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Abstract

We present a uniform method of density elimination for several semilinear substructural logics.
Especially, the density elimination for the involutive uninorm logic IUL is proved. Then the
standard completeness of IUL follows as a lemma by virtue of previous work by Metcalfe and
Montagna.
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Notation
G =Gy ..... The symbol G, denotes a complex hypersequent G, temporarily for convenience.
Xe=Y o Define X as Y for two hypersequents (sets or derivations) X and Y.
GO oo The upper hypersequent of strong density rule in Theorem 1.1, Page 4
T e A cut-free proof of Gy in GL, in Theorem 1.1, Page 4
PH) i The position of H € 1, Def. 2.13, Construction 6.1, Page 7,26
(Hi) g @00 Top gy ((HE) prpgr) « e e e eee e ee e e Construction 4.7, Page 17
G2 AN T2 oo Notation 4.10, Page 18
T The proof of G|G* in GLq, resulting from preprocessing of 7, Notation 4.13, Page 20
GIG* ... The root of 7* corresponding to the root Gy of 7, Notation 4.13, Page 20
H{ ...Thei-th (pEC)-node in 7*, the superscript ‘¢’ means contraction, Notation 4.14, Page 20
S The focus sequent of Hf, Notation 4.14, Page 20
S or Sy, S, or one copy of S¢,, Notation 4.14, Page 20
L0 2 T - £ The set of all (pEC)-nodes in 7, Notation 4.14, Page 20
GLg ..o A restricted subsystem of GL, Definition 4.16, Page 20
[S]5.[G']; ... The minimal closed unit of S and G’ in G, respectively, Definition 5.1, Page 22
(2 T The generalized density rule of GLg, Definition 5.4, Page 22
Tge AN Gge oo Notation 6.5. , Page 28
Hi ~ Hj HY « Hj oo Definition 6.8, Page 28
T={H;,~ Hi } ..o, A subset of {HY,---, Hy }, Notation 6.10, Page 29
H,V, Hi‘; ........... The intersection nodes of I and, that of Hf and Hjc-, Notation 6.10, Page 29
T =85S b A subset of (pEC)-sequents to I, Definition 6.14, Page 30
U ={Gy[S5 = Gp,|S5 0 b -ovvvvnnnnn A set of closed hypersequents to I, Def. 6.14, Page 30
(H )I ,77and G5 ... The elimination derivation, Construction 6.11, Lemma 6.13, Page 29, 30
£ 72 The elimination rule, Definition 6.14, , Page 30
[S Z{ [ A branch of ka to I, Definition 7.2, Page 31
Gf("), Gf’(]‘),rf(q) ............................................ Construction 7.3, Page 31
Gl ) Construction 7.5, Page 33
H:H, * TH:H, ’
G}ﬁ’ s ‘rf" ........................................ Construction 7.7, Theorem 8.2, Page 34, 36
?f’ ........................................... The skeleton of Tf" , Definition 7.13, Page 35
a_{_;& (H ) o Theorem 8.2 (ii), Page 36
Tfsz ...................................... The module of sz at G, Definition 8.7, Page 38

1. Introduction

The problem of the completeness of L.ukasiewicz infinite-valued logic (L. for short) was posed
by Lukasiewicz and Tarski in the 1930s. It was twenty-eight years later that it was syntactically
solved by Rose and Rosser [20]. Chang [4] developed at almost the same time a theory of
algebraic systems for k., which is called MV-algebras, with an attempt to make MV-algebras
correspond to £ as Boolean algebras to the classical two-valued logic. Chang [5] subsequently
finished another proof for the completeness of L by virtue of his MV-algebras.

It was Chang who observed that the key role in the structure theory of MV-algebras is not
locally finite M'V-algebras but linearly ordered ones. The observation was formalized by Hajek
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[12] who showing the completeness for his basic fuzzy logic (BL for short) with respect to lin-
early ordered BL-algebras. Starting with the structure of BL-algebras, Héjek [13] reduced the
problem of the standard completeness of BL to two formulas to be provable in BL. Here and
thereafter, by the standard completeness we mean that logics are complete with respect to alge-
bras with lattice reduct [0, 1]. Cignoli et al. [6] subsequently proved the standard completeness
of BL, i.e., BL is the logic of continuous t-norms and their residua.

Hajek’s approach toward fuzzy logic has been extended by Esteva and Godo in [9], where the
authors introduced the logic MTL which aims at capturing the tautologies of left-continuous t-
norms and their residua. The standard completeness of MTL was proved by Jenei and Montagna
in [15], where the major step is to embed linearly ordered MTL-algebras into the dense ones
under the situation that the structure of MTL-algebras has been unknown as yet.

Esteva and Godo’s work was further promoted by Metcalfe and Montagna [16] who intro-
duced the uninorm logic UL and involutive uninorm logic IUL which aim at capturing tautolo-
gies of left-continuous uninorms and their residua and those of involutive left-continuous ones,
respectively. Recently, Cintula and Noguera [8] introduced semilinear substructural logics which
are substructural logics complete with respect to linearly ordered models. Almost all well-known
families of fuzzy logics such as £, BL, MTL, UL and IUL belong to the class of semilinear sub-
structural logics.

Metcalfe and Montagna’s method to prove standard completeness for UL and its extensions
is of proof theory in nature and consists of two key steps. Firstly, they extended UL with the
density rule of Takeuti and Titani [21]:

FI—(A—>p)\/(p—>B)\/C/D)
r'-(A-B)vC

where p does not occur in I, A, B or C, and then prove the logics with (D) are complete with
respect to algebras with lattice reduct [0,1]. Secondly, they give a syntactic elimination of (D)
that was formulated as a rule of the corresponding hypersequent calculus.

Hypersequents are a natural generalization of sequents which were introduced independent-
ly by Avron [1] and Pottinger [19] and have proved to be particularly suitable for logics with
prelinearity [2, 16]. Following the spirit of Gentzen’s cut elimination, Metcalfe and Montagna
succeeded to eliminate the density rule for GUL and several extensions of GUL by induction on
the height of a derivation of the premise and shifting applications of the rule upwards, but failed
for GIUL and therefore left it as an open problem.

There are several relevant works about the standard completeness of IUL as follows. With
an attempt to prove the standard completeness of IUL, we generalized Jenei and Montagna’s
method for IMTL in [22], but our effort was only partially successful. It seems that the sub-
tle reason why it does not work for UL and IUL is the failure of FMP of these systems [23].
Jenei [14] constructed several classes of involutive FL,-algebras, as he said, in order to gain a
better insight into the algebraic semantic of the substructural logic IUL, and also to the long-
standing open problem about its standard completeness. Ciabattoni and Metcalfe [7] introduced
the method of density elimination by substitutions which is applicable to a general classes of
(first-order) hypersequent calculi but fails to the case of GIUL.

We reconsidered Metcalfe and Montagna’s proof-theoretic method to investigate the stan-
dard completeness of IUL, because they have proved the standard completeness of UL by their
method and we can’t prove such a result by the Jenei and Montagna’s model-theoretic method.
In order to prove the density elimination for GUL, they prove that the following generalized
density rule (Dy):
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Go ={Ti, 4ip = A}ictnl{Zk, (e+1)p = phicio/ {11 = p}j:I-um/,D )
— o (D
Dy(Go) = {Ti, AT = A Sk Iy = 1))

i=1-n

is admissible for GUL, where they set two constraints to the form of Gy: (i) n,m > 1 and A; > 1
for some 1 <i < n; (ii) p does not occur in I';, A;, I1;, &y for i = 1--n, j=1--m, k = 1---0.

We may regard (D) as a procedure whose input and output are the premise and conclusion
of (D), respectively. We denote the conclusion of (D;) by D;(Go) when its premise is Go.
Observe that Metcalfe and Montagna had succeeded to define the suitable conclusion for almost
arbitrary premise in (D)), but it seems impossible for GIUL (See Section 3 for an example). We
then define the following generalized density rule (D) for

GL ¢ {GUL, GIUL, GMTL, GIMTL}

and prove its admissibility in Section 9.

Theorem 1.1 (Main theorem). Let n,m > 1, p does not occur in G',T;, A;, 11 jor X for all
1<i<nl < j<m Then the strong density rule

Go=G'|{Ti,p= A}, ,|{Il; = p,Z; }j=1<--m/,D )
Dy (Go) = G'{Ti,1j = ApZj} imteomsjmtoom Vo

is admissible in GL.

In proving the admissibility of (D;), Metcalfe and Montagna made some restriction on the
proof 7 of Gy, i.e., converted 7 into an r-proof. The reason why they need an r-proof is that they
set the constraint (i) to Go. We may imagine the restriction on 7 and the constraints to Gy as
two pallets of a balance, i.e., one is strong if another is weak and vice versa. Observe that we
select the weakest form of Gy in (Dy) that guarantees the validity of (D). Then it is natural that
we need make the strongest restriction on the proof 7 of Gy. But it seems extremely difficult to
follow such a way to prove the admissibility of (Dy).

In order to overcome such a difficulty, we first of all choose Avron-style hypersequent calculi
as the underlying systems (See A.1). Let 7 be a cut-free proof of Gy in GL. Starting with 7,
we construct a proof 7 of G|G* in a restricted subsystem GLq of GL by a systematic novel
manipulations in Section 4. Roughly speaking, each sequent of G is a copy of some sequent of
Gy, and each sequent of G* is a copy of some contraction sequent in 7. In Section 5, we define
the generalized density rule (D) in GLg and prove that it is admissible.

Now, starting with G|G* and its proof 7*, we construct a proof 7™ of G* in GLg such that
each sequent of G* is a copy of some sequent of G. Then +gr,, D(G*) by the admissibility of
(D). Then gL Do(Go) by Lemma 9.1. Hence the density elimination theorem holds in GL.
Especially, the standard completeness of IUL follows from Theorem 62 of [16].

G™ is constructed by eliminating (pEC)-sequents in G|G* one by one. In order to control
the process, we introduce the set I = {Hj ,--, H; } of (pEC)-nodes of 7* and the set I of the
branches relative to / and construct Gf{ such that Gi* doesn’t contain (pEC)-sequents lower
than any node in /, i.e., S € GI* implies HJC||HIC for all Hf € I. The procedure is called the
separation algorithm of branches in which we introduce another novel manipulation and call it
derivation-grafting operation in Section 7, 8.
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2. Preliminaries

In this section, we recall the basic definitions and results involved, which are mainly from
[16]. Substructural fuzzy logics are based on a countable propositional language with formulas
FOR built inductively as usual from a set of propositional variables VAR, binary connectives
®,—, A, V, and constants 1, T,#, f with definable connective -A := A — f.

Definition 2.1. ([1, 16]) A sequent is an ordered pair (I, A) of finite multisets (possibly empty)
of formulas, which we denote by I' = A. I" and A are called the antecedent and succedents,
respectively, of the sequent and each formula in I" and A is called a sequent-formula. A hyper-
sequent G is a finite multiset of the form I'y = A|---|[,, = A,,, where each ['; = A, is a sequent
and is called a component of G for each 1 < i < n. If A; contains at most one formula fori = 1---n,
then the hypersequent is single-conclusion, otherwise it is multiple-conclusion.

Definition 2.2. Let S be a sequent and G = S{|--|S,, a hypersequent. We say that S € G if S is
one of S{,-, 8.

Notation 2.3. Let G| and G, be two hypersequents. We will assume from now on that all set

terminology refers to multisets, adopting the conventions of writing I, A for the multiset union

of T and A, A for the singleton multiset {A}, and AU for the multiset union of A copies of T for

A eN. By G| € G, we mean that S € G, for all S € G| and the multiplicity of S in G is

not more than that of S in G,. We will use G| = Gy, G\ N G2, G1 UG, G1\G» by their standard

meaning for multisets by default and we will declare when we use them for sets. We sometimes
n copies

—
write S1|-+|S ., and G|S|-+|S as {S1,-, S}, G|S"(or G|{S }"), respectively.

