Rightarrow C\right| C, p_{4} \Rightarrow A \odot A .
\end{gathered}
$$

By reassigning identification numbers to occurrences of $p^{\prime} s$ in $G_{H_{2}^{c}: G \mid G^{*}}^{\text {¿}}$,

$$
\begin{gathered}
G_{H_{2}^{c} \cdot G \mid G^{*}}^{\wp^{*}}=A \Rightarrow p_{5}\left|\Rightarrow p_{6}, B\right| B \Rightarrow p_{8}, \neg A \odot \neg A\left|p_{5} \Rightarrow C\right| C, p_{6} \Rightarrow A \odot A \mid \\
B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{7} \Rightarrow C\right| C, p_{8} \Rightarrow A \odot A .
\end{gathered}
$$

By applying $\tau_{\left\{H_{1}^{c}: A \Rightarrow p_{5}, H_{2}^{c}: A \Rightarrow p_{3}\right\}}^{*}$ to $A \Rightarrow p_{3}$ in $G_{H_{1}^{c}: G \mid G^{*}}^{\kappa^{*}}$ and $A \Rightarrow p_{5}$ in $G_{H_{2}^{c}: G \mid G^{*}}^{\kappa^{*}}$, we get $\vdash_{\text {GIUL }} G^{\prime}$, where

$$
\begin{gathered}
G^{\prime} \equiv \Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| \Rightarrow p_{1}, B \mid \\
p_{3} \Rightarrow C\left|C, p_{4} \Rightarrow A \odot A\right| \Rightarrow p_{6}, B\left|B \Rightarrow p_{8}, \neg A \odot \neg A\right| p_{5} \Rightarrow C\left|C, p_{6} \Rightarrow A \odot A\right|
\end{gathered}
$$

$$
B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{7} \Rightarrow C\right| C, p_{8} \Rightarrow A \odot A\left|\Rightarrow p_{5}, B\right| B \Rightarrow p_{3}, \neg A \odot \neg A .
$$

Why do you reassign identification numbers to occurrences of $p^{\prime} s$ in $G_{H_{2}^{c}: G \mid G^{*}}^{\dot{\beta}}$ ？It makes different occurrences of $p^{\prime} s$ to be assigned different identification numbers in two nodes $G_{H_{1}^{c}: G \mid G^{*}}^{\text {¿b}}$ and $G_{H_{2}^{c} G \mid G^{*}}^{\text {¿}}$ of the proof of G^{\prime} ．

By applying $\left\langle E C_{\Omega}^{*}\right\rangle$ to G^{\prime} ，we get $\vdash_{\mathbf{G I U L}_{\Omega}} G_{\mathbf{I}}^{\boldsymbol{\psi}}$ ，where

$$
\begin{gathered}
G_{\mathbf{I}}^{山} \equiv \Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| \Rightarrow p_{1}, B \mid \\
p_{3} \Rightarrow C\left|C, p_{4} \Rightarrow A \odot A\right| B \Rightarrow p_{3}, \neg A \odot \neg A .
\end{gathered}
$$

A great change happens here！We have eliminated all sequents which are copies of some sequents in G^{*} and convert $G \mid G^{*}$ into $G_{\mathbf{I}}^{\hat{\hbar}}$ in which each sequent is some copy of a sequent in G_{0} ．

Then \vdash GIUL $\mathcal{D}\left(G_{\mathbf{I}}^{\hat{\mu}}\right)$ by Lemma 5.6 ，where $\mathcal{D}\left(G_{\mathbf{I}}^{\text {ふ }}\right)=H_{0}=$

$$
\Rightarrow C, B|C \Rightarrow B, A \odot A| B \Rightarrow C, \neg A \odot \neg A \mid C, B \Rightarrow A \odot A, \neg A \odot \neg A
$$

So we have built up one－one correspondences between the proof of $G_{I}^{\longleftrightarrow}$ and that of H_{0} ，i．e．， the proof of H_{0} can be constructed by applying (\mathcal{D}) to the proof of $G_{\mathrm{I}}^{\text {ふ }}$ ．The major steps of constructing $G_{\mathbf{I}}^{\mathfrak{\imath}}$ are shown in the following figure，where $\mathcal{D}\left(G \mid G^{*}\right)=H_{1}, \mathcal{D}\left(G_{H_{1}^{c}: G \mid G^{*}}^{\dot{\zeta}}\right)=H_{2}$ ， $\mathcal{D}\left(G_{H_{2}^{c}: G \mid G^{*}}^{\grave{\iota}}\right)=H_{3}$ and $\mathcal{D}\left(G_{\mathbf{I}}^{\widehat{\text { ¿ }}}\right)=H_{0}$ ．

$\begin{aligned} & G\left\|G^{*}=\Rightarrow p_{2}, B\right\| B \Rightarrow p_{4}, \neg A \odot \neg A\left\|p_{1} \Rightarrow C\right\| \\ & C, p_{2} \Rightarrow A \odot A\left\|A \Rightarrow p_{1}\right\| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A \end{aligned}$	
$\because \therefore . \cdot{ }^{\circ} \cdot \underline{\square} \cdot{ }^{\circ}$	
$\begin{aligned} & G_{H_{2}^{c} G \mid G^{*}}^{\stackrel{\iota}{c}}=A \Rightarrow p_{1}\left\|\Rightarrow p_{2}, B\right\| \\ & B \Rightarrow p_{4} \neg A \odot \neg A\left\|p_{1} \Rightarrow C\right\| \\ & C, p_{2} \Rightarrow A \odot A\left\|p_{3} \Rightarrow C\right\| \\ & B \Rightarrow p_{3}, \neg A \odot \neg A \mid C, p_{4} \Rightarrow A \odot A \end{aligned}$	$\begin{aligned} & G_{H_{1}^{c} \cdot G \mid G^{*}}^{\stackrel{\text { n }}{c}} \Rightarrow p_{2}, B \mid B \Rightarrow 1 \\ & p_{1} \Rightarrow C\left\|C, p_{2} \Rightarrow A \odot A\right\| A \\ & A \Rightarrow p_{1}, B\left\|p_{3} \Rightarrow C\right\| C, p_{4} \end{aligned}$
$\because \cdot . \cdot$	
$\begin{aligned} & G_{\mathbf{I}}^{\hat{\aleph}}=\Rightarrow p_{2}, B\left\|B \Rightarrow p_{4}, \neg A \odot \neg A\right\| p_{1} \Rightarrow C\left\|C, p_{2} \Rightarrow A \odot A\right\| \\ & B \Rightarrow \neg A \odot \neg A, p_{3}\left\|\Rightarrow p_{1}, B\right\| p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A \end{aligned}$	

In the above example， $\mathcal{D}\left(G_{\mathbf{I}}^{\hat{\beta}}\right)=\mathcal{D}_{0}\left(G_{0}\right)$ ．But it is not always the case．In general，we can prove that $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$ if $\vdash_{\mathbf{G L}} \mathcal{D}\left(G_{\mathbf{I}}^{\boldsymbol{\mathcal { L }}}\right)$ ，which is shown in the proof of Main theorem in Page 46. This example shows that the proof of Main theorem essentially presents an algorithm to construct a proof of $\mathcal{D}_{0}\left(G_{0}\right)$ from τ ．

4．Preprocessing of Proof Tree

Let τ be a cut－free proof of G_{0} in Main theorem in GL by Lemma 2．15．Starting with τ ，we will construct a proof τ^{*} which contains no application of $(E C)$ and has some other properties in this section．

Lemma 4.1. (i) If $\vdash_{\mathbf{G L}} \Gamma_{1} \Rightarrow A, \Delta_{1}$ and $\vdash_{\mathbf{G L}} \Gamma_{2} \Rightarrow B, \Delta_{2}$

$$
\text { then } \vdash_{\mathbf{G L}} \Gamma_{1} \Rightarrow A \wedge B, \Delta_{1} \mid \Gamma_{2} \Rightarrow A \wedge B, \Delta_{2} ;
$$

(ii) If $\vdash_{\mathbf{G L}} \Gamma_{1}, A \Rightarrow \Delta_{1}$ and $\vdash_{\mathbf{G L}} \Gamma_{2}, B \Rightarrow \Delta_{2}$

$$
\text { then } \vdash_{\mathbf{G L}} \Gamma_{1}, A \vee B \Rightarrow \Delta_{1} \mid \Gamma_{2}, A \vee B \Rightarrow \Delta_{2} .
$$

Proof. (i)

$$
\frac{\Gamma_{2} \Rightarrow B, \Delta_{2} \frac{\Gamma_{1} \Rightarrow A, \Delta_{1} \frac{A \Rightarrow A \frac{A \Rightarrow A B \Rightarrow B}{A \Rightarrow B \mid B \Rightarrow A}(C O M)}{B \Rightarrow B \xrightarrow{A \Rightarrow A \wedge B \mid B \Rightarrow A}\left(\wedge_{r}\right)}\left(\wedge_{r}\right)}{A \Rightarrow A \wedge B \mid B \Rightarrow A \wedge B}(C U T)}{\Gamma_{1} \Rightarrow A \wedge B, \Delta_{1} \mid B \Rightarrow A \wedge B}(C U T)
$$

(ii) is proved by a procedure similar to that of (i) and omitted.

We introduce two new rules by Lemma 4.1.
Definition 4.2. $\frac{G_{1}\left|\Gamma_{1} \Rightarrow A, \Delta_{1} \quad G_{2}\right| \Gamma_{2} \Rightarrow B, \Delta_{2}}{G_{1}\left|G_{2}\right| \Gamma_{1} \Rightarrow A \wedge B, \Delta_{1} \mid \Gamma_{2} \Rightarrow A \wedge B, \Delta_{2}}\left(\wedge_{r w}\right)$
and $\frac{G_{1}\left|\Gamma_{1}, A \Rightarrow \Delta_{1} \quad G_{2}\right| \Gamma_{2}, B \Rightarrow \Delta_{2}}{G_{1}\left|G_{2}\right| \Gamma_{1}, A \vee B \Rightarrow \Delta_{1} \mid \Gamma_{2}, A \vee B \Rightarrow \Delta_{2}}\left(\vee_{l w}\right)$ are called the generalized $\left(\wedge_{r}\right)$ and $\left(\vee_{l}\right)$ rules, respectively.

Now, we begin to process τ as follows.
Step 1 A proof τ^{1} is constructed by replacing inductively all applications of

$$
\frac{G_{1}\left|\Gamma \Rightarrow A, \Delta \quad G_{2}\right| \Gamma \Rightarrow B, \Delta}{G_{1}\left|G_{2}\right| \Gamma \Rightarrow A \wedge B, \Delta}\left(\wedge_{r}\right)\left(\text { or } \frac{G_{1}\left|\Gamma, A \Rightarrow \Delta \quad G_{2}\right| \Gamma, B \Rightarrow \Delta}{G_{1}\left|G_{2}\right| \Gamma, A \vee B \Rightarrow \Delta}\left(\vee_{l}\right)\right)
$$

in τ with

$$
\begin{gathered}
\frac{G_{1}\left|\Gamma \Rightarrow A, \Delta \quad G_{2}\right| \Gamma \Rightarrow B, \Delta}{G_{1}\left|G_{2}\right| \Gamma \Rightarrow A \wedge B, \Delta \mid \Gamma \Rightarrow A \wedge B, \Delta}\left(\wedge_{r w}\right) \\
G_{1}\left|G_{2}\right| \Gamma \Rightarrow A \wedge B, \Delta \\
\text { (accordingly } \left.\frac{\frac{G_{1}\left|\Gamma, A \Rightarrow \Delta \quad G_{2}\right| \Gamma, B \Rightarrow \Delta}{G_{1}\left|G_{2}\right| \Gamma, A \vee B \Rightarrow \Delta \mid \Gamma, A \vee B \Rightarrow \Delta}\left(\vee_{l w}\right)}{G_{1}\left|G_{2}\right| \Gamma, A \vee B \Rightarrow \Delta}(E C) \text { for }\left(\vee_{l}\right)\right) .
\end{gathered}
$$

The replacements in Step 1 are local and the root of τ^{1} is also labeled by G_{0}.
Definition 4.3. We sometimes may regard $\frac{G^{\prime}}{G^{\prime}}$ as a structural rule of $\mathbf{G L}$ and denote it by $\left(I D_{\Omega}\right)$ for convenience. The focus sequent for $\left(I D_{\Omega}\right)$ is undefined.

Lemma 4.4. Let $\frac{G^{\prime} \mid S^{m}}{G^{\prime} \mid S}\left(E C^{*}\right) \in \tau^{1}, T h_{\tau^{1}}\left(G^{\prime} \mid S\right)=\left(H_{0}, H_{1}, \cdots, H_{n}\right)$, where $H_{0}=G^{\prime} \mid S$ and $H_{n}=$ G_{0}. A tree τ^{\prime} is constructed by replacing each H_{k} in τ^{1} with $H_{k} \mid S^{m-1}$ for all $0 \leqslant k \leqslant n$. Then τ^{\prime} is a proof of $G_{0} \mid S^{m-1}$.

Proof. The proof is by induction on n. Since $\tau^{1}\left(G^{\prime} \mid S^{m}\right)$ is a proof and $\frac{G^{\prime} \mid S^{m}}{H_{0} \mid S^{m-1}}\left(I D_{\Omega}\right)$ is valid in GL, then $\tau^{\prime}\left(H_{0} \mid S^{m-1}\right)$ is a proof. Suppose that $\tau^{\prime}\left(H_{n-1} \mid S^{m-1}\right)$ is a proof. Since $\frac{H_{n-1} \quad G^{\prime \prime}}{H_{n}}(I I)$ (or $\frac{H_{n-1}}{H_{n}}(I)$) in τ^{1}, then $\frac{H_{n-1} \mid S^{m-1} \quad G^{\prime \prime}}{H_{n} \mid S^{m-1}}\left(\right.$ or $\frac{H_{n-1} \mid S^{m-1}}{H_{n} \mid S^{m-1}}$) is an application of the same rule (II) (or (I)). Thus $\tau^{\prime}\left(H_{n} \mid S^{m-1}\right)$ is a proof.

Definition 4.5. The manipulation described in Lemma 4.4 is called sequent-inserting operation.
Clearly, the number of $\left(E C^{*}\right)$-applications in τ^{\prime} is less than τ^{1}. Next, we continue to process τ.

Step 2 Let $\frac{G_{1}^{\prime \prime \prime} \mid\left\{S_{1}^{c}\right\}^{m_{1}^{\prime}}}{G_{1}^{\prime} \mid S_{1}^{c}}\left(E C^{*}\right), \cdots, \frac{G_{N}^{\prime \prime \prime} \mid\left\{S_{N}^{c}\right\}^{m_{N}^{\prime}}}{G_{N}^{\prime} \mid S_{N}^{c}}\left(E C^{*}\right)$ be all applications of $\left(E C^{*}\right)$ in τ^{1} and $G_{0}^{*}:=\left\{S_{1}^{c}\right\}^{m_{1}^{\prime}-1}|\cdots|\left\{S_{N}^{c}\right\}^{m_{N}^{\prime}-1}$. By repeatedly applying sequent-inserting operations, we construct a proof of $G_{0} \mid G_{0}^{*}$ in $\mathbf{G L}$ without applications of $\left(E C^{*}\right)$ and denote it by τ^{2}.
Remark 4.6. (i) τ^{2} is constructed by converting (EC) into ($I D_{\Omega}$); (ii) Each node of τ^{2} has the form $H_{0} \mid H_{0}^{*}$, where $H_{0} \in \tau^{1}$ and H_{0}^{*} is a (possibly empty) subset of G_{0}^{*}.

We need the following construction to eliminate applications of $(E W)$ in τ^{2}.
Construction 4.7. Let $H \in \tau^{2}, H^{\prime} \subseteq H$ and $T h_{\tau^{2}}(H)=\left(H_{0}, \cdots, H_{n}\right)$, where $H_{0}=H, H_{n}=G_{0} \mid G_{0}^{*}$. Hypersequents $\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ and trees $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right)$ for all $0 \leqslant k \leqslant n$ are constructed inductively as follows.
(i) $\left\langle H_{0}\right\rangle_{H: H^{\prime}}:=H^{\prime}$ and $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{0}\right\rangle_{H: H^{\prime}}\right)$ consists of a single node H^{\prime};
(ii) Let $\frac{G^{\prime}\left|S^{\prime} G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime \prime}}(I I)\left(\right.$ or $\left.\frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid S^{\prime \prime}}(I)\right)$ be in $\tau^{2}, H_{k}=G^{\prime} \mid S^{\prime}$ and $H_{k+1}=G^{\prime}\left|G^{\prime \prime}\right| H^{\prime \prime}$ (accordingly $H_{k+1}=G^{\prime} \mid S^{\prime \prime}$ for (I)) for some $0 \leqslant k \leqslant n-1$.

If $S^{\prime} \in\left\langle H_{k}\right\rangle_{H: H^{\prime}}$

$$
\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}:=\left\langle H_{k}\right\rangle_{H: H^{\prime}} \backslash\left\{S^{\prime}\right\}\left|G^{\prime \prime}\right| H^{\prime \prime}
$$

(accordingly $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}:=\left\langle H_{k}\right\rangle_{H: H^{\prime}} \backslash\left\{S^{\prime}\right\} \mid S^{\prime \prime}$ for (I))
and $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}\right)$ is constructed by combining trees

$$
\begin{aligned}
& \quad \tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right), \tau^{2}\left(G^{\prime \prime} \mid S^{\prime \prime}\right) \text { with } \frac{\left\langle H_{k}\right\rangle_{H: H^{\prime}} G^{\prime \prime} \mid S^{\prime \prime}}{\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}}(I I) \\
& \text { (accordingly } \left.\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right) \text { with } \frac{\left\langle H_{k}\right\rangle_{H: H^{\prime}}}{\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}}(I) \text { for }(I)\right)
\end{aligned}
$$

otherwise $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}:=\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ and $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}\right)$ is constructed by combining

$$
\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right) \text { with } \frac{\left\langle H_{k}\right\rangle_{H: H^{\prime}}}{\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}}\left(I D_{\Omega}\right) .
$$

(iii) Let $\frac{G^{\prime}}{G^{\prime} \mid S^{\prime}}(E W) \in \tau^{2}, H_{k}=G^{\prime}$ and $H_{k+1}=G^{\prime} \mid S^{\prime}$ then $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}:=\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ and $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}\right)$ is constructed by combining $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right)$ with $\frac{\left\langle H_{k}\right\rangle_{H: H^{\prime}}}{\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}}\left(I D_{\Omega}\right)$.

Lemma 4.8. (i) $\left\langle H_{k}\right\rangle_{H: H^{\prime}} \subseteq H_{k}$ for all $0 \leqslant k \leqslant n$;
(ii) $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right)$ is a derivation of $\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ from H^{\prime} without $(E C)$.

Proof. The proof is by induction on k. For the base step, $\left\langle H_{0}\right\rangle_{H: H^{\prime}}=H^{\prime}$ and $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{0}\right\rangle_{H: H^{\prime}}\right)$ consists of a single node H^{\prime}. Then $\left\langle H_{0}\right\rangle_{H: H^{\prime}} \subseteq H_{0}=H, \tau_{H: H^{\prime}}^{2}\left(\left\langle H_{0}\right\rangle_{H: H^{\prime}}\right)$ is a derivation of $\left\langle H_{0}\right\rangle_{H: H^{\prime}}$ from H^{\prime} without (EC).

For the induction step, suppose that $\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ and $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right)$ be constructed such that (i) and (ii) hold for some $0 \leqslant k \leqslant n-1$. There are two cases to be considered.

Case 1 Let $\frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid S^{\prime \prime}}(I) \in \tau^{2}, H_{k}=G^{\prime} \mid S^{\prime}$ and $H_{k+1}=G^{\prime} \mid S^{\prime \prime}$. If $S^{\prime} \in\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ then $\left\langle H_{k}\right\rangle_{H: H^{\prime}} \backslash\left\{S^{\prime}\right\} \subseteq G^{\prime}$ by $\left\langle H_{k}\right\rangle_{H: H^{\prime}} \subseteq H_{k}=G^{\prime} \mid S^{\prime}$. Thus $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}=\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}} \backslash\left\{S^{\prime}\right\}\right) \mid S^{\prime \prime} \subseteq$ $G^{\prime} \mid S^{\prime \prime}=H_{k+1}$. Otherwise $S^{\prime} \notin\left\langle H_{k}\right\rangle_{H: H^{\prime}}$ then $\left\langle H_{k}\right\rangle_{H: H^{\prime}} \subseteq G^{\prime}$ by $\left\langle H_{k}\right\rangle_{H: H^{\prime}} \subseteq H_{k}=G^{\prime} \mid S^{\prime}$. Thus $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}} \subseteq H_{k+1}$ by $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}=\left\langle H_{k}\right\rangle_{H: H^{\prime}} \subseteq G^{\prime} \subseteq H_{k+1} . \tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}\right)$ is a derivation of $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}$ from H^{\prime} without $(E C)$ since $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right)$ is such one and $\frac{\left\langle H_{k}\right\rangle_{H: H^{\prime}}}{\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}}(I)$ is a valid instance of a rule (I) of $\mathbf{G L}$. The case of applications of two-premise rule is proved by a similar procedure and omitted.

Case 2 Let $\frac{G^{\prime}}{G^{\prime} \mid S^{\prime}}(E W) \in \tau^{2}, H_{k}=G^{\prime}$ and $H_{k+1}=G^{\prime} \mid S^{\prime}$. Then $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}} \subseteq H_{k+1}$ by $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}=\left\langle H_{k}\right\rangle_{H: H^{\prime}} \subseteq H_{k} \subseteq H_{k+1} \cdot \tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}\right)$ is a derivation of $\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}$ from H^{\prime} without $(E C)$ since $\tau_{H: H^{\prime}}^{2}\left(\left\langle H_{k}\right\rangle_{H: H^{\prime}}\right)$ is such one and $\frac{\left\langle H_{k}\right\rangle_{H: H^{\prime}}}{\left\langle H_{k+1}\right\rangle_{H: H^{\prime}}}\left(I D_{\Omega}\right)$ is valid by Definition 4.3.

Definition 4.9. The manipulation described in Construction 4.7 is called derivation-pruning operation.

Notation 4.10. We denote $\left\langle H_{n}\right\rangle_{H: H^{\prime}}$ by $G_{H: H^{\prime}}^{2}, \tau_{H: H^{\prime}}^{2}\left(\left\langle H_{n}\right\rangle_{H: H^{\prime}}\right)$ by $\tau_{H: H^{\prime}}^{2}$ and say that H^{\prime} is transformed into $G_{H: H^{\prime}}^{2}$ in τ^{2}.

Then Lemma 4.8 shows that $\frac{H^{\prime}}{G_{H: H^{\prime}}^{2}}\left\langle\tau_{H: H^{\prime}}^{2}\right\rangle, G_{H: H^{\prime}}^{2} \subseteq G_{0} \mid G_{0}^{*}$. Now, we continue to process τ as follows.

Step 3 Let $\frac{G^{\prime}}{G^{\prime} \mid S^{\prime}}(E W) \in \tau^{2}$ then $\tau_{G^{\prime} \mid S^{\prime}: G^{\prime}}^{2}\left(\left\langle H_{n}\right\rangle_{G^{\prime} \mid S^{\prime}: G^{\prime}}\right)$ is a derivation of $\left\langle H_{n}\right\rangle_{G^{\prime} \mid S^{\prime}: G^{\prime}}$ from G^{\prime} thus a proof of $\left\langle H_{n}\right\rangle_{G^{\prime} \mid S^{\prime}: G^{\prime}}$ is constructed by combining $\tau^{2}\left(G^{\prime}\right)$ and $\tau_{G^{\prime} \mid S^{\prime}: G^{\prime}}^{2}\left(\left\langle H_{n}\right\rangle_{G^{\prime} \mid S^{\prime}: G^{\prime}}\right)$ with $\frac{G^{\prime}}{G^{\prime}}\left(I D_{\Omega}\right)$. By repeatedly applying the procedure above, we construct a proof τ^{3} of $G_{1} \mid G_{1}^{*}$ without $(E W)$ in $\mathbf{G L}$, where $G_{1} \subseteq G_{0}, G_{1}^{*} \subseteq G_{0}^{*}$ by Lemma 4.8 (i).

Step 4 Let $\Gamma, p, \perp \Rightarrow \Delta \in \tau^{3}$ (or $\left.\Gamma, p \Rightarrow \top, \Delta, \frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma, p \Rightarrow \Delta}(W L)\right)$ then there exists $\Gamma^{\prime} \Rightarrow$ $\Delta^{\prime} \in H$ such that $p \in \Gamma^{\prime}$ for all $H \in T h_{\tau^{3}}(\Gamma, p, \perp \Rightarrow \Delta)$ (accordingly $H \in T h_{\tau^{3}}(\Gamma, p \Rightarrow \mathrm{~T}, \Delta)$, $\left.H \in T h_{\tau^{3}}(\Gamma, p \Rightarrow \Delta)\right)$ thus a proof is constructed by replacing top-down p in each Γ^{\prime} with T.

Let $\Gamma, \perp \Rightarrow p, \Delta\left(\right.$ or $\left.\Gamma \Rightarrow \mathrm{T}, p, \Delta, \frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma \Rightarrow p, \Delta}(W R)\right)$ is a leaf of τ^{3} then there exists $\Gamma^{\prime} \Rightarrow$ $\Delta^{\prime} \in H$ such that $p \in \Delta^{\prime}$ for all $H \in T h_{\tau^{3}}(\Gamma, \perp \Rightarrow p, \Delta)$ (accordingly $H \in T h_{\tau^{3}}(\Gamma \Rightarrow \top, p, \Delta)$ or $\left.H \in T h_{\tau^{3}}(\Gamma \Rightarrow p, \Delta)\right)$ thus a proof is constructed by replacing top-down p in each Γ^{\prime} with \perp.

Repeatedly applying the procedure above, we construct a proof τ^{4} of $G_{2} \mid G_{2}^{*}$ in $\mathbf{G L}$ such that there doesn't exist occurrence of p in Γ or Δ at each leaf labeled by $\Gamma, \perp \Rightarrow \Delta$ or $\Gamma \Rightarrow T, \Delta$, or p is not the weakening formula A in $\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma \Rightarrow A, \Delta}(W R)$ or $\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma, A \Rightarrow \Delta}(W L)$ when $(W R)$ or $(W L)$ is available. Define two operations σ_{l} and σ_{r} on sequents by $\sigma_{l}(\Gamma, p \Rightarrow \Delta):=\Gamma, \top \Rightarrow \Delta$ and $\sigma_{r}(\Gamma \Rightarrow p, \Delta):=\Gamma \Rightarrow \perp, \Delta$. Then $G_{2} \mid G_{2}^{*}$ is obtained by applying σ_{l} and σ_{r} to some designated sequents in $G_{1} \mid G_{1}^{*}$.

Definition 4.11. The manipulation described in Step 4 is called eigenvariable-replacing operation.

Step 5 A proof τ^{*} is constructed from τ^{4} by assigning inductively one unique identification number to each occurrence of p in τ^{4} as follows.

One unique identification number, which is a positive integer, is assigned to each leaf of the form $p \Rightarrow p$ in τ^{4} which corresponds to $p_{k} \Rightarrow p_{k}$ in τ^{*}. Other nodes of τ^{4} are processed as follows.

- Let $\frac{G_{1} \mid \Gamma, \lambda p \Rightarrow \mu p, \Delta}{G_{1} \mid \Gamma^{\prime}, \lambda p \Rightarrow \mu p, \Delta^{\prime}}(I) \in \tau^{4}$. Suppose that all occurrences of p in $G_{1} \mid \Gamma, \lambda p \Rightarrow \mu p, \Delta$ are assigned identification numbers and have the form $G_{1}^{\prime} \mid \Gamma, p_{i_{1}}, \cdots, p_{i_{\lambda}} \Rightarrow p_{j_{1}}, \cdots, p_{j_{\mu}}, \Delta$ in τ^{*}, which we often write as $G_{1}^{\prime} \mid \Gamma,\left\{p_{i_{k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu}, \Delta$. Then $G_{1} \mid \Gamma^{\prime}, \lambda p \Rightarrow \mu p, \Delta^{\prime}$ has the form $G_{1}^{\prime} \mid \Gamma^{\prime},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu}, \Delta^{\prime}$.
- Let $\frac{G^{\prime} G^{\prime \prime}}{G^{\prime \prime \prime}}\left(\wedge_{r w}\right) \in \tau^{4}$, where $G^{\prime} \equiv G_{1}\left|\Gamma, \lambda p \Rightarrow \mu p, A, \Delta, G^{\prime \prime} \equiv G_{2}\right| \Gamma, \lambda p \Rightarrow \mu p, B, \Delta$, $G^{\prime \prime \prime} \equiv G_{1}\left|G_{2}\right| \Gamma, \lambda p \Rightarrow \mu p, A \wedge B, \Delta \mid \Gamma, \lambda p \Rightarrow \mu p, A \wedge B, \Delta$. Suppose that G^{\prime} and $G^{\prime \prime}$ have the forms $G_{1}^{\prime} \mid \Gamma,\left\{p_{i_{1 k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{1_{k}}}\right\}_{k=1}^{\mu}, A, \Delta$ and $G_{2}^{\prime} \mid \Gamma,\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{2 k}}\right\}_{k=1}^{\mu}, B, \Delta$ in τ^{*}, respectively. Then $G^{\prime \prime \prime}$ has the form $G_{1}^{\prime}\left|G_{2}^{\prime}\right| \Gamma,\left\{p_{i_{1 k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{1_{k}}}\right\}_{k=1}^{\mu}, A \wedge B, \Delta \mid \Gamma,\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{2 k}}\right\}_{k=1}^{\mu}, A \wedge B, \Delta$. All applications of $\left(\vee_{l w}\right)$ are processed by the procedure similar to that of $\left(\wedge_{r w}\right)$.
- Let $\frac{G^{\prime} G^{\prime \prime}}{G^{\prime \prime \prime}}\left(\odot_{r}\right) \in \tau^{4}$, where $G^{\prime} \equiv G_{1} \mid \Gamma_{1}, \lambda_{1} p \Rightarrow \mu_{1} p, A, \Delta_{1}$,
$G^{\prime \prime} \equiv G_{2}\left|\Gamma_{2}, \lambda_{2} p \Rightarrow \mu_{2} p, B, \Delta_{2}, G^{\prime \prime \prime} \equiv G_{1}\right| G_{2} \mid \Gamma_{1}, \Gamma_{2},\left(\lambda_{1}+\lambda_{2}\right) p \Rightarrow\left(\mu_{1}+\mu_{2}\right) p, A \odot B, \Delta_{1}, \Delta_{2}$. Suppose that G^{\prime} and $G^{\prime \prime}$ have the forms $G_{1}^{\prime} \mid \Gamma_{1},\left\{p_{i_{1 k}}\right\}_{k=1}^{\lambda_{1}} \Rightarrow\left\{p_{j_{1 k}}\right\}_{k=1}^{\mu_{1}}, A, \Delta_{1}$ and $G_{2}^{\prime} \mid \Gamma_{2},\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow$ $\left\{p_{j_{2 k}}\right\}_{k=1}^{\mu_{2}}, B, \Delta_{2}$ in τ^{*}, respectively. Then $G^{\prime \prime \prime}$ has the form $G_{1}^{\prime}\left|G_{2}^{\prime}\right| \Gamma_{1}, \Gamma_{2},\left\{p_{i_{1 k}}\right\}_{k=1}^{\lambda_{1}},\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow$ $\left\{p_{j_{l k}}\right\}_{k=1}^{\mu_{1}},\left\{p_{j_{2 k}}\right\}_{k=1}^{\mu_{2}}, A \odot B, \Delta_{1}, \Delta_{2}$. All applications of $\left(\rightarrow_{l}\right)$ are processed by the procedure similar to that of $\left(\odot_{r}\right)$.
- Let $\frac{G^{\prime} G^{\prime \prime}}{G^{\prime \prime \prime}}(C O M) \in \tau^{4}$, where $G^{\prime} \equiv G_{1} \mid \Gamma_{1}, \Pi_{1}, \lambda_{1} p \Rightarrow \mu_{1} p, \Sigma_{1}, \Delta_{1}$,
$G^{\prime \prime} \equiv G_{2}\left|\Gamma_{2}, \Pi_{2}, \lambda_{2} p \Rightarrow \mu_{2} p, \Sigma_{2}, \Delta_{2}, G^{\prime \prime \prime} \equiv G_{1}\right| G_{2}\left|\Gamma_{1}, \Gamma_{2},\left(\lambda_{11}+\lambda_{21}\right) p \Rightarrow\left(\mu_{11}+\mu_{21}\right) p, \Delta_{1}, \Delta_{2}\right|$ $\Pi_{1}, \Pi_{2},\left(\lambda_{12}+\lambda_{22}\right) p \Rightarrow\left(\mu_{12}+\mu_{22}\right) p, \Sigma_{1}, \Sigma_{2}$, where $\lambda_{11}+\lambda_{12}=\lambda_{1}, \lambda_{21}+\lambda_{22}=\lambda_{2}, \mu_{11}+\mu_{12}=$ $\mu_{1}, \mu_{21}+\mu_{22}=\mu_{2}$.