Definition 2.4. ([1]) A hypersequent rule is an ordered pair consisting of a sequence of hyper-
sequents Gy, ---, G, called the premises (upper hypersequents) of the rule, and a hypersequent G

Gy

called the conclusion (lower hypersequent), written by . If n = 0, then the rule has no

premise and is called an initial sequent. The single-conclusion version of a rule adds the re-
striction that both the premises and conclusion must be single-conclusion; otherwise the rule is
multiple-conclusion.

Definition 2.5. ([16]) GUL and GIUL consist of the single-conclusion and multiple-conclusion
versions of the following initial sequents and rules, respectively:
Initial Sequents

1D —(T, — (L —(t, —
Ao adP) F:>T,A( ) F,L:A( D o) f:>(ﬁ)
Structural Rules
Gl = A=A
Gr= A Gr= A
G|, 1T = 2,A1 Gh|Ip, I, = 25, A
1T, I LA G, I 2 2(C0M)

GG, Ty = AL AL T = 24,5,
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Logical Rules
Gl = A
ﬁ(lz) Gl =A
= air=f,a%)
G1|F1 = A,Al G2|r2,B = Az ’
(=1) Gl A = B,A
G1|G2|F1,F2,A—>B:>A1,Az —(_’r)
GIT.A.B= A G|1“:>A->B,A
m(@l) G1|F1 = A,A] G2|F2 = B,Az(@r)
G, A = A Gi|GyI',T, = A0 B, A, A,
(") GI[,B = A
GILAAB=A —G|FA/\B:>A(A”)
G1|F=>A,A G2|FZ>B,A ’
(~r) Gl = A,A
G1|G2|F:>A/\B,A —(Vrr)
G = B.A G =AVB,A
m(Vﬂ) GIILA=A G,[,B= A(Vz)

G1|G2|F,A vB=A
Cut Rule
G1|F1,A = Al G2|F2 = A, Az
GG, T, = AL Ay

Definition 2.6. ([16]) GMTL and GIMTL are GUL and GIUL plus the single conclusion and
multiple-conclusion versions, respectively, of:

(CUT)

Gl =A Gl =A

—(WL), ——

Gl A=A Gl = A,A

Definition 2.7. (i) (1) € {(#). (/). (=+). (@0) (Anr). (Au). (Ver), (Vi) (WL), (WR) } and

(1) € {(=1):(®,). (Ar). (vi), (COM) }:;

B G,|S, G"|S" G’|S,

(11) By W(II) (Or G’|H’

(or one-premise rule (7)) of GL, where S’ and S” are its focus sequents and H’ is its principle

sequent (for (=), (®,), (A,) and (v;)) or hypersequent (for (COM), (An,) and (Vy,), see
Definition 4.2).

(I)) we denote an instance of a two-premise rule (11)

Definition 2.8. ([16]) GL is GL extended with the following density rule:

G|r|,p = A] |F2 = p, AQ(D)
G|F1,F2 = Al,Az

where p does not occur in G,I'j,I, A or A;.

Definition 2.9. ([1]) A derivation 7 of a hypersequent G from hypersequents Gy,--,G, in a
hypersequent calculus GL is a labeled tree with the root labeled by G, leaves labeled initial

sequents or some Gy, -+, G,, and for each node labeled G(’) with parent nodes labeled G1,---, G},
/A
0

is an instance of a rule of GL.

6

(where possibly m = 0),
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GG,
Notation 2.10. (i )IT (7) denotes that t is a derivation of Gy from Gy,-++,G;
0

(ii) Let H be a hypersequent. H € T denotes that H is a node of 1. We call H a leaf hyper-
U !
e

€ 1 denotes that
G/
0

sequent if H is a leaf of T, the root hypersequent if it is the root of T.

Gy, € T and its parent nodes are G\,-+-,G/,;

(iii) Let H € 7 then T(H) denotes the subtree of T rooted at H;

(iv) T determines a partial order <, with the root as the least element. H|H, denotes Hy %,
H, and H, ¢, H, for any H|,H, € 7. By H| =; H, we mean that H; is the same node as H in 1.

We sometimes write <, as <;
! n

(v) An inference of the form € T is called the full external contraction and denoted by

G's
(EC*), ifn 22, G'|S" is not a lower hypersequent of an application of (EC) whose contraction
sequent is S, and G'|S not an upper one in 1.

Definition 2.11. Let 7 be a derivation of G and H € 7. The thread Th,(H) of T at H is a sequence

Hy
Hy, ---, H, of node hypersequents of 7 such that Hy =; H, H, =; G, T € 7 or there exists G' € T

k+1
H, G G H.
such that or intforall0<k<n-1.
k+1 Hk+1
Proposition 2.12. Let H,,H; € 7. Then
(i) Hy < Hy if and only if Hy € Th,(H,);
(ii) Hy|H, and H, < H3 imply H,||H5;
(iii) H; < H3 and H, < H3 imply H, } H>.

We need the following definition to give each node of T an identification number, which is
used in Construction 6.1 to differentiate sequents in a hypersequent in a proof.

Definition 2.13. ([A.5.2]) Let H € T and Th(H) = (Hy, -+, H,). Let b, := 1,

.. G' Hy
1 if 7 €T,
= k+1
bi: Hy H G’
0 if €T Or €T
k+1 Hyyq

forall 0 <k <n— 1. Then P(H) := =0 2*b; and call it the position of H in 7.

Definition 2.14. A rule is admissible for a calculus GL if whenever its premises are derivable in
GL, then so is its conclusion.

Lemma 2.15. ([16]) Cut-elimination holds for GL, i.e., proofs using (CUT) can be trans-
Jormed syntactically into proofs not using (CUT).

3. Proof of the main theorem: A computational example

In this section, we present an example to illustrate the proof of Main theorem.
Let Gy == p,B|B = p,-A®-A|p = C|C, p = A®A. Gy is a theorem of IUL and a cut-free

A=A
proof 7 of Gy is shown in Figure 1, where we use an additional rule m( -, ) for simplicity.
= -A,
7
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Note that we denote three applications of (EC) in 7 respectively by (EC);, (EC),, (EC); and
three (©,) by (®,)1, (®,)2 and (©,)3.

=p A=A =p A=A
o A (COM T (Com)
= plp = = plp = (o)
A= plA=plp,p=>A0A (EC)
(EC)
A=plp,p=>A0A (=)
:>p,ﬂA|p,p=>A®A N
= A=A = A=A
P=P 2= % comy? =L 2= Zcom)
A=plp=A A=plp=A
(Qr)Z
A=plA=plp,p=>A0A (EC)
(EC),
A=plpp=A0A (=)
=p,-Alp,p=A0A N
(continued)
:>p,ﬂA|p,.p:>A®A :>pmA|p,.p:>A®A{
Hyx == p,p,-A@-Alp,p = A0 Ap,p=>A0A \Gr)3fEC)
B— B He==p.p.-AG-Ap,p=A0A ' 3/COM)
C=C = p,BB=p,-AG-Ap,p=>AGA ' (com)
= p,BB=p,-A0-Alp=C|C,p=>A0A *

FIGURE 1 A proof 7 of Gy

By applying (D) to free combinations of all sequents in = p, B|B = p,-A ® —=A and in p =
C|C,p=A®A, we getthat Hy== B,C|C = A®A,B|B=C,-A®-A|C,B=A0A,-A0-A.
Hj is a theorem of IUL and a cut-free proof p of Hy is shown in Figure 2. It supports the validity
of the generalized density rule (Dp) in Section 1, as an instance of (D).

A=A A=A A=A A=A
AA=>AGA AA=>AGA
A=>-A,AGA A= -AAGA
B=B A A=>-A0-A,A0AAGA
C=C A B=>A0A-A0-AJ[A=>A0A,B
H=A=C[A\B=>A0A,-A0-AIC=A0A,B

A=A A=A
T AA=AGA H =A=CA\B=>A0A-A®-AIC=A0A,B
A= -AAGA = -A,Cl[A,B=>A0A,-A0-AIC=A0A,B

B=B A= -AO®-A,AQACIA,B=>A0OA-AO-AIC=A0A,B

= B,C|JA,B=-A0-4,AQAA,B=>A0A,-A®-AIC=A0A,B
A= C|=B,(C|C,B=-A0-A,AQAA,B=A0A-A0-AIC=A0AB
A=C|JA=C|= B,C|IC,B=-A0-AAQAIC,B=A0A-A®-AC=A0A,B

Hy=A=C|=BClCCB=A0A,-A®-AC=>A0AB

C=C
C=C

8
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A=A A=A
T AA—=A0A H =A=CAB=>AGA-A®-AIC=A0A, B
A= -AAQA A= CB=>-A,A0A-AG-AlIC=A®A,B
B=B A=ClJA\B=>-A0-A,ACAAOQA-AG-AIC=>A0®AB
C=C B,B= -A®-A,AQA-A®-AJA = C|[A=AGA,BIC=>A0A,B
C=C A= C|BB= -A®-AA0A-A®-AJA=C|C=A0ABIC=A0AB
A=C|CLB=>A®A,-AO®-A[A=C|B=C,-A®-AlC=>A®A,BIC=>AGA,B
Hi;=A=C|C=>A0ABB=C-A®@-ACCB=A0A-AG-A

Hy=A=C|=B,CICCB=>A0A -A®-AC=AGAB
= AC=BC(CCB=A0A -AG-AC=AGAB

Hy=A=ClC=>AGABB=C,-A®-AC.B=AGA -A®-A
= ACC=AGABB=C -AGACB=AGA AGA

B=B = -A0®-A,C,C|=B,CIC,B=A0A-AG-A|C=A0A,B|
C=AQABB=C-A®@-AICCB=A0A-A0®-A

B= -A®-A,C|= B,C|= B.CIC.B=A®A,-AG-A|C = AQA, B
C=>AOABB=C-A®-AICCB=A0A -AG-A

Hy==B,CIC=AQABB=C,-A®-A|CLB=A0A,-A® -A

Figure 2 a proof p of Hy

Our task is to construct p, starting from 7. The tree structure of p is more complicated than
that of 7. Compared with UL, MTL and IMTL, there is no one-to-one correspondence between
nodes in 7 and p.

Following the method given by G. Metcalfe and F. Montagna, we need to define a generalized
density rule for IUL. We denote such an expected unknown rule by (D, ) for convenience. Then
D, (H) must be definable for all H € 7. Naturally, D,(p = p) == D, (A= plp=>A)=A =
A;D. (= p,-A|p,p = AGA) == -A,-A,AGA; D,(= p,B|B = p,-AG-A|p,p = AGA) ==
B,B,A ®A B,B =A @A, -A® ﬂA, -A® —|A|B = A @A,B, -A® ﬂA;DX(G()) = D()(G()) = H().

However, we couldn’t find a suitable way to define D,(Hxx ) and D,(Hy) for Hyxand Hy in
7, see Figure 1. This is the biggest difficulty we encounter in the case of IUL such that it is hard to
prove density elimination for IUL. A possible way is to define D, (= p, p, ~A©@-A|p, p = AGA)
as = 1,A ® A, -A ® -A. Unfortunately, it is not a theorem of IUL.

Notice that two upper hypersequents = p, -A|p, p = A ® A of (®,); are permissible inputs
of (D,). Why is Hy an invalid input? One reason is that, two applications (EC) and (EC); cut
off two sequents A = p such that two p’s disappear in all nodes lower than upper hypersequent
of (EC); or (EC),, including Hy. These make occurrences of p’s to be incomplete in Hyx. We
then perform the following operation in order to get complete occurrences of p’s in Hy.
G'|S'|s’

G'|S’

Step 1 (Preprocessing of 7). Firstly, we replace H with H|S' for all (EC); €7,

G'|S|S’

G'|S’|S’
proof without (EC), which we denote by 7, as shown in Figure 3. We call such manipulations

H < G'|S’ then replace (EC); with G’|S’|S" for all k = 1,2,3. Then we construct a
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sequent-inserting operations, which eliminate applications of (EC) in 7.

C=C

B=B

p=>pA=>Ap=>pA=>A p=>pA=>Ap=>pA=>A

A=>plp=>AA=>pp=A A=>pp=AA=>pp=>A
A=pA=plpp=>A0A A=pA=ppp=>A0A
A=p|=p-Ap,p=A0A A= p| =p,-Ap,p=>A0A

H,=A=p|=p,p,-A0-Ap,p=>A0AA=plpp=>A0A

A= p|=p,BlIB=p,-A0-Alp,p=>A0AA=plp.p=>A0GA

A=p|=p,BlB=p,-A0-Alp=>C|C,p=>A0AA= plp,p=>A0A

FIGURE3 A proof 7

However, we also can’t define D, (H., ) for H,, € 7y in that = p, p,-A®-A|p,p => AGA C
H.. The reason is that the origins of p’s in H., are indistinguishable if we regard all leaves
in the form p = p as the origins of p’s which occur in the inner node. For example, we don’t
know which p comes from the left subtree of 7{(H_, ) and which from the right subtree in two
occurrences of p’sin = p, p,~A ® -A € H_,.. We then perform the following operation in order
to make all occurrences of p’s in H., distinguishable.

We assign the unique identification number to each leaf in the form p = p € 7; and transfer
these identification numbers from leaves to the root, as shown in Figure 4. We denote the proof of
G|G* resulting from this step by 7%, where G == py, B|B = p4,~A©-A|p; = C|C,p, = AGA
in which each sequent is a copy of some sequent in Gy and G* = A = p(|A = p3|p3, ps = AGA
in which each sequent is a copy of some external contraction sequent in (EC)-node of 7. We call
such manipulations eigenvariable-labeling operations, which make us to trace eigenvariables in

T.

C=>C

B=B

pr=>=plA=>Ap=>p A=A p3=>p3A=>Aps=ps A=A

A=pilpp=>A A=>plpp=A A= pilps =>AA= pylps = A
HS=A= pi|A= polpi,pp = AOAHS=A= p3]A= pulps,pa=A0CA

A= pi|= pr,-Alp1,pr >AOA A= p3|= ps,-Alps,ps=>A0CA

A= pi|= pr,ps,~AC-Alp1,pr =>AOA|A = p3|p3,ps =>AGA

HS=A= pi| = ps,B|B= ps,-A®-Alp;,p» = AOAJA = p3|ps,ps = AGA

A= pi|= p2,B|B=ps,~A©-Alp; = C|C,p = AOA|A = p3|p3,ps = AGA

FIGURE4 A proof 7* of G|G*

Then all occurrences of p in 7* are distinguishable and we regard them as distinct eigenvari-
ables (See Definition 4.16 (i)). Firstly, by selecting p; as the eigenvariable and applying (D) to
G|G*, we get

G' =A = C|= py,B|B= p4,-A®-A|C,py = A®A|A = p;3|p3, ps = AQA.

Secondly, by selecting p, and applying (D) to G’, we get

GII =

A= C|B= ps,-A®-AlC = B AGAA = ps|ps.ps = AOA.

Repeatedly, we get

G"=A=C|A,B=>A0A,-A®-AIC=>A0A,B.
10
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We define such iterative applications of (D) as D-rule (See Definition 5.4). Lemma 5.8 shows
that gy D(G|GY) if Fgrur, G|G*. Then we obtain —grur, D(G|G*), i.e., —grur, G-

A miracle happens here! The difficulty that we encountered in GIUL is overcome by con-
verting H,, = A = p| = p,p,-A 6 -A|p,p = AGAJA = p|p,p = A0 Ainto A = p|| =
D2, P4, A @ =A|p1, p2» = A ® A|A = p3|p3, ps = A ® A and using (D) to replace (D).

Why do we assign the unique identification number to each p = p € 7?7 We would return
back to the same situation as that of 7; if we assign the same indices to all p = p € 1| or, replace
p3 = p3and py = ps by pp = prin 7.

Note that D(G|G*) = H,. So we have built up a one-one correspondence between the proof
7% of G|G* and that of H;. Observe that each sequent in G* is not a copy of any sequent in Gy.
In the following steps, we work on eliminating these sequents in G*.

Step 2 (Extraction of Elimination Rules). We select A = p, as the focus sequent in Hf
in 7* and keep A = p; unchanged from H downward to G|G* (See Figure 4). So we extract a
derivation from A = p, by pruning some sequents (or hypersequents) in 7*, which we denote by
T;,f:A:,m, as shown in Figure 5.

p3=p3 A=A py=>ps A=A

A:>p3|p3 :>A A:>p4|p4 :>A
A=pr A= p3|A= pylp3.ps=>A0A
= p2,~A A= p3| = ps,-A|p3,ps = AOA

B=B

= P2, p4,~AO-A|A = p3|p3,ps=>A0OA
= p2,B|B= p4,-A©®-A|A = ps3|p3,psa =>AGA

FIGURES A derivation ‘r}*,f: Amsp, TOM A = py

A derivation T;,f from A = p, is constructed by replacing p, with p;, p3 with ps and pq4

with pg in 7 He:A=py» A3 shown in Figure 6. Notice that we assign new identification numbers to

A=p

new occurrences of p in T;;?»: Aoy

ps=ps A=A pe=>ps A=A

A:>p5|p5:>A A:>p6|p6:>A

A=p1 A= ps|A= pe|ps,ps = AGA

B:>B:>P1ﬁA A = ps| = ps, -Alps,pe =>AOA

=>p],p6,—|A®—|A|A :>P5|P5,P6 :>A®A
:>p1,B|B:>p6,—|A®—\A|A:>p5|p5,p6 :>A®A

FIGURE 6 A derivation 7. from A = p,

A=p

Yo (1)

as shown in
H:G|G**

Next, we apply T};?»: Amp, LOA = prin G|G*. Then we construct a proof 7
Figure 7, where G’ = G|G*\{A = p:}.

11


http://dx.doi.org/10.20944/preprints201902.0159.v1
http://dx.doi.org/10.3390/sym11040445

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 February 2019

pPs=>ps A=A pg=>ps A=A
A= pslps =A A= pe|ps = A
G'|A = p; A = ps|A = pelps,ps =>AGA
g pGl=poA A= ps|= ps,-Aps,ps = A0 A
G'| = p1,ps, ~A @ =AJA = ps|ps,ps == AO A
GET(ZE?)IG* =G'| = p1,B|B = ps,~A © -A|A = ps|ps,ps = AGA

(1) % (1)
FIGURE7 A proof TheGicr of GHf:GlG*

However, Gli;"('é)lG* == py,B|B = p4,-A ® -Alp; = C|C,p, = AG A|A = ps3|p3,ps =
‘:

A®A| = pi,B|B= ps,-A®-A|A = ps|ps, ps = A ® A contains more copies of sequents from
G* and seems more complex than G|G*. We will present a unified method to tackle with it in the
following steps. Other derivations are shown in Figures 8,9, 10, 11.

A= py
A= pi|= pr,-Alpi,pp=>A0A ———
:>p4,—|A
B= B A0 A AGA
= p| = - - =
CoC pil = p2. pa, pi. P2

A= pi|= p2,B|B= ps,~-A@-Alp|,p» =>AQA
A= pi|= p2,B|B= ps,-A®-A|p1 = C|C,p = A0 A

FIGURES A derivation 7 from A = pq4

A= py

= D3
A = ps| = pe,—Alps,ps = A® A —Y

B=B Ps,
C2C A:p5|:>P67P37_‘A®_‘A|p5,p6:>A@A
A = ps| = pe,B|B= p3,-A®-Alps,ps =>AQA

A = ps| = pe, B|B= p3,~A®-A|ps = C|C,ps > A® A

FIGUREY A derivation T;‘,? Amsp, [TOM A = p3

A=p, A=ps A=ps A=p;
B:}Bﬁpz’_‘A ﬁp4,—|A B:}Bﬁps’_‘A =‘>p3,—|A
= P2, Ps,~A © -A = ps5,p3,~A @ -A
= pz,B|B - p4, —|A ©® —\A = ps,B|B = p3,ﬂA® —lA

* *
FIGURE 10 T{H?ZAﬁpZ;H;IAﬁp;;} and T{HTZAﬁp&H;SAﬁp:&}

C=C p,pp=A0A C=C p;,ps=>A0A
p|=>C|C,p2:>A@A p3:>C|C,p4:>A@A

12

d0i:10.20944/preprints201902.0159.v1


http://dx.doi.org/10.20944/preprints201902.0159.v1
http://dx.doi.org/10.3390/sym11040445

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 February 2019 d0i:10.20944/preprints201902.0159.v1

C=>C ps,ps=>A0A
ps=C|C,ps=>AGA

* * *
FIGURE 11 The.p, p,—a04> TH:ps,py=A0A and THS:ps,pe=AGA

¥ (2)

Step 3 (Separation of one branch). A proof t HESGIG is constructed by applying sequentially
c:

* *
TH;':p;,[uzA@A’ THg':ps,p6=>A®A

(1)

to p3,ps = AG®A and ps,ps = AO® A in GH”'G|G*’ as shown in Figure 12, where G =
c;

Ghiolo\{P3ps = A© A, ps.ps = A© A}

C=C G"|p3,ps = A0A|ps,ps =>A0OA
G"|p3 = C|C,ps = AOA|ps,ps = AGA

ij’f%)lm =G"|p3 = C|C.ps =A@ Alps = C|C.ps => A®A

C=C

% (2) % (2)
FIGURE 12 A proof Thecior of GH?G‘G*

Gﬁ;(:ac* == D3, B|B = ps,-A ® -A|p| = C|C,p = A© A|A = p3| = p1. B|
B = pg,~A © -A|A = ps|ps = C|C,ps = A© Alps = C|C, ps = A © A.

Notice that
D(B = ps,-A G —|A|A = p3|p3 = ClC,p4 = A @A)

:'D(B=>p6,—|A®—|A|A3p5|p5 :>C|C,p6 :>A®A)
=A=C|C,B=A0A,-A0-A.

Then it is permissible to cut off the part

B = pg,~A © -A|A = ps|ps = C|C,ps =>AOA

of sz%)l +» Which corresponds to applying (EC) to D(sz%)l ¢+ ) We regard such a manipulation

as a constrained contraction rule applied to Ggf(:é)l ¢+ and denote it by (ECq). Define Ggf:Gl o o
be
= ps, B|B = p4,-A © -A|p; = C|C, p, = A G A|
A= p3| = p1,Blps = C|C,ps = AGA.
*(2)
Then we construct a proof of Gfl'?.: GlG* by - Z?G\G* (ECq), which guarantees the validity of
HE:G|G*

oL D(GE, )

H¢:G|G*

13
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under the condition
2
FGIuL D(G;(:Gﬁc* )-
A change happens here! There is only one sequent which is a copy of a sequent in G* in

sz-G|G*' It is simpler than G|G*. So we are moving forward. The above procedure is called the
e

separation of G|G* as a branch of H{ and reformulated as follows (See Section 7 for details).

G|G*
[
Gﬁ(l) ( Hf:Aam)
HE:G|G*
1 - -
Gﬁ(z) HS:p3,pa=>AGA> * HS:ps,pe=>AGA
H:G|G*
1
o= (ECq)
H{:G|G*

The separation of G|G* as a branch of HS is constructed by a similar procedure as follows.