Suppose that G^{\prime} and $G^{\prime \prime}$ have the forms $G_{1}^{\prime} \mid \Gamma_{1}, \Pi_{1},\left\{p_{i_{k}^{\prime}}\right\}_{k=1}^{\lambda_{1}} \Rightarrow\left\{p_{j_{k}^{\prime}}\right\}_{k=1}^{\mu_{1}}, \Sigma_{1}, \Delta_{1}$ and $G_{2}^{\prime} \mid \Gamma_{2}, \Pi_{2},\left\{p_{i_{k}^{2}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow\left\{p_{j_{k}^{2}}\right\}_{k=1}^{\mu_{2}}, \Sigma_{2}, \Delta_{2}$ in τ^{*}, respectively. Then $G^{\prime \prime \prime}$ has the form
$G_{1}^{\prime}\left|G_{2}^{\prime}\right| \Gamma_{1}, \Gamma_{2},\left\{p_{i_{1 k}^{\prime}}\right\}_{k=1}^{\lambda_{11}},\left\{p_{i_{1 k}^{2}}^{2}\right\}_{k=1}^{\lambda_{21}} \Rightarrow\left\{p_{j_{1 k}^{\prime}}\right\}_{k=1}^{\mu_{11}},\left\{p_{j_{1 k}}\right\}_{k=1}^{\mu_{21}}, \Delta_{1}, \Delta_{2} \mid$
$\Pi_{1}, \Pi_{2},\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda_{12}},\left\{p_{i_{2 k}^{2}}\right\}_{k=1}^{\lambda_{22}} \Rightarrow\left\{p_{j_{2 k}^{1}}\right\}_{k=1}^{\mu_{12}},\left\{p_{j_{2 k}^{2}}\right\}_{k=1}^{\mu_{22}}, \Sigma_{1}, \Sigma_{2}$, where $\left\{p_{i_{k}^{w}}\right\}_{k=1}^{\lambda_{w}}=\left\{p_{i_{k}^{w}}\right\}_{k=1}^{\lambda_{w 1}} \cup\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda_{w 2}},\left\{p_{j_{k}^{w}}\right\}_{k=1}^{\mu_{w}}=\left\{p_{j_{1 k}^{w}}\right\}_{k=1}^{\mu_{w 1}} \cup\left\{p_{j_{2 k}^{w}}\right\}_{k=1}^{\mu_{w 2}}$ for $w=1,2$.
Definition 4.12. The manipulation described in Step 5 is called eigenvariable-labeling operation.

Notation 4.13. Let G_{2} and G_{2}^{*} be converted to G and G^{*} in τ^{*}, respectively. Then τ^{*} is a proof of $G \mid G^{*}$.

In the preprocessing of τ, each $\frac{G_{i}^{\prime \prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}}{G_{i}^{\prime \prime \prime} \mid S_{i}^{c}}\left(E C^{*}\right)_{i}$ is converted into $\frac{G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}}{G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}}\left(I D_{\Omega}\right)_{i}$ in Step 2, where $G_{i}^{\prime \prime \prime} \subseteq G_{i}^{\prime \prime}$ by Lemma 4.4. $\frac{G^{\prime}}{G^{\prime} \mid S^{\prime}}(E W) \in \tau^{2}$ is converted into $\frac{G^{\prime \prime}}{G^{\prime \prime}}\left(I D_{\Omega}\right)$ in Step 3, where $G^{\prime \prime} \subseteq G^{\prime}$ by Lemma 4.8(i). Some $G^{\prime} \mid \Gamma^{\prime}, p \Rightarrow \Delta^{\prime} \in \tau^{3}$ (or $G^{\prime} \mid \Gamma^{\prime} \Rightarrow p, \Delta^{\prime}$) is revised as $G^{\prime} \mid \Gamma^{\prime}, \top \Rightarrow \Delta^{\prime}$ (or $G^{\prime} \mid \Gamma^{\prime} \Rightarrow \perp, \Delta^{\prime}$) in Step 4. Each occurrence of p in τ^{4} is assigned the unique identification number in Step 5. The whole preprocessing above is depicted by Figure 13.

$$
\begin{aligned}
& \xrightarrow{\tau} G_{0} \xrightarrow[\wedge_{r w}, \vee_{l w}]{\text { Step } 1: \tau^{1}} G_{0} \xrightarrow[E C]{\text { Step } 2: \tau^{2}} G_{0}\left|G_{0}^{*} \xrightarrow[E W]{\text { Step } 3: \tau^{3}} G_{1}\right| G_{1}^{*} \\
& \xrightarrow[\top, \perp, W]{\text { Step 4: } \tau^{4}} G_{2} \mid G_{2}^{*} \xrightarrow[\text { ID numbers }]{\text { Step 5: } \tau^{*}} G \mid G^{*}
\end{aligned}
$$

FIGURE 13 Preprocessing of τ
Notation 4.14. Let $\frac{G_{i}^{\prime \prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}}{G_{i}^{\prime \prime \prime} \mid S_{i}^{c}}\left(E C^{*}\right)_{i}, 1 \leqslant i \leqslant N$ be all $\left(E C^{*}\right)$-nodes of τ^{1} and $G_{i}^{\prime \prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}$ be converted to $G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$ in τ^{*}. Note that there are no identification numbers for occurrences of variable p in $S_{i}^{c} \in G_{i}^{\prime \prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}$ meanwhile they are assigned to p in $S_{i}^{c} \in G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$. But we use the same notations for $S_{i}^{c} \in G_{i}^{\prime \prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}^{\prime}}$ and $S_{i}^{c} \in G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$ for simplicity.

In the whole paper, let $H_{i}^{c}=G_{i}^{\prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$ denote the unique node of τ^{*} such that $H_{i}^{c} \leqslant G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$ and S_{i}^{c} is the focus sequent of H_{i}^{c} in τ^{*}, in which case we denote the focus one $S_{i 1}^{c}$ and others $S_{i 2}^{c}|\cdots| S_{i m_{i}}^{c}$ among $\left\{S_{i}^{c}\right\}^{m_{i}}$. We sometimes denote H_{i}^{c} also by $G_{i}^{\prime} \mid\left\{S_{i v}^{c}\right\}_{v=1}^{m_{i}}$ or $G_{i}^{\prime}\left|S_{i 1}^{c}\right|\left\{S_{i v}^{c}\right\}_{v=2}^{m_{i}}$. We then write G^{*} as $\left\{S_{i v}^{c}\right\}_{i=1 \cdots N}^{v=2 \cdots m_{i}}$.

We call H_{i}^{c}, $S_{i u}^{c}$ the i-th pseudo-(EC) node of τ^{*} and pseudo-(EC) sequent, respectively. We abbreviate pseudo-EC as pEC. Let $H \in \tau^{*}$, by $S_{i}^{c} \in H$ we mean that $S_{i u}^{c} \in H$ for some $1 \leqslant u \leqslant m_{i}$.

It is possible that there doesn't exist $H_{i}^{c} \leqslant G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$ such that S_{i}^{c} is the focus sequent of H_{i}^{c} in τ^{*}, in which case $\left\{S_{i}^{c}\right\}^{m_{i}} \subseteq G \mid G^{*}$, then it hasn't any effect on our argument to treat all such S_{i}^{c} as members of G. So we assume that all H_{i}^{c} are always defined for all $G_{i}^{\prime \prime} \mid\left\{S_{i}^{c}\right\}^{m_{i}}$ in τ^{*}, i.e., $H_{i}^{c}>G \mid G^{*}$.
Proposition 4.15. (i) $\left\{S_{i v}^{c}\right\}_{v=2 \cdots m_{i}} \subseteq H$ for all $H \leqslant H_{i}^{c}$; (ii) $G^{*}=\left\{S_{i v}^{c}\right\}_{i=1 \cdots N}^{v=2 \cdots m_{i}}$.
Now, we replace locally each $\frac{G^{\prime}}{G^{\prime}}\left(I D_{\Omega}\right)$ in τ^{*} with G^{\prime} and denote the resulting proof also by τ^{*}, which has no essential difference with the original one but could simplify subsequent arguments. We introduce the system $\mathbf{G L}_{\Omega}$ as follows.

Definition 4.16. $\mathbf{G L}_{\Omega}$ is a restricted subsystem of $\mathbf{G L}$ such that
(i) p is designated as the unique eigenvariable by which we mean that it is not used to built up any formula containing logical connectives and only used as a sequent-formula.
(ii) Each occurrence of p on each side of every component of a hypersequent in $\mathbf{G L}$ is assigned one unique identification number i and written as p_{i} in $\mathbf{G L}_{\Omega}$. Initial sequent $p \Rightarrow p$ of $\mathbf{G L}$ has the form $p_{i} \Rightarrow p_{i}$ in $\mathbf{G L}_{\Omega}$.
(iii) Each sequent S of $\mathbf{G L}$ in the form $\Gamma, \lambda p \Rightarrow \mu p, \Delta$ has the form

$$
\Gamma,\left\{p_{i_{k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu}, \Delta
$$

in $\mathbf{G L}_{\Omega}$, where p does not occur in Γ or $\Delta, i_{k} \neq i_{l}$ for all $1 \leqslant k<l \leqslant \lambda, j_{k} \neq j_{l}$ for all $1 \leqslant k<l \leqslant \mu$. Define $v_{l}(S)=\left\{i_{1}, \cdots, i_{\lambda}\right\}$ and $v_{r}(S)=\left\{j_{1}, \cdots, j_{\mu}\right\}$. Let G be a hypersequent of $\mathbf{G L}_{\Omega}$ in the form $S_{1}|\cdots| S_{n}$ then $v_{l}\left(S_{k}\right) \cap v_{l}\left(S_{l}\right)=\varnothing$ and $v_{r}\left(S_{k}\right) \cap v_{r}\left(S_{l}\right)=\varnothing$ for all $1 \leqslant k<l \leqslant n$. Define $v_{l}(G)=\bigcup_{k=1}^{n} v_{l}\left(S_{k}\right), v_{r}(G)=\bigcup_{k=1}^{n} v_{r}\left(S_{k}\right)$. Here, l and r in v_{l} and v_{r} indicate the left side and right side of a sequent, respectively.
(iv) A hypersequent G of $\mathbf{G} \mathbf{L}_{\Omega}$ is called closed if $v_{l}(G)=v_{r}(G)$. Two hypersequents G^{\prime} and $G^{\prime \prime}$ of $\mathbf{G L} L_{\Omega}$ are called disjoint if $v_{l}\left(G^{\prime}\right) \cap v_{l}\left(G^{\prime \prime}\right)=\varnothing, v_{l}\left(G^{\prime}\right) \cap v_{r}\left(G^{\prime \prime}\right)=\varnothing, v_{r}\left(G^{\prime}\right) \cap v_{l}\left(G^{\prime \prime}\right)=\varnothing$ and $v_{r}\left(G^{\prime}\right) \cap v_{r}\left(G^{\prime \prime}\right)=\varnothing$. $G^{\prime \prime}$ is a copy of G^{\prime} if they are disjoint and there exist two bijections $\sigma_{l}: v_{l}\left(G^{\prime}\right) \rightarrow v_{l}\left(G^{\prime \prime}\right)$ and $\sigma_{r}: v_{r}\left(G^{\prime}\right) \rightarrow v_{r}\left(G^{\prime \prime}\right)$ such that $G^{\prime \prime}$ can be obtained by applying σ_{l} to antecedents of sequents in G^{\prime} and σ_{r} to succedents of sequents in G^{\prime}, i.e., $G^{\prime \prime}=\sigma_{r} \circ \sigma_{l}\left(G^{\prime}\right)$.
(v) A closed hypersequent $G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}$ can be contracted as $G^{\prime} \mid G^{\prime \prime}$ in $\mathbf{G L}_{\Omega}$ under the condition that $G^{\prime \prime}$ and $G^{\prime \prime \prime}$ are closed and $G^{\prime \prime \prime}$ is a copy of $G^{\prime \prime}$. We call it the constraint external contraction rule and denote by

$$
\frac{G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}}{G^{\prime} \mid G^{\prime \prime}}\left(E C_{\Omega}\right)
$$

Furthermore, if there doesn’t exist two closed hypersequents $H^{\prime}, H^{\prime \prime} \subseteq G^{\prime} \mid G^{\prime \prime}$ such that $H^{\prime \prime}$ is a copy of H^{\prime} then we call it the fully constraint contraction rule and denote by $\frac{G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}}{G^{\prime} \mid G^{\prime \prime}}\left\langle E C_{\Omega}^{*}\right\rangle$.
(vi) $(E W)$ and $(C U T)$ of $\mathbf{G L}$ are forbidden. $(E C),\left(\wedge_{r}\right)$ and $\left(\vee_{l}\right)$ of $\mathbf{G L}$ are replaced with $\left(E C_{\Omega}\right),\left(\wedge_{r w}\right)$ and $\left(\vee_{l w}\right)$ in $\mathbf{G} \mathbf{L}_{\Omega}$, respectively.
(vii) $G_{1} \mid S_{1}$ and $G_{2} \mid S_{2}$ are closed and disjoint for each two-premise rule $\frac{G_{1}\left|S_{1} \quad G_{2}\right| S_{2}}{G_{1}\left|G_{2}\right| H^{\prime}}(I I)$ of $\mathbf{G} \mathbf{L}_{\Omega}$ and, $G^{\prime} \mid S^{\prime}$ is closed for each one-premise rule $\frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid S^{\prime \prime}}(I)$.
(viii) p doesn't occur in Γ or Δ for each initial sequent $\Gamma, \perp \Rightarrow \Delta$ or $\Gamma \Rightarrow \mathrm{T}, \Delta$ and, p doesn't act as the weakening formula A in $\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma \Rightarrow A, \Delta}(W R)$ or $\frac{G \mid \Gamma \Rightarrow \Delta}{G \mid \Gamma, A \Rightarrow \Delta}(W L)$ when $(W R)$ or $(W L)$ is available.

Lemma 4.17. Let τ be a cut-free proof of G_{0} in \mathbf{L} and τ^{*} be the tree resulting from preprocessing of τ.
(i) If $\frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid S^{\prime \prime}}(I) \in \tau^{*}$ then $v_{l}\left(G^{\prime} \mid S^{\prime \prime}\right)=v_{r}\left(G^{\prime} \mid S^{\prime \prime}\right)=v_{r}\left(G^{\prime} \mid S^{\prime}\right)=v_{l}\left(G^{\prime} \mid S^{\prime}\right)$;
(ii) If $\frac{G^{\prime}\left|S^{\prime} \quad G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I) \in \tau^{*}$ then $v_{l}\left(G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}\right)=v_{l}\left(G^{\prime} \mid S^{\prime}\right) \cup v_{l}\left(G^{\prime \prime} \mid S^{\prime \prime}\right)=v_{r}\left(G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}\right)=$ $v_{r}\left(G^{\prime} \mid S^{\prime}\right) \cup v_{r}\left(G^{\prime \prime} \mid S^{\prime \prime}\right)$;
(iii) If $H \in \tau^{*}$ and $k \in v_{l}(H)$ then $k \in v_{r}(H)$;
(iv) If $H \in \tau^{*}$ and $k \in v_{l}(H)$ (or $k \in v_{r}(H)$) then $H \leqslant p_{k} \Rightarrow p_{k}$;
(v) τ^{*} is a proof of $G \mid G^{*}$ in $\mathbf{G} \mathbf{L}_{\Omega}$ without $\left(E C_{\Omega}\right)$;
(vi) If $H^{\prime}, H^{\prime \prime} \in \tau^{*}$ and $H^{\prime} \| H^{\prime \prime}$ then $v_{l}\left(H^{\prime}\right) \cap v_{l}\left(H^{\prime \prime}\right)=\varnothing, v_{r}\left(H^{\prime}\right) \cap v_{r}\left(H^{\prime \prime}\right)=\varnothing$.

Proof. Claims from (i) to (iv) are immediately from Step 5 in preprocessing of τ and Definition 4.16. (v) is from Notation 4.13 and Definition 4.16. Only (vi) is proved as follows.

Suppose that $k \in v_{l}\left(H^{\prime}\right) \cap v_{l}\left(H^{\prime \prime}\right)$. Then $H^{\prime} \leqslant p_{k} \Rightarrow p_{k}, H^{\prime \prime} \leqslant p_{k} \Rightarrow p_{k}$ by Claim (iv). Thus $H^{\prime} \leqslant H^{\prime \prime}$ or $H^{\prime \prime} \leqslant H^{\prime}$, a contradiction with $H^{\prime} \| H^{\prime \prime}$ hence $v_{l}\left(H^{\prime}\right) \cap v_{l}\left(H^{\prime \prime}\right)=\varnothing$. $v_{r}\left(H^{\prime}\right) \cap v_{r}\left(H^{\prime \prime}\right)=\varnothing$ is proved by a similar procedure and omitted.

5. The generalized density rule (\mathcal{D}) for GL_{Ω}

In this section, we define the generalized density rule (\mathcal{D}) for $\mathbf{G L}_{\Omega}$ and prove that it is admissible in $\mathbf{G L}_{\Omega}$.

Definition 5.1. Let G be a closed hypersequent of $\mathbf{G} \mathbf{L}_{\Omega}$ and $S \in G$. Define $[S]_{G}=\cap\{H: S \in$ $\left.H \subseteq G, v_{l}(H)=v_{r}(H)\right\}$, i.e., $[S]_{G}$ is the minimal closed unit of G containing S. In general, for $G^{\prime} \subseteq G$, define $\left[G^{\prime}\right]_{G}=\bigcap\left\{H: G^{\prime} \subseteq H \subseteq G, v_{l}(H)=v_{r}(H)\right\}$.

Clearly, $[S]_{G}=S$ if $v_{l}(S)=v_{r}(S)$ or p does not occur in S. The following construction gives a procedure to construct $[S]_{G}$ for any given $S \in G$.

Construction 5.2. Let G and S be as above. A sequence $G_{1}, G_{2}, \cdots, G_{n}$ of hypersequents is constructed recursively as follows. (i) $G_{1}=\{S\}$; (ii) Suppose that G_{k} is constructed for $k \geqslant 1$. If $v_{l}\left(G_{k}\right) \neq v_{r}\left(G_{k}\right)$ then there exists $i_{k+1} \in v_{l}\left(G_{k}\right) \backslash v_{r}\left(G_{k}\right)$ (or $i_{k+1} \in v_{r}\left(G_{k}\right) \backslash v_{l}\left(G_{k}\right)$) thus there exists the unique $S_{k+1} \in G \backslash G_{k}$ such that $i_{k+1} \in v_{r}\left(S_{k+1}\right) \backslash v_{l}\left(S_{k+1}\right)\left(\right.$ or $\left.i_{k+1} \in v_{l}\left(S_{k+1}\right) \backslash v_{r}\left(S_{k+1}\right)\right)$ by $v_{l}(G)=v_{r}(G)$ and Definition 4.16 then let $G_{k+1}=G_{k} \mid S_{k+1}$ otherwise the procedure terminates and $n:=k$.

Lemma 5.3. (i) $G_{n}=[S]_{G}$;
(ii)Let $S^{\prime} \in[S]_{G}$ then $\left[S^{\prime}\right]_{G}=[S]_{G}$;
(iii)Let $G^{\prime} \equiv G\left|H^{\prime}, G^{\prime \prime} \equiv G\right| H^{\prime \prime}, v_{l}\left(G^{\prime}\right)=v_{r}\left(G^{\prime}\right), v_{l}\left(G^{\prime \prime}\right)=v_{r}\left(G^{\prime \prime}\right), v_{l}\left(H^{\prime}\right) \ominus v_{r}\left(H^{\prime}\right)=v_{l}\left(H^{\prime \prime}\right) \ominus$ $v_{r}\left(H^{\prime \prime}\right)$ then $\left[H^{\prime}\right]_{G^{\prime}} \backslash H^{\prime}=\left[H^{\prime \prime}\right]_{G^{\prime \prime}} \backslash H^{\prime \prime}$, where $A \ominus B$ is the symmetric difference of two multisets A, B;
(iv)Let $v_{l r}\left(G_{k}\right)=v_{l}\left(G_{k}\right) \cap v_{r}\left(G_{k}\right)$ then $\left|v_{l r}\left(G_{k}\right)\right|+1 \geqslant\left|G_{k}\right|$ for all $1 \leqslant k \leqslant n$;
(v) $\left|v_{l}\left([S]_{G}\right)\right|+1 \geqslant\left|[S]_{G}\right|$.

Proof. (i) Since $G_{k} \subseteq G_{k+1}$ for $1 \leqslant k \leqslant n-1$ and $S \in G_{1}$ then $S \in G_{n} \subseteq G$ thus $[S]_{G} \subseteq G_{n}$ by $v_{l}\left(G_{n}\right)=v_{r}\left(G_{n}\right)$. We prove $G_{k} \subseteq[S]_{G}$ for $1 \leqslant k \leqslant n$ by induction on k in the following. Clearly, $G_{1} \subseteq[S]_{G}$. Suppose that $G_{k} \subseteq[S]_{G}$ for some $1 \leqslant k \leqslant n-1$. Since $i_{k+1} \in v_{l}\left(G_{k}\right) \backslash v_{r}\left(G_{k}\right)$ (or $\left.i_{k+1} \in v_{r}\left(G_{k}\right) \backslash v_{l}\left(G_{k}\right)\right)$ and $i_{k+1} \in v_{r}\left(S_{k+1}\right)$ (or $i_{k+1} \in v_{l}\left(S_{k+1}\right)$) then $S_{k+1} \in[S]_{G}$ by $G_{k} \subseteq[S]_{G}$ and $v_{l}\left([S]_{G}\right)=v_{r}\left([S]_{G}\right)$ thus $G_{k+1} \subseteq[S]_{G}$. Then $G_{n} \subseteq[S]_{G}$ thus $G_{n}=[S]_{G}$.
(ii) By (i), $[S]_{G}=S_{1}\left|S_{2}\right| \cdots \mid S_{n}$, where $S_{1}=S$. Then $S^{\prime}=S_{k}$ for some $1 \leqslant k \leqslant n$ thus $i_{k} \in v_{r}\left(S_{k}\right) \backslash v_{l}\left(S_{k}\right)$ (or $i_{k} \in v_{l}\left(S_{k}\right) \backslash v_{r}\left(S_{k}\right)$) hence there exists the unique $k^{\prime}<k$ such that $i_{k} \in$ $v_{l}\left(S_{k^{\prime}}\right) \backslash v_{r}\left(S_{k^{\prime}}\right)$ (or $i_{k} \in v_{r}\left(S_{k^{\prime}}\right) \backslash v_{l}\left(S_{k^{\prime}}\right)$) if $k \geq 2$ hence $S_{k^{\prime}} \in\left[S_{k}\right]_{G}$. Repeatedly, $S_{1} \in\left[S_{k}\right]_{G}$, i.e., $S \in\left[S^{\prime}\right]_{G}$ then $[S]_{G} \subseteq\left[S^{\prime}\right]_{G} .\left[S^{\prime}\right]_{G} \subseteq[S]_{G}$ by $S^{\prime} \in[S]_{G}$ then $\left[S^{\prime}\right]_{G}=[S]_{G}$.
(iii) It holds immediately from Construction 5.2 and (i).
(iv) The proof is by induction on k. For the base step, let $k=1$ then $\left|G_{k}\right|=1$ thus $\left|v_{l r}\left(G_{k}\right)\right|+1 \geqslant$ $\left|G_{k}\right|$ by $\left|v_{l r}\left(G_{k}\right)\right| \geqslant 0$. For the induction step, suppose that $\left|v_{l r}\left(G_{k}\right)\right|+1 \geqslant\left|G_{k}\right|$ for some $1 \leqslant k<n$. Then $\left|v_{l r}\left(G_{k+1}\right)\right| \geqslant\left|v_{l r}\left(G_{k}\right)\right|+1$ by $i_{k+1} \in v_{l r}\left(G_{k+1}\right) \backslash v_{l r}\left(G_{k}\right)$ and $v_{l r}\left(G_{k}\right) \subseteq v_{l r}\left(G_{k+1}\right)$. Then $\left|v_{l r}\left(G_{k+1}\right)\right|+1 \geqslant\left|G_{k+1}\right|$ by $\left|G_{k+1}\right|=\left|G_{k}\right|+1=k+1$.
(v) It holds by (iv) and $v_{l r}\left([S]_{G}\right)=v_{l}\left([S]_{G}\right)$.

Definition 5.4. Let $G=S_{1}|\cdots| S_{r}$ and S_{l} be in the form $\Gamma_{l},\left\{p_{i_{k}^{l}}\right\}_{k=1}^{\lambda_{l}} \Rightarrow\left\{p_{j_{k}^{\prime}}\right\}_{k=1}^{\mu_{l}}, \Delta_{l}$ for $1 \leqslant l \leqslant r$.
(i) If $S \in G$ and $[S]_{G}$ be $S_{k_{1}}|\cdots| S_{k_{u}}$ then $\mathcal{D}_{G}(S)$ is defined as $\Gamma_{k_{1}}, \cdots, \Gamma_{k_{u}} \Rightarrow\left(\left|v_{l}\left([S]_{G}\right)\right|-\left|[S]_{G}\right|+1\right) t, \Delta_{k_{1}}, \cdots, \Delta_{k_{u}} ;$
(ii) Let $\bigcup_{k=1}^{v}\left[S_{q_{k}}\right]_{G}=G$ and $\left[S_{q_{k}}\right]_{G} \cap\left[S_{q_{l}}\right]_{G}=\varnothing$ for all $1 \leqslant k<l \leqslant v$ then $\mathcal{D}(G)$ is defined as $\mathcal{D}_{G}\left(S_{q_{1}}\right)|\cdots| \mathcal{D}_{G}\left(S_{q_{v}}\right)$.
(iii) We call (\mathcal{D}) the generalized density rule of $\mathbf{G L}_{\Omega}$, whose conclusion $\mathcal{D}(G)$ is defined by (ii) if its premise is G.

Clearly, $\mathcal{D}\left(p_{k} \Rightarrow p_{k}\right)$ is $\Rightarrow t$ and $\mathcal{D}(S)=S$ if p does not occur in S.
Lemma 5.5. Let $G^{\prime} \equiv G \mid S$ and $G^{\prime \prime} \equiv G\left|S_{1}\right| S_{2}$ be closed and $\left[S_{1}\right]_{G^{\prime \prime}} \cap\left[S_{2}\right]_{G^{\prime \prime}}=\varnothing$, where $S_{1}=\Gamma_{1},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda_{1}} \Rightarrow\left\{p_{j_{k}^{\prime}}\right\}_{k=1}^{\mu_{1}}, \Delta_{1} ; \quad S_{2}=\Gamma_{2},\left\{p_{i_{k}^{2}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow\left\{p_{j_{k}^{2}}\right\}_{k=1}^{\mu_{2}}, \Delta_{2} ;$
$S=\Gamma_{1}, \Gamma_{2},\left\{p_{i_{k}^{\prime}}\right\}_{k=1}^{\lambda_{1}},\left\{p_{i_{k}^{2}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow\left\{p_{j_{k}^{\prime}}\right\}_{k=1}^{\mu_{1}},\left\{p_{j_{k}^{2}}\right\}_{k=1}^{\mu_{2}}, \Delta_{1}, \Delta_{2} ; \mathcal{D}_{G^{\prime \prime}}\left(S_{1}\right)=\Gamma_{1}, \Sigma_{1} \Rightarrow \Pi_{1}, \Delta_{1}$ and $\mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)=\Gamma_{2}, \Sigma_{2} \Rightarrow \Pi_{2}, \Delta_{2}$. Then $\mathcal{D}_{G^{\prime}}(S)=\Gamma_{1}, \Sigma_{1}, \Gamma_{2}, \Sigma_{2} \Rightarrow \Pi_{1}, \Delta_{1}, \Pi_{2}, \Delta_{2}$.

Proof. Since $\left[S_{1}\right]_{G^{\prime \prime}} \cap\left[S_{2}\right]_{G^{\prime \prime}}=\varnothing$ then $[S]_{G^{\prime}}=\left[S_{1}\right]_{G^{\prime \prime}} \backslash\left\{S_{1}\right\} \cup\left[S_{2}\right]_{G^{\prime \prime}} \backslash\left\{S_{2}\right\} \cup$ $\{S\}$ by $v_{l}(S)=v_{l}\left(S_{1} \mid S_{2}\right), v_{r}(S)=v_{r}\left(S_{1} \mid S_{2}\right)$ and Lemma 5.3 (iii). Thus $\left|v_{l}\left([S]_{G^{\prime}}\right)\right|=\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime \prime}}\right)\right|+\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|,\left|[S]_{G^{\prime}}\right|=\left|\left[S_{1}\right]_{G^{\prime \prime}}\right|+\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|-1$. Hence

$$
\left|v_{l}\left([S]_{G^{\prime}}\right)\right|-\left|[S]_{G^{\prime}}\right|+1=\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{1}\right]_{G^{\prime \prime}}\right|+1+\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|+1
$$

Therefore $\mathcal{D}_{G^{\prime}}(S)=\Gamma_{1}, \Sigma_{1}, \Gamma_{2}, \Sigma_{2} \Rightarrow \Pi_{1}, \Delta_{1}, \Pi_{2}, \Delta_{2}$ by

$$
\begin{aligned}
& \Pi_{1}=\left(\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{1}\right]_{G^{\prime \prime}}\right|+1\right) t, \Pi_{1} \backslash\left(\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{1}\right]_{G^{\prime \prime}}\right|+1\right) t \\
& \Pi_{2}=\left(\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|+1\right) t, \Pi_{2} \backslash\left(\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|+1\right) t \\
& \mathcal{D}_{G^{\prime}}(S)=\Gamma_{1}, \Sigma_{1}, \Gamma_{2}, \Sigma_{2} \Rightarrow\left(\left|v_{l}\left([S]_{G^{\prime}}\right)\right|-\left|[S]_{G^{\prime}}\right|+1\right) t, \\
& \Pi_{1} \backslash\left(\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{1}\right]_{G^{\prime \prime}}\right|+1\right) t, \Delta_{1}, \Pi_{2} \backslash\left(\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|+1\right) t, \Delta_{2}
\end{aligned}
$$

where $\lambda t=\{\underbrace{t, \cdots, t}_{\lambda}\}$.
Lemma 5.6. ([A.5.1]) If there exists a proof τ of G in $\mathbf{G L}_{\Omega}$ then there exists a proof of $\mathcal{D}(G)$ in $\mathbf{G L}$, i.e., (\mathcal{D}) is admissible in $\mathbf{G L}_{\Omega}$.

Proof. We proceed by induction on the height of τ. For the base step, if G is $p_{k} \Rightarrow p_{k}$ then $\mathcal{D}(G)$ is $\Rightarrow t$ otherwise $\mathcal{D}(G)$ is G then $\vdash_{\mathbf{G L}} \mathcal{D}(G)$ holds. For the induction step, the following cases are considered.

- Let

$$
\frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid S^{\prime \prime}}\left(\rightarrow_{r}\right) \in \tau
$$

where

$$
\begin{gathered}
S^{\prime} \equiv A, \Gamma,\left\{p_{i_{k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu}, \Delta, B, \\
S^{\prime \prime} \equiv \Gamma,\left\{p_{i_{k}}\right\}_{k=1}^{\lambda} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu}, \Delta, A \rightarrow B .
\end{gathered}
$$

Then $\left[S^{\prime \prime}\right]_{G^{\prime} \mid S^{\prime \prime}}=\left[S^{\prime}\right]_{G^{\prime} \mid S^{\prime}} \backslash\left\{S^{\prime}\right\} \mid S^{\prime \prime}$ by $v_{l}\left(S^{\prime}\right)=v_{l}\left(S^{\prime \prime}\right), v_{r}\left(S^{\prime}\right)=v_{r}\left(S^{\prime \prime}\right)$ and Lemma 5.3 (iii). Let $\mathcal{D}_{G^{\prime} \mid S^{\prime}}\left(S^{\prime}\right)=A, \Gamma, \Gamma^{\prime \prime} \Rightarrow \Delta^{\prime \prime}, \Delta, B$ then $\mathcal{D}_{G^{\prime} \mid S^{\prime \prime}}\left(S^{\prime \prime}\right)=\Gamma, \Gamma^{\prime \prime} \Rightarrow \Delta^{\prime \prime}, \Delta, A \rightarrow B$ thus a proof of
$\mathcal{D}\left(G^{\prime} \mid S^{\prime \prime}\right)$ is constructed by combining the proof of $\mathcal{D}\left(G^{\prime} \mid S^{\prime}\right)$ and $\frac{\mathcal{D}_{G^{\prime} \mid S^{\prime}}\left(S^{\prime}\right)}{\mathcal{D}_{G^{\prime} \mid S^{\prime \prime}}\left(S^{\prime \prime}\right)}\left(\rightarrow_{r}\right)$. Other rules of type (I) are processed by a procedure similar to above.

- Let

$$
\frac{G_{1}\left|S_{1} \quad G_{2}\right| S_{2}}{G_{1}\left|G_{2}\right| S_{3}}\left(\odot_{r}\right) \in \tau
$$

where

$$
\begin{gathered}
S_{1} \equiv \Gamma_{1},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda_{1}} \Rightarrow\left\{p_{j_{k}^{\prime}}\right\}_{k=1}^{\mu_{1}}, A, \Delta_{1} \\
S_{2} \equiv \Gamma_{2},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu_{2}}, B, \Delta_{2} \\
S_{3} \equiv \Gamma_{1}, \Gamma_{2},\left\{p_{i_{k}^{\prime}}\right\}_{k=1}^{\lambda_{1}},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu_{2}},\left\{p_{j_{k}^{\prime}}\right\}_{k=1}^{\mu_{1}}, A \odot B, \Delta_{1}, \Delta_{2} .
\end{gathered}
$$

Let

$$
\begin{aligned}
& \mathcal{D}_{G_{1} \mid S_{1}}\left(S_{1}\right)=\Gamma_{1}, \Gamma_{11} \Rightarrow \Delta_{11},\left(\left|v_{l}\left(\left[S_{1}\right]_{G_{1} \mid S_{1}}\right)\right|-\left|\left[S_{1}\right]_{G_{1} \mid S_{1}}\right|+1\right) t, A, \Delta_{1}, \\
& \mathcal{D}_{G_{2} \mid S_{2}}\left(S_{2}\right)=\Gamma_{2}, \Gamma_{21} \Rightarrow \Delta_{21},\left(\left|v_{l}\left(\left[S_{2}\right]_{G_{2} \mid S_{2}}\right)\right|-\left|\left[S_{2}\right]_{G_{2} \mid S_{2}}\right|+1\right) t, B, \Delta_{2} .
\end{aligned}
$$

Then $\mathcal{D}_{G_{1}\left|G_{2}\right| S_{3}}\left(S_{3}\right)$ is

$$
\begin{gathered}
\Gamma_{1}, \Gamma_{2}, \Gamma_{11}, \Gamma_{21} \Rightarrow \Delta_{11}, \Delta_{21}, A \odot B, \Delta_{1}, \Delta_{2} \\
\left(\left|v_{l}\left(\left[S_{1}\right]_{G_{1} \mid S_{1}}\right)\right|+\left|v_{l}\left(\left[S_{2}\right]_{G_{2} \mid S_{2}}\right)\right|-\left|\left[S_{1}\right]_{G_{1} \mid S_{1}}\right|-\left|\left[S_{2}\right]_{G_{2} \mid S_{2}}\right|+2\right) t
\end{gathered}
$$

by $\left[S_{3}\right]_{G_{1}\left|G_{2}\right| S_{3}}=\left(\left[S_{1}\right]_{G_{1} \mid S_{1}} \backslash\left\{S_{1}\right\}\right) \cup\left(\left[S_{2}\right]_{G_{2} \mid S_{2}} \backslash\left\{S_{2}\right\}\right) \cup\left\{S_{3}\right\}$. Then the proof of $\mathcal{D}\left(G_{1}\left|G_{2}\right| S_{3}\right)$ is constructed by combining $\vdash_{\mathbf{G L}} \mathcal{D}\left(G_{1} \mid S_{1}\right)$ and
$\vdash_{\mathbf{G L}} \mathcal{D}\left(G_{2} \mid S_{2}\right)$ with $\frac{\mathcal{D}_{G_{1} \mid S_{1}}\left(S_{1}\right) \quad \mathcal{D}_{G_{2} \mid S_{2}}\left(S_{2}\right)}{\mathcal{D}_{G_{1}\left|G_{2}\right| S_{3}}\left(S_{3}\right)}\left(\odot_{r}\right)$. All applications of $\left(\rightarrow_{l}\right)$ are processed by a procedure similar to that of \odot_{r} and omitted.