G|G*
— T [
Gﬁ(l) ( H;:A=>p3>
HS:G|G*
*
G*® (TH§1P3,P4=>A®A)
HS:G|G*

¢
GH;;G|G*

(ECq)

Note that D(G:‘I’f:GlG*) = H, and D(G§§:G|G*) = Hj. So we have built up one-one correspon-
* ¥
G

dences between proofs of GHC_G‘ 6> Cheglor and those of H,, Hs.
1° 1
Step 3 (Separation algorithm of multiple branches). We will prove +grur, Do(Go) in a
direct way, i.e., only the major step of Theorem 8.2 is presented in the following. (See A.5.4 for
a complete illustration.) Recall that

Gﬁf:mc* == P2, B|B = ps,~A © -A|p1 = C|C,p, = A© 4|
A= p3|=p1,Blp3=C|C,ps = AGA,
GgngK;* =A = pi| = py, BB = ps,-A©-A|p; = C|C,pr = A A

B= p3,-A®-Alps = C|C,ps = AGA.

By reassigning identification numbers to occurrences of p's in ch_ GlG*>
i
Gliegige =A = Ps| = pe. BIB = ps,=A © -Alps = C|C.ps = A © A|

B= p7,-A®-Alp; = C|C,ps = A® A.

ke

. . % .
By applying T?Hf:Ast,Hg:Aépz} toA = p3in GH§':G|G* and A = ps in GH;:G|G*’ we get —gruL G,
where

G’ == p,B|B = ps,-A © -Alp; = C|C,p» = A© A| = p1, B|

p3 = C|C.ps = A®A| = ps. BB = ps,~A ® -Alps = C|C, ps = A® A
14
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B = p7,—\A® ﬂA|p7 = C|C,pg = A @A| = p5,B|B = p3,ﬂA® ﬂA.

*
H5:G|G*

different occurrences of p's to be assigned different identification numbers in two nodes G

and G%:G‘ ¢+ of the proof of G'.

By applying (EC}) to G', we get -grur, Gy'» where

? It makes

*
HS:GIG*

Why do you reassign identification numbers to occurrences of p’s in G

G;\" == p1,B|B= ps,~A®-A|p) = C|C,p, = A®A| = pi, B

p3 = C|C,ps = A® A|B = p;,-A O -A.

A great change happens here! We have eliminated all sequents which are copies of some
sequents in G* and convert G|G* into Gf" in which each sequent is some copy of a sequent in
Gy.

Then oL D(G}°) by Lemma 5.6, where D(Gy°) = Hy =

= C,BIC=>B,AGAB=C,-A0-AlC,B=>A0A,-A®-A.

So we have built up one-one correspondences between the proof of fo and that of Hy, i.e.,
the proof of Hy can be constructed by applying (D) to the proof of GI* . The major steps of
constructing G* are shown in the following figure, where D(G|G*) = H,, D(G%, ) = Hp,

H¢:G|G*
D(G%, .\..) = Hs and D(G}") = Hy.

HS:G|G*
G|G* == py,B|B = ps,-A®-A|p; = C|
C,pz 9A®A|A$p1|Aﬁp3|p3,p4 3A®A
% _
GH;:GIG* =A = pi|= p2. Bl GE“G\G* == ps, B|B = ps,-A®-A|
z:

B= p4,-AG®-Al|p; = C|
C,p»=A0A|p; = (|
B= p;,-A0-A|C,ps = AGA

)4 =>C|C’p2 :>A®A|A:>p3|
A= p,Blp3=C|C,ps=>A0A

fo == py,B|B = ps,-A®-A|p; = C|C,p, = A A|
B=-A0-A,p3|=p,Blp3 = C|C,ps =>AGA

In the above example, D(GJ*) = Dy(Gp). But it is not always the case. In general, we can
prove that g, Do(Go) if ~er, D(GF'), which is shown in the proof of Main theorem in Page 46.
This example shows that the proof of Main theorem essentially presents an algorithm to construct
a proof of Dy(Gy) from .

4. Preprocessing of Proof Tree

Let 7 be a cut-free proof of Gy in Main theorem in GL by Lemma 2.15. Starting with 7, we
will construct a proof 7* which contains no application of (EC) and has some other properties
in this section.

15
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Lemma4.1. (i) If+gL T = A,Ay and gL T, = B, A,
then gL T1 = AAB,A ||l = AAB,Ay;
(ii) If gL T'1,A = Ay and g1, T2, B= Ay
then +gLT1,AvB= A||l,AvB=A;.

Proof. (1)

A=A B=B
A=A "7 Zcom
A= BB=A
A=AABB=A
A=AANBB=AAB

I'' =AABA|B=AAB

I = AABA[; = AABA

B=B

(Ar)
T = AA

(Ar)

I = B,A (cUT)

(CUT)
(ii) is proved by a procedure similar to that of (i) and omitted. O]

We introduce two new rules by Lemma 4.1.

GiIi = AA; Gyl = B,A, (An)

A
Gi|GaTy = AAB, Al = AAB, Ay

Gl A=Ay G, B= Ay .
and (V) are called the generalized (A,) and (V) rules,
G]|G2|F1,A vVB= A1|F2,A vVB= Az

respectively.

Definition 4.2.

Now, we begin to process 7 as follows.
Step 1 A proof 7! is constructed by replacing inductively all applications of

GIF=AA G =BA \ GILA=A GInE=a
/\r
GG T=ArBA 7 T GG AVB = A

(V1))

in T with
G|l =A,A Gl = B,A

(AVW)
GGyl = AAB,Al = AAB,A
G1|G2|F:>A/\B,A
G|ILA=A G,[,B=A
G1|Gyl,AvB= AlLAvB= A
G1|GoT,AvB= A

(EC)

(Vlw)

(accordingly (EC) for (vy)).

The replacements in Step 1 are local and the root of 7! is also labeled by G.
Gl
Definition 4.3. We sometimes may regard — as a structural rule of GL and denote it by (/Dq)

for convenience. The focus sequent for (/Dg) is undefined.

G'|s"
Lemma 4.4. Let G1|S (EC*) e 1!, Tha(G'|S) = (Hy, Hy,-+, H,), where Hy = G'|S and H,, =
Go. A tree T is constructed by replacing each Hy in ' with Hi|S™" for all 0 < k < n. Then 7’ is

a proof of Go|S™ 1.
16
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rngm

Proof. The proof is by induction on n . Since 7! (G’|S™) is a proof and W(IDQ) is valid in

Hn— G/l
GL, then 7/(Hy|S™ ") is a proof. Suppose that 7/(H,_;|S™ ") is a proof. Since 1T(II)

( Hn—l(l)) . 1 th Hn—1|Sm71 G" ( Hn—l|Sm71) . licati f th 1 (II)
or in 7!, then or is an application of the same rule

H, ’ H,jsm1 H,jsm1 PP
(or (I)). Thus 7/(H,|S™ ") is a proof. O

Definition 4.5. The manipulation described in Lemma 4.4 is called sequent-inserting operation.

Clearly, the number of (EC*)-applications in 7’ is less than 7!. Next, we continue to process

T.
GI{§ <V GI{S <\ my
Step 2 Let M(EC*), e M(EC*) be all applications of (EC*) in 7! and
GiIS§ GylSy
Gy =AS f}mg—l |---[{S ;;,}mﬁf‘l. By repeatedly applying sequent-inserting operations, we construct

a proof of Go|G; in GL without applications of (EC*) and denote it by 72

Remark 4.6. (i) 7° is constructed by converting (EC) into (IDq); (ii) Each node of 72 has the
form Hy|H;, where Hy € 7' and Hj is a (possibly empty) subset of Gj.

We need the following construction to eliminate applications of (EW) in 7°.

Construction 4.7. Let H € v°, H' ¢ H and Th,>(H) = (Hy, -, H,), where Hy = H, H, = Go|Gj.
Hypersequents (Hy) .. and trees 3., ((Hi) i) for all O < k < n are constructed inductively

as follows.
(i) (Ho) yy.p = H' and t3.4,((Ho) .41 ) consists of a single node H';
Glsl G”S" G,S,
(i) Let ¥(II) (or | (I)) be in v, Hy = G'|S” and Hy,y = G'|G"|H" (ac-

G/|G//|H// G/|S "
cordingly Hyy1 = G'|S" for (I)) for some 0 < k<n-1.
IfS, € <Hk>H:H’
(Hiet) g = (Hi) g \{S "G |H”
(accordingly (Hi1)y.pr = (Hi) oy \{S"}S" for (I))

and 3. ((Hy+1) g1y ) s constructed by combining trees

{(Hi) e G"IS”

Thr ((Hie) g ) (G"|S"") with (11)
(Hk+1)H:H'
H . 4
(accordingly 7%.; ((Hi) ) With %(1) for (1))
<Hk+1>H:H’
otherwise (Hys1) gy = (Hi) gy and Taypy ((His1) .y ) i constructed by combining
. <Hk> :H'
T%{:H’(<Hk>H:H’) with ¢(1DQ)-
<Hk+1)H;H/
/A
(iii) Let G’|S’(EW) € %, Hy = G' and Hyyy = G'IS” then (Hys1) .y = (Hi)py and
2 . .. 2 . (Hk>H'H’
Tipyr ((Hs1 ) e ) B8 constructed by combining Ty ((Hi) .y ) With ﬁ(IDQ).
k+1]g:q"

17
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Lemma 4.8. (i) (Hy)py.y € Hy forall 0<k<n;
(ii) T2 ((Hi) o) is @ derivation of (Hy) yy.pe from H' without (EC).

Proof. The proof is by induction on k. For the base step, (Ho)y.,; = H' and 73, ((Ho) )
consists of a single node H'. Then (Ho),.;;r € Ho = H, T3 ((Ho)p.p) is a derivation of
(Ho) .z from H' without (EC).

For the induction step, suppose that (Hy) .., and 75 ((Hi) .5, ) be constructed such that
(i) and (ii) hold for some 0 < k < n — 1. There are two cases to be considered.
G'|S’
G,|S”(1) €7, Hy =G'|S" and Hyy1 = G'|S". If S" € (Hy) .5 then
(Hi) i \{S"} & G" by (Hi) g S Hx = G'|S". Thus (Hiwt) oy = ((Hi) e \{S'DIS” <
G'|S" = Hys1. Otherwise S’ ¢ (Hy) .y then (Hy)y € G' by (Hi)py € Hi = G'|S’. Thus
(Hk+1>H:H’ C Hiq by <Hk+1>H:HI = (Hk>H:H’ cG' c Hiq. TIZ'-I:H’((Hk+1>H:H’) is a derivation of
( k+1)H:H’
instance of a rule () of GL. The case of applications of two-premise rule is proved by a similar

procedure and omitted.
!

G
Case 2 Let W(EW) € 72, H, = G' and H;,; = G'|S’. Then (Hks1) e € Hi1 by

(Hk+1>H:H’ = <Hk>H:H’ C Hy € Hp,yg. T?-I:H'(<Hk+1)H:H') is a derivation of (Hk+1>H:H’ from H’
<Hk>H:H’

< k+1 )H:H’

Case 1 Let

(His1) g from H' without (EC) since 7%, ((Hy) 17.5p/) is such one and (1) is a valid

(IDgq) is valid by Definition 4.3.
O

without (EC) since 7%, ((Hy) ;7.5 ) is such one and

Definition 4.9. The manipulation described in Construction 4.7 is called derivation-pruning op-
eration.

Notation 4.10. We denote (H,) ;.10 by Gpprs Torryr ((Ho) gy ) by Tapopr and say that H' is trans-
formed into G3.,y, in T2
!

Then Lemma 4.8 shows that —— (T%{: H,), G € Go|G§. Now, we continue to process 7
H:H'
as follows.

Step 3 Let

!

G’|S’(EW) € 7 then 5.6, ({(Hn)grjs7:+) 1 a derivation of (Hy) 5. from G
thus a proof of (H,)gs:.: is constructed by combining 7*(G") and ¢, g, ((Hn)grjsrir) With
14

E(IDQ). By repeatedly applying the procedure above, we construct a proof 7° of G|G} without

(EW) in GL, where G| € G, G} € G by Lemma 4.8 (i).

Gl = A _
————(WL)) then there exists I" =
Gl,p=A
A’ € H such that p € T’ for all H € Ths(I, p, L = A) (accordingly H € Ths(T,p = T,A),
HeThys(T,p = A)) thus a proof is constructed by replacing top-down p in each I with T.

Gl=A
Gl = p.A
A’ € H such that p € A’ forall H € Tha(T', 1 = p,A) (accordingly H € Ths(I = T,p,A) or
HeThs(T = p,A)) thus a proof is constructed by replacing top-down p in each T” with 1.

18
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Repeatedly applying the procedure above, we construct a proof 7# of G»|G5 in GL such that
there doesn’t exist occurrence of p in I" or A at each leaf labeled by I', L = Aor ' = T,A, or p
Gl = A Gl =A
——(WR)or ——
Gl = A,A GILA= A
is available. Define two operations o and o, on sequents by o(I,p = A) :=T,T = A and
o(T' = p,A) :=T = 1,A. Then G,|Gj} is obtained by applying o and o, to some designated

sequents in G;|G}.

is not the weakening formula A in (WL) when (WR) or (WL)

Definition 4.11. The manipulation described in Step 4 is called eigenvariable-replacing opera-
tion.

Step 5 A proof 7* is constructed from 7* by assigning inductively one unique identification
number to each occurrence of p in * as follows.

One unique identification number, which is a positive integer, is assigned to each leaf of the
form p = p in v which corresponds to p; = p; in 7*. Other nodes of 7* are processed as

follows.
G\l Ap = up. A | A .
o Let (I) € . Suppose that all occurrences of p in G{|[,Ap = up,A
G\|[I",2p = up, N
are assigned identification numbers and have the form G/|T, p;,, -+, p;, = Pjiss P A in ¥,
which we often write as G{|T, {p;, }{.; = {p; }i_,,A. Then Gi|I",Ap = up,A’ has the form

GHIU Apitic = {pitio. A
! "

e Let 7(A,W) e 7, where G' = G|l Ap = up,A,A, G" = Go[T,Ap = up,B,A,
G" = G|G,|T, Ap = up,A A B,A|l', Ap = up,A A B, A. Suppose that G’ and G” have the forms
G, {piy }ie, = {pjlk}i’:l,A,Aﬂand GYT, {pi b = (P }’,i:l,l)i’,A in 7*, respectively. Then
G"" has the form G{|GA|L, {pi, }io) = {pinVie» A A B AL {pin iy = {pjn io»A A B, AL All

applications of (Vv;,) are processed by the procedure similar to that of (A, ).
4 "

o LetT(Gr) e ¥, where G' = G1|I'1, i p = w1 p, A, Ay,
G = G2|F2,/12p = U2p, B, A>, G'" = G |G2|F1,F2, (/11 + /lz)p = (/11 +/12)p,A ®B,A1, Ay Sup—
pose that G’ and G” have the forms G}|['1, {pi, }iL, = {pj. }iL, A Ar and G5|Da, {pi } 2, =
{Pix }’,ﬁl,B, A, in 7, respectively. Then G’ has the form G{|G5|['}, T, {Piu};]:p {p,»Zk}ﬁi] =
{pi il AP 121, A © B, A, Ay. All applications of (—;) are processed by the procedure simi-
lar to that of (®,).

! 14
o Let 7(COM) et*, where G’ = G||I'), 1}, 41 p = 1 p, 21, Ay,
G" = Gy, I, lop = op, 20, Ay, G"' = G1|Go|T1, T, (A1 + A21)p = (i1 + f21) P, At Ay
I, 11, (A2 + A)p = (M1 + u22)p. 21, Lo, Where A1y + A12 = A1, Aoy + Adop = o, piy + pin =

M1, M1 + Ho2 = [
Suppose that G’ and G” have the forms G/ [I'y, IT, { p; b = {p; ML Z1, A and

G|y, Ty, { pii}zil = {p; 2,22, Ay in 7%, respectively. Then G’ has the form
GHGHITL Do, {pa Jilis {2 Yy = (P Vel Py Yihs A |

0, Mo, {pay 18 e, Y2 = o i {p 142 21, 2o, where

{pw ey = o 3 Ui Yo App Yeey = {pi Yoy UL 125 forw = 1,2,

Definition 4.12. The manipulation described in Step 5 is called eigenvariable-labeling operation.
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Notation 4.13. Let G, and G5 be converted to G and G* in 7%, respectively. Then T is a proof
of G|G*.

Gl[{S 1"
G!"|S¢

Gl
Step 2, where G/’ ¢ G/ by Lemma 4.4. ——(EW) € 77 is converted into —(IDgq) in Step
G/|S/ G"
3, where G” ¢ G’ by Lemma 4.8(i). Some G'[T”,p = A’ € 7° (or G'[I" = p, A" ) is revised as
G'|I’,T = A (or G'[I” = 1,A) in Step 4. Each occurrence of p in 7*

identification number in Step 5. The whole preprocessing above is depicted by Figure 13.

GYI{s§}"

In the preprocessing of 7, each .
prEpIoCERRInE GII{S{)"
"

(EC™); is converted into (IDg); in

is assigned the unique

T Step 1: 7! Step 2: 7 Step 3: 73

-G G Go|G3 G.|GT
O v 0 EC 0l G EW 1[G
Step 4: 1* Step 5: 1
G»|G; G|G*
T,.L,W ID numbers

FIGURE 13  Preprocessing of 7

Gty
s
converted to G!'|{S{}™ in v*. Note that there are no identification numbers for occurrences of
variable p in S¢ € G!"|{S¢}" meanwhile they are assigned to p in S¢ € G'|{S¢}™. But we use
the same notations for S¢ € G"|{S<}" and S¢ € G'|{S¢}" for simplicity.

In the whole paper, let H{ = G/|{S{}" denote the unique node of t* such that H{ < G!'|{S{}™
and S is the focus sequent of Hf in T, in which case we denote the focus one S§; and others
Si|-|S G, among {S¢}™. We sometimes denote H; also by Gi|{S§,}}", or Gi|S§|[{S},} 12, We
then write G* as {S¢,}/= .

We call Hf, S¢, the i-th pseudo-(EC) node of * and pseudo-(EC) sequent, respectively. We
abbreviate pseudo-EC as pEC. Let H € %, by S¢ € H we mean that S¢, € H for some 1 < u < m;.

It is possible that there doesn’t exist Hf < G{'|{S¢}™ such that S is the focus sequent of Hf
in T, in which case {S$}™ < G|G*, then it hasn’t any effect on our argument to treat all such

S¢ as members of G. So we assume that all Hf are always defined for all G!'|{S{}™ in T*, i.e.,
HE > G|G*.

Notation 4.14. Let (EC*)i,1 < i < N be all (EC*)-nodes of T and G!"'|{S¢}"i be

Proposition 4.15. (i) {S§, } 2., € H for all H < Hf; (ii) G* = {va}lv::f;,”‘

U
Now, we replace locally each a(IDQ) in 7* with G’ and denote the resulting proof also

by 7*, which has no essential difference with the original one but could simplify subsequent
arguments. We introduce the system GLg, as follows.

Definition 4.16. GL, is a restricted subsystem of GL such that

(1) p is designated as the unique eigenvariable by which we mean that it is not used to built
up any formula containing logical connectives and only used as a sequent-formula.

(i1) Each occurrence of p on each side of every component of a hypersequent in GL is as-
signed one unique identification number i and written as p; in GLg. Initial sequent p = p of GL
has the form p; = p; in GLgq.

20


http://dx.doi.org/10.20944/preprints201902.0159.v1
http://dx.doi.org/10.3390/sym11040445

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 February 2019 d0i:10.20944/preprints201902.0159.v1

(iii) Each sequent S of GL in the form I', Ap = up, A has the form

T Api e = {piie.A

in GLg, where p does not occurin T or A, iy # i;forall 1 <k <I<A, jiy# jiforall 1 <k<I< .
Define v;(S) = {i1,--, i} and v,(S) = {j1,--, ju}. Let G be a hypersequent of GLq in the
form S |--+|S,, then v;(S) Nvi(S;) = @ and v, (Sx) Nv,(S;) = @ for all 1 < k < [ < n. Define
vi(G) = Ui vi(Sk), v+ (G) = Uiz, v(Sk). Here, [ and r in v; and v, indicate the left side and
right side of a sequent, respectively.

(iv) A hypersequent G of GLqg is called closed if vi(G) = v,(G). Two hypersequents G’ and
G" of GLg are called disjoint if v,(G") Nvi(G") = @, vi(G") Nv,(G") = @, v,(G") Nv)(G") = @
and v,(G")Nv.(G") = @. G" is a copy of G’ if they are disjoint and there exist two bijections
o1 :vi(G") = vi(G") and o, : v,(G") = v,(G") such that G” can be obtained by applying o to
antecedents of sequents in G’ and o, to succedents of sequents in G', i.e., G’ = o7 0 07(G").

(v) A closed hypersequent G'|G”|G"" can be contracted as G'|G” in GLg under the condition
that G and G"" are closed and G is a copy of G”. We call it the constraint external contraction
rule and denote by

G/|G//|G///

o (FCa).

Furthermore, if there doesn’t exist two closed hypersequents H', H" ¢ G’|G"” such that H"” is a
G/|G//|G///

(vi) (EW) and (CUT) of GL are forbidden. (EC), (A,) and (v;) of GL are replaced with
(ECq), (Any) and (Vvp,) in GLq, respectively.

(vii) G{]S| and G,|S, are closed and disjoint for each two-premise rule
GilS1 GalS, . . G'|s’
————————(II) of GLq and, G’|S" is closed for each one-premise rule (I).

G1|GH|H G'|S"

(viii) p doesn’t occur in I" or A for each initial sequent I', | = Aor I’ = T,A and, p doesn’t
Gl =A Gl =A

" (WR =
Groas VR GE oA

copy of H' then we call it the fully constraint contraction rule and denote by

act as the weakening formula A in (WL) when (WR) or (WL)
is available.

Lemma 4.17. Let 7 be a cut-free proof of Gy in L and T* be the tree resulting from preprocessing

of 1.
. G,|S, * 4 " ! 14 U / / U
(l)IfG’|S"(1) e then vi(G'|S") =v.(G'|S") =v,.(G'|S") = vi(G’'|S");
B GI|S/ GI/|S/I
(ii) HW(II) e 7" then vi(G'|G"|H") = vi(G'|S") Uv(G"IS") =v,(G'|G"|H") =
Vr(G’|S/)UVr(G”|S//);

(iii) If H e t* and k € vi(H) then k € v,(H);

(v)IfHet* andk e vi(H) (ork €v,(H)) then H < py = py;

(v) T is a proof of G|G* in GLg without (ECg);

(vi)IfH',H" € t* and H'|H" then vi(H") N\vi(H") = @, v.(H')Nv,(H") = @.

Proof. Claims from (i) to (iv) are immediately from Step 5 in preprocessing of T and Definition
4.16. (v) is from Notation 4.13 and Definition 4.16. Only (vi) is proved as follows.
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Suppose that k € v;(H') N\ v;(H"). Then H' < p; = py, H” < pr = pi by Claim (iv). Thus
H' < H" or H" < H', a contradiction with H'|H" hence v;(H") Nv;(H") = @.
v.(H")Nv,(H") = @ is proved by a similar procedure and omitted. O

5. The generalized density rule (D) for GLg

In this section, we define the generalized density rule (D) for GLq and prove that it is
admissible in GLgq.

Definition 5.1. Let G be a closed hypersequent of GLg and S € G. Define [S]; =N{H : S €
Hc G,v(H) =v.(H)}, ie., [S]; is the minimal closed unit of G containing S. In general, for
G' ¢ G, define [G']; =N{H:G'cH<cG,v(H) =v.(H)}.