- Let

$$
\frac{G^{\prime} \quad G^{\prime \prime}}{G^{\prime \prime \prime}}\left(\wedge_{r w}\right) \in \tau
$$

where

$$
\begin{gathered}
G^{\prime} \equiv G_{1}\left|S_{1}, \quad G^{\prime \prime} \equiv G_{2}\right| S_{2}, \quad G^{\prime \prime \prime} \equiv G_{1}\left|G_{2}\right| S_{1}^{\prime} \mid S_{2}^{\prime}, \\
S_{w} \equiv \Gamma_{w},\left\{p_{i_{k}^{w}}\right\}_{k=1}^{\lambda_{w}} \Rightarrow\left\{p_{j_{k}^{w}}\right\}_{k=1}^{\mu_{w}}, A_{w}, \Delta_{w}, \\
S_{w}^{\prime} \equiv \Gamma_{w},\left\{p_{i_{k}^{w}}\right\}_{k=1}^{\lambda_{w}} \Rightarrow\left\{p_{j_{k}^{w}}\right\}_{k=1}^{\mu_{w}}, A_{1} \wedge A_{2}, \Delta_{w}
\end{gathered}
$$

for $w=1,2$. Then $\left[S_{1}^{\prime}\right]_{G^{\prime \prime \prime}}=\left[S_{1}\right]_{G^{\prime}} \backslash\left\{S_{1}\right\}\left|S_{1}^{\prime},\left[S_{2}^{\prime}\right]_{G^{\prime \prime \prime}}=\left[S_{2}\right]_{G^{\prime \prime}} \backslash\left\{S_{2}\right\}\right| S_{2}^{\prime}$ by Lemma 5.3 (iii). Let

$$
\mathcal{D}_{G_{w} \mid S_{w}}\left(S_{w}\right)=\Gamma_{w}, \Gamma_{w 1} \Rightarrow \Delta_{w 1},\left(\left|v_{l}\left(\left[S_{w}\right]_{G_{w} \mid S_{w}}\right)\right|-\left|\left[S_{w}\right]_{G_{w} \mid S_{w}}\right|+1\right) t, A_{w}, \Delta_{1}
$$

for $w=1,2$. Then

$$
\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{w}^{\prime}\right)=\Gamma_{w}, \Gamma_{w 1} \Rightarrow \Delta_{w 1},\left(\left|v_{l}\left(\left[S_{w}\right]_{G_{w} \mid S_{w}}\right)\right|-\left|\left[S_{w}\right]_{G_{w} \mid S_{w}}\right|+1\right) t, A_{1} \wedge A_{2}, \Delta_{w}
$$

for $w=1,2$. Then the proof of $\mathcal{D}\left(G^{\prime \prime \prime}\right)$ is constructed by combining $\vdash_{\mathbf{G L}} \mathcal{D}\left(G^{\prime}\right)$ and $\vdash_{\mathbf{G L}} \mathcal{D}\left(G^{\prime \prime}\right)$ with $\frac{\mathcal{D}_{G^{\prime}}\left(S_{1}\right) \quad \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)}{\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{1}^{\prime} \mid S_{2}^{\prime}\right)}\left(\wedge_{r w}\right)$. All applications of $\left(\vee_{l w}\right)$ are processed by a procedure similar to that of $\left(\wedge_{r w}\right)$ and omitted.

- Let

$$
\frac{G^{\prime} \quad G^{\prime \prime}}{G^{\prime \prime \prime}}(C O M) \in \tau
$$

where

$$
\begin{gathered}
G^{\prime} \equiv G_{1}\left|S_{1}, \quad G^{\prime \prime} \equiv G_{2}\right| S_{2}, \quad G^{\prime \prime \prime} \equiv G_{1}\left|G_{2}\right| S_{3} \mid S_{4} \\
S_{1} \equiv \Gamma_{1}, \Pi_{1},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda_{1}} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu_{1}}, \Sigma_{1}, \Delta_{1}, \\
S_{2} \equiv \Gamma_{2}, \Pi_{2},\left\{p_{i_{k}}\right\}_{k=1}^{\lambda_{2}} \Rightarrow\left\{p_{j_{k}}\right\}_{k=1}^{\mu_{2}}, \Sigma_{2}, \Delta_{2}, \\
S_{3} \equiv \Gamma_{1}, \Gamma_{2},\left\{p_{i_{1 k}^{1}}\right\}_{k=1}^{\lambda_{11}},\left\{p_{i_{1 k}^{2}}\right\}_{k=1}^{\lambda_{21}} \Rightarrow\left\{p_{j_{1 k}^{1}}\right\}_{k=1}^{\mu_{11}},\left\{p_{j_{1_{k}^{2}}}\right\}_{k=1}^{\mu_{21}}, \Delta_{1}, \Delta_{2}, \\
S_{4} \equiv \Pi_{1}, \Pi_{2},\left\{p_{i_{2 k}^{1}}\right\}_{k=1}^{\lambda_{12}},\left\{p_{i_{2 k}^{2}}\right\}_{k=1}^{\lambda_{22}} \Rightarrow\left\{p_{j_{2 k}^{1}}\right\}_{k=1}^{\mu_{12}},\left\{p_{j_{2 k}}^{2} \mu_{k=1}^{\mu_{22}}, \Sigma_{1}, \Sigma_{2}\right.
\end{gathered}
$$

where $\left\{p_{i_{k}^{w}}\right\}_{k=1}^{\lambda_{w}}=\left\{p_{i_{1 k}^{w}}\right\}_{k=1}^{\lambda_{w 1}} \cup\left\{p_{i_{2 k}^{*}}\right\}_{k=1}^{\lambda_{w 2}},\left\{p_{j_{k}^{w}}\right\}_{k=1}^{\mu_{w}}=\left\{p_{j_{1 k}^{w}}\right\}_{k=1}^{\mu_{w 1}} \cup\left\{p_{j_{2 k}^{w}}\right\}_{k=1}^{\mu_{w 2}}$ for $w=1,2$.
Case $1 S_{3} \in\left[S_{4}\right]_{G^{\prime \prime \prime}}$. Then $\left[S_{3}\right]_{G^{\prime \prime \prime}}=\left[S_{4}\right]_{G^{\prime \prime \prime}}$ by Lemma 5.3 (ii) and $\left[S_{3}\right]_{G^{\prime \prime \prime}}=\left[S_{1}\right]_{G^{\prime}}\left|\left[S_{2}\right]_{G^{\prime \prime}}\right| S_{3} \mid S_{4} \backslash\left\{S_{1}, S_{2}\right\}$ by Lemma 5.3 (iii). Then

$$
\left|v_{l}\left(\left[S_{3}\right]_{G^{\prime \prime \prime}}\right)\right|-\left|\left[S_{3}\right]_{G^{\prime \prime \prime}}\right|+1=\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime}}\right)\right|+\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{1}\right]_{G^{\prime}}\right|-\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|+1 \geqslant 0 .
$$

Thus $\left|v_{l}\left(\left[S_{1}\right]_{G^{\prime}}\right)\right|-\left|\left[S_{1}\right]_{G^{\prime}}\right|+1 \geqslant 1$ or $\left|v_{l}\left(\left[S_{2}\right]_{G^{\prime \prime}}\right)\right|-\left|\left[S_{2}\right]_{G^{\prime \prime}}\right|+1 \geqslant 1$. Hence we assume that, without loss of generality,

$$
\begin{aligned}
& \mathcal{D}_{G^{\prime}}\left(S_{1}\right)=\Gamma_{1}, \Pi_{1}, \Gamma^{\prime} \Rightarrow \Delta^{\prime}, t, \Sigma_{1}, \Delta_{1}, \\
& \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)=\Gamma_{2}, \Pi_{2}, \Gamma^{\prime \prime} \Rightarrow \Delta^{\prime \prime}, \Sigma_{2}, \Delta_{2} .
\end{aligned}
$$

Then

$$
\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3} \mid S_{4}\right)=\Gamma_{1}, \Pi_{1}, \Gamma^{\prime}, \Gamma_{2}, \Pi_{2}, \Gamma^{\prime \prime} \Rightarrow \Delta^{\prime}, \Sigma_{1}, \Delta_{1}, \Delta^{\prime \prime}, \Sigma_{2}, \Delta_{2} .
$$

Thus the proof of $\frac{\mathcal{D}_{G^{\prime}}\left(S_{1}\right) \quad \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)}{\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3} \mid S_{4}\right)}$ is constructed by

$$
\frac{\Gamma_{1}, \Pi_{1}, \Gamma^{\prime} \Rightarrow \Delta^{\prime}, t, \Sigma_{1}, \Delta_{1} \quad \frac{\Gamma_{2}, \Pi_{2}, \Gamma^{\prime \prime} \Rightarrow \Delta^{\prime \prime}, \Sigma_{2}, \Delta_{2}}{\Gamma_{2}, \Pi_{2}, \Gamma^{\prime \prime}, t \Rightarrow \Delta^{\prime \prime}, \Sigma_{2}, \Delta_{2}}\left(t_{l}\right)}{\Gamma_{1}, \Pi_{1}, \Gamma^{\prime}, \Gamma_{2}, \Pi_{2}, \Gamma^{\prime \prime} \Rightarrow \Delta^{\prime}, \Sigma_{1}, \Delta_{1}, \Delta^{\prime \prime}, \Sigma_{2}, \Delta_{2}}(C U T) .
$$

Case $2 S_{3} \notin\left[S_{4}\right]_{G^{\prime \prime \prime}}$. Then $\left[S_{3}\right]_{G^{\prime \prime \prime}} \cap\left[S_{4}\right]_{G^{\prime \prime \prime}}=\varnothing$ by Lemma 5.3 (ii). Let

$$
\begin{aligned}
& S_{3 w} \equiv \Gamma_{w},\left\{p_{i_{1 k}^{w}}\right\}_{k=1}^{\lambda_{w 1}} \Rightarrow\left\{p_{j_{1 k}^{w}}\right\}_{k=1}^{\mu_{w 1}}, \Delta_{w}, \\
& S_{4 w} \equiv \Pi_{w},\left\{p_{i_{2 k}}\right\}_{k=1}^{\lambda_{w 2}} \Rightarrow\left\{p_{j_{2 k}^{w}}\right\}_{k=1}^{\mu_{w 2}}, \Sigma_{w},
\end{aligned}
$$

for $w=1,2$. Then

$$
\begin{aligned}
& {\left[S_{3}\right]_{G^{\prime \prime \prime}}=\left[S_{31}\right]_{G_{1}\left|S_{31}\right| S_{41}} \backslash\left\{S_{31}\right\} \bigcup\left[S_{32}\right]_{G_{2}\left|S_{32}\right| S_{42}} \backslash\left\{S_{32}\right\} \bigcup\left\{S_{3}\right\},} \\
& {\left[S_{4}\right]_{G^{\prime \prime \prime}}=\left[S_{41}\right]_{G_{1}\left|S_{31}\right| S_{41}} \backslash\left\{S_{41}\right\} \bigcup\left[S_{42}\right]_{G_{2}\left|S_{32}\right| S_{42}} \backslash\left\{S_{42}\right\} \bigcup\left\{S_{4}\right\}}
\end{aligned}
$$

by $v_{l}\left(S_{3}\right)=v_{l}\left(S_{31} \mid S_{32}\right), v_{l}\left(S_{1}\right)=v_{l}\left(S_{31} \mid S_{41}\right), v_{l}\left(S_{2}\right)=v_{l}\left(S_{32} \mid S_{42}\right)$ and $v_{l}\left(S_{4}\right)=v_{l}\left(S_{41} \mid S_{42}\right)$. Let

$$
\mathcal{D}_{G_{w}\left|S_{3 w}\right| S_{4 w}}\left(S_{3 w}\right)=\Gamma_{25}, \mathrm{X}_{3 w} \Rightarrow \Psi_{3 w}, \Delta_{w},
$$

$$
\mathcal{D}_{G_{w}\left|S_{3 w}\right| S_{4 w}}\left(S_{4 w}\right)=\Pi_{w}, X_{4 w} \Rightarrow \Psi_{4 w}, \Sigma_{w}
$$

for $w=1,2$. Then

$$
\begin{aligned}
& \mathcal{D}_{G^{\prime}}\left(S_{1}\right)=\Gamma_{1}, \Pi_{1}, \mathrm{X}_{31}, \mathrm{X}_{41} \Rightarrow \Psi_{31}, \Psi_{41}, \Sigma_{1}, \Delta_{1}, \\
& \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)=\Gamma_{2}, \Pi_{2}, \mathrm{X}_{32}, \mathrm{X}_{42} \Rightarrow \Psi_{32}, \Psi_{42}, \Sigma_{2}, \Delta_{2}, \\
& \mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3}\right)=\Gamma_{1}, \mathrm{X}_{31}, \Gamma_{2}, \mathrm{X}_{32} \Rightarrow \Psi_{31}, \Delta_{1}, \Psi_{32}, \Delta_{2}, \\
& \mathcal{D}_{G^{\prime \prime \prime}}\left(S_{4}\right)=\Pi_{1}, \mathrm{X}_{41}, \Pi_{2}, \mathrm{X}_{42} \Rightarrow \Psi_{41}, \Sigma_{1}, \Psi_{42}, \Sigma_{2}
\end{aligned}
$$

by Lemma 5.5, $\left[S_{3}\right]_{G^{\prime \prime \prime}} \cap\left[S_{4}\right]_{G^{\prime \prime \prime}}=\varnothing,\left[S_{31}\right]_{G_{1}\left|S_{31}\right| S_{41}} \cap\left[S_{41}\right]_{G_{1}\left|S_{31}\right| S_{41}}=\varnothing$, $\left[S_{32}\right]_{G_{2}\left|S_{32}\right| S_{42}} \cap\left[S_{42}\right]_{G_{2}\left|S_{32}\right| S_{42}}=\varnothing$. Then the proof of $\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3} \mid S_{4}\right)$ is constructed by combing the proofs of $\mathcal{D}_{G^{\prime}}\left(S_{1}\right)$ and $\mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)$ with $\frac{\mathcal{D}_{G^{\prime}}\left(S_{1}\right) \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)}{\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3} \mid S_{4}\right)}($ COM $)$.

- $\frac{G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}}{G^{\prime} \mid G^{\prime \prime}}\left(E C_{\Omega}\right) \in \tau$. Then $G^{\prime}, G^{\prime \prime}$ and $G^{\prime \prime \prime}$ are closed and $G^{\prime \prime \prime}$ is a copy of $G^{\prime \prime}$ thus $\mathcal{D}_{G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}}\left(G^{\prime \prime}\right)=\mathcal{D}_{G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}}\left(G^{\prime \prime \prime}\right)$ hence a proof of $\mathcal{D}\left(G^{\prime} \mid G^{\prime \prime}\right)$ is constructed by combining the proof of $\mathcal{D}\left(G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}\right)$ and $\frac{\mathcal{D}\left(G^{\prime}\left|G^{\prime \prime}\right| G^{\prime \prime \prime}\right)}{\mathcal{D}\left(G^{\prime} \mid G^{\prime \prime}\right)}\left(E C^{*}\right)$.

The following two lemmas are corollaries of Lemma 5.6.
Lemma 5.7. If there exists a derivation of G_{0} from G_{1}, \cdots, G_{r} in $\mathbf{G} \mathbf{L}_{\Omega}$ then there exists a derivation of $\mathcal{D}\left(G_{0}\right)$ from $\mathcal{D}\left(G_{1}\right), \cdots, \mathcal{D}\left(G_{r}\right)$ in $\mathbf{G L}$.

Lemma 5.8. Let τ be a cut-free proof of G_{0} in $\mathbf{G L}$ and τ^{*} be the proof of $G \mid G^{*}$ in $\mathbf{G L}_{\Omega}$ resulting from preprocessing of τ. Then $\vdash_{\mathbf{G L}} \mathcal{D}\left(G \mid G^{*}\right)$.

6. Extraction of Elimination Rules

In this section, we will investigate Construction 4.7 further to extract more derivations from τ^{*}.

Any two sequents in a hypersequent seem independent of one another in the sense that they can only be contracted into one by $(E C)$ when it is applicable. Note that one-premise logical rules just modify one sequent of a hypersequent and two-premise rules associate a sequent in a hypersequent with one in a different hypersequent.
τ^{*} (or any proof without $\left(E C_{\Omega}\right)$ in $\left.\mathbf{G L}_{\Omega}\right)$ has an essential property, which we call the distinguishability of τ^{*}, i.e., any variables, formulas, sequents or hypersequents which occur at the node H of τ^{*} occur inevitably at $H^{\prime}<H$ in some forms.

Let $H \equiv G^{\prime}\left|S^{\prime}\right| S^{\prime \prime} \in \tau^{*}$. If S^{\prime} is equal to $S^{\prime \prime}$ as two sequents then the case that $\tau_{H: S^{\prime}}^{*}$, is equal to $\tau_{H: S^{\prime \prime}}^{*}$ as two derivations could possibly happen. This means that both S^{\prime} and $S^{\prime \prime}$ are the focus sequent of one node in τ^{*} when $G_{H: S^{\prime}}^{*} \neq S^{\prime}$ and $G_{H: S^{\prime \prime}}^{*} \neq S^{\prime \prime}$, which contradicts that each node has the unique focus sequent in any derivation. Thus we need differentiate S^{\prime} from $S^{\prime \prime}$ for all $G^{\prime}\left|S^{\prime}\right| S^{\prime \prime} \in \tau^{*}$.

Define $\overline{S^{\prime}} \in \tau^{*}$ such that $G^{\prime}\left|S^{\prime}\right| S^{\prime \prime} \leqslant \overline{S^{\prime}}, S^{\prime} \in \overline{S^{\prime}}$ and S^{\prime} is the principal sequent of $\overline{S^{\prime}}$. If $\overline{S^{\prime}}$ has the unique principal sequent, $N_{S^{\prime}}:=0$, otherwise $N_{S^{\prime}}:=1$ (or $N_{S^{\prime}}=2$) to indicate that S^{\prime} is one designated principal sequent (or accordingly $N_{S^{\prime}}=2$ for another) of such an application as $(C O M),\left(\wedge_{r w}\right)$ or $\left(\vee_{l w}\right)$. Then we may regard S^{\prime} as $\left(S^{\prime} ; \mathcal{P}\left(\overline{S^{\prime}}\right), N_{S^{\prime}}\right)$. Thus S^{\prime} is always different from $S^{\prime \prime}$ by $\mathcal{P}\left(\overline{S^{\prime}}\right) \neq \mathcal{P}\left(\overline{S^{\prime \prime}}\right)$ or, $\mathcal{P}\left(\overline{S^{\prime}}\right)=\mathcal{P}\left(\overline{S^{\prime \prime}}\right)$ and $N_{S^{\prime}} \neq N_{S^{\prime \prime}}$. We formulate it by the following construction.

Construction 6.1. ([A.5.2]) A labeled tree $\tau^{* *}$, which has the same tree structure as τ^{*}, is constructed as follows.
(i) If S is a leaf τ^{*}, define $\bar{S}=S, N_{S}=0$ and the node $\mathcal{P}(S)$ of $\tau^{* *}$ is labeled by $\left(S ; \mathcal{P}(\bar{S}), N_{S}\right)$;
(ii) If $\frac{G^{\prime} \mid S^{\prime}}{H \equiv G^{\prime} \mid S^{\prime \prime}}(I) \in \tau^{*}$ and $\mathcal{P}\left(G^{\prime} \mid S^{\prime}\right)$ be labeled by $\mathcal{G}^{\prime} \mid\left(S^{\prime} ; \mathcal{P}\left(\overline{S^{\prime}}\right), N_{S^{\prime}}\right)$ in $\tau^{* *}$. Then define $\overline{S^{\prime \prime}}=H, N_{S^{\prime \prime}}=0$ and the node $\mathcal{P}(H)$ of $\tau^{* *}$ is labeled by $\mathcal{G}^{\prime} \mid\left(S^{\prime \prime} ; \mathcal{P}\left(\overline{S^{\prime \prime}}\right), N_{S^{\prime \prime}}\right)$;
(iii) If $\frac{G^{\prime}\left|S^{\prime} \quad G^{\prime \prime}\right| S^{\prime \prime}}{H \equiv G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I) \in \tau^{*}, \mathcal{P}\left(G^{\prime} \mid S^{\prime}\right)$ and $\mathcal{P}\left(G^{\prime \prime} \mid S^{\prime \prime}\right)$ be labeled by $\mathcal{G}^{\prime} \mid\left(S^{\prime} ; \mathcal{P}\left(\overline{S^{\prime}}\right), N_{S^{\prime}}\right)$ and $\mathcal{G}^{\prime \prime} \mid\left(S^{\prime \prime} ; \mathcal{P}\left(\overline{S^{\prime \prime}}\right), N_{S^{\prime \prime}}\right)$ in $\tau^{* *}$, respectively. If $H^{\prime}=S_{1} \mid S_{2}$ then define $\overline{S_{1}}=\overline{S_{2}}=H, N_{S_{1}}=1$, $N_{S_{2}}=2$ and the node $\mathcal{P}(H)$ of $\tau^{* *}$ is labeled by $\mathcal{G}^{\prime}\left|\mathcal{G}^{\prime \prime}\right|\left(S_{1} ; \mathcal{P}\left(\overline{S_{1}}\right), N_{S_{1}}\right) \mid\left(S_{2} ; \mathcal{P}\left(\overline{S_{2}}\right), N_{S_{2}}\right)$. If $H^{\prime}=S_{1}$ then define $\overline{S_{1}}=H, N_{S_{1}}=0$ and $\mathcal{P}(H)$ is labeled by $\mathcal{G}^{\prime}\left|\mathcal{G}^{\prime \prime}\right|\left(S_{1} ; \mathcal{P}\left(\overline{S_{1}}\right), N_{S_{1}}\right)$.

In the whole paper, we treat τ^{*} as $\tau^{* *}$ without mention of $\tau^{* *}$. Note that in preprocessing of τ, some logical applications could also be converted to $\left(I D_{\Omega}\right)$ in Step 3 and we need fix the focus sequent at each node H and subsequently assign valid identification numbers to each $H^{\prime}<H$ by eigenvariable-labeling operation.

Proposition 6.2. (i) $G^{\prime}\left|S^{\prime}\right| S^{\prime \prime} \in \tau^{*}$ implies $\left\{S^{\prime}\right\} \cap\left\{S^{\prime \prime}\right\}=\varnothing$; (ii) $H \in \tau^{*}$ and $H^{\prime} \mid H^{\prime \prime} \subseteq H$ imply $H^{\prime} \cap H^{\prime \prime}=\varnothing$; (iii) Let $H \in \tau^{*}$ and $S_{i}^{c} \in H$ then $H \leqslant H_{i}^{c}$ or $H_{i}^{c} \leqslant H$.

Proof. (iii) Let $S_{i}^{c} \in H$ then $S_{i}^{c}=S_{i u}^{c}$ for some $1 \leqslant u \leqslant m_{i}$ by Notation 4.14. Thus $S_{i}^{c} \in H_{i}^{c}$ also by Notation 4.14. Hence $H \leqslant \overline{S_{i}^{c}}$ and $H_{i}^{c} \leqslant \overline{S_{i}^{c}}$ by Construction 6.1. Therefore $H \leqslant H_{i}^{c}$ or $H_{i}^{c} \leqslant H$.

Lemma 6.3. Let $H \in \tau^{*}$ and $\operatorname{Th}(H)=\left(H_{0}, \cdots, H_{n}\right)$, where $H_{0}=H, H_{n}=G \mid G^{*}, G_{k} \subseteq H$ for $1 \leqslant k \leqslant 3$.
(i) If $G_{3}=G_{1} \cap G_{2}$ then $\left\langle H_{i}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \cap\left\langle H_{i}\right\rangle_{H: G_{2}}$ for all $0 \leqslant i \leqslant n$;
(ii) If $G_{3}=G_{1} \mid G_{2}$ then $\left\langle H_{i}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \mid\left\langle H_{i}\right\rangle_{H: G_{2}}$ for all $0 \leqslant i \leqslant n$.

Proof. The proof is by induction on i for $0 \leqslant i<n$. Only (i) is proved as follows and (ii) by a similar procedure and omitted.

For the base step, $\left\langle H_{0}\right\rangle_{H: G_{3}}=\left\langle H_{0}\right\rangle_{H: G_{1}} \cap\left\langle H_{0}\right\rangle_{H: G_{2}}$ holds by $\left\langle H_{0}\right\rangle_{H: G_{1}}=G_{1},\left\langle H_{0}\right\rangle_{H: G_{2}}=G_{2}$, $\left\langle H_{0}\right\rangle_{H: G_{3}}=G_{3}$ and $G_{3}=G_{1} \cap G_{2}$.

For the induction step, suppose that $\left\langle H_{i}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \cap\left\langle H_{i}\right\rangle_{H: G_{2}}$ for some $0 \leqslant i<n$. Only is the case of one-premise rule given in the following and other cases are omitted.

$$
\begin{aligned}
& \text { Let } \frac{G^{\prime} \mid S^{\prime}}{G^{\prime} \mid S^{\prime \prime}}(I) \in \tau^{*}, H_{i}=G^{\prime} \mid S^{\prime} \text { and } H_{i+1}=G^{\prime} \mid S^{\prime \prime} \text {. } \\
& \text { Let } S^{\prime} \in\left\langle H_{i}\right\rangle_{H: G_{3}} \text {. Then }\left\langle H_{i+1}\right\rangle_{H: G_{3}}=\left(\left\langle H_{i}\right\rangle_{H: G_{3}} \backslash\left\{S^{\prime}\right\}\right) \mid S^{\prime \prime} \text {, } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{1}}=\left(\left\langle H_{i}\right\rangle_{H: G_{1}} \backslash\left\{S^{\prime}\right\}\right) \mid S^{\prime \prime} \text { by } S^{\prime} \in\left\langle H_{i}\right\rangle_{H: G_{1}} \text { and } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{2}}=\left(\left\langle H_{i}\right\rangle_{H: G_{2}} \backslash\left\{S^{\prime}\right\}\right) \mid S^{\prime \prime} \text { by } S^{\prime} \in\left\langle H_{i}\right\rangle_{H: G_{2}} \text {. Thus } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{3}}=\left\langle H_{i+1}\right\rangle_{H: G_{1}} \cap\left\langle H_{i+1}\right\rangle_{H: G_{2}} \text { by }\left\langle H_{i}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \cap\left\langle H_{i}\right\rangle_{H: G_{2}} \text {. } \\
& \text { Let } S^{\prime} \notin\left\langle H_{i}\right\rangle_{H: G_{1}} \text { and } S^{\prime} \notin\left\langle H_{i}\right\rangle_{H: G_{2}} \text {. Then }\left\langle H_{i+1}\right\rangle_{H: G_{1}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \text {, } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{2}}=\left\langle H_{i}\right\rangle_{H: G_{2}} \text { and }\left\langle H_{i+1}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{3}} \text {. Thus } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{3}}=\left\langle H_{i+1}\right\rangle_{H: G_{1}} \cap\left\langle H_{i+1}\right\rangle_{H: G_{2}} \text { by }\left\langle H_{i}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \cap\left\langle H_{i}\right\rangle_{H: G_{2}} \text {. } \\
& \text { Let } S^{\prime} \notin\left\langle H_{i}\right\rangle_{H: G_{1}}, S^{\prime} \in\left\langle H_{i}\right\rangle_{H: G_{2}} \text {. Then }\left\langle H_{i+1}\right\rangle_{H: G_{1}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \text {, } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{3}} \text { and }\left\langle H_{i+1}\right\rangle_{H: G_{2}}=\left(\left\langle H_{i}\right\rangle_{H: G_{2}} \backslash\left\{S^{\prime}\right\}\right) \mid S^{\prime \prime} \text {. Thus } \\
& \left\langle H_{i+1}\right\rangle_{H: G_{3}}=\left\langle H_{i+1}\right\rangle_{H: G_{1}} \cap\left\langle H_{i+1}\right\rangle_{H: G_{2}} \text { by }\left\langle H_{i}\right\rangle_{H: G_{3}}=\left\langle H_{i}\right\rangle_{H: G_{1}} \cap\left\langle H_{i}\right\rangle_{H: G_{2}}, S^{\prime \prime} \notin\left\langle H_{i+1}\right\rangle_{H: G_{1}} \text {. } \\
& \text { The case of } S^{\prime} \notin\left\langle H_{i}\right\rangle_{H: G_{2}}, S^{\prime} \in\left\langle H_{i}\right\rangle_{H: G_{1}} \text { is proved by a similar procedure and omitted. }
\end{aligned}
$$

Lemma 6.4. (i) Let $G^{\prime} \mid S^{\prime} \in \tau^{*}$ then $G_{G^{\prime} \mid S^{\prime}: S^{\prime}}^{*} \cap G_{G^{\prime} \mid S^{\prime}: G^{\prime}}^{*}=\varnothing, G_{G^{\prime} \mid S^{\prime}: G^{\prime}}^{*}\left|G_{G^{\prime} \mid S^{\prime}: S^{\prime}}^{*}=G\right| G^{*}$;
(ii) $H \in \tau^{*}, H^{\prime} \mid H^{\prime \prime} \subseteq H$ then $G_{H: H^{\prime} \mid H^{\prime \prime}}^{*}=G_{H: H^{\prime}}^{*} \mid G_{H: H^{\prime \prime}}^{*}$.

Proof. (i) and (ii) are immediately from Lemma 6.3.
Notation 6.5. We write $\tau_{H_{i}^{c}: S_{i 1}^{c}}^{*}, G_{H_{i}^{c}: S_{i 1}^{c}}^{*}$ as $\tau_{S_{i 1}^{c}}^{*}, G_{S_{i 1}}^{*}$, respectively, for the sake of simplicity.
Lemma 6.6. (i) $G_{S_{i 1}^{c}}^{*} \subseteq G \mid G^{*}$;
(ii) $\tau_{S_{i 1}^{c}}^{*}$ is a derivation of $G_{S_{i 1}^{c}}^{*}$ from $S_{i 1}^{c}$, which we denote by $\xlongequal[G_{S_{i 1}^{c}}^{*}]{S_{i 1}^{c}}\left\langle\tau_{S_{i 1}^{c}}^{*}\right\rangle$;
(iii) $G_{S_{i u}^{c}}^{*}=S_{i u}^{c}$ and $\tau_{S_{i u}^{c}}^{*}$ consists of a single node $S_{\text {iu }}^{c}$ for all $2 \leqslant u \leqslant m_{i}$;
(iv) $v_{l}\left(G_{S_{i 1}}^{*}\right) \backslash v_{l}\left(S_{i 1}^{c}\right)=v_{r}\left(G_{S_{i 1}^{c}}^{*}\right) \backslash v_{r}\left(S_{i 1}^{c}\right)$;
(v) $\langle H\rangle_{S_{i 1}^{c}} \in \tau_{S_{i 1}^{c}}^{*}$ implies $H \leqslant H_{i}^{c}$. Note that $\langle H\rangle_{S_{i 1}^{c}}$ is undefined for any $H>H_{i}^{c}$ or $H \| H_{i}^{c}$.
(vi) $S_{j}^{c} \in G_{S_{i 1}^{c}}^{*}$ implies $H_{i}^{c} \nless H_{j}^{c}$.

Proof. Claims from (i) to (v) are immediately from Construction 4.7 and Lemma 4.8.
(vi) Since $S_{j}^{c} \in G_{S_{11}^{c}}^{*} \subseteq G \mid G^{*}$ then S_{j}^{c} has the form $S_{j u}^{c}$ for some $u \geq 2$ by Notation 4.14. Then $G_{S_{j}^{c}}^{*}=S_{j}^{c}$ by (iii). Suppose that $H_{i}^{c} \leqslant H_{j}^{c}$. Then S_{j}^{c} is transferred from H_{j}^{c} downward to H_{i}^{c} and in side-hypersequent of H_{i}^{c} by Notation 4.14 and $G \mid G^{*}<H_{i}^{c} \leqslant H_{j}^{c}$. Thus $\left\{S_{i 1}^{c}\right\} \cap\left\{S_{j}^{c}\right\}=\varnothing$ at H_{i}^{c} since $S_{i 1}^{c}$ is the unique focus sequent of H_{i}^{c}. Hence $S_{j}^{c} \notin G_{S_{i 1}^{c}}^{*}$ by Lemma 6.3 and (iii), a contradiction therefore $H_{i}^{c} \nless H_{j}^{c}$.