Clearly, [S]; = S if vi(S) = v.(S) or p does not occur in S. The following construction
gives a procedure to construct [S |, for any given S € G.

Construction 5.2. Let G and S be as above. A sequence Gi,G»,---,G, of hypersequents is
constructed recursively as follows. (i) Gy = {S}; (ii) Suppose that Gy, is constructed for k > 1.
If vi(Gy) # v,(Gy) then there exists i1 € vi(Gy)\v,(Gy) (or i1 € v (Gy)\vi(Gy)) thus there
exists the unique S 11 € G\Gy, such that iyy1 € v (Sre1)\Vi(Sks1) (0r ixe1 € Vi(Ske1)\Vr(Sks1))
byvi(G) =v,(G) and Definition 4.16 then let G| = G|S ¢+1 otherwise the procedure terminates
and n := k.

Lemma 5.3. (i) G, =[S ],/

(ii)Let " €[S | then [S]; = [S ]g:

(iii)Let G' = GIH', G = GIH" v)(G") = vi(G"), vi(G") = v,(G"), vi(H") © v,(H') = wi(H") &
v.(H") then [H'];, \H' = [H"];,\H", where A © B is the symmetric difference of two multisets
A, B;

(iv)Let vi,(Gy) = vi(Gy) Nv,(Gy) then |vir(Gi)| + 1 2 |Gy for all 1 <k < n;

) vi([S1e)| +1 2 [[S14]-

Proof. (i) Since Gy € Gy for 1 <k <n-1and S € G, then S € G, € G thus [S]; € G, by
vi(Gy) = v,(G,). We prove Gi € [S ] for 1 < k < n by induction on k in the following. Clearly,
Gi < [S];- Suppose that Gy ¢ [S]; for some 1 < k < n— 1. Since ix1 € vi(Gr)\v(Gx) (or
iv1 € v (G)\vi(Gk)) and igs1 € v, (Sgar) (OF gy € vi(Ske1)) then Sy € [S]; by Gi € [S];
and v;([S];) = v-([S]g) thus Giyy € [S]g. Then G, € [S]; thus G, =[S ;.

(i) By (i), [S]; = S1|S2|+|Sn, where S| = §. Then S’ = S for some 1 < k < n thus
ir € ve(Se)\vi(Sk) (or ix € vi(Sk)\v-(Sk)) hence there exists the unique k' < k such that i €
vi(S)\vr(Sw) (or ix € v (Sw)\vi(Sk)) if k> 2 hence Sy € [Si];. Repeatedly, S| € [Sk];, i.e.,
S e[S']g then [S]; € [S]6. [$']g € [S] by S" € [S]g then [$7]; = [S]5-

(iii) It holds immediately from Construction 5.2 and (i).

(iv) The proof is by induction on k. For the base step, let k = 1 then |G| = 1 thus |v;,(Gy)|+1 >
|Gi| by [vi(G)| > 0. For the induction step, suppose that |v;,(Gy)| + 1 > |G| for some 1 < k < n.
Then |V1r(Gk+1)| > |V[r(Gk)| + 1 by ik+1 € Vlr(Gk+1)\V1r(Gk) and Vzr(Gk) c Vlr(Gk+1)~ Then
|Vlr(Gk+l)| +12 |Gk+]| by |Gk+1| = |Gk| +1=k+1.

(v) It holds by (iv) and v;-([S ];) = vi([S]5)- O
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Definition 5.4. Let G =S |--|S, and S, be in the form I, {Pii}zil = {pfi A forl<igr
(i) IfS € Gand [S]; be S, |--|Sk, then D (S ) is defined as
T T, = (vi([S16)] = [[S 16| + D)t Ak A
(i) Let U [Sq ]l =G and [S,, ], N[S 4], = @ forall 1 <k <1< vthen D(G) is defined as
D6(S g)|-+|P6 (S 4,)-
(iii) We call (D) the generalized density rule of GLq, whose conclusion D(G) is defined by
(ii) if its premise is G.

Clearly, D(py = pi) is = tand D(S) = S if p does not occur in S .

Lemma 5.5. Let G' = G|S and G" = GI|S|S» be closed and [S1]; N [S2]gn = &, where
S1=Ti{pptil = (P Yil A S2=To{pehi2y = {pp )il Ao

S = Tl {padi pedit = {ppdi App it A Ass Dn(S1) = T, = LA and
DGN(SZ) = 1“2,22 = Hz,Az. Then Dgl(S) = F],Zl,rz,ZZ = H],A],H2,A2.

Proof. Since [$1]g, N[S2]gr = & then [$15, = [S 116 \{S 1} U[S2]gr \(S2} U
{S} by V](S) = V[(S]|Sg), Vr(S) = Vr(S1|Sz) and Lemma 5.3 (111) Thus

(816 = TS 11|+ (02T )} 1S T = [15 D]+ (1521 - 1. Hence
Vi([S 16| = 81| + 1 = (S 11| = [[S 1| + 1+ ul[S 2160
Therefore Dgr (S ) = T1,£1.T2, %5 = I}, A1, TT,, A, by
i = (Wi([S11gn)| = [0S ]| + DA [S 116)
M = (i([S2lgn)| = [[S2]gn| + D T\ ([vi([S 2] )
De(S) =121, 00,2 = (vi([S16)| - |[S ]| + D,

A\ (vi([S 11| = [[S g |+ Dt ALTA(vi([S 26| = |[S 26| + D A
where Ar = {t,-,1}. O

—
A

s

+1.

- [[S2]6r

~|[S1]gn| + 1)t

- |[S2]G”| +1)t

Lemma 5.6. ([A.5.1]) If there exists a proof T of G in GLq then there exists a proof of D(G) in
GL, i.e., (D) is admissible in GLq.

Proof. We proceed by induction on the height of 7. For the base step, if G is py = py then D(G)
is = r otherwise D(G) is G then g, D(G) holds. For the induction step, the following cases
are considered.
o Let
G'|S’
Gl| S

(=) et
where
S'= AT, {pik}Zl:l = {pjk}lzzl’A’ B,
§"= L, {pik};cl:l = {pjk}';::]’A’A - B.

Then [S"]G’|S" = [S,]G’\S’ \{S"}S" by vi(S") = vi(S"), v-(S") = v,(S") and Lemma 5.3 (iii).
Let Dgrs:(S’) = A, T,T" = A", A, B then Dg/s+(S") =T, = A”,A,A — B thus a proof of
23
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D ’ ’ S,
D(G’'|S") is constructed by combining the proof of D(G’|S") and DGlSES"))(—)r)' Other rules
G/lSII
of type (I) are processed by a procedure similar to above.
o Let
GiIS1 G2fS»
—————(0,) et
G1|G2IS3
where
Si=T1, {pi;}ﬁll = {pjtili A A
S2=To {petits = ()il B Ao
S3=TuTo {py il Ape i = ()i Py Vit A @ BLAL A,
Let

Dgis,(S1) =TT = Aqy, (|V1([51]Gl|sl)| - |[S1]Gllsl| +1)1,A, Ay,

Dg,is,(S2) = T2, 21 = Agy, (|Vl([52]02|52)
Then DG[lG2‘S3(S3) is

_ |[S2]Gzlsz| +1)t, B, A,.

[, 00,011, 0o = A, A, A© B AL A,
(‘Vl([SI]GI\S1)|+|vl([Sz]Gz|Sz) _|[Sl]G1|Sl _‘[S2]62|s2

by [S3]6,6,1s, = ([S1]6,1s, {S13) U([S2]g,5, \{S2}) U{S3}. Then the proof of D(G|G>|S 3)
is constructed by combining g, D(G{]S ) and
Dg,is,(S1) Dy, (S2)

) DG]\GZ|53(S3)
procedure similar to that of ®, and omitted.

o [et

+2)t

Fgr D(G2|S,) with (®,). All applications of (—,) are processed by a

Gl G//

o (Amp) €T

where
G, = G1|S 1s G" = G2|S2, G”I = G1|G2|Si|S;,

SW = FW, {p,z}ﬁil = {pj;’}l,:ll,Aw,Aw,
St =T {pi by = {pp Yo AL A Ao, A

for w = 1,2. Then [S{]5m = [S1]e {S1}ST, [S2]gm = [S2]gr \{S2}|S5 by Lemma 5.3 (iii).
Let
DGW|SW(Sw) =0, T = Ay, (‘Vl([SW]Gme)

for w=1,2. Then

a |[SW]Gw|Sw| + l)thw’Al

DGH/ (S:v) = rw,rwl = AWI? (

Vl([SW]GW|SW)

for w = 1,2. Then the proof of D(G"") is constructed by combining g, D(G’) and ¢, D(G")

Do (S D (S
o (S1) - < ,( 2)(/\,W). All applications of (v,,) are processed by a procedure similar
DGIII (S 1 |Sz)

to that of (A, ) and omitted.

_ ‘[SW]GWISW| + ])I,Al ANAs A,

with
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o Let

! i

G (COM) e

where
G, = G1|Sl, G” = G2|Sg, Gm = G1|G2|S3|S4

Sl = I“l,l'[l,{p,-}c}ﬁ‘zl = {pji}/,:;l,zl,Ah
SQ = FQ,HQ, {sz}zil = {pﬁ }l]:il,zb AZ,
S3 =TT, {pa el (pa iy = (o W App Y Ar Ao,
Sa =TI, {pa 15 {pe 2 = {pp il App 120 1.2
where {p Y2, = {po Yo Ul Yo {pg Y = (P Yoo Udp Y forw = 1,2,
Case 1S3 € [S4]gm. Then [S3]5m = [S4]gn by Lemma 5.3 (i) and
[S3]gm = [S1lg | [S2]6n 1S31S4\{S1,S2} by Lemma 5.3 (iii). Then
|V1([S3]G///) - |[S3]G”’ +1= |vl([Sl]G') + |vl([s2]G//) - |[S1]G/ - |[S2]G//

Thus [v;([S1]g)| = |[[S1]g/| + 1 = L or w([S2]gn)| = [[S2]gn| + 1 > 1. Hence we assume that,
without loss of generality,

+12>0.

D (S1) =T, 1L,T" = A, 1,21, Ay,

Do (S2) =T, L, T = A", %5, A,.

Then
D (S31S4) =T, T, T, Tp, T, T = A" 21, A, A", 2, As.

DG’ (Sl) DG” (S2)
D (S3]S4)

Thus the proof of is constructed by

, , [, I, T = A", 5y, Ay
[ I, T = AL L2, A (1)
Do, I, It = A, 55, A

[ I, D I, T = AL Z L AL A 2, Ay
Case 2 53 ¢ [S4]gm. Then [S3]5m N [S4]sn = @ by Lemma 5.3 (ii). Let

(cUT).

83w =T {pi i = (P Vi Ay

— Aw v
Saw =y, {pis 15 = {pi 1t 2o
for w =1,2. Then

(316 = [S3116, 150,15 MS 31t U S 3216, 5115, \{S 323 U{S 3}

[Salgm = [Sa1]g, 154,150 \{Sat U [Sa2]6,(515,, \{S a2} U{S 4}

by vi(S3) = vi(S31/832), vi(S1) = vi(S31|S41), vi(S2) = vi(S32|S42) and
V[(S4) = V/(S41|S42). Let

DGW|S3W|S4W (S 3w) = rw’ X3w = \P3w’ AW?
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DGWIS’3W|S4W (S 4w) =1Ly, Xy = Wi, 2y

for w=1,2. Then
Dgr(S1) =T, 101, X310, Xa1 = P31, Par, 21, Ay,

D (S2) =T, 1o, X32, Xap = P32, Pan, Xo, Ao,
D (S3) =T, X31,12, X30 = W31, A1, P2, Ao,
D (Sa) =111, Xa1, I, Xap = W1, 21, Va2, o

by Lemma 5.5, [S3]G”’ N [S4]Gm =y, [S31]G.|53||S4] N [S4l]G||53||S4| =,

[S32]6,15 15 N [S42]6,(5,5)5,, = 2. Then the proof of Dgr(S3]S4) is constructed by combing

Dg/(S1) Dgr(S2)
D (S3|S4)

the proofs of Dg/ (S 1) and Dgr (S ) with
G'|G"|G"
G'|G"
D16 (G") = Dgrigrio(G"") hence a proof of D(G'|G") is constructed by combining the
D(G'G"IG™)
D(G'G")

(com).