Lemma 6.7. Let $\frac{G^{\prime}\left|S^{\prime} G^{\prime \prime}\right| S^{\prime \prime}}{H \equiv G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}($ II $) \in \tau^{*}$. (i) If $S_{j}^{c} \in G_{H: H^{\prime}}^{*}$ then $H_{j}^{c} \leqslant H$ or $H_{j}^{c} \| H$; (ii) If $S_{j}^{c} \in G_{H: G^{\prime \prime}}^{*}$ then $H_{j}^{c} \leqslant H$ or $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$.
Proof. (i) We impose a restriction on (II) such that each sequent in H^{\prime} is different from S^{\prime} or $S^{\prime \prime}$ otherwise we treat it as an $(E W)$-application. Since $S_{j}^{c} \in G_{H: H^{\prime}}^{*} \subseteq G \mid G^{*}$ then S_{j}^{c} has the form $S_{j u}^{c}$ for some $u \geq 2$ by Notation 4.14. Thus $G_{S_{j}^{c}}^{*}=S_{j}^{c}$. Suppose that $H_{j}^{c}>H$. Then S_{j}^{c} is transferred from H_{j}^{c} downward to H. Thus $S_{j}^{c} \in H^{\prime}$ by $G_{S_{j}^{c}}^{*}=S_{j}^{c} \in G_{H: H^{\prime}}^{*}$ and Lemma 6.3. Hence $S_{j}^{c}=S^{\prime}$ or $S_{j}^{c}=S^{\prime \prime}$, a contradiction with the restriction above. Therefore $H_{j}^{c} \leqslant H$ or $H_{j}^{c} \| H$.
(ii) Let $S_{j}^{c} \in G_{H: G^{\prime \prime}}^{*}$. If $H_{j}^{c}>H$ then $S_{j}^{c} \in H$ by Proposition $4.15(\mathrm{i})$ and thus $S_{j}^{c} \in G^{\prime \prime}$ by Lemma 6.3 and, hence $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$ by $H_{j}^{c} \geqslant G^{\prime \prime}\left|S^{\prime \prime}, G^{\prime}\right| S^{\prime} \| G^{\prime \prime} \mid S^{\prime \prime}$. If $H_{j}^{c} \| H$ then $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$ by $H \leqslant G^{\prime} \mid S^{\prime}$. Thus $H_{j}^{c} \leqslant H$ or $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$.

Definition 6.8. (i) By $H_{i}^{c} \leadsto H_{j}^{c}$ we mean that $S_{j u}^{c} \in G_{S_{i 1}^{c}}^{*}$ for some $2 \leqslant u \leqslant m_{j}$; (ii) By $H_{i}^{c} \rightsquigarrow H_{j}^{c}$ we mean that $H_{i}^{c} \leadsto H_{j}^{c}$ and $H_{j}^{c} \leadsto H_{i}^{c}$; (iii) $H_{i}^{c} \nrightarrow H_{j}^{c}$ means that $S_{j u}^{c} \notin G_{S_{i 1}^{c}}^{*}$ for all $2 \leqslant u \leqslant m_{j}$.

Then Lemma 6.6 (vi) shows that $H_{i}^{c} \leadsto H_{j}^{c}$ implies $H_{i}^{c} \nless H_{j}^{c}$.
Lemma 6.9. Let $H_{i}^{c} \| H_{j}^{c}$, $H_{i}^{c} \leadsto H_{j}^{c}, \frac{G^{\prime}\left|S^{\prime} G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I) \in \tau^{*}$ such that $G^{\prime}\left|S^{\prime} \leqslant H_{i}^{c}, G^{\prime \prime}\right| S^{\prime \prime} \leqslant H_{j}^{c}$. Then $S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}}$.

Proof. Suppose that $S^{\prime} \notin\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}}$. Then $\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}} \subseteq G^{\prime}$ by $\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}} \subseteq G^{\prime} \mid S^{\prime},\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{S_{i 1}^{c}}=$ $\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}}$ by Construction 4.7. Thus $\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{S_{i 1}^{c}} \subseteq G^{\prime}$. Hence $G^{\prime \prime} \mid H^{\prime} \cap\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{S_{i 1}^{c}}=\varnothing$ by Proposition 6.2 (ii). Therefore $S_{j u}^{c} \notin G_{S_{i 1}^{c}}^{*}$ for all $1 \leqslant u \leqslant m_{j}$ by Lemma 6.3, i.e., $H_{i}^{c} \nrightarrow H_{j}^{c}$, a contradiction and hence $S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}}$.

Lemma 6.6 (ii) shows that $\tau_{S_{i 1}^{c}}^{*}$ is a derivation of $G_{S_{i 1}^{c}}^{*}$ from one premise $S_{i 1}^{c}$. We generalize it by introducing derivations from multiple premises in the following. In the remainder of this section, let $I=\left\{H_{i_{1}}^{c}, \cdots, H_{i_{m}}^{c}\right\} \subseteq\left\{H_{1}^{c}, \cdots, H_{N}^{c}\right\}, H_{i_{k}}^{c} \rightsquigarrow H_{i_{q}}^{c}$ for all $1 \leqslant k<q \leqslant m$. Then $H_{i_{k}}^{c} \nless H_{i_{q}}^{c}$ and $H_{i_{q}}^{c} \nless H_{i_{k}}^{c}$ by Lemma 6.6 (vi) thus $H_{i_{k}}^{c} \| H_{i_{q}}^{c}$ for all $1 \leqslant k<q \leqslant m$.

Notation 6.10. H_{I}^{V} denotes the intersection node of $H_{i_{1}}^{c}, \cdots, H_{i_{m}}^{c}$. We sometimes write the intersection node of H_{i}^{c} and H_{j}^{c} as $H_{i j}^{V}$. If $I=\left\{H_{i}^{c}\right\}, H_{I}^{V}:=H_{i}^{c}$, i.e., the intersection node of a single node is itself.

Let $\frac{G^{\prime}\left|S^{\prime} G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I) \in \tau^{*}$ such that $G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}=H_{I}^{V}$. Then I is divided into two subsets $I_{l}=\left\{H_{l_{1}}^{c}, \cdots, H_{l_{m(l)}}^{c}\right\}$ and $I_{r}=\left\{H_{r_{1}}^{c}, \cdots, H_{r_{m(r)}}^{c}\right\}$, which occur in the left subtree $\tau^{*}\left(G^{\prime} \mid S^{\prime}\right)$ and right subtree $\tau^{*}\left(G^{\prime \prime} \mid S^{\prime \prime}\right)$ of $\tau^{*}\left(G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}\right)$, respectively.

Let $\mathcal{I}=\left\{S_{i_{1} 1}^{c}, \cdots, S_{i_{m} 1}^{c}\right\}, \mathcal{I}_{l}=\left\{S_{l_{1} 1}^{c}, \cdots, S_{l_{m(l)}}^{c}\right\}, \mathcal{I}_{r}=\left\{S_{r_{1} 1}^{c}, \cdots, S_{r_{m(r)}}^{c}\right\}$ such that $\mathcal{I}=\mathcal{I}_{l} \cup \mathcal{I}_{r}$. A derivation $\tau_{\mathcal{I}}^{*}$ of $\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}}$ from $S_{i_{1} 1}^{c}, \cdots, S_{i_{m} 1}^{c}$ is constructed by induction on $|I|$. The base case of $|I|=1$ has been done by Construction 4.7. For the induction case, suppose that derivations $\tau_{\mathcal{I}_{l}}^{*}$ of $\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}_{l}}$ from $S_{l_{1} 1}^{c}, \cdots, S_{l_{m(l)} 1}^{c}$ and $\tau_{\mathcal{I}_{r}}^{*}$ of $\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}_{r}}$ from $S_{r_{1} 1}^{c}, \cdots, S_{r_{m(r)} 1}^{c}$ are constructed. Then $\tau_{\mathcal{I}}^{*}$ of $\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}}$ from $S_{i_{1} 1}^{c}, \cdots, S_{i_{m} 1}^{c}$ is constructed as follows.
Construction 6.11. ([A.5.2]) (i)

$$
\begin{gathered}
\langle H\rangle_{\mathcal{I}}:=\langle H\rangle_{\mathcal{I}_{l}} \text { for all } G^{\prime} \mid S^{\prime} \leqslant H \leqslant H_{i}^{c} \text { for some } H_{i}^{c} \in I_{l}, \\
\langle H\rangle_{\mathcal{I}}:=\langle H\rangle_{\mathcal{I}_{r}} \text { for all } G^{\prime \prime} \mid S^{\prime \prime} \leqslant H \leqslant H_{i}^{c} \text { for some } H_{i}^{c} \in I_{r}, \\
\tau_{\mathcal{I}}^{*}\left(\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}}\right):=\tau_{\mathcal{I}_{l}}^{*}\left(\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{l}}\right), \tau_{\mathcal{I}}^{*}\left(\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}}\right):=\tau_{\mathcal{I}_{r}}^{*}\left(\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}\right) ;
\end{gathered}
$$

(ii)

$$
\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}}:=\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{l}}\left|\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}\right| H^{\prime}
$$

and

$$
\frac{\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{l}}\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}(I I) \in \tau_{\mathcal{I}}^{*} ; ~}{\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}}} ;
$$

(iii) Other nodes of $\tau_{\mathcal{I}}^{*}$ are built up by Construction 4.7 (ii).

The following lemma is a generalization of Lemma 6.6.
Lemma 6.12. Let $T h\left(H_{i_{k}}^{c}\right)=\left(H_{i_{k} 0}^{c}, \cdots, H_{i_{k} n_{i_{k}}}^{c}\right)$, where $1 \leqslant k \leqslant m, H_{i_{k} 0}^{c}=H_{i_{k}}^{c}$ and $H_{i_{k} n_{i_{k}}}^{c}=G \mid G^{*}$.
Then, for all $0 \leqslant u \leqslant n_{i_{k}}$,
(i)

$$
\left\langle H_{i k u}^{c}\right\rangle_{\mathcal{I}}=\bigcap\left\{\left\langle H_{i k k}^{c}\right\rangle_{S_{j_{1}^{c}}^{c}}: H_{j}^{c} \in I, H_{i k u}^{c} \leqslant H_{j}^{c}\right\} ;
$$

(ii)

$$
\xlongequal{\left\{S_{j 1}^{c}: H_{j}^{c} \in I, H_{i, k u}^{c} \leqslant H_{j}^{c}\right\}}\left\langle H_{i, k u}^{c}\right\rangle_{\mathcal{I}} \quad\left\langle\tau_{\mathcal{I}}^{*}\left(\left\langle H_{i_{k j}}^{c}\right\rangle_{\mathcal{I}}\right)\right\rangle ;
$$

(iii)

$$
\begin{aligned}
& v_{l}\left(\left\langle H_{i_{k} u}^{c}\right\rangle_{\mathcal{I}}\right) \backslash \bigcup\left\{v_{l}\left(S_{j 1}^{c}\right): H_{j}^{c} \in I, H_{i_{k} u}^{c} \leqslant H_{j}^{c}\right\}= \\
& v_{r}\left(\left\langle H_{i_{k} u}^{c}\right\rangle_{\mathcal{I}}\right) \backslash \bigcup\left\{v_{r}\left(S_{j 1}^{c}\right): H_{j}^{c} \in I, H_{i_{k} u}^{c} \leqslant H_{j}^{c}\right\} ;
\end{aligned}
$$

(iv) $\langle H\rangle_{\mathcal{I}} \in \tau_{\mathcal{I}}^{*}$ if and only if $H \leqslant H_{i}^{c}$ for some $H_{i}^{c} \in I$. Note that $\langle H\rangle_{\mathcal{I}}$ is undefined if $H>H_{i}^{c}$ or $H \| H_{i}^{c}$ for all $H_{i}^{c} \in I$.

Proof: (i) is proved by induction on $|I|$. For the base step, let $|I|=1$ then the claim holds clearly. For the induction step, let $|I| \geqslant 2$ then $\left|I_{l}\right| \geqslant 1$ and $\left|I_{r}\right| \geqslant 1$. Then $S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}}$ for all $H_{i}^{c} \in I_{l}$ by Lemma 6.9 and $H_{i}^{c} \leadsto H_{j}^{c}$ for all $H_{j}^{c} \in I_{r} .\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{l}}=\bigcap_{H_{i}^{c} \in I_{l}}\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i 1}^{c}}$ by the induction hypothesis then $S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{l}}$ thus $\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{l}}=\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{l}}\left|G^{\prime \prime}\right| H^{\prime}$ by $G^{\prime} \mid S^{\prime} \leqslant H_{I_{l}}^{V}$.
$\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{r}}=\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}\left|G^{\prime}\right| H^{\prime}$ holds by a procedure similar to above then

$$
\begin{aligned}
\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}} & =\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{I}}\left|\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}\right| H^{\prime} \\
& =\left(\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{I}}\left|G^{\prime \prime}\right| H^{\prime}\right) \bigcap\left(\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}\left|G^{\prime}\right| H^{\prime}\right) \\
& =\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{l}} \cap\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{r}}
\end{aligned}
$$

by $\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{l}} \subseteq G^{\prime}$ and $\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{r}} \subseteq G^{\prime \prime}$. Other claims hold immediately from Construction 6.11.
Lemma 6.13. (i) Let $G_{\mathcal{I}}^{*}$ denote $\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}}$ then $G_{\mathcal{I}}^{*}=\bigcap_{H_{i}^{c} \in I} G_{S_{i 1}^{c}}^{*}$;
(ii) $\frac{S_{i_{1} 1}^{c} \cdots S_{i_{m} 1}^{c}}{G_{\mathcal{I}}^{*}}\left\langle\tau_{\mathcal{I}}^{*}\right\rangle$;
(iii) $v_{l}\left(G_{\mathcal{I}}^{*}\right) \backslash \bigcup_{H_{j}^{c} \in I} v_{l}\left(S_{j 1}^{c}\right)=v_{r}\left(G_{\mathcal{I}}^{*}\right) \backslash \bigcup_{H_{j}^{c} \in I} v_{r}\left(S_{j 1}^{c}\right)$;
(iv) $S_{j}^{c} \in G_{\mathcal{I}}^{*}$ implies $H_{i}^{c} \nless H_{j}^{c}$ for all $H_{i}^{c} \in I$.

Proof. (i), (ii) and (iii) are immediately from Lemma 6.12. (iv) holds by (i) and Lemma 6.6 (vi).

Lemma 6.13 (iv) shows that there exists no copy of $S_{i_{k}}^{c}$ in $G_{\mathcal{I}}^{\star}$ for any $1 \leqslant k \leqslant m$. Then we may regard them to be eliminated in $\tau_{\mathcal{I}}^{*}$. We then call $\tau_{\mathcal{I}}^{*}$ an elimination derivation.

Let $\mathcal{I}^{\prime}=\left\{S_{i_{1} u_{1}}^{c}, \cdots, S_{i_{m} u_{m}}^{c}\right\}$ be another set of sequents to I such that $G^{\prime} \equiv S_{i_{1} u_{1}}^{c}|\cdots| S_{i_{m} u_{m}}^{c}$ is a copy of $G^{\prime \prime} \equiv S_{i_{1} 1}^{c}|\cdots| S_{i_{m} 1}^{c}$. Then G^{\prime} and $G^{\prime \prime}$ are disjoint and there exist two bijections $\sigma_{l}: v_{l}\left(G^{\prime}\right) \rightarrow$ $v_{l}\left(G^{\prime \prime}\right)$ and $\sigma_{r}: v_{r}\left(G^{\prime}\right) \rightarrow v_{r}\left(G^{\prime \prime}\right)$ such that $\sigma_{r} \circ \sigma_{l}\left(G^{\prime}\right)=G^{\prime \prime}$. By applying $\sigma_{r} \circ \sigma_{l}$ to $\tau_{\mathcal{I}}^{*}$, we construct a derivation from $S_{i_{1} u_{1}}^{c}, \cdots, S_{i_{m} u_{m}}^{c}$ and denote it by $\tau_{\mathcal{I}^{\prime}}^{*}$ and its root by $G_{\mathcal{I}^{\prime}}^{*}$.

Let $\mathbf{I}^{\prime}=\left\{G_{b_{1}}\left|S_{i_{1} u_{1}}^{c}, \cdots, G_{b_{m}}\right| S_{i_{m} u_{m}}^{c}\right\}$ be a set of hypersequents to I, where $G_{b_{k}} \mid S_{i_{k} u_{k}}^{c}$ be closed for all $1 \leqslant k \leqslant m$. By applying $\tau_{\mathcal{I}}^{*}$, to $S_{i_{1} u_{1}}^{c}, \cdots, S_{i_{m} u_{m}}^{c}$ in $G_{b_{1}}\left|S_{i_{1} u_{1}}^{c}, \cdots, G_{b_{m}}\right| S_{i_{m} u_{m}}^{c}$, we construct a derivation from

$$
G_{b_{1}}\left|S_{i_{1} u_{1}}^{c}, \cdots, G_{b_{m}}\right| S_{i_{m} u_{m}}^{c}
$$

and denote it by $\tau_{\mathbf{I}^{\prime}}^{*}$ and its root by $G_{\mathbf{I}^{\prime}}^{*}$. Then $G_{\mathbf{I}^{\prime}}^{*}=\left\{G_{b_{k}}\right\}_{k=1}^{m} \mid G_{\mathcal{I}^{\prime}}^{*}$.
Definition 6.14. We will use all $\tau_{\mathbf{I}^{\prime}}^{*}$ as rules of $\mathbf{G L}_{\boldsymbol{\Omega}}$ and call them elimination rules. Further, we call $S_{i_{1} u_{1}}^{c}, \cdots, S_{i_{m} u_{m}}^{c}$ focus sequents and, all sequents in $G_{\mathcal{I}^{\prime}}^{*}$ principal sequents and, $G_{b_{1}}, \cdots, G_{b_{m}}$ side-hypersequents of $\tau_{\mathbf{I}^{\prime}}^{*}$.

Remark 6.15. We regard Construction 4.7 as a procedure \mathcal{F}, whose inputs are τ^{2}, H, H^{\prime} and output $\tau_{H: H^{\prime}}^{2}$. With such a viewpoint, we write $\tau_{H: H^{\prime}}^{2}$ as $\mathcal{F}_{H: H^{\prime}}\left(\tau^{2}\right)$. Then $\tau_{\mathcal{I}}^{*}$ can be constructed by iteratively applying \mathcal{F} to τ^{*}, i.e., $\tau_{\mathcal{I}}^{*}=\mathcal{F}_{H_{i_{m}}^{c}: S_{i_{m} 1}^{c}}\left(\cdots \mathcal{F}_{H_{i_{1}}^{c}: S_{i_{1} 1}^{c}}\left(\tau^{*}\right) \cdots\right)$.

We replace locally each $\frac{G^{\prime}}{G^{\prime}}\left(I D_{\Omega}\right)$ in $\tau_{\mathcal{I}}^{*}$ with G^{\prime} and denote the resulting derivation also by $\tau_{\mathcal{I}}^{*}$. Then each non-root node in $\tau_{\mathcal{I}}^{*}$ has the focus sequent.

Let $H \in \tau_{\mathcal{I}}^{*}$. Then there exists a unique node in τ^{*}, which we denote by $\mathcal{O}(H)$ such that H comes from $\mathcal{O}(H)$ by Construction 4.7 and 6.11. Then the focus sequent of $\mathcal{O}(H)$ in τ^{*} is the focus of H in $\tau_{\mathcal{I}}^{*}$ if H is a non-root node and, $\mathcal{O}(H)=H$ or $H \subseteq \mathcal{O}(H)$ as two hypersequents.

Since the relative position of any two nodes in τ^{*} keep unchanged in constructing $\tau_{\mathcal{I}}^{*}, H_{1} \leqslant_{\tau_{工}^{*}} H_{2}$ if and only if $\mathcal{O}\left(H_{1}\right) \leqslant_{\tau^{*}} \mathcal{O}\left(H_{2}\right)$ for any $H_{1}, H_{2} \in \tau_{\mathcal{I}}^{*}$. Especially, $\mathcal{O}\left(S_{i_{k} 1}^{c}\right)=H_{i_{k}}^{c}$ for $S_{i_{k} 1}^{c} \in \tau_{\mathcal{I}}^{ \pm}$.

Let $H \in \tau_{\mathcal{I}}^{*}$. Then $H^{\prime} \equiv \sigma_{r} \circ \sigma_{l}(H) \in \tau_{\mathcal{I}^{\prime}}^{*}$ and $H^{\prime \prime} \equiv\left\{G_{b_{k}}: H \leqslant_{\tau_{\mathcal{I}}^{*}} S_{i_{k}}^{c}\right.$ and $\left.1 \leqslant k \leqslant m\right\} \mid H^{\prime} \in$ $\tau_{\mathbf{I}^{\prime}}^{*}$. Define $\mathcal{O}\left(H^{\prime}\right)=\mathcal{O}\left(H^{\prime \prime}\right)=\mathcal{O}(H)$. Then $\mathcal{O}\left(G_{\mathbf{I}^{\prime}}^{*}\right)=G \mid G^{*}$ and $\mathcal{O}\left(G_{b_{k}} \mid S_{i_{k} u_{k}}^{c}\right)=H_{i_{k}}^{c}$ for all $G_{b_{k}} \mid S_{i_{k} u_{k}}^{c} \in \tau_{\mathbf{I}^{\prime}}^{*}$.

Since $G_{\mathcal{I}}^{*}=\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}} \subseteq G \mid G^{*}$, then each $(p E C)$-sequent in $G_{\mathcal{I}}^{*}$ has the form $S_{j v}^{c}$ for some $1 \leqslant j \leqslant N, 2 \leqslant v \leqslant m_{j}$ by Proposition 4.15(ii). Then we introduce the following definition.

Definition 6.16. (i) By $S_{j}^{c} \in G_{\mathcal{I}}^{*}$ we means that there exists $H \in \tau_{\mathcal{I}}^{*}$ such that $S_{j}^{c} \in H, \mathcal{O}(H)=H_{j}^{c}$. So is $S_{j}^{c} \in G_{\mathcal{I}^{\prime}}^{*}$.
(ii) Let $S_{j}^{c} \in G_{\mathcal{I}}^{*}$. By $H_{j}^{c} \leqslant_{\tau_{\mathcal{I}}^{*}} H_{i}^{c}$ we means that there exist $H, H^{\prime} \in \tau_{\mathcal{I}}^{*}$ such that $S_{j}^{c} \in H$, $\mathcal{O}(H)=H_{j}^{c}, \dot{\mathcal{O}}\left(H^{\prime}\right)=H_{i}^{c}$ and $H_{j}^{c^{\mathcal{L}}} \leqslant_{\tau^{*}} H_{i}^{c}$. We usually write $\leqslant_{\tau_{I}^{*}}$ as \leqslant.

7. Separation of one branch

In the remainder of this paper, we assume that p occur at most one time for each sequent in G_{0} as the one in Main theorem, τ be a cut-free proof of G_{0} in $\mathbf{G L}$ and τ^{*} the proof of $G \mid G^{*}$ in $\mathbf{G L}_{\Omega}$ resulting from preprocessing of τ. Then $\left|v_{l}(S)\right|+\left|v_{r}(S)\right| \leq 1$ for all $S \in G$, which plays a key role in discussing the separation of branches.

Definition 7.1. By $S^{\prime} \epsilon_{c} G^{\prime}$ we mean that there exists some copy of S^{\prime} in $G^{\prime} . G^{\prime} \subseteq_{c} G^{\prime \prime}$ if $S^{\prime} \epsilon_{c} G^{\prime \prime}$ for all $S^{\prime} \in G^{\prime} . G^{\prime}={ }_{c} G^{\prime \prime}$ if $G^{\prime} \subseteq_{c} G^{\prime \prime}$ and $G^{\prime \prime} \subseteq_{c} G^{\prime}$. Let $G_{11}, \cdots, G_{1 m}$ be m copies of G_{1} then we denote $G^{\prime}\left|G_{11}\right| \cdots \mid G_{1 m}$ by $G^{\prime} \mid\left\{G_{1 u}\right\}_{u=1}^{m}$ or $G^{\prime} \mid\left\{G_{1}\right\}^{m}$.

Definition 7.2. Let $I=\left\{H_{i_{1}}^{c}, \cdots, H_{i_{m}}^{c}\right\} \subseteq\left\{H_{1}^{c}, \cdots, H_{N}^{c}\right\}, H_{i_{k}}^{c} \| H_{i_{l}}^{c}$ for all $1 \leqslant k<l \leqslant m$. $\left\lceil S_{i_{k}}^{c}\right\rceil_{I}$ is called a branch of $H_{i_{k}}^{c}$ to I if it is a closed hypersequent such that
(i) $\left[S_{i_{k}}^{c}\right]_{I} \subseteq_{c} G \mid G^{*}$,
(ii) $S_{i_{k}}^{c} \in\left[S_{i_{k}}^{c}\right]_{I}$,
(iii) $S_{j}^{c} \in\left[S_{i_{k}}^{c}\right]_{I}$ implies $H_{j}^{c} \leqslant H_{i_{k}}^{c}$ or $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$.

Then (i) $S_{i_{l}}^{c} \not \ddagger_{c}\left\lceil S_{i_{k}}^{c}\right\rceil_{I}$ for all $1 \leqslant k, l \leqslant m, k \neq l$; (ii) $S_{j}^{c} \in\left\lceil S_{i_{k}}^{c}\right\rceil_{I}$ and $H_{j}^{c} \nless H_{i_{k}}^{c}$ imply $H_{j}^{c} \notin I$.
In this section, let $I=\left\{H_{i}^{c}\right\}, \mathbf{I}=\left\{\left\lceil S_{i}^{c}\right\rceil_{I}\right\}$, we will give an algorithm to eliminate all $S_{j}^{c} \in\left\lceil S_{i}^{c}\right\rceil_{I}$ satisfying $H_{j}^{c} \leqslant H_{i}^{c}$.

Construction 7.3. ([A.3]) A sequence of hypersequents $G_{\mathbf{I}}^{\hat{\lambda}(q)}$ and their derivations $\tau_{\mathbf{I}}^{\hat{\boldsymbol{\sim}}(q)}$ from $\left\lceil S_{i}^{c}\right\rceil_{I}$ for all $q \geqslant 0$ are constructed inductively as follows.

For the base case, define $G_{\mathbf{I}}^{\grave{\kappa(}(0)}$ to be $\left\lceil S_{i}^{c}\right\rceil_{I}$ and, $\tau_{\mathbf{I}}^{\hbar(0)}$ be $\overline{\overline{G_{\mathbf{I}}(0)}}$. For the induction case, suppose that $\tau_{\mathbf{I}}^{\hat{\lambda}(q)}$ and $G_{\mathbf{I}}^{\hat{\aleph}(q)}$ are constructed for some $0 \leqslant q$. If there exists no $S_{j}^{c} \in G_{\mathbf{I}}^{\hat{\sim}(q)}$ such that $H_{j}^{c} \leqslant H_{i}^{c}$, then the procedure terminates and define $J_{\mathbf{I}}$ to be q; otherwise define $H_{i_{q}}^{c}$ such that $S_{i_{q}}^{c} \in G_{\mathbf{I}}^{\mathfrak{\mu}(q)}, H_{i_{q}}^{c} \leqslant H_{i}^{c}$ and $H_{j}^{c} \leqslant H_{i_{q}}^{c}$ for all $S_{j}^{c} \in G_{\mathbf{I}}^{\mathfrak{\sim}(q)}, H_{j}^{c} \leqslant H_{i}^{c}$. Let $S_{i_{q} 1}^{c}, \cdots, S_{i_{q} m_{q}}^{c}$ be all copies
 constructed by sequentially applying $\tau_{S_{i_{q} 1}}^{*}, \cdots, \tau_{S_{i_{q} m_{q}}^{c}}^{*}$ to $S_{i_{q} 1}^{c}, \cdots, S_{i_{q} m_{q}}^{c}$ in $G_{\mathbf{I}}^{\hbar(q)}$, respectively. Notice that we assign new identification numbers to new occurrences of p in $\tau_{S_{i q u}^{c}}^{*}$ for all $0 \leqslant q \leqslant J_{\mathbf{I}}-1$, $1 \leqslant u \leqslant m_{q}$.

Lemma 7．4．（i）$H_{i_{0}}^{c}=H_{i}^{c}$ and $H_{i_{q+1}}^{c}<H_{i_{q}}^{c}$ for all $0 \leqslant q \leqslant J_{\mathbf{I}}-2$ ；
（ii）$G_{\mathbf{I}}^{\dot{\mathcal{L}}(q)} \subseteq_{c} G \mid G^{*}$ is closed for all $0 \leqslant q \leqslant J_{\mathbf{I}}$ ；

（iv）$S_{j}^{c} \in G_{\mathbf{I}}^{\sharp i\left(J_{\mathbf{I}}\right)}$ implies $H_{j}^{c} \| H_{i}^{c}$ and，$S_{j}^{c} \in G_{S_{i_{q}}}^{*}$ for some $\tau_{G_{b} \mid S_{i_{q u}}^{c}}^{*} \in \tau_{\mathbf{I}}^{\hat{\sim}\left(J_{\mathbf{I}}\right)}$ or $S_{j}^{c} \in\left\lceil S_{i}^{c}\right]_{I}$ ， $H_{j}^{c} \nless H_{i}^{c}$ ，where $G_{b}=G_{I}^{ふ(q)} \backslash\left\{S_{i_{q} v}^{c}\right\}_{v=1}^{u}\left|\left\{G_{S_{i_{q}}}^{*}\right\}_{v=1}^{u-1}, G_{b}\right| S_{i_{q} u}^{c}$ is closed and $0 \leqslant q \leqslant J_{\mathbf{I}}-1,1 \leqslant u \leqslant m_{q}$ ． Proof．（i）Since $S_{i}^{c} \in G_{\mathbf{I}}^{\hat{\varkappa(}(0)}$ by $S_{i}^{c} \in\left\lceil S_{i}^{c}\right\rceil_{I}=G_{\mathbf{I}}^{\hat{\sim}(0)}$ and，$H_{j}^{c} \leqslant H_{i}^{c}$ for all $S_{j}^{c} \in G_{\mathbf{I}}^{\hat{\mathcal{L}}(0)}, H_{j}^{c} \leqslant H_{i}^{c}$ then $H_{i_{0}}^{c}=H_{i}^{c}$ ．If $S_{i_{q+1}}^{c} \in G_{\mathbf{I}}^{i\langle(q)} \backslash\left\{S_{i_{q} u}^{c}\right\}_{u=1}^{m_{q}}$ then $H_{i_{q+1}}^{c} \leqslant H_{i_{q}}^{c}$ by $S_{i_{q+1}}^{c} \in G_{\mathbf{I}}^{i \gamma(q)}, H_{i_{q+1}}^{c} \leqslant H_{i}^{c}$ thus $H_{i_{q+1}}^{c}<H_{i_{q}}^{c}$ by all copies of $S_{i_{q}}^{c}$ in $G_{\mathbf{I}}^{\langle\boldsymbol{3}(q)}$ being collected in $\left\{S_{i_{q} u}^{c}\right\}_{u=1}^{m_{q}}$ ．If $S_{i_{q+1}}^{c} \in\left\{G_{S_{i_{q}}}^{*}\right\}_{u=1}^{m_{q}}$ then $H_{i_{q}}^{c} \nless H_{i_{q+1}}^{c}$ by Lemma $6.6(\mathrm{vi})$ thus $H_{i_{q+1}}^{c}<H_{i_{q}}^{c}$ by $H_{i_{q}}^{c} \leqslant H_{i}^{c}, H_{i_{q+1}}^{c} \leqslant H_{i}^{c}$ ．Then $H_{i_{q+1}}^{c}<H_{i_{q}}^{c}$ by $G_{\mathbf{I}}^{\mathfrak{\gtrless}(q+1)}=G_{\mathbf{I}}^{\mathfrak{\imath}(q)} \backslash\left\{S_{i_{q} u}^{c}\right\}_{u=1}^{m_{q}} \mid\left\{G_{S_{i q u}}^{*}\right\}_{u=1}^{m_{q}}$ ．Note that $H_{i_{J_{\mathbf{I}}}}^{c}$ is undefined in Construction 7．3．
（ii）$v_{l}\left(G_{\mathbf{I}}^{\hat{\aleph}(0)}\right)=v_{r}\left(G_{\mathbf{I}}^{\hat{ふ}(0)}\right), G_{\mathbf{I}}^{\hat{ふ}(0)} \subseteq_{c} G \mid G^{*}$ by $G_{\mathbf{I}}^{\hat{ふ}(0)}=\left\lceil S_{i}^{c}\right\rceil_{I}$ ．Suppose that $v_{l}\left(G_{\mathbf{I}}^{\hat{ふ}(q)}\right)=$
 $G_{\mathbf{I}}^{ふ(q)} \backslash\left\{S_{i_{q u} u}^{c}\right\}_{u=1}^{m_{q}} \mid\left\{G_{S_{i_{q^{u}}}^{c}}^{*}\right\}_{u=1}^{m_{q}}, v_{l}\left(G_{S_{i_{q^{u}}}^{c}}^{*} \backslash\left\{S_{i_{q u} u}^{c}\right\}\right)=v_{r}\left(G_{S_{i_{q^{u}}}^{c}}^{*} \backslash\left\{S_{i_{i^{\prime} u}}^{c}\right\}\right)$ and $G_{S_{i_{q^{u}}}^{c}}^{*} \subseteq_{c} G \mid G^{*}$ for all $1 \leqslant$ $u \leqslant m_{q}$ ．
 by linking up the conclusion of previous derivation to the premise of its successor in the sequence of derivations
as shown in the following figure．

A derivation of $G_{\mathbf{I}}^{\mathfrak{\hbar}(q+1)}$ from $G_{\mathbf{I}}^{\mathfrak{\imath}(q)}$
（iv）Let $S_{j}^{c} \in G_{\mathbf{I}}^{\mathfrak{\iota}\left(J_{\mathbf{I}}\right)}$ ．Then $H_{j}^{c} \nless H_{i}^{c}$ by the definition of $J_{\mathbf{I}}$ ．If $S_{j}^{c} \in\left\lceil S_{i}^{c}\right\rceil_{I}$ ，then $H_{j}^{c} \| H_{i}^{c}$ by $H_{j}^{c} \nless H_{i}^{c}$ and the definition of $\left[S_{i}^{c}\right\rceil_{I}$ ．Otherwise，by Construction 7．3，there exists some $\tau_{G_{b} \mid S_{i_{q u}}^{c}}^{*}$
in $\tau_{\mathbf{I}}^{\sharp\left(J_{\mathrm{I}}\right)}$ such that $S_{j}^{c} \in G_{S_{i_{q}}}^{*}$. Then $H_{i_{q}}^{c} \nless H_{j}^{c}$ by Lemma 6.6 (vi). Thus $H_{i}^{c} \nless H_{j}^{c}$ by $H_{i_{q}}^{c} \leqslant H_{i}^{c}$. Hence $H_{j}^{c} \| H_{i}^{c}$.

Lemma 7.4 shows that Construction 7.3 presents a derivation $\tau_{\mathbf{I}}^{\hat{\sim}\left(J_{\mathrm{I}}\right)}$ of $G_{\mathbf{I}}^{\hat{\imath}\left(J_{\mathrm{I}}\right)}$ from $\left\lceil S_{i}^{c}\right\rceil_{I}$ such that there doesn't exist $S_{j}^{c} \in G_{\mathbf{I}}^{\mathfrak{s}\left(J_{\mathbf{I}}\right)}$ satisfying $H_{j}^{c} \leqslant H_{i}^{c}$, i.e., all $S_{j}^{c} \in\left\lceil S_{i}^{c}\right\rceil_{I}$ satisfying $H_{j}^{c} \leqslant H_{i}^{c}$ are eliminated by Construction 7.3. We generalize this procedure as follows.

Construction 7.5. Let $H \in \tau^{*}, H_{1} \subseteq H$ and $H_{2} \subseteq_{c} G \mid G^{*}$. Then $G_{H: H_{l}}^{\star\left(J_{H: H_{l}}\right)}$ and its derivation $\tau_{H: H_{l}}^{\left.\hbar \quad J_{H: H_{l}}\right)}$ for $l=1,2$ are constructed by procedures similar to that of Construction 7.3 such that $H_{j}^{c} \nless H$ for all $S_{j}^{c} \in G_{H: H_{l}}^{\hat{\mu}\left(J_{H} H_{l}\right)}$, where $G_{H: H_{1}}^{\stackrel{\mu}{\mu}(0)}:=G_{H: H_{1}}^{*}, \tau_{H: H_{1}}^{\dot{\sim}(0)}:=\tau_{H: H_{1}}^{*}$, which are defined by Construction 4.7.

We sometimes write $J_{\mathbf{I}}, J_{H: H_{l}}$ as J for simplicity. Then the following lemma holds clearly.
Lemma 7.6. (i) $\frac{H_{l}}{G_{H: H_{l}}^{\gtrless(J)}}\left\langle\tau_{H: H_{l}}^{\hat{\imath}(J)}\right\rangle, H_{j}^{c} \nless H$ for all $S_{j}^{c} \in G_{H: H_{l}}^{\hat{\mu}(J)}$.
(ii) If $S_{i}^{c} \in H$ and $H_{i}^{c}>H$ then $G_{H: S_{i}^{c}}^{\stackrel{\mu}{(J)}}=S_{i}^{c}$.
(iii) If $S \epsilon_{c} G$ or, $S \epsilon_{c} G^{*}$ is a copy of $S_{i 1}^{c}$ and $H_{i}^{c} \nless H$ then $G_{H: S}^{i(J)}=S$.
(iv) Let $H^{\prime} \mid H^{\prime \prime} \subseteq H \in \tau^{*}$. Then $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\hat{\kappa}(J)}=G_{H: H^{\prime}}^{\hat{\kappa}(J)} \mid G_{H: H^{\prime \prime}}^{\hat{\sim}(J)}$ by suitable assignments of identification numbers to new occurrences of p in constructing $\tau_{H: H^{\prime} \mid H^{\prime \prime}}^{i(J)}, \tau_{H: H^{\prime}}^{\hbar(J)}$ and $\tau_{H: H^{\prime \prime}}^{i z(J)}$.
(v) $G_{\mathbf{I}}^{\mathfrak{\iota}(J)}=\bigcup\left\{G_{H_{i}^{c}: S_{j}^{c}}^{\mathfrak{\hbar}(J)}: S_{j}^{c} \in\left\lceil S_{i}^{c}\right]_{I}, H_{j}^{c} \leqslant H_{i}^{c}\right\}\left|\cup\left\{S_{j}^{c}: S_{j}^{c} \in\left\lceil S_{i}^{c}\right\rceil_{I}, H_{j}^{c} \nless H_{i}^{c}\right\}\right| \cup\{S: S \in$ $\left.\left\lceil S_{i}^{c}\right\rceil_{I}, S \epsilon_{c} G\right\}$.

Proof. (i) is proved by a procedure similar to that of Lemma 7.4 (iii), (iv) and omitted.
(ii) Since $S_{i 1}^{c}$ is the focus sequent of H_{i}^{c} then it is revised by some rule at the node lower than H_{i}^{c}. Thus $S_{i}^{c} \in H$ is some copy of $S_{i 1}^{c}$ by $H_{i}^{c}>H$. Hence S_{i}^{c} has the form $S_{i u}^{c}$ for some $u \geq 2$. Therefore it is transferred downward to $G \mid G^{*}$, i.e., $S_{i}^{c} \in G \mid G^{*}$. Then $G_{H: S_{i}^{c}}^{\text {¿h }(0)}=G_{H: S_{i}^{c}}^{*}=S_{i}^{c}$. Since there exists no $S_{j}^{c} \in G_{H: S_{j}^{c}}^{\mathfrak{\iota}(0)}, H_{j}^{c} \leqslant H$ then $J=0$. Thus $G_{H: S_{i}^{c}}^{\hat{\mathrm{s}}(J)}=S_{i}^{c}$.
(iii) is proved by a procedure similar to that of (ii) and omitted.
(iv) Since $H^{\prime} \mid H^{\prime \prime} \subseteq H \in \tau^{*}$, then $H^{\prime} \cap H^{\prime \prime}=\varnothing$ by Proposition 6.2. Thus $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\star(0)}=$
 Then all copies $\left\{S_{i_{q} u}^{c}\right\}_{u=1}^{m_{q}}$ of $S_{i_{q}}^{c}$ in $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\mathfrak{s}(q)}$ are divided two subsets $\left\{S_{i_{q} u}^{c}\right\}_{u=1}^{m_{q}} \cap G_{H: H^{\prime}}^{\dot{\psi}(q)}$ and $\left\{S_{i_{q} u}^{c}\right\}_{u=1}^{m_{q}} \cap G_{H: H^{\prime \prime}}^{\grave{\mu}(q)}$. Thus we can construct $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\hbar(q+1)}, G_{H: H^{\prime}}^{\grave{\mathrm{s}}(q+1)}$ and $G_{H: H^{\prime \prime}}^{\hbar(q+1)}$ simultaneously and assign the same identification numbers to new occurrences of p in $G_{H: H^{\prime}}^{\mu(q+1)}$ and $G_{H: H^{\prime \prime}}^{\boldsymbol{\mu}(q+1)}$ as the corresponding one in $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\hat{\sim}(q+1)}$. Hence $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\hat{\sim}(q+1)}=G_{H: H^{\prime}}^{\hat{\sim}(q+1)} \mid G_{H: H^{\prime \prime}}^{\hat{\sim}(q+1)}$. Then $G_{H: H^{\prime} \mid H^{\prime \prime}}^{\hat{\kappa}(J)}=G_{H: H^{\prime}}^{\hat{\mu}(J)} \mid G_{H: H^{\prime \prime}}^{\hat{\mu}(J)}$.

Note that the requirement is imposed only on one derivation that distinct occurrence of p has distinct identification number. We permit $G_{H: H^{\prime \prime}}^{\hat{\sim}(q+1)}=G_{H: H^{\prime \prime}}^{\hat{\sim}(q)}$ or $G_{H: H^{\prime}}^{\grave{\sim}(q+1)}=G_{H: H^{\prime}}^{\hat{\sim}(q)}$ in the proof above, which has no essential effect on the proof of the claim.
(v) is immediately from (iv).

Lemma 7.6(v) shows that $G_{\mathbf{I}}^{\hat{\alpha}(J)}$ could be constructed by applying $\tau_{H_{i}^{c}: S_{j}^{c}}^{\mathcal{L}_{j}^{c}(J)}$ sequentially to each $S_{j}^{c} \in\left\lceil S_{i}^{c}\right\rceil_{I}$ satisfying $H_{j}^{c} \leqslant H_{i}^{c}$. Thus the requirement $H_{i_{q+1}}^{c}<H_{i_{q}}^{c}$ in Construction 7.3 is not necessary, but which make the termination of the procedure obvious.

Construction 7.7. Apply $\left(E C_{\Omega}^{*}\right)$ to $G_{\mathbf{I}}^{\kappa(J)}$ and denote the resulting hypersequent by $G_{\mathbf{I}}^{\gtrless}$ and its derivation by $\tau_{\mathbf{I}}^{\hat{\omega}}$. It is possible that $\left(E C_{\Omega}^{*}\right)$ is not applicable to $G_{\mathbf{I}}^{\hat{\lambda}(J)}$ in which case we apply $\left\langle I D_{\Omega}\right\rangle$ to it for the regularity of the derivation.

Lemma 7.8. (i) $\xlongequal[G_{\mathbf{I}}^{\text {乞 }}]{\left\lceil S_{i}^{c}\right\rceil_{I}}\left\langle\tau_{\mathbf{I}}^{\hat{\varsigma}}\right\rangle, G_{\mathbf{I}}^{\hat{\iota}}$ is closed and $H_{j}^{c} \| H_{i}^{c}$ for all $S_{j}^{c} \in G_{\mathbf{I}}^{\hat{\iota}}$;
(ii) $\tau_{\mathbf{I}}^{\hat{\omega}}$ is constructed by applying elimination rules, say, $\xlongequal{G_{b} \mid S_{i_{q} u}^{c}}\left\langle{S_{S_{i_{q}}}^{c}}_{*}^{\sigma_{G_{b} \mid S_{i_{q}}^{c}}^{*}}\right\rangle$, and the fully constraint contraction rules, say, $\frac{G_{2}}{G_{1}}\left\langle E C_{\Omega}^{*}\right\rangle$, where $H_{i_{q}}^{c} \leqslant H_{i}^{c}, G_{b} \mid S_{i_{q} u}^{c}$ is closed for $0 \leqslant q \leqslant J-1$, $1 \leqslant u \leqslant m_{q}$.
Proof. Immediately from Lemma 7.4.
Definition 7.9. Let $G^{\prime} \in G_{\mathbf{I}}^{\mathfrak{\aleph}(J)}, H^{\prime} \subseteq G^{\prime}$ and $S^{\prime} \in H^{\prime}$. (i) For any sequent-formula A of S^{\prime}, define \widehat{A} to be the sequent S of $G_{\mathbf{I}}^{\boldsymbol{\jmath}^{(J)}}$ such that A is a sequent-formula of S or subformula of a sequent-formula of S; (ii) Let S^{\prime} be in the form $A_{1}, \cdots, A_{n} \Rightarrow B_{1}, \cdots, B_{m}$, define $\widehat{S^{\prime}}$ to be the hypersequent which consists of all distinct sequents among $\widehat{A_{1}}, \cdots, \widehat{A_{n}}, \widehat{B_{1}}, \cdots, \widehat{B_{m}}$; (iii) Let H^{\prime} be in the form $S_{1}|\cdots| S_{m}$, define $\widehat{H^{\prime}}$ to be $\widehat{S_{1}|\cdots| \widehat{S_{m}} \text {; (iv) We call } H^{\prime} \text { to be separable if } \widehat{H^{\prime}} \subseteq_{c} G \text { and, }{ }^{\prime} \text {, }{ }^{\prime} \text {. }}$ call it to be separated into $\widehat{H^{\prime}}$.

Note that $\tau_{\mathbf{I}}{ }^{\hat{\sim}(J)}$ is a derivation without $\left(E C_{\Omega}\right)$ in $\mathbf{G} \mathbf{L}_{\Omega}$. Then we can extract elimination derivations from it by Construction 4.7.

Notation 7.10. Let $H^{\prime} \subseteq G^{\prime} \in \tau_{\mathbf{I}}^{\mathfrak{L}(J)}$. $\tau_{\mathbf{I}\left\{\mathrm{G}^{\prime}: \mathrm{H}^{\prime}\right\}}^{\hat{2}(J)}$ denotes the derivation from H^{\prime}, which extracts from $\tau_{\mathbf{I}}^{i(J)}$ by Construction 4.7, and denote its root by $G_{\mathbf{I}\left\{G^{\prime}: H^{\prime}\right\}}^{i(J)}$.

The following two lemmas show that Construction 7.3 and 7.5 force some sequents in $\left\lceil S_{i}^{c}\right\rceil_{I}$ or H^{\prime} to be separable.

Lemma 7.11. Let $\frac{G^{\prime}\left|S^{\prime} \quad G^{\prime \prime}\right| S^{\prime \prime}}{H \equiv G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I) \in \tau^{*}$. Then (i) H^{\prime} is separable in $\tau_{\mathrm{H}: \mathrm{H}^{\prime}}^{\imath(J)}$;
(ii) If $\frac{G_{b}\left|\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{S_{i_{q^{u}}}^{c}} G^{\prime \prime}\right| S^{\prime \prime}}{H_{1} \equiv G_{b}\left|\left\langle G^{\prime}\right\rangle_{S_{q_{q u}}^{c}}\right| G^{\prime \prime} \mid H^{\prime}}($ II $) \in \tau_{G_{b} \mid S_{i_{q^{u}}}^{c}}^{*} \in \tau_{\mathbf{I}}^{\grave{\omega}}$, then H^{\prime} is separable in $\tau_{\mathbf{I}}^{\jmath(J)}$ and there is a unique copy of $\widehat{S^{\prime \prime}} \mid G_{\mathbf{I}\left\{H_{1}: G^{\prime \prime}\right\}}^{\hat{\imath}(J)}$ in $G_{\mathbf{I}}^{\boldsymbol{\aleph}}$.

Proof. (i) We write $\leqslant_{\tau_{H: H^{\prime}}^{\star(J)}}$ and $\leqslant_{\tau^{*}}$ respectively as $\leqslant_{i z}$ and \leqslant for simplicity. Since $G_{H: H^{\prime}}^{\kappa(J)} \subseteq_{c} G \mid G^{*}$, we divide it into two hypersequents $G_{H: H^{\prime}}^{0(J)}$ and $G_{H: H^{\prime}}^{*(J)}$ such that $G_{H: H^{\prime}}^{\curvearrowleft(J)}=G_{H: H^{\prime}}^{0(J)} \mid G_{H: H^{\prime}}^{*(J)}, G_{H: H^{\prime}}^{0(J)} \subseteq_{c}$ $G, G_{H: H^{\prime}}^{*(J)} \subseteq_{c} G^{*}$.

Let $S_{j}^{c} \in G_{H: H^{\prime}}^{*(J)}$ then $H_{j}^{c} \nless H$ by Construction 7.5. We prove that $H_{j}^{c} \| H^{\prime}$ in $\tau_{H: H^{\prime}}^{\hbar(J)}$ as follows. If $S_{j}^{c} \in G_{H: H^{\prime}}^{*}$ then $H_{j}^{c} \| H^{\prime}$ in $\tau_{H: H^{\prime}}^{*}$ by Lemma 6.7(i), $\tau_{H: H^{\prime}}^{*} \in \tau_{H: H^{\prime}}^{\grave{\sim}(J)}$ and $H_{j}^{c} \nless H$. Thus we assume that $S_{j}^{c} \notin G_{H: H^{\prime}}^{*}$ in the following.

Then, by Lemma 7.4(iv), there exists some $\tau_{G_{b} \mid S_{i}^{c}}^{*}$ in $\tau_{H: H^{\prime}}^{\grave{\sim}(J)}$ such that $H_{i}^{c} \leqslant H, S_{j}^{c} \in G_{S_{i}^{c}}^{*}$. Then $H_{i}^{c} \nless H_{j}^{c}$ by Lemma 6.6(vi). $H_{j}^{c} \nless H_{i}^{c}$ by $H_{i}^{c} \leqslant H, H_{j}^{c} \nless H$. Thus $H_{i}^{c} \|_{\tau^{*}} H_{j}^{c}$. Let $\frac{G_{1}\left|S_{1} \quad G_{2}\right| S_{2}}{G_{1}\left|G_{2}\right| H_{2}}(I I) \in \tau^{*}$, where $G_{1}\left|G_{2}\right| H_{2}=H_{i j}^{V}, G_{1}\left|S_{1} \leqslant H_{i}^{c}, G_{2}\right| S_{2} \leqslant H_{j}^{c}$. Then $S_{1} \in\left\langle G_{1} \mid S_{1}\right\rangle_{S_{i}^{c}}$, $G_{b}\left|\left\langle G_{1} \mid S_{1}\right\rangle_{S_{i}^{c}} \in \tau_{H: H^{\prime}}^{\hbar(J)}, G_{2}\right| S_{2} \in \tau_{H: H^{\prime}}^{\hbar(J)}$ by $S_{j}^{c} \in G_{S_{i}^{c}}^{*} \subseteq G_{b} \mid G_{S_{i}^{c}}^{*} \in \tau_{H: H^{\prime}}^{¿ 2}$. Thus $H_{j}^{c} \|_{ఙ \sim} H^{\prime}$ by $G_{b}\left|\left\langle G_{1} \mid S_{1}\right\rangle_{S_{i}^{c}} \leqslant \boldsymbol{\xi} G_{b}\right| S_{i}^{c} \leqslant \boldsymbol{\xi} H^{\prime}, G_{2} \mid S_{2} \leqslant \boldsymbol{\xi} H_{j}^{c}$ and $G_{b}\left|\left\langle G_{1} \mid S_{1}\right\rangle_{S_{i}^{c}} \|_{\dot{\mu}} G_{2}\right| S_{2}$.

Thus $H_{j}^{c} \| H^{\prime}$ in $\tau_{H: H^{\prime}}^{\hbar(J)}$. Therefore $G_{H: H^{\prime}}^{*(J)} \cap \widehat{H^{\prime}}=\varnothing$. Then $\widehat{H^{\prime}} \subseteq G_{H: H^{\prime}}^{0(J)} \subseteq_{c} G$, i.e., H^{\prime} is separable in $\tau_{\mathrm{H}: \mathrm{H}^{\prime}}^{\gtrless(\mathrm{J})}$.
(ii) Clearly, $G_{\mathbf{I}\left\{H_{1}: G^{\prime \prime} \mid H^{\prime}\right\}}^{\dot{\imath}(J)}$ is a copy of $G_{H: G^{\prime \prime} \mid H^{\prime}}^{\gtrless(J)}$ and, $\tau_{\mathbf{I}\left\{\mathrm{H}_{1}: \mathrm{G}^{\prime \prime} \mid H^{\prime}\right\}}^{\hat{\imath}(J)}$ has no difference with $\tau_{H: G^{\prime \prime} \mid H^{\prime}}^{\dot{\imath}(J)}$ except some applications of $\left(I D_{\Omega}\right)$ and identification numbers of some $p^{\prime} s$. Then H^{\prime} is separated into $\widehat{H^{\prime}}$ in $G_{\mathbf{I}\left\{H_{1}: H^{\prime}\right\}}^{\boldsymbol{\beta}(J)}$ by the same reason as that of (i). Then $S^{\prime}, S^{\prime \prime}$ are separated into $\widehat{S^{\prime}}$ and $\widehat{S^{\prime \prime}}$ in $\tau_{\mathbf{I}}^{\star(J)}$, respectively. Then $\widehat{S^{\prime \prime}}\left|G_{\mathbf{I}\left\{H_{1}: G^{\prime \prime}\right\}}^{\hbar(J)} \subseteq G_{\mathbf{I}}^{0(J)}\right| G_{\mathbf{I}}^{*(J)}$ is closed since $G^{\prime \prime} \mid S^{\prime \prime}$ is closed. Thus all copies of $\widehat{S^{\prime \prime}} \mid G_{\mathbf{I}\left\{H_{1}: G^{\prime \prime}\right\}}^{\hat{\mu}(J)}$ in $\tau_{\mathbf{I}}^{\hat{\sim}(J)}$ are contracted into one by $\left(E C_{\Omega}^{*}\right)$ in $G_{\mathbf{I}}^{\hat{\mu}}$.
Lemma 7.12. (i) All copies of S_{i}^{c} in $\left\lceil S_{i}^{c}\right\rceil_{I}$ are separable in $\tau_{\mathbf{I}}^{\hat{\lambda}(J)}$;
(ii) Let $H \in \tau^{*}, H^{\prime} \subseteq H, H_{j}^{c} \leqslant H$ or $H_{j}^{c} \| H$ for all $S_{j}^{c} \in G_{H: H^{\prime}}^{*}$. Then H^{\prime} is separable in $\tau_{H: H^{\prime}}^{\dot{\mu}(J)}$.

Proof. (i) and (ii) are proved by a procedure similar to that of Lemma 7.11 and omitted.
Definition 7.13. The skeleton of $\tau_{\mathbf{I}}^{\hat{\omega}}$, which we denote by $\bar{\tau}_{\mathbf{I}}^{\hat{\alpha}}$, is constructed by replacing all

Lemma 7.14. $\bar{\tau}_{\mathbf{I}}^{\widehat{\alpha}}$ is a linear structure with the lowest node $G_{\mathbf{I}}^{\hat{\aleph}}$ and the highest $\left\lceil S_{i}^{c}\right\rceil_{I}$.
Proof. It holds by all $\tau_{G_{b} \mid S_{i_{q^{u}}}^{c}}^{*}$ and $E C_{\Omega}^{*}$ in $\tau_{\mathbf{I}}^{\aleph}$ being one-premise rules.
Definition 7.15. We call Construction 7.3 together with 7.7 the separation algorithm of one branch and, Construction 7.5 the separation algorithm along H.

8. Separation algorithm of multiple branches

In this section, let $I=\left\{H_{i_{1}}^{c}, \cdots, H_{i_{m}}^{c}\right\} \subseteq\left\{H_{1}^{c}, \cdots, H_{N}^{c}\right\}$ such that $H_{i_{k}}^{c} \| H_{i_{l}}^{c}$ for all $1 \leqslant k<l \leqslant m$. We will generalize the separation algorithm of one branch to that of multiple branches. Roughly speaking, we give an algorithm to eliminate all $S_{j}^{c} \in G \mid G^{*}$ satisfying $H_{j}^{c} \leqslant H_{i_{k}}^{c}$ for some $H_{i_{k}}^{c} \in I$.

Definition 8.1. $\bar{I}:=\left\{H_{j}^{c}: H_{j}^{c} \leqslant H_{i}^{c}\right.$ for some $\left.H_{i}^{c} \in I\right\}$.

Theorem 8.2. $\left(\left[A .4\right.\right.$, A.5.4]) Let $\mathbf{I}=\left\{\left[S_{i_{1}}^{c}\right]_{I}, \cdots,\left\lceil S_{i_{m}}^{c}\right]_{I}\right\}$. Then there exist one closed hypersequent $G_{\mathbf{I}}^{\vec{\beta}} \subseteq_{c} G \mid G^{*}$ and its derivation $\tau_{\mathbf{I}}^{\hat{\sim}}$ from $\left\lceil S_{i_{1}}^{c}\right]_{I}, \ldots,\left\lceil S_{i_{m}}^{c}\right]_{I}$ in $\mathbf{G L}_{\boldsymbol{\Omega}}$ such that
(i) $\tau_{\mathrm{I}}^{\hat{\aleph}}$ is constructed by applying elimination rules, say,

$$
\xlongequal[G_{\mathbf{I}_{\mathbf{j}}}^{*}=\left\{G_{b_{k}}\right\}_{k=1}^{w} \mid G_{\mathcal{I}_{\mathbf{j}}}^{*}]{G_{b_{1}}\left|S_{j_{1}}^{c} G_{b_{2}}\right| S_{j_{2}}^{c} \cdots G_{b_{\mathbf{j}}} \mid S_{j_{w}}^{c}}\left\langle\tau_{\mathbf{I}_{\mathrm{j}}}^{*}\right\rangle
$$

and the fully constraint contraction rules, say $\frac{G_{2}}{\overline{G_{1}}}\left\langle E C_{\Omega}^{*}\right\rangle$, where $1 \leqslant w \leqslant m, H_{j_{k}}^{c} \rightsquigarrow H_{j_{l}}^{c}$ for all $1 \leqslant k<l \leqslant w, I_{\mathbf{j}}=\left\{H_{j_{1}}^{c}, \cdots, H_{j_{w}}^{c}\right\} \subseteq \bar{I}, \mathcal{I}_{\mathbf{j}}=\left\{S_{j_{1}}^{c}, \cdots, S_{j_{w}}^{c}\right\}, \mathbf{I}_{\mathbf{j}}=\left\{G_{b_{1}}\left|S_{j_{1}}^{c}, \cdots, G_{b_{w}}\right| S_{j_{w}}^{c}\right\}$ and $G_{b_{k}} \mid S_{j_{k}}^{c}$ is closed for all $1 \leqslant k \leqslant w$. Then $H_{i}^{c} \nless H_{j}^{c}$ for all $S_{j}^{c} \in G_{\mathcal{I}_{\mathfrak{j}}}^{*}$ and $H_{i}^{c} \in I$.
(ii) For all $H \in \bar{\tau}_{\mathbf{I}}{ }^{\beta}$,

$$
\partial_{\tau_{\mathbf{I}}^{\sharp}}(H):= \begin{cases}G \mid G^{*} & H \text { is the root of } \bar{\tau}_{\mathbf{I}}^{\hat{\Lambda}} \text { or } G_{2} \text { in } \frac{G_{2}}{G_{1}}\left\langle E C_{\Omega}^{*} \text { or } I D_{\Omega}\right\rangle \in \bar{\tau}_{\mathbf{I}}^{\widehat{\iota}}, \\ H_{j_{k}}^{c} & H \text { is } G_{b_{k}} \mid S_{j_{k}}^{c} \text { in } \tau_{\mathbf{I}_{\mathbf{j}}}^{*} \in \bar{\tau}_{\mathbf{I}}^{\vec{\beta}} \text { for some } 1 \leqslant k \leqslant w,\end{cases}
$$

where, $\bar{\tau}_{\mathbf{I}}^{\hat{\alpha}}$ is the skeleton of $\tau_{\mathbf{I}}^{\hat{\pi}}$ which is defined as Definition 7.13. Then $\partial_{\tau_{\mathrm{I}}^{\star}}\left(G_{\mathbf{I}_{\mathbf{j}}}^{*}\right) \leqslant \partial_{\tau_{\mathrm{I}}^{\star}}\left(G_{b_{k}} \mid S_{j_{k}}^{c}\right)$ for some $1 \leqslant k \leqslant w$ in $\tau_{\mathbf{I}_{\mathbf{j}}}^{*}$.
(iii) Let $H \in \bar{\tau}_{\mathbf{I}}^{\hat{\mu}}, G \mid G^{*}<\partial_{\tau_{\mathbf{I}}^{\hat{\sim}}}(H) \leqslant H_{I}^{V}$, then $G_{H_{l}^{V}: H}^{\hat{\mu}(J)} \in \tau_{\mathbf{I}}^{\hat{\mu}}$ and it is constructed by applying the separation algorithm along H_{I}^{V} to H and, is an upper hypersequent of either $\left\langle E C_{\Omega}^{*}\right\rangle$ if it is applicable, or $\left\langle I D_{\Omega}\right\rangle$ otherwise.
(iv) $S_{j}^{c} \in G_{\mathbf{I}}^{\curvearrowright}$ implies $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$ and, $S_{j}^{c} \in G_{\mathcal{I}_{\mathbf{j}}}^{*}$ for some $\tau_{\mathbf{I}_{\mathbf{j}}}^{*} \in \tau_{\mathbf{I}}^{ふ<}$ or $S_{j}^{c} \in\left\lceil S_{i_{k}}^{c}\right]_{I}$ for some $H_{i_{k}}^{c} \in I$ satisfying $H_{j}^{c} \nless H_{i_{k}}^{c}$.

Note that in Claim (i), bold \mathbf{j} in $I_{\mathbf{j}}, \mathcal{I}_{\mathbf{j}}$ or $\mathbf{I}_{\mathbf{j}}$ indicates the w-tuple $\left(j_{1}, \cdots, j_{w}\right)$ in $S_{j_{1}}^{c}, \cdots, S_{j_{w}}^{c}$. Claim (iv) shows the final aim of Theorem 8.2, i.e., there exists no $S_{j}^{c} \in G_{\mathbf{I}}^{\text {ふ }}$ such that $H_{j}^{c} \leqslant H_{i}^{c}$ for some $H_{i}^{c} \in I$. It is almost impossible to construct $\tau_{I}^{i /}$ in a non-recursive way. Thus we use Claims (i), (ii) and (iii) in Theorem 8.2 to characterize the structure of τ_{I}^{μ} in order to construct it recursively.

Proof. $\tau_{\mathbf{I}}^{\hat{\beta}}$ is constructed by induction on $|I|$. For the base case, let $|I|=1$. Then $\tau_{\boldsymbol{I}}^{\hat{\mu}}$ is constructed by Construction 7.3 and 7.7. Here, Claim (i) holds by Lemma 7.8(ii), Lemma 7.4(i) and Lemma 6.6 (vi), Claim (ii) by Lemma 7.4(i), (iii) is clear and (iv) by Lemma 7.4(iv).

For the induction case, let $|I| \geqslant 2$. Let $\frac{G^{\prime}\left|S^{\prime} \quad G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I) \in \tau^{*}$, where $G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}=H_{I}^{V}$. Then $\left\{H_{i_{1}}^{c}, \cdots, H_{i_{m}}^{c}\right\}$ is divided into two subsets $I_{l}=\left\{H_{l_{1}}^{c}, \cdots, H_{l_{m(l)}}^{c}\right\}, I_{r}=\left\{H_{r_{1}}^{c}, \cdots, H_{r_{m(r)}}^{c}\right\}$, which occur in the left subtree $\tau^{*}\left(G^{\prime} \mid S^{\prime}\right)$ and right subtree $\tau^{*}\left(G^{\prime \prime} \mid S^{\prime \prime}\right)$ of $\tau^{*}\left(H_{I}^{V}\right)$, respectively. Then $m(l)+$ $m(r)=m$. Let $\mathbf{I}_{l}=\left\{\left[S_{l_{1}}^{c}\right]_{I}, \cdots,\left\lceil S_{l_{m(l)}}^{c}\right]_{I}\right\}, \mathbf{I}_{r}=\left\{\left\lceil S_{r_{1}}^{c}\right]_{I}, \cdots,\left\lceil S_{r_{m(r)}}^{c}\right]_{I}\right\}$. Suppose that derivations $\tau_{\mathbf{I}_{l}}^{\mu_{\mathcal{Z}}}$
 to be considered in the following.

- For Claim (i), let $\tau_{\mathbf{I}_{j_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\stackrel{H}{3}^{u}}$ and $S_{j}^{c} \in G_{\mathcal{I}_{\mathrm{j}_{l}}}^{*}$. By the induction hypothesis, $H_{i}^{c} \nless H_{j}^{c}$ for all $H_{i}^{c} \in I_{l}$. Since $S^{\prime} \notin\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathrm{j}_{l}}}$ then $G^{\prime \prime} \mid H^{\prime} \cap\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{\mathrm{J}_{l}}}=\varnothing$. Thus $G_{H_{l}^{V}: G^{\prime \prime} \mid H^{\prime}}^{*} \cap G_{\mathcal{I}_{\mathrm{j}_{l}}}^{*}=\varnothing$ by

Lemma 6.3 and 6.4. Then $S_{j}^{c} \notin G_{H_{:}^{V}: G^{\prime \prime} \mid H^{\prime}}^{*}$. Thus $G^{\prime \prime} \mid S^{\prime \prime} \nless H_{j}^{c}$ by Proposition 4.15(i). Hence, for all $H_{i}^{c} \in I_{r}, H_{i}^{c} \nless H_{j}^{c}$ by $G^{\prime \prime} \mid S^{\prime \prime} \leqslant H_{i}^{c}$. Then $H_{i}^{c} \nless H_{j}^{c}$ for all $H_{i}^{c} \in I$. Claims (ii) and (iii) follow directly from the induction hypothesis.

- For Claim (iv), let $S_{j}^{c} \in G_{\mathbf{I}}^{\hat{\lambda}}$. It follows from the induction hypothesis that $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I_{l}$ and, $S_{j}^{c} \in G_{\mathcal{I}_{\mathbf{J}_{l}}}^{*}$ for some $\tau_{\mathbf{I}_{\mathbf{I}_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{山_{\alpha}}$ or $S_{j}^{c} \in\left[S_{l_{k}}^{c}\right]_{I}$ for some $H_{l_{k}}^{c} \in I_{l}, H_{j}^{c} \nless H_{l_{k}}^{c}$. Then $H_{j}^{c} \nless H_{I}^{V}$ by $H_{j}^{c} \| H_{l_{1}}^{c}, H_{I}^{V}<H_{l_{1}}^{c}$.

If $S_{j}^{c} \in\left\lceil S_{l_{k}}^{c}\right\rceil_{I}$ for some $H_{l_{k}}^{c} \in I_{l}, H_{j}^{c} \nless H_{l_{k}}^{c}$ then $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$ by the definition of branches to I. Thus we assume that $S_{j}^{c} \in G_{\mathcal{I}_{\mathbf{j}_{j}}}^{*}$ for some $\tau_{\mathbf{I}_{\mathbf{j}_{j}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\mu_{i}}$ in the following. If $G^{\prime} \mid S^{\prime} \leqslant H_{j}^{c}$ then $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I_{r}$ thus $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$. Thus let $G^{\prime} \mid S^{\prime} \nless H_{j}^{c}$ in the following. By the proof of Claim (i) above, $G^{\prime \prime} \mid S^{\prime \prime} \nless H_{j}^{c}$. Then $H_{I}^{V} \nless H_{j}^{c}$ by $G^{\prime} \mid S^{\prime} \nless H_{j}^{c}$ and $G^{\prime \prime} \mid S^{\prime \prime} \nless H_{j}^{c}$. Thus $H_{j}^{c} \| H_{I}^{V}$. Hence $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$.
 by a procedure similar to that of Case 1 and omitted.