(ECq) € 7. Then G',G” and G"" are closed and G" is a copy of G” thus

proof of D(G’|G"|G"") and (EC*). O

The following two lemmas are corollaries of Lemma 5.6.

Lemma 5.7. [f there exists a derivation of Gg from G1,---,G, in GLg then there exists a deriva-
tion of D(Gy) from D(G),---, D(G,) in GL.

Lemma 5.8. Let 7 be a cut-free proof of Gy in GL and T be the proof of G|G* in GLq resulting
Sfrom preprocessing of . Then g1, D(G|G*).

6. Extraction of Elimination Rules

In this section, we will investigate Construction 4.7 further to extract more derivations from
T

Any two sequents in a hypersequent seem independent of one another in the sense that they
can only be contracted into one by (EC) when it is applicable. Note that one-premise logical
rules just modify one sequent of a hypersequent and two-premise rules associate a sequent in a
hypersequent with one in a different hypersequent.

7* (or any proof without (ECgq) in GLg) has an essential property, which we call the dis-
tinguishability of 7%, i.e., any variables, formulas, sequents or hypersequents which occur at the
node H of T* occur inevitably at H' < H in some forms.

Let H=G'|S'|S" e t*. If S is equal to S" as two sequents then the case that 7}, is equal
to Ty as two derivations could possibly happen. This means that both S’ and S* are the focus
sequent of one node in 7* when G}.5, # S' and G, # S”, which contradicts that each node
has the unique focus sequent in any derivation. Thus we need differentiate S’ from S” for all
G'|S|S" e T*.

Define S’ € 7* such that G'|S’|S” < §’, S’ € S” and S' is the principal sequent of S’. If S’
has the unique principal sequent, N, := 0, otherwise Ng: := 1 (or Ng, = 2) to indicate that S’
is one designated principal sequent (or accordingly Ns, = 2 for another) of such an application
as (COM), (An) or (vy,). Then we may regard S’ as (S';P(S’),Nss). Thus S’ is always
different from S” by P(S”) # P(S") or, P(S’) = P(S") and Ns: # Ng». We formulate it by the
following construction.
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Construction 6.1. ([A.5.2]) A labeled tree T**, which has the same tree structure as T*, is
constructed as follows.
(i) If S is a leaf *, define S = S, Ns = 0 and the node P(S) of t** is labeled by
(§:P(S).Ns):
o dls
(ii) fHEG’|S”
S" = H, Nsn = 0 and the node P(H) of ** is labeled by G'|(S"'; P(S""), Ngn);
N G/|Sl G//|S//
(iti) If H=G'|G"|H'
and G"|(S";P(S"), Nsn) in %, respectively. If H' = S1|S, then define S| = S, = H, Ng, = 1,
Ns, = 2 and the node P(H) of ** is labeled by G'|G"|(S1;P(S1),Ns,)|(S2;P(S2),Ns,). If
H' =S| then define S| = H, N5, = 0 and P(H) is labeled by G'|G"|(S 1; P(S1),Ns, ).

(I) € t* and P(G'|S") be labeled by G'|(S"; P(S"), Ns+) in T**. Then define

(I1) € %, P(G'|S") and P(G"|S") be labeled by G'|(S"; P(S’), Ns-)

In the whole paper, we treat 7* as 7** without mention of 7**. Note that in preprocessing of
7, some logical applications could also be converted to (IDgq) in Step 3 and we need fix the focus
sequent at each node H and subsequently assign valid identification numbers to each H' < H by
eigenvariable-labeling operation.

Proposition 6.2. (i) G'|S’|S" e t* implies {S'} N{S"} = &; (ii)) H € * and H'|H"' < H imply
H'NH" =@, (iii) Let H € * and S§ € H then H < H{ or H{ < H.

Proof. (iii) Let S§ € H then §; = §;, for some 1 < u < m; by Notation 4.14. Thus S € H;
also by Notation 4.14. Hence H < §¢ and H; < S{ by Construction 6.1. Therefore H < H; or
Hi <H. O

Lemma 6.3. Let H € v and Th(H) = (Hy,--,H,), where Hy = H, H, = G|G*, G < H for
1<k<3.

() If G3 = Gi NGy then (Hy) ., = (Hi) .6, N(Hi) ., for all 0 <i < n;

(ii) IfG3 = G1|G2 then <Hi)H:G3 = <Hi>H:G1 |(Hi)H:G2 for all0<i<n.

Proof. The proof is by induction on i for 0 < i < n. Only (i) is proved as follows and (ii) by a
similar procedure and omitted.

For the base step, (Ho) ., = (Ho)y., N {Ho) g, holds by (Ho) ., = Gi, (Ho) g, = Go,
(H0>H:G3 = G3 and G3 = G1 ﬂGQ.

For the induction step, suppose that (H;) ., = (Hi) ., N (Hi) ., for some 0 <i < n. Only
is the case of one-premise rule given in the following and other cases are omitted.

14 !

Let g,||§"(1) e, H;=G'|S" and H;;; = G'|S".

Let S" € ()6, Then (Hut Vg, = ({Hi), \(SDIS”"
(Hir1 )y, = ((Hi) g, \{S"})IS" by $" € (H;) ., and
(His) g, = ((Hi) g, \{S'})IS" by S" € (H;) 5, Thus
(Hi+1>H:G3 = <Hi+1)H:Gl N (Hi+1)H:G2 by <Hi>H:G3 = (Hi>H:G, N <H5)H:Gz'

Let S’ ¢ <Hi>H:Gl and S’ ¢ (Hi>H:G2' Then (Hi+1>H:G] = <Hi>H:G1’
(Hi"'l)H:Gz = <Hi>H:Gz and <Hi+1)H:G3 = (Hi)H:G3' Thus
(Hi+1 >H:G3 = <I{i+l)].];Gl ﬂ <Hi+l)H;G2 by <Hi>H:G3 = (Hi>H:G1 m <Hi)H:G2’

Let S" ¢ (Hi)y.g, »S" € (Hi)yg,- Then (Hinr) ., = (Hi) g,
(Hir1) g, = (Hi) g, and (Hiet) ., = ((Hi) g, \{S'})|S”. Thus
(Hi+1>H:63 = <Hi+1)H:Gl N <Hi+1>H:Gz by (Hi>H:G3 = (Hi>H:Gl N <Hi>H:Gz’ S"¢ <Hi+1>H:Gl'

The case of S’ ¢ (Hi) .., »S' € (Hi)y, is proved by a similar procedure and omitted. O
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Lemma 6.4. (i) Let G'|S" € 7" then Gy 5. NGyisr60 = D2 G516/ /G Grjs s = GIG™
(ii) H e 7", H'|H" ¢ H then Gy 0 = G| Gp.pn-

Proof. (i) and (ii) are immediately from Lemma 6.3. O
Notation 6.5. We write T;}_czsql, G;}QSL_»] as T;;l, G§;l, respectively, for the sake of simplicity.

Lemma 6.6. (i) G5. ¢ G|G*;
Si
SC (Tsa )
(iii) GS( =S¢, and TSL consists of a single node S¥, for all 2 < m;;
(v) Vl(Gsc )\Vl(Sn) = Vr(GSL N (S5):
(v) (H )551 € qu implies H < HC Note that (H>se'l is undefined for any H > H{ or H|Hj.
(vi) S € G’Sfp1 implies H £ HS.

(ii) ‘rsp is a derivation ofGSp Sfrom S|, which we denote by

Proof. Claims from (i) to (v) are immediately from Construction 4.7 and Lemma 4.8.

(vi) Since S € G;E-I € G|G” then S¢ has the form S¢, for some u > 2 by Notation 4.14.
Then G§5‘ = 8 by (iii). Suppose that H; < H. Then S is transferred from Hj downward to H;
and in side-hypersequent of Hf by Notation 4.14 and G|G* < H; < H. Thus {Sitn{ss}t =@
at Hj since §7; is the unique focus sequent of Hj. Hence S5 ¢ G§. by Lemma 6.3 and (111) a
contradiction therefore Hy & Hj. O

Gl|sl G"|S”
m([]) e T (i) Iij € G;I:H’ then H5 < Hor HJCHH, (ii) If

S € Gygn then HS < H or HS|G'|S".

Lemma 6.7. Let

Proof. (i) We impose a restriction on (/7) such that each sequent in H’ is different from S’ or S
otherwise we treat it as an (EW)-application. Since S € G, € G|G™ then S has the form S,
for some u > 2 by Notation 4.14. Thus G§( = §9. Suppose that H; > H. Then S is transferred
from H¢ downward to H. Thus S € H' by GSr S¢ € Gy and Lemma 6.3. Hence S¢ = S' or
§;=8 " , a contradiction with the restriction above Therefore HS < H or Hf|H.

(ii) Let S € Gy If H; > H then S € H by Pr0p0s1t10n 4.15(1) and thus S € G" by
Lemma 6.3 and, hence HS || G'|S" by HS > G"[S", G'S"|G"|S". If H}|H then H{ || G'|S’ by
H < G'|S'. Thus HS < H or Hj|G'|S". O

Definition 6.8. (i) By Hf ~ H;f we mean that S‘ € GSE for some 2 < u < my; (ii) By Hf < H‘
we mean that H; ~ H{ and Hj ~ H; ; (iii) H; + Hj means that S, ¢ qu forall 2 <u < m;.

1

Then Lemma 6.6 (vi) shows that Hf ~ H{ implies H; & H.
G,|S, G”|S”
Lemma 6.9. Let H{|HS, Hi ~ Hf, — ———(II) € T* such that G'|S" < Hf, G"|S" < HS.
G’|G"|H' J
Then S" € (G'|S");.

Proof. Suppose that S’ ¢ (G’|S’)SL Then (G'|S") se S G’ by (G'|S’ )SL cG'lS’, (G'|G"|H')SF] =
(G"|S’ )Sé by Construction 4.7. Thus (G'|G"|H')¢ se S G’. Hence G”|H' (G’ |G”|H’)S§»] = & by
Proposmon 6.2 (ii). Therefore S o GSF forall 1 < u < m; by Lemma 6.3, i.e., Hf » H;, a

contradiction and hence S’ € (G’ |S )ge ‘. O
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Lemma 6.6 (ii) shows that TSL is a derivation of GSL from one premise S¢,. We generalize
it by introducing derivations from multiple premises in the following. In the remamder of this
section, let I = {Hj,-~ Hj } < {H{, Hy}, Hj « H; forall 1 <k <gq<m.Then Hj £ H; and
H; & H; by Lemma 6.6 (V1) thus Hj | H;, for all 1< k< gs<m.

Notation 6.10. HIV denotes the intersection node of Hic1 ,oo H im' We sometimes write the inter-
section node of H; and Hj as Hl‘; IfI = {H¢}, H) = H¢, i.e., the intersection node of a single
node is itself.
Gl|sl G”|S"
——————(II) € 7* such that G'|G”|H’ = H). Then I is divided into two subsets
G/|G//|H/

I ={Hj,, Hfm(l)} and I, = {Hj,, -, Hy o )} which occur in the left subtree 7*(G’|S’) and right
subtree ¥ (G"|S"") of *(G'|G"|H'), respectively

LetZ ={S{,S{ 1}, L ={S} m<z>1} Z ={S; ’Sim(,)l} suchthatZ =Z,UZ,. A
derivation 77 of (G|G™) from S§ |,---, S} | is constructed by induction on |I|. The base case of
|7] = 1 has been done by Construction 4.7. For the induction case, suppose that derivations 77, of
(G|G™)z, from S7, =8 1 and 77 of (G|G*); from Sy S1 are constructed. Then 77
of (G|G*) from §¢ |, -, S} | is constructed as follows.