Case $3 S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{J}_{l}}}$ for some $\tau_{\mathbf{I}_{j_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\sim}$ and $S^{\prime \prime} \in\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}^{\beta, ~}}$ for some $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*} \in \tau_{\mathbf{I}_{r}}^{\sim \tilde{H}_{r}}$.
Given
such that $S^{\prime \prime} \in\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathrm{j}_{r}}}$ and $H_{j_{r k}}^{c}>H_{I}^{V}$ for all $1 \leqslant k \leqslant v$, where, $1 \leqslant v \leqslant m(r), G_{b_{r k}} \mid S_{j_{r k}}^{c}$ is closed for all $1 \leqslant k \leqslant v, I_{\mathbf{j}_{r}}=\left\{H_{j_{1}}^{c}, H_{j_{r_{2}}}^{c}, \cdots, H_{j_{r_{2}}}^{c}\right\} \subseteq \overline{I_{r}}, \mathcal{I}_{\mathbf{j}_{r}}=\left\{S_{j_{r_{1}}}^{c}, S_{j_{r}}^{c}, \cdots, S_{j_{r v}}^{c}\right\}, \mathbf{I}_{\mathbf{j}_{r}}=$ $\left\{G_{b_{r} \mid}\left|S_{j_{r 1}}^{c}, \cdots, G_{b_{r r}}\right| S_{j_{r v}}^{c}\right\}$. Then $H_{I_{\mathbf{j}_{r}}}^{V} \geqslant G^{\prime \prime} \mid S^{\prime \prime}$ by $I_{\mathbf{j}_{r}} \subseteq \bar{I}_{r}$ and $H_{j_{r k}}^{c}>H_{I}^{V}$ for all $1 \leqslant k \leqslant v$. Thus $H_{j}^{c} \leadsto H_{i}^{c}$ for all $H_{j}^{c} \in I_{\mathbf{j}_{r}}$ and $H_{i}^{c} \in I_{l}$ by $S^{\prime \prime} \in\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}}$ and Construction 6.11.

For each $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*} \in \tau_{\mathbf{I}_{r}}^{\boldsymbol{I}_{r}}$ above, we construct a derivation $\tau_{\mathbf{I}_{l}}^{\boldsymbol{L}_{l}}\left(\tau_{\mathbf{I}_{\mathbf{I}_{r}}}^{*}\right)$ in which you may regard $\tau_{\mathbf{I}_{l}}^{\beta}$ as a subroutine, and $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}$ as its input in the following stage 1 . Then a derivation $\tau_{\mathbf{I}_{r}}^{\grave{\mu}}\left(\tau_{\mathbf{I}_{l}}^{\mu}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)\right)$ is
 and $\tau_{\mathbf{I}_{l}}^{\lambda_{l}}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)$ as its subroutine.

Firstly, we present some properties of $\tau_{\mathbf{I}}^{\boldsymbol{\mu}}$ which are derived from Claims (i) \sim (iv) and applicable to $\tau_{\mathbf{I}_{l}}^{\hat{\omega}}$ or $\tau_{\mathbf{I}_{r}}^{\vec{\alpha}}$ under the induction hypothesis.
Notation 8.3. Let

$$
\begin{aligned}
& G_{\dot{\dagger}}:=\widehat{S^{\prime \prime}}\left|G_{H_{l}^{\prime V} G^{\prime \prime}}^{\tilde{2}(J)}\right| G_{H_{1}^{\prime}: H^{\prime}}^{\hat{2}(J)} \backslash\left\{\widehat{S^{\prime}} \mid \widehat{S^{\prime \prime}}\right\} \text { and }
\end{aligned}
$$

be two close hypersequents, $G_{\dagger} \subseteq H$ for some $H \in \tau_{\mathbf{I}_{l}}^{\hat{\sim}}$ and $G_{\ddagger}^{\ddagger} \backslash\left\{G_{b_{r k}}\right\}_{k=1}^{v} \subseteq H$ for some $H \in \tau_{\mathbf{I}_{r}}^{\approx}$.
Generally, $\widehat{S^{\prime \prime}} \subseteq G_{\dagger}$ is a copy of $\widehat{S^{\prime \prime}} \subseteq G_{\ddagger}$, i.e., eigenvariables in $\widehat{S^{\prime \prime}} \subseteq G_{\dagger}$ have different identification numbers with those in $\widehat{S^{\prime \prime}} \subseteq G_{\ddagger}$, so are $H^{\prime}, G^{\prime \prime}, S^{\prime}$.

Lemma 8.4. $S_{j}^{c} \in G_{广}$ implies $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$.
Proof. Let $S_{j}^{c} \in G_{\dagger} \subseteq G_{H_{I}^{V}: G^{\prime \prime} \mid H^{\prime}}^{\stackrel{\wedge}{(J)}}$. Then $H_{j}^{c} \nless H_{I}^{V}$ by Lemma 7.6(i). Thus $H_{j}^{c}>H_{I}^{V}$ or $H_{j}^{c} \| H_{I}^{V}$. If $H_{j}^{c} \| H_{I}^{V}$ then $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$ by $H_{I}^{V}<G^{\prime} \mid S^{\prime}$ and Proposition 2.12(ii). If $H_{j}^{c}>H_{I}^{V}$ then $S_{j}^{c} \in H_{I}^{V}$ by Proposition 4.15(i). Thus $S_{j}^{c} \in G^{\prime \prime}$ by Lemma 6.3, Lemma 6.7(i). Hence $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$ by $H_{j}^{c} \geqslant G^{\prime \prime}\left|S^{\prime \prime}, G^{\prime}\right| S^{\prime} \| G^{\prime \prime} \mid S^{\prime \prime}$.

Lemma 8.5. (1) $\bar{\tau}_{\mathbf{I}}^{\hat{\alpha}}$ is an m-ary tree and, $\tau_{\mathbf{I}}^{\hat{\omega}}$ is a binary tree;
(2) Let $H \in \bar{\tau}_{\mathbf{I}}^{\hat{\sim}}$ then $\partial_{\tau_{\top}^{\grave{\Lambda}}}(H) \leqslant H_{i_{k}}^{c}$ for some $1 \leqslant k \leqslant m$;
(3) Let $H \in \bar{\tau}_{\mathbf{I}}^{\hat{\omega}}$ then $H_{I}^{V} H \partial_{\tau_{\mathrm{I}}^{\hat{\mu}}}(H)$;
(4) Let $w>1$ in $\tau_{\mathbf{I}_{\mathbf{j}}}^{*} \in \tau_{\mathbf{I}}^{\hat{\sim}}$ then $H_{I}^{V}<H_{j_{k}}^{c}$ for all $1 \leqslant k \leqslant w$.
(5) Let $\tau_{\mathbf{I}_{\mathbf{j}}}^{*} \in \tau_{\mathbf{I}}^{乞 \quad}, \partial_{\tau_{\mathbf{I}}^{\star}}\left(G_{b_{k}} \mid S_{j_{k}}^{c}\right) \leqslant H_{I}^{V}$ for some $1 \leqslant k \leqslant w$. Then $w=1$.

Proof. (1) is immediately from Claim (i). (2) holds by $G \mid G^{*} \leqslant H_{j_{k}}^{c}$ and $H_{j_{k}}^{c} \leqslant H_{i_{k}}^{c}$ for some $H_{i_{k}}^{c} \in I$ by $I_{\mathrm{j}} \subseteq \bar{I}$. (3) holds by Proposition 2.12 (iii), (2) and $H_{I}^{V} \leqslant H_{i_{k}}^{c}$.

For (4), let $w>1$. Then $H_{j_{1}}^{c} \| H_{j_{k}}^{c}$ for each $2 \leqslant k \leqslant w, H_{j_{1}}^{c} \leqslant H_{i_{g}}^{c}$ and $H_{j_{k}}^{c} \leqslant H_{i_{h}}^{c}$ for some $H_{i_{g}}^{c}, H_{i_{h}}^{c} \in I$ by (2). Thus $H_{j_{1}}^{c} \| H_{i_{h}}^{c}$ and $H_{j_{k}}^{c} \| H_{i_{g}}^{c}$ by Proposition 2.12(ii). Hence $H_{j_{1}}^{c} \nless H_{i_{g} i_{h}}^{V}$ by $H_{i_{g} i_{h}}^{V}<H_{i_{h}}^{c}$, and $H_{j_{k}}^{c} \nless H_{i_{g} i_{h}}^{V}$ by $H_{i_{g} i_{h}}^{V}<H_{i_{g}}^{c}$. Thus $H_{I}^{V}<H_{j_{1}}^{c}$ and $H_{I}^{V}<H_{j_{k}}^{c}$ by (3), $H_{I}^{V} \leqslant H_{j_{1} j_{k}}^{V}$. Hence $H_{I}^{V}<H_{j_{k}}^{c}$ for all $1 \leqslant k \leqslant w$. (5) is from (4).
Lemma 8.6. Let $\xlongequal[H_{i-1,1}]{H_{i, 1} \cdots H_{i, w_{i}}}\left\langle\tau_{\mathbf{I}_{\mathbf{j}}(i)}^{*}\right\rangle \in \tau_{\mathbf{I}}^{\aleph}$ for all $1 \leqslant i \leqslant n$ such that $\partial_{\tau_{\mathbf{I}}^{\star}}\left(H_{0,1}\right)=G \mid G^{*}$ and $\partial_{\tau_{\mathrm{I}}^{\hat{\aleph}}}\left(H_{n, 1}\right) \leqslant H_{I}^{V}$. Then $\partial_{\tau_{\mathrm{I}}^{\hat{\mathrm{I}}}}\left(H_{i, 1}\right) \leqslant H_{I}^{V}$ and $w_{i}=1$ for all $1 \leqslant i \leqslant n$.

Proof. The proof is by induction on n. Let $n=1$ then $w_{1}=1$ by Lemma $8.5(5)$ and $\partial_{\tau_{1}^{\text {® }}}\left(H_{1,1}\right) \leqslant$ H_{I}^{V}. For the induction step, let $\partial_{\tau_{I}^{\vec{~}}}\left(H_{i, 1}\right) \leqslant H_{I}^{V}$ for some $1<i \leqslant n$ then $w_{i}=1$ by Lemma 8.5(5). Since $\frac{H_{i, 1} \cdots H_{i, w_{i}}}{H_{i-1,1}}\left\langle\tau_{\mathbf{I}_{\mathbf{j}}(i)}^{*}\right\rangle \in \tau_{\mathbf{I}}^{\vec{\beta}}$ then $\partial_{\tau_{\mathbf{I}}^{\star}}\left(H_{i-1,1}\right) \leqslant \partial_{\tau_{\mathbf{I}}^{\text {® }}}\left(H_{i, k}\right)$ for some $1 \leqslant k \leqslant w_{i}$ by Claim (ii). Then $\partial_{\tau_{\mathrm{I}}^{\hat{(}}}\left(H_{i-1,1}\right) \leqslant \partial_{\tau_{\mathrm{I}}^{\hat{\beta}}}\left(H_{i, 1}\right) \leqslant H_{I}^{V}$ by $w_{i}=1$. Thus $w_{i-1}=1$ by Lemma 8.5(5).

Definition 8.7. Let $\frac{G_{2}}{\overline{G_{1}}}\left\langle E C_{\Omega}^{*}\right\rangle \in \tau_{\mathbf{I}}^{\hat{\mu}}$. The module of $\tau_{\mathbf{I}}^{\hat{\sim}}$ at G_{2}, which we denote by $\tau_{\mathbf{I}: G_{2}}^{\hat{\mu}}$, is defined as follows: (1) $G_{2} \in \tau_{\mathbf{I}: G_{2}}^{\hat{\mu}} ;$ (2) $\frac{H_{1} \cdots H_{u}}{H_{0}}\left\langle\tau_{\mathbf{I}_{\mathbf{j}}}^{*}\right\rangle \in \tau_{\mathbf{I}: G_{2}}^{\hat{\mu}}$ if $H_{0} \in \tau_{\mathbf{I}: G_{2}}^{\hat{\mu}}$; (3) $H_{1} \notin \tau_{\mathbf{I}: G_{2}}^{\beta}$ if $\frac{H_{1}}{H_{0}}\left\langle E C_{\Omega}^{*}\right\rangle \in \tau_{\mathbf{I}}^{\hat{\Omega}}, H_{0} \in \tau_{\mathbf{I}: G_{2}}^{\hat{\aleph}}$.

Each node of $\tau_{\mathbf{I}: G_{2}}^{\hat{\mu}}$ is determined bottom-up, starting with G_{2}, whose root is G_{2} and leaves may be branches, leaves of τ^{*} or lower hypersequents of $\left\langle E C_{\Omega}^{*}\right\rangle$-applications. While each node of $\tau_{H: H^{\prime}}^{*}$ is determined top-down, starting with H^{\prime}, whose root is a subset of $G \mid G^{*}$ and leaves contain H^{\prime} and some leaves of τ^{*}.

Lemma 8.8. (1) $\tau_{\mathbf{I}: G_{2}}^{\boldsymbol{\beta}_{2}}$ is a derivation without $\left\langle E C_{\Omega}^{*}\right\rangle$ in $\mathbf{G L}_{\Omega}$.

Proof. (1) is clear and (2) immediately from Lemma 8.6.
Stage 1 Construction of Subroutine $\tau_{\mathbf{I}_{l}}^{\omega}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)$. Roughly speaking, $\tau_{\mathbf{I}_{l}}^{\boldsymbol{H}_{l}}\left(\tau_{\mathbf{I}_{\mathbf{I}_{r}}}^{*}\right)$ is constructed by replacing some nodes $\tau_{\mathbf{I}_{j_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\boldsymbol{H}_{l}}$ with $\tau_{\mathbf{I}_{\mathbf{j}_{l}} \cup \mathbf{I}_{\mathbf{j}_{r}}}^{*}$ in post-order. However, the ordinal postordertraversal algorithm cannot be used to construct $\tau_{\mathbf{I}_{l}}^{\boldsymbol{u}_{l}}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)$ because the tree structure of $\tau_{\mathbf{I}_{l}}^{\langle\quad}\left(\tau_{\mathbf{I}_{\mathbf{I}_{r}}}^{*}\right)$ is
generally different from that of $\tau_{\mathbf{I}_{l}}^{\hat{\mu}}$ at some nodes $H \in \tau_{\mathbf{I}_{l}}^{\hat{\sim}}$ satisfying $\partial_{\tau_{\mathbf{I}_{l}}^{\hat{\sim}}}(H)<H_{\mathbf{I}_{l}}^{V}$. Thus we construct a sequence $\tau_{\mathbf{I}_{l}}^{\dot{\sim}(q)}$ of trees for all $q \geqslant 0$ inductively as follows.

For the base case, we mark all $\left\langle E C_{\Omega}^{*}\right\rangle$-applications in $\tau_{\mathbf{I}_{l}}^{\mu}$ as unprocessed and define such marked derivation to be $\tau_{\mathbf{I}_{l}}^{\hat{\sim}(0)}$. For the induction case, let $\tau_{\mathbf{I}_{l}}^{\hat{\sim}(q)}$ be constructed. If all applications of $\left\langle E C_{\Omega}^{*}\right\rangle$ in $\tau_{\mathbf{I}}^{\boldsymbol{\sim}(q)}$ are marked as processed, we firstly delete the root of the tree resulting from the procedure and then, apply $\left\langle E C_{\Omega}^{*}\right\rangle$ to the root of the resulting derivation if it is applicable otherwise add an $\left\langle I D_{\Omega}\right\rangle$-application to it and finally, terminate the procedure. Otherwise we select one of the outermost unprocessed $\left\langle E C_{\Omega}^{*}\right\rangle$-applications in $\tau_{\mathbf{I}_{l}}^{\grave{\sim}(q)}$, say, $\xlongequal[G_{q+1}^{\circ}]{G_{q+1}^{\circ}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$, and perform the following steps to construct $\tau_{\mathbf{I}_{l}}^{\dot{\sim}(q+1)}$ in which $\frac{G_{q+1}^{\circ}}{\overline{G_{q+1}^{\circ}}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ be revised as $\frac{G_{q+1}^{\circ}}{\overline{G_{q+1}^{\circ}}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ such that
(a) $\tau_{\mathbf{I}_{l}}^{\grave{\sim}(q+1)}$ is constructed by locally revising $\tau_{\mathbf{I}_{i}: G_{q+1}^{\circ}}^{\mathfrak{\sim}(q)}$ and leaving other nodes of $\tau_{\mathbf{I}_{l}}^{\mathfrak{\sim}(q)}$ unchanged, particularly including G_{q+1}°;
(b) $\tau_{\mathbf{I}_{l}}^{\mathfrak{\sim}(q+1)}\left(G_{q+1}^{\ddot{ }}\right)$ is a derivation in $\mathbf{G} \mathbf{L}_{\boldsymbol{\Omega}}$;
(c) $G_{q+1}^{\circ \stackrel{ }{*}}=G_{q+1}^{\circ \circ}$ if $S^{\prime} \notin\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}}$ for all $\tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\stackrel{\sim}{山}}\left(G_{q+1}^{\circ \circ}\right)$ otherwise $G_{q+1}^{\because}=G_{q+1}^{\circ \circ} \backslash G_{\dagger}^{m_{q+1}} \mid G_{\ddagger}^{m_{q+1}}$ for some $m_{q+1} \geqslant 1$.
Remark 8.9. By two superscripts \circ and \cdot in $\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ or $\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\cdot}$, we indicate the unprocessed state and processed state, respectively. This procedure determines an ordering for all $\left\langle E C_{\Omega}^{*}\right\rangle$ applications in $\tau_{\mathbf{I}_{l}}^{\mu}$ and the subscript $q+1$ indicates that it is the $q+1$-th application of $\left\langle E C_{\Omega}^{*}\right\rangle$ in a post-order transversal of $\tau_{\mathbf{I}_{l}}^{\stackrel{\sim}{\Omega}} . G_{q+1}^{\circ \circ}$ and $G_{q+1}^{\circ}\left(G_{q+1}^{\circ}\right.$ and $\left.G_{q+1}^{\circ}\right)$ are the premise and conclusion of $\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}\left(\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}\right)$, respectively.

Step 1 (Delete). Take the module $\tau_{\mathbf{I}_{l}: G_{q+1}^{\circ o}}^{\hat{\sim}(q)}$ out of $\tau_{\mathbf{I}_{l}}^{\hat{\sim}(q)}$. Since $\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ is the unique unprocessed $\left\langle E C_{\Omega}^{*}\right\rangle$-applications in $\tau_{\mathbf{I}_{l}}^{\gtrsim(q)}\left(G_{q+1}^{\circ}\right)$ by its choice criteria, $\tau_{\mathbf{I}_{l}: G_{q+1}^{\circ o+}}^{\dot{\mu}(q)}$ is the same as $\tau_{\mathbf{I}_{l}: G_{q+1}^{i}}^{\dot{\beta}}$ by Claim (a). Thus it is a derivation. If $\partial_{\tau_{\mathbf{I}_{l}^{\grave{~}}}}(H) \leqslant H_{I}^{V}$ for all $H \in \tau_{\mathbf{I}_{l}: G_{o+1}^{o o}}^{\stackrel{\circ}{(q)}}$, delete all internal nodes of $\tau_{\mathbf{I}_{i}: G_{q+1}^{\circ o}}^{\gtrless(q)}$. Otherwise there exists

 resulting from the deletion operation above by $\tau_{\mathbf{I}_{l} \cdot G_{q+1}^{o o}(1)}^{\grave{\sim}(q)}$. Since $\partial_{\tau_{\mathbf{I}_{l}}^{\sim}}\left(G_{l^{\prime}}\right) \leqslant H_{I}^{V}$ then $\tau_{\mathbf{I}_{l} \cdot G_{q+1}^{o o}}^{\grave{\mathrm{L}}(q)}(1)$ is a tree by Lemma 8.6. Thus it is also a derivation.

Step 2 (Update). For each $G_{q^{\prime}}^{\circ} \in \tau_{\mathbf{I}_{l}: G_{q+1}^{\circ}(1)}^{\grave{\sim}(q)}$ which satisfies $\frac{G_{q^{\prime}}^{\circ \prime}}{\overline{G_{q^{\prime}}^{\circ}}}\left\langle E C_{\Omega}^{*}\right\rangle_{q^{\prime}}^{\circ} \in \tau_{I_{l}}^{\Re(q)}$ and $S^{\prime} \epsilon$ $\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}}$ for some $\tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\hat{\mu}}\left(G_{q^{\prime}}^{\circ \circ}\right)$, we replace H with $H \backslash G_{\ddagger} \mid G_{\ddagger}$ for each $H \in \tau_{\mathbf{I}_{l}}^{\hat{\sim}(q)} G_{q+1}^{\circ o}(1), ~ G_{l^{\prime}}^{\circ} \leqslant$
$H \leqslant G_{q^{\prime}}^{\circ}$.
Since $\frac{G_{q^{\prime}}^{\prime \prime}}{\overline{G_{q^{\prime}}^{\circ}}}\left\langle E C_{\Omega}^{*}\right\rangle_{q^{\prime}}^{\circ} \in \tau_{I_{l}}^{ふ(q)}\left(G_{q+1}^{\circ \circ}\right)$ and $\left\langle E C_{\Omega}^{*}\right\rangle_{q^{+1}}^{\circ}$ is the outermost unprocessed $\left\langle E C_{\Omega}^{*}\right\rangle$-application in $\tau_{\mathbf{I}_{l}}^{\dot{\beta}(q)}$ then $q^{\prime} \leqslant q$ and $\left\langle E C_{\Omega}^{*}\right\rangle_{q^{\prime}}^{*}$ has been processed. Thus Claims (b) and (c) hold for $\tau_{\mathbf{I}_{l}}^{\dot{\sim}(q)}\left(G_{q^{\prime}}^{*}\right)$ by the induction hypothesis. Then $\frac{G_{q^{\prime}}^{\prime \prime}}{G_{q^{\prime}}^{*}}$ is a valid $\left\langle E C_{\Omega}^{*}\right\rangle$-application since

Lemma 8.10. Let $G_{l^{\prime}}<H \leqslant G_{q^{\prime}}^{\circ}$. Then $\partial_{\tau_{I_{l}^{\lambda}}^{\hat{\mu}}}(H) \geqslant G^{\prime} \mid S^{\prime}$.
Proof. Since $G_{l^{\prime}}<H$ then $G_{b_{l^{\prime} k}^{\prime}} \mid S_{j_{l^{\prime} k}}^{c} \leqslant H$ for some $1 \leqslant k \leqslant u^{\prime}$. If $\partial_{\tau_{\mathbf{I}_{l}^{\prime}}^{\lambda_{l}}}(H) \geqslant H_{I_{l}}^{V}$ then $\partial_{\tau_{\mathbf{I}_{l}^{\mu}}}(H) \geqslant$ $G^{\prime} \mid S^{\prime}$. Otherwise all applications between $G_{l^{\prime}}$ and H are one-premise rules by Lemma 8.6. Then
 $1 \leqslant k^{\prime} \leqslant m(l)$ by Claim (i).

Since $\partial_{\tau_{\boldsymbol{I}_{l}^{\sharp}}}(H) \geqslant G^{\prime} \mid S^{\prime}$ by Lemma 8.10 and $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$ for each $S_{j}^{c} \in G_{\dagger}$ by Lemma 8.4, then $G_{\dagger} \subseteq H$ as side-hypersequent of H. Thus this step updates the revision of $G_{q^{\prime}}^{\prime \prime}$ downward to $G_{l^{\prime}}$.

Let m^{\prime} be the number of $G_{q^{\prime}}^{\circ}$ satisfying the above conditions, $\tau_{\mathbf{I}_{l}: G_{q+1}^{o o}(1)}^{\mathfrak{\sim}(q)}, G_{l^{\prime}}$ and $G_{b_{l^{\prime} k}} \mid S_{j_{l^{\prime} k}}^{c}$ for
 and $G_{l^{\prime \prime}}=G_{l^{\prime}} \backslash G_{\ddagger}^{m^{\prime}} \mid G_{\ddagger}^{m^{\prime}}$.

Step 3 (Replace). All $\tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*} \in \tau_{\mathbf{I}_{i}: G_{q+1}^{o o}(2)}^{i 2(q)}$ are processed in post-order. If $H_{i}^{c} \leadsto H_{j}^{c}$ for all $H_{i}^{c} \in I_{\mathbf{j}_{l}}$ and $H_{j}^{c} \in I_{\mathbf{j}_{r}}$ it proceeds by the following procedure otherwise it remains unchanged. Let $\tau_{\mathbf{I}_{l}}^{*}$ be in the form

$$
\frac{G_{b_{l \mid} \mid}\left|S_{j_{11}}^{c} G_{b_{12}}\right| S_{j_{12}}^{c} \cdots G_{b_{l u}} \mid S_{j_{l u}}^{c}}{G_{l} \equiv\left\{G_{b_{k k}}\right\}_{k=1}^{u} \mid G_{\mathfrak{I}_{\mathbf{j}_{l}}}^{*}} .
$$

Then $H_{j_{k k}}^{c} \geqslant G^{\prime} \mid S^{\prime}$ for all $1 \leqslant k \leqslant u$ by Lemma 8.10, $G_{b_{k k}} \mid S_{j_{k k}}^{c}>G_{l^{\prime \prime}}$.
Firstly, replace $\tau_{\mathbf{I}_{l}}^{*}$ with $\tau_{\mathbf{I}_{j_{l}} \cup \mathbf{I}_{\mathbf{j}_{r}}}^{*}$. We may rewrite the roots of $\tau_{\mathbf{I}_{j_{l}}}^{*}$ and $\tau_{\mathbf{I}_{l} \cup \mathbf{I}_{\mathbf{j}_{r}}}^{*}$ as

$$
\begin{aligned}
& G_{l}=\left\{G_{b_{l k}}\right\}_{k=1}^{u}\left|G_{H_{l}^{v}:\left\langle G^{\prime}\right\rangle_{\mathcal{J}_{j}}}^{*}\right| G_{H_{I}^{V}: G^{\prime \prime} \mid H^{\prime}}^{*} \text { and } \\
& G_{l, r} \equiv\left\{G_{b_{l k}}\right\}_{k=1}^{u}\left|G_{H_{l}^{V}:\left\langle G^{\prime}\right\rangle_{\overline{\mathrm{j}}_{l}}}^{*}\right|\left\{G_{b_{r k}}\right\}_{k=1}^{v}\left|G_{H_{l}^{V}:\left\langle G^{\prime \prime}\right\rangle_{\overline{\mathrm{j}}_{\mathrm{r}}}}^{*}\right| H^{\prime},
\end{aligned}
$$

respectively.
Let $G_{l^{\prime \prime}}<H \leqslant G_{l}$. By Lemma 8.10, $\partial_{\tau_{\boldsymbol{I}_{l}}^{\hat{\lambda}}}(H) \geqslant G^{\prime} \mid S^{\prime}$. By Lemma 6.7, $H_{j}^{c} \leqslant H_{I}^{V}<$ $G^{\prime} \mid S^{\prime}$ or $H_{j}^{c} \| G^{\prime} \mid S^{\prime}$ for all $S_{j}^{c} \in G_{H_{l}^{\gamma} \cdot G^{\prime \prime} \mid H^{\prime}}^{*}$. Thus $G_{H_{l}^{\gamma}: G^{\prime \prime} \mid H^{\prime}}^{*} \subseteq H$. Secondly, we replace H with $H \backslash G_{H_{l}^{V}: G^{\prime \prime} \mid H^{\prime}}^{*}\left|\left\{G_{b_{r k}}\right\}_{k=1}^{v}\right| G_{H_{l}^{V}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathrm{j}_{r}}}^{*} \mid H^{\prime}}^{*}$ for all $G_{l^{\prime}} \leqslant H \leqslant G_{l}$. Let $m^{\prime \prime}$ be the number of $\tau_{\mathbf{I}_{j_{l}}}^{*} \in \tau_{\mathbf{I}_{l} \cdot G_{q+1}^{o o}(2)}^{\Omega(q)}$ satisfying the replacement conditions above, $\tau_{\mathbf{I}_{l}: G_{q+1}^{o+1}(2)}^{j(q)}, G_{l^{\prime \prime}}$ and $G_{b_{l^{\prime} k}}^{\prime} \mid S_{j_{l^{\prime} k}}^{c}$ for all $1 \leqslant k \leqslant u^{\prime}$ be
updated as $\tau_{\mathbf{I}_{:}: G_{q+1}^{o o}(3)}^{\grave{\mathrm{N}}(q)}, G_{l^{\prime \prime \prime}}, G_{b_{l^{\prime} k}}^{\prime \prime} \mid S_{j_{l^{\prime} k}}^{c}$, respectively. Then $\tau_{\mathbf{I}_{l}: G_{q+1}^{o o}(3)}^{\mathfrak{z}(q)}$ is a derivation of $G_{l^{\prime \prime \prime}}$ and $G_{l^{\prime \prime \prime}}=G_{l^{\prime \prime}} \backslash\left\{G_{H_{l}^{V}: G^{\prime \prime} \mid H^{\prime}}^{*}\right\}^{m^{\prime \prime}} \mid\left\{\left\{G_{b_{r k}}\right\}_{k=1}^{v} \mid G_{H_{l}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathrm{j}}} \mid H^{\prime}}^{*}\right\}^{m^{\prime \prime}}$.

Step 4 (Separation along H_{I}^{V}). Apply the separation algorithm along H_{I}^{V} to $G_{l^{\prime \prime \prime}}$ and denote

$$
\frac{\left\{G_{b_{k k}}\right\}_{k=1}^{u}\left|\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}} \quad\left\{G_{b_{r k}}\right\}_{k=1}^{v}\right|\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}}}{\left\{G_{b_{k k}}\right\}_{k=1}^{u}\left|\left\{G_{b_{r_{k}}}\right\}_{k=1}^{v}\right|\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}}\left|\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}}\right| H^{\prime}}(I) \in \tau_{\mathbf{I}_{l}, \mathbf{I}_{\mathbf{j}_{r}}}^{*} \in \tau_{\mathbf{I}_{l}: G_{q+1}^{\prime o}(q)}^{\gtrless(3)},
$$

H^{\prime}, S^{\prime} and $S^{\prime \prime}$ are separable in $\tau_{\mathbf{I}_{l} G_{q+1}^{\circ o}(4)}^{i(q)}$ by a procedure similar to that of Lemma 7.11. Let S^{\prime} and $S^{\prime \prime}$ be separated into $\widehat{S^{\prime}}$ and $\widehat{S^{\prime \prime}}$, respectively. By Claim (iii), $G_{H_{I^{V}: G} G_{l^{\prime}}}^{\grave{\gtrless}(J)}=G_{q+1}^{\circ \circ}$.

$$
\begin{aligned}
& G_{H_{l}: G_{l^{\prime \prime}}}^{\mathfrak{\beta}(J)}=G_{q+1}^{\circ \circ} \backslash G_{\ddagger}^{m^{\prime}} \mid G_{\ddagger}^{m^{\prime}} \text { by Lemma 7.6(iv), } \\
& G_{q+1}^{. .}=G_{H_{1}^{\eta}: G_{l^{\prime \prime \prime}}}^{\mathfrak{\mu}(J)}
\end{aligned}
$$

$$
\begin{aligned}
& =G_{H_{l}^{:}: G_{l^{\prime \prime}}}^{\hbar(J)} \backslash G_{\dagger}^{m^{\prime \prime}} \mid G_{\ddagger}^{m^{\prime \prime}} \\
& =\left\{G_{q+1}^{\circ \circ} \backslash G_{\dagger}^{m^{\prime}} \mid G_{\ddagger}^{m^{\prime}}\right\} \backslash G_{\dagger}^{m^{\prime \prime}} \mid G_{\ddagger}^{m^{\prime \prime}} \\
& =G_{q+1}^{\circ \circ} \backslash G_{\dagger}^{m^{\prime}+m^{\prime \prime}} \mid G_{\ddagger}^{m^{\prime}+m^{\prime \prime}} \\
& =G_{q+1}^{\circ \circ} \backslash G_{\dagger}^{m_{q+1}} \mid G_{\ddagger}^{m_{q+1}}
\end{aligned}
$$

where $m_{q+1}:=m^{\prime}+m^{\prime \prime}$.
Step 5 (Put back). Replace $\tau_{\mathbf{I}_{i}: G_{q+1}^{\circ o}}^{\hat{\sim}(q)}$ in $\tau_{\mathbf{I}_{l}}^{\hat{\sim}(q)}$ with $\tau_{\mathbf{I}_{l}: G_{q+1}^{\circ}(4)}^{\hat{\sim}(q)}$ and mark $\xlongequal{G_{q+1}^{\circ}}\left\langle E C_{\Omega+1}^{*}\right\rangle_{q+1}^{\circ}$ as processed, i.e., revise $\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ as $\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$. Among leaves of $\tau_{\mathbf{I}_{i} \cdot G_{q+1}^{\circ}}^{\stackrel{\circ}{\circ}(q)}$, all $G_{q^{\prime}}^{\circ}$ are updated as $G_{q^{\prime}}^{\prime}$ and others keep unchanged in $\tau_{\mathbf{I}_{l} / G_{q+1}^{\circ}}^{\dot{\sim}(q)}(4)$. Then this replacement is feasible, especially, $G_{q+1}^{\circ \circ}$ be replaced with G_{q+1}^{\because}. Define the tree resulting from Step 5 to be $\tau_{\mathbf{I}_{l}}^{\because(q+1)}$. Then Claims (a), (b) and (c) hold for $q+1$ by the above construction.

Finally, we construct a derivation of $G_{\mathbf{I}_{l}}^{\gtreqless} \backslash G_{\dagger} \mid G_{\ddagger}$ from $\left\lceil S_{l_{1}}^{c}\right\rceil_{I}, \cdots,\left\lceil S_{l_{m(l)}}^{c}\right\rceil_{I}, G_{b_{r \mid} \mid}\left|S_{j_{r 1}}^{c}, \cdots, G_{b_{r v}}\right| S_{j_{r v}}^{c}$ in $\mathbf{G L}_{\boldsymbol{\Omega}}$, which we denote by $\tau_{\mathbf{I}_{l}}^{\hat{\Omega}_{l}}\left(\tau_{\mathbf{I}_{\mathbf{j}}}^{*}\right)$.
Remark 8.11. All elimination rules used in constructing $\tau_{\mathbf{I}_{l}}^{\imath \quad}$ are extracted from τ^{*}. Since $\tau_{\mathbf{I}_{\mathbf{j}}}^{*}$ is a derivation in $\mathbf{G L} \mathbf{\Omega}_{\boldsymbol{\Omega}}$ without ($E C_{\Omega}$), we may extract elimination rules from $\tau_{\mathbf{I}_{\mathbf{j}},}^{*}$ which we may use to construct $\tau_{\mathbf{I}_{l}}^{\vec{\mu}}\left(\tau_{\mathbf{I}_{\mathbf{j}},}^{*}\right)$ by a procedure similar to that of constructing $\tau_{\mathbf{I}_{l}}^{\hat{\mu}}$ with minor revision
at every node H that $\partial_{\tau_{I}^{\dot{I}}}(H) \leqslant H_{I}^{V}$. Note that updates and replacements in Steps 2 and 3 are essentially inductive operations but we neglect it for simplicity.

We may also think of constructing $\tau_{\mathbf{I}_{l}}^{\boldsymbol{I}_{j}}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)$ as grafting $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}$ in $\tau_{\mathbf{I}_{l}}^{\boldsymbol{I}_{j}}$ by adding $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}$ to some $\tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\boldsymbol{\Sigma}_{l}}$. Since the rootstock $\tau_{\mathbf{I}_{l}}^{\langle 3}$ of the grafting process is invariant in Stage 2, we encapsulate

where, $G_{\mathbf{I}_{\lambda / r}}^{\grave{\mu}}=G_{\mathbf{I}_{l}}^{\grave{\zeta}} \backslash G_{\dagger}$ is closed.
Stage 2 Construction of Routine $\tau_{\mathbf{I}_{r}}^{ふ}\left(\tau_{\mathbf{I}_{l}}^{ふ}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)\right)$. A sequence $\tau_{\mathbf{I}_{r}}^{\approx(q)}$ of trees for all $q \geqslant 0$ is constructed inductively as follows. $\tau_{\mathbf{I}_{r}}^{\langle(0)}, \tau_{\mathbf{I}_{r}}^{\langle(q)}, \xlongequal{G_{q+1}^{\circ}}\left\langle E C_{\Omega+1}^{*}\right\rangle_{q+1}^{\circ}$ are defined as those of Stage 1. Then we perform the following steps to construct $\tau_{\mathbf{I}_{r}}^{\grave{\mathrm{I}}(q+1)}$ in which $\xlongequal[G_{q+1}^{\circ}]{G_{q+1}^{\circ \circ}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ be revised as $\xlongequal[G_{q+1}^{\circ}]{G_{q+1}^{\because}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{.}$such that Claims (a) and (b) are same as those of Stage 1 and (c) $G_{q+1}^{\because!}=G_{q+1}^{\circ \circ}$ if $S^{\prime \prime} \notin\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}^{\left(\mathbf{t}_{r}\right)}}$ for all $\tau_{\mathbf{I}_{\mathbf{j}_{\mathbf{r}}}}^{*} \in \tau_{\mathbf{I}_{r}}^{\langle }\left(G_{q+1}^{\circ \circ}\right)$ otherwise

Step 1 (Delete). $\tau_{\mathbf{I}_{r}: G_{q+1}^{j(q)}}^{\dot{\circ}(q)}$ and $\tau_{\mathbf{I}_{r} \cdot G_{q+1}^{o o}(1)}^{\dot{\sim}(q)}$ are defined as before.

 $G_{r^{\prime}} \leqslant H \leqslant G_{q^{\prime}}^{\circ}$. Then Claims (a) and (b) are proved by a procedure as before. Let m^{\prime} be the number of $G_{q^{\prime}}$ satisfying the above conditions. $\tau_{\mathbf{I}_{r}: G_{q+1}^{\circ}}^{\dot{\mu}(q)}, G_{r^{\prime}}^{\circ}$ and $G_{b_{r^{\prime} k} \mid} \mid S_{j_{r^{\prime} k}}^{c}$ for all $1 \leqslant k \leqslant v^{\prime}$ be
 $G_{r^{\prime}} \backslash\left\{\widehat{S}^{\prime} \mid G_{H_{l}^{\prime}: G^{\prime}}^{\grave{2}(J)}\right\}^{m^{\prime}} \mid\left\{G_{\mathbf{I}_{\lambda / r}}^{\stackrel{\omega}{r}^{\prime}}\right\}^{m^{\prime}}$.

Step 3 (Replace). All $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*} \in \tau_{\mathbf{I}_{r} \cdot G_{q+1}^{\circ}(2)}^{\Omega(q)}$ are processed in post-order. If $H_{i}^{c} \leadsto H_{j}^{c}$ for all $H_{i}^{c} \in I_{\mathbf{j}_{r}}$ and $H_{j}^{c} \in I_{l}$ it proceeds by the following procedure otherwise it remains unchanged. Let $\tau_{\mathbf{I}_{\mathrm{j}},}^{*}$ be in
the form

Then there exists the unique $1 \leqslant k^{\prime} \leqslant v^{\prime}$ such that $G_{r^{\prime \prime}}<G_{b_{r^{\prime} k^{\prime}}} \mid S_{j_{r^{\prime} k^{\prime}}}^{c} \leqslant G_{r}$.

 ly.

Let $G_{r^{\prime \prime}}<H \leqslant G_{r}$. Then $\partial_{\tau_{\tau_{r}}^{\sharp \pi}}(H) \geqslant G^{\prime \prime} \mid S^{\prime \prime}$ by Lemma 8.10. Thus $G_{H_{I^{\prime}}: G^{\prime} \mid H^{\prime}}^{\text {¿2(} 0)} \subseteq H,\left\{S_{j}^{c}: S_{j}^{c} \in\right.$ $\left.G_{H_{l}^{V}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{j_{r}}}}^{*}, H_{j}^{c} \geqslant G^{\prime \prime} \mid S^{\prime \prime}\right\}=\left\{S_{j}^{c}: S_{j}^{c} \in G_{H_{l}::\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{j_{r}}}}^{\star(J)}, H_{j}^{c} \geqslant G^{\prime \prime} \mid S^{\prime \prime}\right\}$. Define $G_{H}^{* *}=\left\{S_{j}^{c}: S_{j}^{c} \in\right.$ $G_{H^{V}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{L}_{j r}}}^{*}, S_{j}^{c}$ be the focus sequent of some $\left.H^{\prime} \in \tau_{\mathbf{I}_{r:}: G_{q+1}^{\circ+1}(2)}^{\kappa(q)}, H \leqslant H^{\prime} \leqslant G_{r}\right\}$.

Then we replace H with
for all $G_{b_{r^{\prime} k^{\prime}}} \mid S_{j_{r^{\prime} k^{\prime}}}^{c} \leqslant H \leqslant G_{r}$.
Let $m^{\prime \prime}$ be the number of $\tau_{\mathbf{I}_{r}}^{*} \in \tau_{\mathbf{I}_{r}: G_{q+1}^{o o}(2)}^{\Omega(2)}$ satisfying the replacement conditions as above,
 tively. Then $\tau_{\mathbf{I}_{r}: G_{q+1}^{o}(3)}^{\dot{\sim}(q)}$ is a derivation and $G_{r^{\prime \prime \prime}}=G_{r^{\prime \prime}} \backslash H_{1}^{m^{\prime \prime}} \mid H_{2}^{m^{\prime \prime}}$, where

$$
\begin{aligned}
& H_{0}=G_{G_{b_{r}, k}^{\prime} \mid}^{* *} \mid S_{j_{r^{\prime}} k}^{c}, \\
& H_{1}=G_{H_{l}^{V}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{j r}}}^{*} \backslash H_{0} \mid G_{H_{l}^{V}: G^{\prime} \mid H^{\prime}}^{*},
\end{aligned}
$$

Step 4 (Separation along H_{I}^{V}). Apply the separation algorithm along H_{I}^{V} to $G_{r^{\prime \prime \prime}}$ and denote the resulting derivation by $\tau_{\mathbf{I}_{r}: G_{q+1}^{o o}(4)}^{\stackrel{i}{(q)}}$, whose root is labeled by G_{q+1}°.

By Claim (iii), $G_{H_{l}^{\nu}: G_{r^{\prime}}}^{\grave{\mathrm{z}}(J)}=G_{q+1}^{\circ \circ}$.

Then

$$
\begin{aligned}
& =G_{H_{l}^{\eta}: G_{r^{\prime \prime}}}^{\hbar(J)} \backslash\left\{G_{H_{l}^{V}: G^{\prime}}^{\hbar(J)} \mid \widehat{S^{\prime}}\right\}^{m^{\prime \prime}} \mid\left\{G_{\mathbf{I}_{l_{r}}}^{\text {¿}}\right\}^{m^{\prime \prime}} .
\end{aligned}
$$

Then
where $m_{q+1}:=m^{\prime}+m^{\prime \prime}$.
Step 5 (Put back). Replace $\tau_{\mathbf{I}_{r}: G_{q+1}^{o o}}^{\dot{\sim}(q)}$ in $\tau_{\mathbf{I}_{r}}^{\hat{\sim}(q)}$ with $\tau_{\mathbf{I}_{r}: G_{q+1}^{\circ}(4)}^{\hat{\sim}(q)}$ and revise $\xlongequal{G_{q+1}^{\circ}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$ as $\xlongequal[\overline{G_{q+1}^{\circ}}]{G_{q+1}^{\circ}}\left\langle E C_{\Omega}^{*}\right\rangle_{q+1}^{\circ}$. Define the resulting tree from Step 5 to be $\tau_{\mathbf{I}_{r}}^{\kappa(q+1)}$ then Claims (a), (b) and (c) hold for $q+1$ by the above construction.

Finally, we construct a derivation of $G_{\mathbf{I}_{r}}^{\hat{\jmath}} \backslash\left\{\widehat{S^{\prime}} \mid G_{H_{l}^{\eta}: G^{\prime}}^{\varkappa(J)}\right\} \mid G_{\mathbf{I}_{\lambda_{r}}}^{\hat{\mu}}$ from $\left\lceil S_{i_{1}}^{c}\right]_{I}, \ldots,\left\lceil S_{i_{m}}^{c}\right\rceil_{I}$ in $\mathbf{G L}_{\mathbf{\Omega}}$.
 $S^{\prime \prime} \in\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}\left(\mathbf{t}_{r}\right)}$, then we denote the resulting derivation from Stage 2 by $\tau_{\mathbf{I}_{r}}^{\boldsymbol{\mu}_{r}}\left(\tau_{\mathbf{I}_{l}}^{\boldsymbol{\mu}_{l}}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)\right)$.

In the following, we prove that the claims from (i) to (iv) hold if $\tau_{\mathbf{I}^{\omega}}^{\hat{\omega}}:=\tau_{\mathbf{I}_{r}}^{\tilde{\omega}_{r}}\left(\tau_{\mathbf{I}_{l}}^{\tilde{\omega}_{j}}\left(\tau_{\mathbf{I}_{\mathrm{j}}}^{*}\right)\right.$) and $G_{\mathbf{I}}^{\hat{\omega}}:=G_{\mathbf{I}_{r}}^{\hat{\mu}} \backslash\left\{\widehat{S^{\prime}} \mid G_{H_{l}^{V} \cdot G^{\prime}}^{\grave{\mu}(J)}\right\} \mid G_{\mathbf{I}_{I_{r}}}^{\hat{\mu}}$.

- For Claim (i), (ii): Let $\frac{H_{1} \cdots H_{w}}{H_{0}}\left\langle\tau_{\mathbf{I}_{\mathbf{j}}}^{*}\right\rangle \in \tau_{\mathbf{I}}^{\star \quad}$ and $S_{j}^{c} \in G_{\mathcal{I}_{\mathbf{j}}}^{*}$. Then $\partial_{\tau_{\mathbf{I}}^{\star}}\left(H_{k}\right) \nless H_{j}^{c}$ for all $1 \leqslant k \leqslant w$ by Lemma 6.13(iv).

If $\partial_{\tau_{I}^{\sharp}}\left(H_{k^{\prime}}\right) \leqslant H_{I}^{V}$ for some $1 \leqslant k^{\prime} \leqslant w$, then $H_{i}^{c} \nless H_{j}^{c}$ for all $H_{i}^{c} \in I$ by $\partial_{\tau_{1}^{\star}}\left(H_{k^{\prime}}\right) \leqslant H_{I}^{V} \leqslant H_{i}^{c}$. Thus Claim (i) holds and Claim (ii) holds by Lemma 8.5(5) and Lemma 7.6(i). Note that Lemma $8.5(5)$ is independent of Claims from (ii) to (iv).

Otherwise $\tau_{\mathbf{I}_{\mathbf{j}}}^{*}$ is built up from $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*} \in \tau_{\mathbf{I}_{r}}^{\mu \quad}, \tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*}$ or $\tau_{\mathbf{I}_{\mathbf{j}_{j}}, \mathbf{I}_{\mathbf{I}_{r}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\mu}\left(\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}\right)$ by keeping their focus and principal sequents unchanged and making their side-hypersequents possibly to be modified, but which has no effect on discussing Claim (ii) and then Claim (ii) holds for $\tau_{\mathrm{I}}^{\hat{\pi}}$ by the induction

If $\tau_{\mathbf{I}_{\mathbf{j}}}^{*}$ is from $\tau_{\mathbf{I}_{\mathbf{I}_{l}} \cup \mathbf{I}_{\mathbf{j}_{,}}}^{*}$ then $S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}}$ and $S^{\prime \prime} \in\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{r}}}$ by the choice of $\tau_{\mathbf{I}_{j_{l}}}^{*}$ and $\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}$ at Stage 1. By the induction hypothesis, $H_{i}^{c} \nless H_{j}^{c}$ for all $S_{j}^{c} \in G_{\mathcal{I}_{\mathrm{j}}}^{*}, H_{i}^{c} \in I_{l}$ and $H_{i}^{c} \nless H_{j}^{c}$ for all $S_{j}^{c} \in G_{\mathcal{I}_{\mathrm{j}}}^{*}, H_{i}^{c} \in I_{r}$. Then $H_{i}^{c} \nless H_{j}^{c}$ for all $S_{j}^{c} \in G_{\mathcal{I}_{\mathrm{j}}}^{*}=G_{\mathcal{I}_{\mathrm{j}_{l}} \cup \mathcal{I}_{\mathrm{j}_{r}}}^{*}, H_{i}^{c} \in I$ by $G_{\mathcal{I}_{\mathrm{j}_{l}} \cup \mathcal{I}_{\mathrm{j}_{r}}}^{*}=G_{\mathcal{I}_{\mathrm{j}_{l}}}^{*} \cap G_{\mathcal{I}_{\mathrm{J}_{r}}}^{*}$, $I=I_{l} \cup I_{r}$.

If $\tau_{\mathbf{I}_{\mathfrak{j}}}^{*}$ is from $\tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*}$ then $S^{\prime} \notin\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}}$ by Step 3 at Stage 1. Then $\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{\mathbf{j}_{l}}} \cap\left(G^{\prime \prime} \mid H^{\prime}\right)=\varnothing$. Thus $S_{j}^{c} \notin G_{H_{l}^{V}: G^{\prime \prime} \mid H^{\prime}}^{*}$. Hence $G^{\prime \prime} \mid S^{\prime \prime} \nless H_{j}^{c}$. Therefore $H_{i}^{c} \nless H_{j}^{c}$ for all $H_{i}^{c} \in I_{r}$ by $G^{\prime \prime} \mid S^{\prime \prime} \leqslant H_{i}^{c}$. Thus $H_{i}^{c} \nless H_{j}^{c}$ for all $H_{i}^{c} \in I$ by $S_{j}^{c} \in G_{\mathcal{I}_{\mathfrak{j}}}^{*}=G_{\mathcal{I}_{\mathbf{j}_{l}}}^{*}$ and the induction hypothesis from $\tau_{\mathbf{I}_{l}}^{*} \in \tau_{\mathbf{I}_{l}}^{\hat{\Sigma}_{l}}$. The case of $\tau_{\mathbf{I}_{\mathbf{j}}}^{*}$ built up from $\tau_{\mathbf{I}_{\mathbf{j}}}^{*}$ is proved by a procedure similar to above and omitted.

- Claim (iii) holds by Step 4 at Stage 1 and 2. Note that in the whole of Stage 1, we treat $\left\{G_{b_{r k}}\right\}_{k=1}^{v}$ as a side-hypersequent. But it is possible that there exists $S_{j}^{c} \in\left\{G_{b_{r k}}\right\}_{k=1}^{v}$ such that $H_{j}^{c} \leqslant H_{I}^{V}$. Since we haven't applied the separation algorithm to $\left\{G_{b_{r k}}\right\}_{k=1}^{v}$ in Step 4 at Stage 1, then it could make Claim (iii) invalid. But it is not difficult to find that we just move the separation of such S_{j}^{c} to Step 4 at Stage 2. Of course, we can move it to Step 4 at Stage 1, but which make the discussion complicated.
- For Claim (iv), we prove (1) $H_{i}^{c} \| H_{j}^{c}$ for all $S_{j}^{c} \in G_{\mathbf{I}_{\lambda r}}^{\mathfrak{\mu}}$ and $H_{i}^{c} \in I$, (2) $H_{i}^{c} \| H_{j}^{c}$ for all $S_{j}^{c} \in$ $G_{\mathbf{I}_{V}}^{\langle } \backslash\left\{\widehat{S^{\prime}} \mid G_{H_{I}^{\nu}: G^{\prime}}^{\grave{\gtrless}(J)}\right\}$ and $H_{i}^{c} \in I$. Only (1) is proved as follows and (2) by a similar procedure and omitted.
 By a procedure similar to that of Claim (iv) in Case 1, we get $H_{j}^{c} \nless H_{I}^{V}$ and assume that $S_{j}^{c} \in G_{\mathcal{I}_{j},}^{*}$ for some $\tau_{\mathbf{I}_{j_{l}}}^{*} \in \tau_{\mathbf{I}_{l}}^{\gtrless}$ and let $G^{\prime} \mid S^{\prime} \nless H_{j}^{c}$ in the following.

Suppose that $G^{\prime \prime} \mid S^{\prime \prime} \leqslant H_{j}^{c}$. Then $S_{j}^{c} \in G_{H_{l}: G^{\prime \prime}}^{*}$ and $S^{\prime} \in\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{\mathfrak{j}_{l}}}$ by $S_{j}^{c} \in G_{\mathcal{I}_{j_{l}}}^{*}$. Hence
 thus $G^{\prime \prime} \mid S^{\prime \prime} \nless H_{j}^{c}$. Then $H_{I}^{V} \nless H_{j}^{c}$ by $G^{\prime} \mid S^{\prime} \nless H_{j}^{c}$ and $G^{\prime \prime} \mid S^{\prime \prime} \nless H_{j}^{c}$. Thus $H_{j}^{c} \| H_{I}^{V}$. Hence $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$. This completes the proof of Theorem 8.2.

Definition 8.12. The manipulation described in Theorem 8.2 is called derivation-grafting operation.

9. The proof of Main theorem

Recall that in Main theorem $G_{0} \equiv G^{\prime}\left|\left\{\Gamma_{i}, p \Rightarrow \Delta_{i}\right\}_{i=1 \cdots n}\right|\left\{\Pi_{j} \Rightarrow p, \Sigma_{j}\right\}_{j=1 \cdots m}$.
Lemma 9.1. (i) If $G_{2}=G_{0} \backslash\left\{\Gamma_{1}, p \Rightarrow \Delta_{1}\right\}$ and $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{2}\right)$ then $\vdash_{\text {GL }} \mathcal{D}_{0}\left(G_{0}\right)$;
(i^{\prime}) If $G_{2}=G_{0} \backslash\left\{\Pi_{1} \Rightarrow p, \Sigma_{1}\right\}$ and $\vdash{ }_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{2}\right)$ then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$;
(ii) If $G_{2}=G_{0} \mid\left\{\Gamma_{1}, p \Rightarrow \Delta_{1}\right\}$ and $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{2}\right)$ then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$;
(ii') If $G_{2}=G_{0} \mid\left\{\Pi_{1} \Rightarrow p, \Sigma_{1}\right\}$ and $\vdash \mathbf{G L} \mathcal{D}_{0}\left(G_{2}\right)$ then $\vdash \mathbf{G L} \mathcal{D}_{0}\left(G_{0}\right)$;
(iii) If $G_{2}=G_{0} \backslash\left\{\Gamma_{1}, p \Rightarrow \Delta_{1}\right\} \mid\left\{\Gamma_{1}, \mathrm{~T} \Rightarrow \Delta_{1}\right\}$ and $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{2}\right)$ then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$;
(iii') If $G_{2}=G_{0} \backslash \Pi_{1} \Rightarrow p, \Sigma_{1} \mid \Pi_{1} \Rightarrow \perp, \Sigma_{1}$ and $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{2}\right)$ then $\vdash{ }_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$.
Proof. (i) Since $\mathcal{D}_{0}\left(G_{2}\right)=G^{\prime}\left|\left\{\Gamma_{i}, \Pi_{j} \Rightarrow \Delta_{i}, \Sigma_{j}\right\}_{i=2 \cdots n ; j=1 \cdots m} \subseteq G^{\prime}\right|\left\{\Gamma_{1}, \Pi_{j} \Rightarrow \Delta_{1}, \Sigma_{j}\right\}_{j=1 \cdots m} \mid$
$\left\{\Gamma_{i}, \Pi_{j} \Rightarrow \Delta_{i}, \Sigma_{j}\right\}_{i=2 \cdots n ; j=1 \cdots m}=\mathcal{D}_{0}\left(G_{0}\right)$ then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$ holds. If $n=1$, we replace al$1 p$ in $\Pi_{j} \Rightarrow p, \Sigma_{j}$ with \perp. Then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$ holds by applying $(C U T)$ to $\Gamma_{1}, \perp \Rightarrow \Delta_{1}$ and $G^{\prime} \mid\left\{\Pi_{j} \Rightarrow \perp, \Sigma_{j}\right\}_{j=1 \cdots m}$.
(ii) Since $\mathcal{D}_{0}\left(G_{2}\right)=G^{\prime}\left|\left\{\Gamma_{1}, \Pi_{j} \Rightarrow \Delta_{1}, \Sigma_{j}\right\}_{j=1 \cdots m}\right|\left\{\Gamma_{i}, \Pi_{j} \Rightarrow \Delta_{i}, \Sigma_{j}\right\}_{i=1 \cdots n ; j=1 \cdots m}$ then $\vdash_{\text {GL }} \mathcal{D}_{0}\left(G_{0}\right)$ holds by applying $\left(E C^{*}\right)$ to $\mathcal{D}_{0}\left(G_{2}\right)$.
(iii) Since $\mathcal{D}_{0}\left(G_{2}\right)=G^{\prime}\left|\Gamma_{1}, \top \Rightarrow \Delta_{1}\right|\left\{\Gamma_{i}, \Pi_{j} \Rightarrow \Delta_{i}, \Sigma_{j}\right\}_{i=2 \cdots n ; j=1 \cdots m}$ then $\vdash_{\mathbf{G L}} G^{\prime \prime} \equiv G^{\prime} \mid \Gamma_{1}, \Pi_{1} \Rightarrow$ $\Delta_{1}, \Sigma_{1} \mid\left\{\Gamma_{i}, \Pi_{j} \Rightarrow \Delta_{i}, \Sigma_{j}\right\}_{i=2 \cdots n ; j=1 \cdots m}$ holds by applying (CUT) to $\Gamma_{1}, T \Rightarrow \Delta_{1}$ in $\mathcal{D}_{0}\left(G_{2}\right)$ and $\Pi_{1} \Rightarrow \mathrm{~T}, \Sigma_{1}$. Thus $\vdash_{\mathrm{GL}} \mathcal{D}_{0}\left(G_{0}\right)$ holds by applying $(E W)$ to $G^{\prime \prime}$.
(i'), (ii') and (iii') are proved by a procedure respectively similar to those of (i), (ii) and (iii) and omitted.

Let $I=\left\{H_{i_{1}}^{c}, \cdots, H_{i_{m}}^{c}\right\} \subseteq\left\{H_{1}^{c}, \cdots, H_{N}^{c}\right\}, G_{I}$ denote a closed hypersequent such that $G_{I} \subseteq_{c} G \mid G^{*}$ and $H_{j}^{c} \| H_{i}^{c}$ for all $S_{j}^{c} \in G_{I}$ and $H_{i}^{c} \in I$.

Lemma 9.2. There exists G_{I} such that $\vdash_{\mathbf{G L}_{\Omega}} G_{I}$ for all $I \subseteq\left\{H_{1}^{c}, \cdots, H_{N}^{c}\right\}$.
Proof. The proof is by induction on m. For the base step, let $m=0$, then $I=\varnothing$ and $G_{I}:=G \mid G^{*}$ and $\vdash{ }_{\mathrm{GL}_{\Omega}} G_{I}$ by Lemma 4.17(v).

For the induction step, suppose that $m \geqslant 1$ and there exists G_{I} such that $\vdash_{\mathbf{G L}_{\Omega}} G_{I}$ for all $|I| \leqslant m-1$. Then there exist $G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ for all $1 \leqslant k \leqslant m$ such that $\vdash \mathbf{G L}_{\Omega} G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ and $H_{j}^{c} \| H_{i}^{c}$ for all $S_{j}^{c} \in G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ and $H_{i}^{c} \in I \backslash\left\{H_{i_{k}}^{c}\right\}$.

If $H_{j}^{c} \| H_{i_{k}}^{c}$ for all $\left.S_{j}^{c} \in G_{I \backslash\left\{H_{i_{i}}^{c}\right\}}\right\}$ then $G_{I}:=G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ and the claim holds clearly. Otherwise there exists $S_{j}^{c} \in G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ such that $H_{j}^{c} \leqslant H_{i_{k}}^{c}$ or $H_{j}^{c}>H_{i_{k}}^{c}$ then we rewrite $G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ as $\left[S_{i_{k}^{\prime}}^{c}\right]_{\left\{H_{i_{k}^{c}}^{c}\right\} \cup I \backslash\left\{H_{i_{k}}^{c}\right\}}$,
where we define $H_{i_{k}^{\prime}}^{c}$ such that $S_{i_{k}^{\prime}}^{c} \in G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ and, $S_{j}^{c} \in G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ implies $H_{j}^{c} \leqslant H_{i_{k}^{\prime}}^{c}$ or $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in\left\{H_{i_{k}^{\prime}}^{c}\right\} \cup I \backslash\left\{H_{i_{k}}^{c}\right\}$. If we can't define G_{I} to be $G_{I \backslash\left\{H_{i_{k}}^{c}\right\}}$ for each $1 \leqslant k \leqslant m$, let $I^{\prime}:=$ $\left\{H_{i_{1}^{\prime}}^{c}, \cdots, H_{i_{m}^{\prime}}^{c}\right\}$. Then $G_{I^{\prime}}$ is constructed by applying the separation algorithm of multiple branches (or one branch if $m=1$) to $\left\lceil S_{i_{1}^{\prime}}^{c}\right]_{I^{\prime}}, \cdots,\left\lceil S_{i_{m}^{\prime}}^{c}\right\rceil_{I^{\prime}}$ Then $\vdash_{\mathbf{G L}_{\Omega}} G_{I^{\prime}}$ by $\vdash_{\mathbf{G L}_{\Omega}}\left\lceil S_{i_{1}^{\prime}}^{c}\right\rceil_{I^{\prime}}, \cdots, \vdash$ GL $_{\Omega}\left\lceil S_{i_{m}^{\prime}}^{c}\right\rceil_{I^{\prime}}$, Theorem 8.2 (or Lemma 7.8 (i) for one branch). Let $G_{I}:=G_{I^{\prime}}$ then $\vdash{ }_{\mathbf{G L}}^{\Omega}{ }_{\Omega} G_{I}$ clearly.

The proof of Main theorem: Let $I=\left\{H_{1}^{c}, \cdots, H_{N}^{c}\right\}$ in Lemma 9.2. Then there exists G_{I} such that $\vdash_{\mathbf{G L}_{\Omega}} G_{I}, G_{I} \subseteq_{c} G \mid G^{*}$ and $H_{j}^{c} \| H_{i}^{c}$ for all $S_{j}^{c} \in G_{I}$ and $H_{i}^{c} \in I$. Then $\vdash_{\mathbf{G L}} \mathcal{D}\left(G_{I}\right)$ by Lemma 5.6.

Suppose that $S_{j}^{c} \in G_{I}$. Then $H_{j}^{c} \| H_{i}^{c}$ for all $H_{i}^{c} \in I$. Thus $H_{j}^{c} \| H_{j}^{c}$ by $H_{j}^{c} \in I$, a contradiction with $H_{j}^{c} \leqslant H_{j}^{c}$ and hence there doesn't exist $S_{j}^{c} \in G_{I}$. Therefore $G_{I} \subseteq_{c} G$ by $G_{I} \subseteq_{c} G \mid G^{*}$.

By removing the identification number of each occurrence of p in G, we obtain the subhypersequent G_{2} of $G_{2} \mid G_{2}^{*}$, which is the root of τ^{4} resulting from Step 4 in Section 4. Then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{2}\right)$ by $\vdash_{\mathbf{G L}} \mathcal{D}\left(G_{I}\right)$ and $G_{I} \subseteq_{c} G$. Since G_{2} is constructed by adding or removing some $\Gamma_{i}, p \Rightarrow \Delta_{i}$ or $\Pi_{j} \Rightarrow p, \Sigma_{j}$ from G_{0}, or replacing $\Gamma_{i}, p \Rightarrow \Delta_{i}$ with $\Gamma_{i}, \top \Rightarrow \Delta_{i}$, or $\Pi_{j} \Rightarrow p, \Sigma_{j}$ with $\Pi_{j} \Rightarrow \perp, \Sigma_{j}$, then $\vdash_{\mathbf{G L}} \mathcal{D}_{0}\left(G_{0}\right)$ by Lemma 9.1. This completes the proof of Main theorem.

Theorem 9.3. Density elimination holds for all GL in \{GUL, GIUL, GMTL, GIMTL\}.

Proof. It follows immediately from Main theorem.

10. Final remarks and open problems

Recently, we have generalized our method described in this paper to the non-commutative substructural logic GpsUL ${ }^{*}$ in [24]. This result shows that GpsUL ${ }^{*}$ is the logic of pseudouninorms and their residua and answered the question posed by Prof. Metcalfe, Olivetti, Gabbay and Tsinakis in [17, 18].

It has often been the case in the past that metamathematical proofs of the standard completeness have the corresponding algebraic ones, and vise verse. In particular, Baldi and Terui [3] had given an algebraic proof of the standard completeness of UL and their method had also been extended by Galatos and Horcik [11]. A natural problem is whether there is an algebraic proof corresponding to our proof-theoretic one. It seems difficult to obtain it by using the insights gained from the approach described in this paper because ideas and syntactic manipulations introduced here are complicated and specialized. In addition, Baldi and Terui [3] also mentioned some open problems. Whether our method could be applied to their problems is another research direction.

Acknowledgements

I am grateful to Prof. Lluis Godo, Prof. Arnon Avron, Prof. Jean-Yves Girard and Prof. George Metcalfe for valuable discussions. I would like to thank two anonymous reviewers for carefully reading the first version of this article and many instructive suggestions.

References

[1] A. Avron, A constructive analysis of RM, Journal of Symbolic Logic 52 (1987), 939-951.
[2] A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence 4(3-4)(1991), 225-248.
[3] P. Baldi, K. Terui, Densification of FL chains via residuated frames, Algebra universalis 75(2)(2016), 169-195.
4] C. C. Chang, Algebraic analysis of many-valued logics, Transactions of the American Mathematical Society 88(1958),467-490.
[5] C. C. Chang, A new proof of the completeness of the Lukasiewicz's axioms, Transactions of the American Mathematical Society 93(1959), 74-80.
[6] R. Cignoli, F. Esteva, L. Godo and A. Torrens, Basic fuzzy logic is the logic of continuous t-norms and their residua, Soft Computing 4(2000), 106-112.
[7] A. Ciabattoni, G. Metcalfe, Density elimination, Theoretical Computer Science 403(2008), 328-346.
[8] P. Cintula, C. Noguera, Implicational (semilinear) logics I: a new hierarchy, Archive for Mathematical Logic 49(2010), 417-446.
9] F. Esteva and L. Godo, Monoidal t-norm based logic: towards a logic for left-continuous t-norms, Fuzzy Sets and Systems 124(2001), 271-288.
[10] F. Esteva, J. Gispert, L. Godo and F. Montagna, On the standard and rational completeness of some axiomatic extensions of the monoidal t-norm logic, Studia Logica 71(2)(2002), 199-226.
[11] N. Galatos, R. Horcik, Densification via polynomials, languages and frames, Submitted for publication, 2015.
[12] P. Hájek, Metamathematics of fuzzy logic, Kluwer, Dordrecht, 1998.
[13] P. Hájek, Basic fuzzy logic and BL-algebras, Soft Computing 2(1998), 124-128.
[14] S. Jenei, Co-rotation constructions of residuated semigroups, Fuzzy Sets and Systems 252(2014), 25-34.
[15] S. Jenei, F. Montagna, A proof of standard completeness of Esteva and Godo's monoidal logic MTL, Studia Logica $70(2)(2002), 184-192$.
[16] G. Metcalfe, F. Montagna, Substructural fuzzy logics, Journal of Symbolic Logic 7(3)(2007),834-864.
[17] G. Metcalfe, N. Olivetti and D. Gabbay. Proof Theory for Fuzzy Logics, Springer Series in Applied Logic, Vol.36, 2009.
[18] G. Metcalfe, C. Tsinakis, Density revisited, Soft computing, 2017, 21(1): 175-189.
[19] G. Pottinger, Uniform cut-free formulations of T, S4 and S5 (abstract), Journal of Symbolic Logic 48(1983),900901.
[20] A. Rose, J. B. Rosser, Fragments of many-valued statement calculi, Transactions of the American Mathematical Society 87(1958), 1-53.
[21] G. Takeuti, T. Titani, Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, Journal of Symbolic Logic 49(3)(1984), 851-866.
[22] S. M. Wang, Involutive uninorm logic with the n-potency axiom, Fuzzy Sets and Systems, 218(2013), 1-23.
[23] S. M. Wang, The Finite Model Property for Semilinear Substructural Logics, Mathematical Logic Quarterly 59(45)(2013), 268-273.
[24] S. M. Wang, The logic of pseudo-uninorms and their residua, arXiv preprint arXiv:1707.05441, 2017.

Appendices

A. 1 Why do we adopt Avron-style hypersequent calculi?

A hypersequent calculus is called Pottinger-style if its two-premise rules are in the form of $\frac{G\left|S^{\prime} G\right| S^{\prime \prime}}{G \mid H^{\prime}}(I I)$ and, Avron-style if in the form of $\frac{G^{\prime}\left|S^{\prime} G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}(I I)$. In the viewpoint of Avronstyle systems, each application of two-premise rules contains implicitly applications of ($E C$) in Pottinger-style systems, as shown in the following.

$$
\frac{G\left|S^{\prime} G\right| S^{\prime \prime}}{G \mid H^{\prime}}(I I) \underset{\text { in Avron-style system }}{\text { corresponds to }} \frac{\frac{G\left|S^{\prime} G\right| S^{\prime \prime}}{G|G| H^{\prime}}(I I)}{G \mid H^{\prime}}\left(E C^{*}\right)
$$

The choice of the underlying system of hypersequent calculus is vital to our purpose and it gives the background or arena. In Pottinger-style system, G_{0} in Section 3 is proved without application of $(E C)$ as follows. But it seems helpless to prove that H_{0} is a theorem of IUL.

The peculiarity of our method is not only to focus on controlling the role of the external contraction rule in the hypersequent calculus but also introduce other syntactic manipulations. For example, we label occurrences of the eigenvariable p introduced by an application of the density rule in order to be able to trace these occurrences from the leaves (axioms) of the derivation to the root (the derived hypersequent).

A. 2 Why do we need the constrained external contraction rule?

We use the example in Section 3 to answer this question. Firstly, we illustrate Notation 4.14 as follows. In Figure 4 , let $S_{11}^{c}=A \Rightarrow p_{2} ; S_{12}^{c}=A \Rightarrow p_{1} ; S_{21}^{c}=A \Rightarrow p_{4} ; S_{22}^{c}=A \Rightarrow$ $p_{3} ; S_{31}^{c}=p_{1}, p_{2} \Rightarrow A \odot A ; S_{32}^{c}=p_{3}, p_{4} \Rightarrow A \odot A ; G_{1}^{\prime}=p_{1}, p_{2} \Rightarrow A \odot A ; G_{2}^{\prime}=p_{3}, p_{4} \Rightarrow A \odot A ;$ $G_{3}^{\prime}=A \Rightarrow p_{1}\left|\Rightarrow p_{2}, B\right| B \Rightarrow p_{4}, \neg A \odot \neg A \mid A \Rightarrow p_{3}$. Then $H_{i}^{c}=G_{i}^{\prime}\left|S_{i 1}^{c}\right| S_{i 2}^{c}$ for $i=1,2,3 . H_{i}^{c}$ are ($p E C$)-nodes and, $S_{i 1}^{c}$ and $S_{i 2}^{c}$ are ($p E C$)-sequents.

Let $G_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}=\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A$. We denote the derivation $\tau_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}$ of $G_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}$ from $A \Rightarrow p_{2}$ by $\xlongequal[G_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}]{A \Rightarrow p_{2}}\left\langle\tau_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}\right\rangle$. Since we focus on sequents in G^{*} in the separation algorithm, we abbreviate $\xlongequal{\left.\substack{G_{H_{1}: A \Rightarrow p_{2}}^{*}} \tau_{H_{1}^{c}: A \Rightarrow p_{2}}^{*}\right\rangle \text { to } \xlongequal[S_{22}^{c} \mid S_{32}^{c}]{S_{11}^{c}}\left\langle\tau_{S_{11}}^{*}\right\rangle \text { and further to } 0 \text {. }{ }^{*}}$ $\frac{1}{2 \mid 3}\left\langle\tau_{1}^{*}\right\rangle$. Then the separation algorithm $\tau_{H_{1}^{c} \cdot G \mid G^{*}}^{\alpha^{\beta}}$ is abbreviated as

$$
\left.\left.\frac{\frac{1|2| 3}{2^{\prime}\left|3^{\prime}\right| 2 \mid 3}\left\langle\tau_{1}^{*}\right\rangle}{2^{\prime} \mid 2}\left\langle\tau_{3}^{*}, \tau_{3^{\prime}}^{*}\right\rangle\right) 2 E C_{\Omega}\right\rangle
$$

where 2^{\prime} and 3^{\prime} are abbreviations of $A \Rightarrow p_{5}$ and $p_{5}, p_{6} \Rightarrow A \odot A$, respectively. We also write 2^{\prime} and 3^{\prime} respectively as 2 and 3 for simplicity. Then the whole separation derivation is given as follows.

$$
\left.\begin{array}{|cl|}
\hline \frac{1|2| 3}{\frac{2|3| 2 \mid 3}{2 \mid 2}\left\langle\tau_{1}^{*}\right\rangle}\left\langle\tau_{3}^{*}, \tau_{3}^{*}\right\rangle \\
2 & \frac{1|2| 3}{2|1| 3}\left\langle\tau_{2}^{*}\right\rangle \\
\hline \varnothing & \frac{\frac{1}{1 \mid 1}\left\langle\tau_{3}^{*}\right\rangle}{1}\left\langle E C_{\Omega}\right\rangle \\
\hline 48
\end{array} \tau_{\{1,2\}}^{*}\right\rangle
$$

where \varnothing is an abbreviation of $G^{\prime \prime}$ in Page 14 and means that all sequents in it are copies of sequents in G_{0}. Note that the simplified notations become intractable when we decide whether $\left\langle E C_{\Omega}\right\rangle$ is applicable to resulting hypersequents. If no application of $\left\langle E C_{\Omega}\right\rangle$ is used in it, all resulting hypersequents fall into the set $\{1|2| 3|\cdots| 3,2|2| 3|\cdots| 3,1|1| 3|\cdots| 3: l \geq 0, m \geq 0, n \geq 0\}$
and \varnothing is never obtained.

A. 3 Why do we need the separation of branches?

In Figure 11, p_{1} and p_{2} in the premise of $\frac{p_{1}, p_{2} \Rightarrow A \odot A}{p_{1} \Rightarrow C \mid C, p_{2} \Rightarrow A \odot A}\left\langle\tau_{S_{31}^{c}}^{*}\right\rangle$ could be viewed as being tangled in one sequent $p_{1}, p_{2} \Rightarrow A \odot A$ but in the conclusion of $\left\langle\tau_{S_{31}^{c}}^{*}\right\rangle$ they are separated into two sequents $p_{1} \Rightarrow C$ and $C, p_{2} \Rightarrow A \odot A$, which are copies of sequents in G_{0}. In Figure 5, p_{2} in $A \Rightarrow p_{2}$ falls into $\Rightarrow p_{2}, B$ in the root of $\tau_{H^{c}: A \Rightarrow p_{2}}^{*}$ and $\Rightarrow p_{2}, B$ is a copy of a sequent in G_{0}. The same is true for p_{4} in $A \Rightarrow p_{4}$ in Figure 8. But it's not the case.

Lemma 6.6 (vi) shows that in the elimination rule $\xlongequal[G_{S_{11}^{c}}^{*}]{S_{11}^{c}}\left\langle\tau_{S_{11}^{c}}^{*}\right\rangle, S_{j}^{c} \in G_{S_{11}^{c}}^{*}$ implies $H_{j}^{c}<H_{i}^{c}$ or $H_{j}^{c} \| H_{i}^{c}$. If there exists no $S_{j}^{c} \in G_{S_{11}^{c}}^{*}$ such that $H_{j}^{c}<H_{i}^{c}$, then $S_{j}^{c} \in G_{S_{11}^{c}}^{*}$ implies $H_{j}^{c} \| H_{i}^{c}$ and, thus each occurrence of $p^{\prime} s$ in S_{11}^{c} is fell into a unique sequent which is a copy of a sequent in G_{0}. Otherwise there exists $S_{j}^{c} \in G_{S_{11}^{c}}^{*}$ such that $H_{j}^{c}<H_{i}^{c}$, then we apply $\left\langle\tau_{S_{j}^{c}}^{*}\right\rangle$ to S_{j}^{c} in $G_{S_{11}^{c}}^{*}$ and the whole operations can be written as

Repeatedly we can get $G_{S_{11}^{c}}^{\hbar^{(J)}}$ such that $S_{j}^{c} \in G_{S_{11}^{c}}^{\mathrm{¿}^{c}(J)}$ implies $H_{j}^{c} \| H_{1}^{c}$. Then each occurrence of $p^{\prime} s$ in S_{11}^{c} is fell into a unique sequent in $G_{S_{11}^{c}}^{\hbar(J)}$ which is a copy of a sequent in G_{0}. In such case, we call occurrences of $p^{\prime} s$ in S_{11}^{c} are separated in $G_{S_{11}^{c}}^{\iota^{(J)}}$ and call such a procedure the separation algorithm. It is the starting point of the separation algorithm. We introduce branches in order to tackle the case of multiple-premise separation derivations for which it is necessary to apply $\left(E C_{\Omega}\right)$ to the resulting hypersequents.

A. 4 Some questions about Theorem 8.2

In Theorem 8.2, $\tau_{\mathrm{I}}^{\boldsymbol{\aleph}}$ is constructed by induction on the number $|I|$ of branches. As usual, we take the algorithm of $|I|-1$ branches as the induction hypothesis. Why do we take $\tau_{\mathbf{I}_{l}}^{ふ 3}$ and $\tau_{\mathbf{I}_{r}}^{\langle\boldsymbol{\beta}}$ as the induction hypothesises?

Roughly speaking, it degenerates the case of $|I|$ branches into the case of two branches in the following sense. The subtree $\tau^{*}\left(G^{\prime \prime} \mid S^{\prime \prime}\right)$ of τ^{*} is as a whole contained in $\tau_{\mathcal{I}_{\mathfrak{j}_{l}}}^{*}$ or not in it. Similarly, $\tau^{*}\left(G^{\prime} \mid S^{\prime}\right)$ of τ^{*} is as a whole contained in $\tau_{\mathcal{I}_{\mathrm{j} r}}^{*}$ or not in it. It is such a division of I into I_{l} and I_{r} that makes the whole algorithm possible.

Claim (i) of Theorem 8.2 asserts that $H_{i}^{c} \nless H_{j}^{c}$ for all $S_{j}^{c} \in G_{\mathcal{I}_{\mathbf{j}}}^{*}$ and $H_{i}^{c} \in I$. It guarantees that $\tau_{\mathcal{I}_{\mathrm{j}}}^{*}$ is not far from the final aim of Theorem 8.2 but roughly close to it if we define some complexity to calculate it. If $H_{i}^{c} \leqslant H_{j}^{c}$, the complexity of $G_{\mathbf{I}_{\mathbf{j}}}^{*}$ is more than or equal to that of $\left\lceil S_{i}^{c}\right\rceil_{I}$ under such a definition of complexity and thus such an application of $\tau_{\mathcal{I}_{\mathrm{j}}}^{*}$ is redundant at least. Claim (iii) of Theorem 8.2 guarantees the validity of the step 4 of Stage 1 and 2.

The tree structure of the skeleton of $\tau_{\mathbf{I}_{l}}^{\hat{\omega}_{l}}\left(\tau_{\mathbf{I}_{\mathbf{I}_{r}}}^{*}\right)$ can be obtained by deleting some node $H \in \bar{\tau}_{\mathbf{I}_{l}}^{\overline{\xi_{i}}}$
 whose premises are same as ones of $\tau_{\mathbf{I}_{r}}^{*}$. However, it is incredibly difficult to imagine or describe the structure of $\tau_{\mathbf{I}}^{\boldsymbol{\alpha}}$ if you want to expand it as a normal derivation, a binary tree.
 The structure of the proof of Theorem 8.2 is depicted in the following figure.

A. 5 Illustrations of notations and algorithms

We use the example in Section 3 to illustrate some notations and algorithms in this paper.
A.5.1 Illustration of two cases of (COM) in the proof of Lemma 5.6

Let $\frac{G^{\prime} \quad G^{\prime \prime}}{G^{\prime \prime \prime}}(C O M)$ be $\frac{p_{1} \Rightarrow p_{1} \quad A \Rightarrow A}{A \Rightarrow p_{1} \mid p_{1} \Rightarrow A}(C O M)$, where $G^{\prime}=S_{1}=p_{1} \Rightarrow p_{1} ; G^{\prime \prime}=S_{2}=$ $A \Rightarrow A ; S_{3}=A \Rightarrow p_{1} ; S_{4}=p_{1} \Rightarrow A$ and $G^{\prime \prime \prime}=S_{3} \mid S_{4}$. Then $\left[S_{3}\right]_{G^{\prime \prime \prime}}=\left[S_{4}\right]_{G^{\prime \prime \prime}} ; \mathcal{D}_{G^{\prime}}\left(S_{1}\right)=\Rightarrow$ $t ; \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)=A \Rightarrow A ; \mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3} \mid S_{4}\right)=A \Rightarrow A$. Thus the proof of $\frac{\mathcal{D}_{G^{\prime}}\left(S_{1}\right) \mathcal{D}_{G^{\prime}}\left(S_{2}\right)}{\mathcal{D}_{G^{\prime}}\left(S_{3} \mid S_{4}\right)}$ is constructed by $\frac{\Rightarrow t \quad \frac{A \Rightarrow A}{A, t \Rightarrow A}\left(t_{l}\right)}{A \Rightarrow A}(C U T)$.

Let $\frac{G^{\prime} \quad G^{\prime \prime}}{G^{\prime \prime \prime}}(C O M)$ be $\frac{B \Rightarrow B\binom{\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A\left|p_{1}, p_{2} \Rightarrow A \odot A\right|}{A \Rightarrow p_{1}\left|A \Rightarrow p_{3}\right| p_{3}, p_{4} \Rightarrow A \odot A}}{\binom{\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| A \Rightarrow p_{1} \mid}{ p_{1}, p_{2} \Rightarrow A \odot A\left|A \Rightarrow p_{3}\right| p_{3}, p_{4} \Rightarrow A \odot A}}(C O M)$,
where $G^{\prime}=S_{1}=B \Rightarrow B ; G_{2}=p_{1}, p_{2} \Rightarrow A \odot A\left|A \Rightarrow p_{1}\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A$;
$S_{2}=\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A ; G^{\prime \prime}=G_{2} \mid S_{2} ; S_{3}=\Rightarrow p_{2}, B ; S_{4}=B \Rightarrow p_{4}, \neg A \odot \neg A$ and $G^{\prime \prime \prime}=G_{2}\left|S_{3}\right| S_{4}$. Then $\mathcal{D}_{G^{\prime}}\left(S_{1}\right)=B \Rightarrow B ; \mathcal{D}_{G^{\prime \prime}}\left(S_{2}\right)=A, A \Rightarrow A \odot A, \neg A \odot \neg A, A \odot A ; \mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3}\right)=A \Rightarrow B, A \odot A$; $\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{4}\right)=A, B \Rightarrow A \odot A, \neg A \odot \neg A ; \mathcal{D}_{G^{\prime \prime \prime}}\left(S_{3} \mid S_{4}\right)=\mathcal{D}_{G^{\prime \prime \prime}}\left(S_{4}\right) \mid \mathcal{D}_{G^{\prime \prime \prime}}\left(S_{4}\right)$.

Thus the proof of $\frac{\mathcal{D}_{G^{\prime}}\left(S_{1}\right) \quad \mathcal{D}_{G^{\prime}}\left(S_{2}\right)}{\mathcal{D}_{G^{\prime}}\left(S_{3} \mid S_{4}\right)}$ is constructed by

$$
\frac{B \Rightarrow B \quad A, A \Rightarrow A \odot A, \neg A \odot \neg A, A \odot A}{A \Rightarrow B, A \odot A \mid A, B \Rightarrow A \odot A, \neg A \odot \neg A}(C O M)
$$

A.5.2 Illustration of Construction 6.1

Let τ^{*} be

$$
\frac{\frac{H_{8} \equiv B \Rightarrow B H_{9} \equiv A \Rightarrow A}{H_{4} \equiv A \Rightarrow B \mid B \Rightarrow A}(C O M) \frac{H_{10} \equiv B \Rightarrow B H_{11} \equiv A \Rightarrow A}{H_{5} \equiv A \Rightarrow B \mid B \Rightarrow A}(C O M)}{\hdashline H_{2} \equiv A \Rightarrow B|A \Rightarrow B| B, B \Rightarrow A \odot A}\left(\odot_{r}\right)\left(\neg_{r}\right) .
$$

By Construction 6.1, $\tau^{* *}$ is then given as follows.

$$
\frac{\frac{(B \Rightarrow B ; 8,0)(A \Rightarrow A ; 9,0)}{(A \Rightarrow B ; 4,1) \mid(B \Rightarrow A ; 4,2)}(C O M) \frac{(B \Rightarrow B ; 10,0)(A \Rightarrow A ; 11,0)}{(A \Rightarrow B ; 5,1) \mid(B \Rightarrow A ; 5,2)}(C O M)}{(A \Rightarrow B ; 4,1)|(A \Rightarrow B ; 5,1)|(B, B \Rightarrow A \odot A ; 2,0)}\left(\odot_{r}\right)\left(\neg_{r}\right) .
$$

As an example, we calculate $\wp\left(H_{8}\right)$. Since $\operatorname{Th}\left(H_{8}\right)=\left(H_{8}, H_{4}, H_{2}, H_{1}\right)$, then $b_{3}=1, b_{2}=$ $b_{1}=b_{0}=0$ by Definition 2.13. Thus $\wp\left(H_{8}\right)=b_{0} 2^{0}+b_{1} 2^{1}+b_{2} 2^{2}+b_{3} 2^{3}=8$.

Note that we can't distinguish the one from the other for two $A \Rightarrow B^{\prime} s$ in $H_{2} \in \tau^{*}$. If we divide H_{2} into $H^{\prime} \mid H^{\prime \prime}$, where $H^{\prime} \equiv A \Rightarrow B$ and $H^{\prime \prime} \equiv A \Rightarrow B \mid B, B \Rightarrow A \odot A$, then $H^{\prime} \cap H^{\prime \prime}=\{A \Rightarrow B\}$ in the conventional meaning of hypersequents. Thus only in the sense that we treat τ^{*} as $\tau^{* *}$, the assertion that $H^{\prime} \cap H^{\prime \prime}=\varnothing$ for any $H^{\prime} \mid H^{\prime \prime} \subseteq H$ in Proposition 6.2 holds.

A.5.3 Illustration of Notation 6.10 and Construction 6.11

Let $I=\left\{H_{1}^{c}, H_{2}^{c}\right\}, I_{l}=\left\{H_{1}^{c}\right\}, I_{r}=\left\{H_{2}^{c}\right\}, \mathcal{I}=\left\{S_{11}^{c}, S_{21}^{c}\right\}, \mathcal{I}_{l}=\left\{S_{11}^{c}\right\}, \mathcal{I}_{r}=\left\{S_{21}^{c}\right\}$,

$$
\frac{G^{\prime}\left|S^{\prime} G^{\prime \prime}\right| S^{\prime \prime}}{G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}}\left(\odot_{r}\right) \in \tau^{*},
$$

where $G^{\prime}\left|G^{\prime \prime}\right| H^{\prime}=H_{I}^{V} ; G^{\prime} \equiv A \Rightarrow p_{1} \mid p_{1}, p_{2} \Rightarrow A \odot A ; S^{\prime} \equiv \Rightarrow p_{2}, \neg A$; $G^{\prime \prime} \equiv A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A ; S^{\prime \prime} \equiv \Rightarrow p_{4}, \neg A ; H^{\prime} \equiv \Rightarrow p_{2}, p_{4}, \neg A \odot \neg A$
(See Figure 4).
$\left\langle G^{\prime} \mid S^{\prime}\right\rangle_{\mathcal{I}_{l}}=\Rightarrow p_{2}, \neg A ;\left\langle G^{\prime}\right\rangle_{\mathcal{I}_{l}}=\varnothing ;\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{l}}=A \Rightarrow p_{3}\left|\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A\right| p_{3}, p_{4} \Rightarrow$ $A \odot A ;\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}_{l}}=G_{\mathcal{I}_{l}}^{*}=G_{S_{11}^{c}}^{*} \Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| A \Rightarrow p_{3} \mid p_{3}, p_{4} \Rightarrow A \odot A$ (See Figure 5).
$\left\langle G^{\prime \prime} \mid S^{\prime \prime}\right\rangle_{\mathcal{I}_{r}}=\Rightarrow p_{4}, \neg A ;\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}_{r}}=A \Rightarrow p_{1}\left|\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A\right| p_{1}, p_{2} \Rightarrow A \odot A ;$
$\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}_{r}}=G_{\mathcal{I}_{r}}^{*}=G_{S_{21}^{c}}^{*}=A \Rightarrow p_{1}\left|\Rightarrow p_{2}, B\right| B \Rightarrow p_{4}, \neg A \odot \neg A\left|p_{1} \Rightarrow C\right| C, p_{2} \Rightarrow A \odot A$ (See Figure 8).
$\left\langle G^{\prime}\right| G^{\prime \prime}\left|H^{\prime}\right\rangle_{\mathcal{I}}=\Rightarrow p_{2}, p_{4}, \neg A \odot \neg A ;\left\langle G \mid G^{*}\right\rangle_{\mathcal{I}}=G_{\mathcal{I}}^{*}=G_{\left\{s_{11}^{c}, s s_{21}^{c}\right\}}^{*}=G_{\mathcal{I}_{l}}^{*} \cap G_{\mathcal{I}_{r}}^{*}=\Rightarrow p_{2}, B \mid B \Rightarrow$ $p_{4}, \neg A \odot \neg A$ (See Figure 10).

A.5.4 Illustration of Theorem 8.2

Note that sequents in [] are principal sequents of elimination rules in the following. Let I, I_{r}, I_{l} be the same as in A.5.3 and, $\mathbf{I}=\left\{\left\lceil S_{1}^{c}\right\rceil_{I},\left\lceil S_{2}^{c}\right\rceil_{I}\right\}, \mathbf{I}_{l}=\left\{\left[S_{1}^{c}\right]_{I}\right\}, \mathbf{I}_{r}=\left\{\left[S_{2}^{c}\right]_{I}\right\}$,

$$
\begin{aligned}
& \left\lceil S_{1}^{c}\right\rceil_{I}=G_{H_{2}^{c}: G \mid G^{*}}^{\text {¿}}=A \Rightarrow p_{5}\left|\Rightarrow p_{6}, B\right| B \Rightarrow p_{8}, \neg A \odot \neg A\left|p_{5} \Rightarrow C\right| \\
& C, p_{6} \Rightarrow A \odot A\left|B \Rightarrow p_{7}, \neg A \odot \neg A\right| p_{7} \Rightarrow C \mid C, p_{8} \Rightarrow A \odot A, \\
& \left\lceil S_{2}^{c}\right\rceil_{I}=G_{H_{t}^{c}: G \mid G^{*}}^{\curlywedge}=\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| \\
& A \Rightarrow p_{3}\left|\Rightarrow p_{1}, B\right| p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A .
\end{aligned}
$$

where $G_{\mathbf{I}_{l}}^{\hat{\sim}(1)}=\left[\Rightarrow p_{5}, B\left|B \Rightarrow p_{10}, \neg A \odot \neg A\right| A \Rightarrow p_{9} \mid p_{10}, p_{9} \Rightarrow A \odot A\right]\left|\Rightarrow p_{6}, B\right|$

$$
B \Rightarrow p_{8}, \neg A \odot \neg A\left|p_{5} \Rightarrow C\right| C, p_{6} \Rightarrow A \odot A\left|B \Rightarrow p_{7}, \neg A \odot \neg A\right|
$$ $p_{7} \Rightarrow C \mid C, p_{8} \Rightarrow A \odot A$,

$G_{\mathbf{I}_{l}}^{\check{\imath(2)}}=\Rightarrow p_{5}, B\left|B \Rightarrow p_{10}, \neg A \odot \neg A\right| A \Rightarrow p_{9}\left|\left[p_{9} \Rightarrow C \mid C, p_{10} \Rightarrow A \odot A\right]\right|$
$\Rightarrow p_{6}, B\left|B \Rightarrow p_{8}, \neg A \odot \neg A\right| p_{5} \Rightarrow C\left|C, p_{6} \Rightarrow A \odot A\right|$
$B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{7} \Rightarrow C\right| C, p_{8} \Rightarrow A \odot A$,
$G_{\mathbf{I}_{l}}^{\boldsymbol{\beta}_{3}}=\Rightarrow p_{5}, B\left|A \Rightarrow p_{9}\right| p_{9} \Rightarrow C\left|\Rightarrow p_{6}, B\right| B \Rightarrow p_{8}, \neg A \odot \neg A \mid$

$$
p_{5} \Rightarrow C\left|C, p_{6} \Rightarrow A \odot A\right| B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{7} \Rightarrow C\right| C, p_{8} \Rightarrow A \odot A
$$

$G_{H_{1}^{\prime}: G^{\prime \prime}}^{\mathrm{H}^{\prime(J)}}=A \Rightarrow p_{9}\left|p_{9} \Rightarrow C\right| C, p_{10} \Rightarrow A \odot A ; \widehat{S^{\prime \prime}}=B \Rightarrow p_{10}, \neg A \odot \neg A ; \widehat{S^{\prime}}=\Rightarrow p_{5}, B ;$
$G_{H_{l}^{\nu}: H^{\prime}}^{\grave{\mu}(J)}=G_{H_{:}^{V}: H^{\prime}}^{*}=\widehat{S^{\prime}}\left|\widehat{S^{\prime \prime}} ; G_{\dagger}=A \Rightarrow p_{9}\right| p_{9} \Rightarrow C\left|C, p_{10} \Rightarrow A \odot A\right| B \Rightarrow p_{10}, \neg A \odot \neg A$.
where $G_{\mathbf{I}_{r}}^{\approx(1)} \Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right|$ $\Rightarrow p_{1}, B\left|p_{3} \Rightarrow C\right| C, p_{4} \Rightarrow A \odot A \mid\left[A \Rightarrow p_{11}\left|\Rightarrow p_{12}, B\right|\right.$
$\left.B \Rightarrow p_{3}, \neg A \odot \neg A\left|p_{11} \Rightarrow C\right| C, p_{12} \Rightarrow A \odot A\right]$,
$G_{\mathbf{I}_{r}}^{\overleftrightarrow{\omega}}=\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right|$

$$
\Rightarrow p_{1}, B\left|p_{3} \Rightarrow C\right| C, p_{4} \Rightarrow A \odot A\left|A \Rightarrow p_{11}\right| B \Rightarrow p_{3}, \neg A \odot \neg A \mid p_{11} \Rightarrow C .
$$

Since there is only one elimination rule in $\tau_{\mathbf{I}_{r}}^{\vec{\mu}}$, the case we need to process is $\tau_{H_{2}^{c: A A p_{3}}}^{*}$, i.e.,

$$
\tau_{\mathbf{I}_{\mathbf{j}_{r}}}^{*}=\frac{\left\lceil S_{2}^{c}\right]_{I}}{G_{\left.H_{2}^{c}: \mid S_{2}^{c}\right]_{I}}^{\approx(1)}}\left\langle\tau_{H_{2}^{c}: A \Rightarrow p_{3}}^{*}\right\rangle .
$$

Then $v=1, S_{j_{r 1}}^{c}=A \Rightarrow p_{3} ; G_{b_{r 1}} \Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C \mid$
$C, p_{2} \Rightarrow A \odot A\left|\Rightarrow p_{1}, B\right| p_{3} \Rightarrow C \mid C, p_{4} \Rightarrow A \odot A$ in $\tau_{\mathbf{I}_{\mathfrak{j}}}^{*}$.
 $G_{1}^{\circ}=G_{\mathbf{I}_{l}}^{\hat{\boldsymbol{\mu}}}$.

Since there is only one elimination rule in $\tau_{\mathbf{I}_{l}: G_{1}^{G \circ}(2)}^{\langle\langle(0)}$, the case we need to process is $\tau_{H_{1}^{c}: A A p_{5}}^{*}$, i.e.,

$$
\tau_{\mathbf{I}_{\mathbf{j}_{l}}}^{*}=\xlongequal{\left\lceil S_{1}^{c}\right\rceil_{I}} \underset{G_{\mathbf{I}_{l}}^{\langle\hat{\mathbf{N}}(1)}}{ }\left\langle\tau_{H_{1}^{c}: A \Rightarrow p_{5}}^{*}\right\rangle .
$$

Then $u=1, S_{j}^{c} j_{\left(t_{11}\right)}=A \Rightarrow p_{5} ; G_{b_{l 1}}=\Rightarrow p_{6}, B\left|B \Rightarrow p_{8}, \neg A \odot \neg A\right|$ $p_{5} \Rightarrow C\left|C, p_{6} \Rightarrow A \odot A\right| B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{7} \Rightarrow C\right| C, p_{8} \Rightarrow A \odot A$ in $\tau_{\mathbf{I}_{j}}^{*}$.
$\tau_{\mathbf{I}_{j_{l}}}^{*}$ is replaced with $\tau_{\mathbf{I}_{j} \cup \mathbf{I}_{\mathbf{j}_{j}}}^{*}$ in Step 3 of Stage 1, i.e.,

$$
\xlongequal[G_{l, r}]{\left\lceil S_{1}^{c}\right]_{I}\left\lceil S_{2}^{c}\right]_{I}}\left\langle\tau_{\left\{H_{:}^{c}: A \Rightarrow p_{5}, H_{2}^{c}: A \Rightarrow p_{3}\right\}}^{*}\right\rangle=\tau_{\mathbf{I}_{:}: G_{1}^{\circ \circ}(3)}^{\approx \sim(0)}=\tau_{\mathbf{I}_{l}: G_{1}^{\circ \circ}(4)}^{\gtrless(0)} \text {, where }
$$

$$
G_{l, r}=\Longrightarrow p_{5}, B\left|B \Rightarrow p_{3}, \neg A \odot \neg A\right| G_{b_{r 1}} \mid G_{b_{l 1}}=
$$

$$
\Rightarrow p_{2}, B\left|B \Rightarrow p_{4}, \neg A \odot \neg A\right| p_{1} \Rightarrow C\left|C, p_{2} \Rightarrow A \odot A\right| \Rightarrow p_{1}, B \mid
$$

$$
p_{3} \Rightarrow C\left|C, p_{4} \Rightarrow A \odot A\right| \Rightarrow p_{6}, B\left|B \Rightarrow p_{8}, \neg A \odot \neg A\right|
$$

$$
p_{5} \Rightarrow C\left|C, p_{6} \Rightarrow A \odot A\right| B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{7} \Rightarrow C\right|
$$

$$
\Rightarrow C, p_{8} \Rightarrow A \odot A\left|p_{5}, B\right| B \Rightarrow p_{3}, \neg A \odot \neg A
$$

Replacing $\tau_{\mathbf{I}_{l}: G_{1}^{\circ}}^{\hat{\sim}(0)}$ in $\tau_{\mathbf{I}_{l}}^{\hat{\mu}(0)}$ with $\tau_{\mathbf{I}_{l}: G_{1}^{\circ \circ}(4)}^{\hat{\sim}(0)}$, then deleting $G_{\mathbf{I}_{l}}^{\hat{\mu}}$ and after that applying $\left\langle E C_{\Omega}^{*}\right\rangle$ to $G_{l, r}$ and keeping $G_{b_{r 1}}$ unchanged, we get
where $G_{H_{I}^{:}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathrm{j}} .}}^{\mathfrak{H}(J)}=G_{H_{I}^{V}:\left\langle G^{\prime \prime}\right\rangle_{\mathcal{I}_{\mathrm{j}}}}^{*}=\varnothing ; \widehat{S^{\prime}}=\Rightarrow p_{5}, B ;$
$\widehat{S^{\prime \prime}}=B \Rightarrow p_{3}, \neg A \odot \neg A ; G_{\text {娄 }}=G_{b_{r 1}}\left|\widehat{S^{\prime \prime}} ; G_{H_{l}^{\nu}: H^{\prime}}^{\grave{\sim}(J)}=G_{H_{l}^{V}: H^{\prime}}^{*}=\widehat{S^{\prime}}\right| \widehat{S^{\prime \prime}} ;$

$$
\begin{aligned}
& \tau_{\mathbf{I}_{l}\left(G_{1}^{\circ o}\right.}^{\dot{\sim}(0)}=\frac{\stackrel{\left\lceil S_{1}^{c}\right]_{I}}{G_{\mathbf{I}_{l}}^{\hat{\boldsymbol{\mu}}(1)}}\left\langle\tau_{H_{1}^{c}: A \Rightarrow p_{5}}^{*}\right\rangle}{G_{\mathbf{I}_{l}}^{\hat{\jmath}(2)}}\left\langle\tau_{H_{3}^{c}: p_{9}, p_{10} \Rightarrow A \odot A}^{*}\right\rangle, \\
& \tau_{\mathbf{I}_{i}: G_{1}^{\circ}(1)}^{¿(1)}=\tau_{\mathbf{I}_{:}: G_{1}^{\circ}(2)}^{\sharp(0)}=\xlongequal{\left.G_{\mathbf{I}_{l}}^{\dot{\sim}(1)}\right\rceil_{I}^{c}}\left\langle\tau_{H_{1}^{c}: A \Rightarrow p s}^{*}\right\rangle .
\end{aligned}
$$

$G_{\mathbf{I}_{\lambda_{r}}}^{\boldsymbol{\mu}_{3}}=\Rightarrow p_{5}, B\left|\Rightarrow p_{6}, B\right| B \Rightarrow p_{7}, \neg A \odot \neg A\left|p_{5} \Rightarrow C\right| C, p_{6} \Rightarrow A \odot A \mid$
$p_{7} \Rightarrow C\left|C, p_{8} \Rightarrow A \odot A\right| B \Rightarrow p_{8}, \neg A \odot \neg A$.

Replacing $\tau_{\mathbf{I}_{r}: G_{1}^{\circ \circ}}^{\langle(0)}$ in $\tau_{\mathbf{I}_{r}}^{\langle\hat{\sim}(0)}$ with $\tau_{\mathbf{I}_{r}: G_{1}^{\circ \circ}(4)}^{\hat{\sim}(0)}$, then deleting $G_{\mathbf{I}_{r}}^{ふ\langle }$ and after that applying $\left\langle E C_{\Omega}^{*}\right\rangle$ to

[^0]: ${ }^{2}$ This work is supported by the National Foundation of Natural Sciences of China (Grant No: 61379018 \& 61662044 \& 11571013)

 Preprint submitted to The Asian Journal of Mathematics