Construction 6.11. ([A.5.2]) (i)

Let

rl>

(H)7 = (H), for all G'|S’ < H < H for some H; €I,
(H)7 = (H); forall G"|S" < H < Hj for some Hj €I,
tz({G'18") ) =73,((G'18") 1), 72((G"[S")1) =77, ({G"IS")1);
(ii)

(G,|G"|H,>I = (G,>I,| <G">I H

"

and UK mnQrn
(GIS")z {G"1S™)

(G'G"|H") 1
(iii) Other nodes of 17 are built up by Construction 4.7 (ii).

Z *
\II) € Tz,

The following lemma is a generalization of Lemma 6.6.

Lemma 6.12. Let Th(Hj) = (Hi,, - Hj, ), where 1 <k <m,H;, = H; and H;, = G|G".

zkn, Iy,
Then, for all 0 < u < n,,

(i)
( lku) ﬂ{( lku) EIH;MQHC}
(ii)
{S% + HS e LHS, < HS}
(Hc ) (<H1Lku> )>’
(iii)

vi((Hi) \ULvi(S5)) : Hj € 1L Hf,, < Hj} =

v (Hf) \UL(S$) < Hf € LH;, < Hj)s
(iv) (H)7 € T3 if and only if H < Hf for some H € I. Note that (H); is undefined if H > Hf
or H|Hj for all H € I.
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Proof: (i) is proved by induction on |/|. For the base step, let |I| = 1 then the claim holds
clearly. For the induction step, let |I] > 2 then |[j] > 1 and |I,| > 1. Then S’ € (G’|S’)S( for all

Hf € I; by Lemma 6.9 and H{ ~ HS for all H € I,. (G'|S") 7, = Npee, (G'|S' >5” by the induction
hypothesis then S’ € (G[S"), thus (G |G”|H )z, ={(G)z, |G”|H’ by G'IS’ € HV
(G'|G"|H')z = (G")1 |G'|H" holds by a procedure similar to above then

<G,|G”|H,)I = <G,)L | (G”)I, |H,

= (&)1 IG"IH) (G" )z, |G'IH)
=(G'IG"|H')7,((G'|G"|H)z,
by (G')z, € G" and (G"); < G". Other claims hold immediately from Construction 6.11.

Lemma 6.13. (i) Let G denote (G|G*); then G = Nece ,Gsp,
SE, - 8¢

(i) == )
(iii) VZ(GI)\UH‘EI VI(S 1) = Vr(GI)\UH‘eI Vr(Sjl)

(iv) S eGx lmplles H; & Hj for all Hf € 1.

Proof. (i), (ii) and (iii) are immediately from Lemma 6.12. (iv) holds by (i) and Lemma 6.6
(vi). O]

Lemma 6.13 (iv) shows that there exists no copy of S} in G7 for any 1 < k < m. Then we
may regard them to be eliminated in 7. We then call 77 an elimination derivation

LetZ' = {S;, .S} , } beanother set of sequents to I such that G’ = S5, |--|S¢ , isacopy
of G" = 87|87 , Then G’ and G" are disjoint and there exist two bijections o7 : v;(G") —
vi(G") and oy v,(G’) - v,(G”) such that o, o 04(G") = G”. By applying o, o oy to 75, we
construct a derivation from S , ,---,S¢ , and denote it by 77, and its root by G7..

LetI' = {G,,|S§,, . Gbm|S ) e a set of hypersequents to I, where G, |S¢, be closed
for all 1 < k < m. By applying TI, to S¢

iUy
fuasSE, in Gy |SE . Gy, |, We construct a
derivation from

iruy I [T

Gbl |S1|u|" Gb |S
and denote it by 7y, and its root by Gy,. Then Gy, = {Gy, }}",|G7.

[

Definition 6.14. We will use all 7y, as rules of GLg and call them elimination rules. Further,

we call S¢ PR Sf 0y, focus sequents and, all sequents in G7, principal sequents and, G, , -, G},

side-hypersequents of T

'm

Remark 6.15. We regard Construction 4.7 as a procedure F, whose inputs are 72, H, H' and
output 7%, With such a viewpoint, we write 7%, as Fp.r(°). Then 7% can be constructed
by iteratively applying F to 7%, i.e., 77 = Fpy :s¢ (- Fae Slcll(T )e).

14

We replace locally each a(IDQ) in 7% with G’ and denote the resulting derivation also by

77. Then each non-root node in 77 has the focus sequent.

Let H € 7. Then there exists a unique node in 7*, which we denote by O(H) such that H
comes from O(H) by Construction 4.7 and 6.11. Then the focus sequent of O(H) in 7* is the
focus of H in 7% if H is a non-root node and, O(H) = H or H € O(H) as two hypersequents.
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Since the relative position of any two nodes in 7* keep unchanged in constructing 77, H; < $ex Hy
if and only if O(Hl) <+ O(H,) for any Hy, H, € 75. Especially, O(S 1) H; for Slk1 €T3

Let H € t7. Then H' = o, 0 0y(H) € 77, and H" = {Gp, : H <z S|, 1andl <m}|H e
71,. Define O(H') = O(H") = O(H). Then O(Gy) = G|G* and O(Gbk|SWk) = H;, for all
Gbk|Szkuk € Tf,.

Since G7 = (G|G*); < G|G*, then each (pEC)-sequent in G has the form S¢, for some
1 < j<N,2<v<m;by Proposition 4.15(i1). Then we introduce the following definition.

Definition 6.16. (i) By S¢ € G7 we means that there exists H € 77 such that S € H, O(H) = Hj.
Sois S e Gz
(ii) Let S§ € G7. By Hf <,z Hj we means that there exist H,H' € 77 such that S € H,

O(H) =HS,O(H'") = Hf and Hj <+ Hi. We usually write <x as <.

7. Separation of one branch

In the remainder of this paper, we assume that p occur at most one time for each sequent in
G as the one in Main theorem, 7 be a cut-free proof of Gy in GL and 7* the proof of G|G* in
GLg, resulting from preprocessing of 7. Then |v;(S)| + |[v.(S)| < 1 for all S € G, which plays a
key role in discussing the separation of branches.

Definition 7.1. By S’ €. G’ we mean that there exists some copy of S" in G'. G’ <. G" if
S'e. G"forallS' eG'. G'=. G"if G' <. G" and G" <. G'. Let Gy1,-+, G1,, be m copies of Gy
then we denote G'|G11|--|G1m by G'{G1.}, or G'{G}™.

Definition 7.2. Let [ = {Hj -, Hj } € {H{, -, Hy}, Hi |H; forall 1 <k <l<m. [S§];is called
a branch of H; to I if it is a closed hypersequent such that

() [S3 11 < GIG™,
(ii) S5 €[S 11
(iti) S €[S 1, implies H < Hy or H$|Hf for all Hf € I.
Then (i) S, ¢, [S§,1r forall 1 <k,I<m, k#1;(ii) S €[S | and Hj £ Hf, imply Hj ¢ I.
In this section, let 7 = {H; }, 1= {[S{]}, we will give an algorithm to eliminate all S € [S{];
satisfying Hj < H;.

Construction 7.3. ([A.3]) A sequence of hypersequents Giﬁk D and their derivations ‘rf (@ from
[S¢]; for all g > 0 are constructed inductively as follows.

For the base case, define G*(O) to be [S{]; and, T; FO pe

o O For the induction case,
I

suppose that Tf" @ and Gf’ D are constructed for some 0 < q. If there exists no S € Gf 9D such

that H} < Hj, then the procedure terminates and define Jy to be q; otherwise define Hi”q such that

S¢ e G, HE < H and HS < HY for all S6 € Gi*“ H < HY. Let S¢,,-+,5¢,, be all copies
q q J lq Iq qMq

of 8§ in Gf(q) then define Gf(q“) *(q)\{Slqu} |{GSC }yjl and its derivation ‘rf(qﬂ) is

constructed by sequentially applying T§. AR Tge toS¢ AT S l?qmq in Giﬁ' (q), respectively. Notice
‘q tq™q
that we assign new identification numbers to new occurrences of p in tg. forall 0 < q < Jy—1,
g

I <u<my,
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Lemma 7.4. (i) H; = H; and H; < H; forall0<q<Ji-2;
(ii) G*(") S. G|G* is closed for all 0 < g < Jy;
( il

[S{ls
0 9 .3 s S0 0
1

(iv) Sj € Gf( D implies H|H; and, S5 € G§. for some TE;,\SL‘ € TI*( n or S¢S e[Sl
qu iqu

1

H & Hf, where G, = *(”)\{S,qv}v=1|{G§fq yel, Gy|S§ , is closed and 0 < g < Jy=1, 1 <u < my.

Proof. (i) since S¢ € G by S¢ € [5¢]; = G and, HS < HY for all S¢ ¢ GV, HE < HY
then H = Hf. If S¢ e GIFO\(S¢ )0 then HY | < HE by S e GF'“ HE | < HE thus

lg+1 +1

H;, <Hj by all copies of §§ in GMQ) being collected in {Sl u} LIESS e {GSE }m" then

Ig+1 lg+1

HC £ Hi by Lemma 6.6 (V1) thus Hf < H-C by H-‘ Hf, Hf . Then H{ < Hi‘q by

ig+1 ig+1 ig+1

G*(‘“l) Gﬁ(q)\{S,qu}u:1 {G3. }u - Note that Hj, is undefined in Constructlon 7.3.

i) v(GF ) = v, (GF “’)),Gf‘“’) c. G|G* by Gf’ © = [5¢],. Suppose that v,(GF?)
vr(G;ﬁ’(‘l))’G*(‘l) c. G|G>!- then V(G*(‘i“’l)) _ (G*(‘I‘”)) GI*(II‘H) c. G|G>¢- b GI*(CI‘”)

GFN\(s¢ Jm G5 Yt vi(Gs \MS5.3) = (G5 \(S§,}) and G5 <c GIG* forall 1 <
u < my. !
Sili [Si1s
%(0) - % (0) : (S e (q) i [ _%(g+D)\ .

(iii) 7y is Gf(o) (‘r ) Given Gf( ") ( ) then Gf’(‘”]) ( ) is constructed
by linking up the conclusion of previous derivation to the premise of its successor in the sequence
of derivations

%(q) mg=1 1
m,( " )) Gy O\{s¢ }se, ) Gr S Lubdy 1St G5, Yty )
%(q) %(q) . ( ) T w () _ %) . <TS?m >
Gy Gy V\{s¢ 1}|G . G =Gy \{quu}u {G . }u_ "

as shown in the following figure.

[Si]l (T;ﬁ,(q)>
GF = G ONS e Fe (S YIS )
mq * TS:"
Gy S HS g isISalGs,
: (T%z}
c * -1
Gy OS5 185, {Gs: Yot
% (g+1 ¢ Mg N g (Tsi,mq)
G; (g+1) _ Gf(q)\{siqu}uleG ;u}uzl

A derivation of Gf" @D from Gf" (@

(iv) Let S¢ € GV, Then HS ¢ H by the definition of Jp. If S¢ € [S¢];, then HS ||H" by
Hj £ H and the deﬁmtlon of [§ ] Otherw1se by Construction 7.3, there exists some G, s,
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i

Hence H| H;. O

in Tiﬁ(m such that S§ € Gg. . Then Hf & H{ by Lemma 6.6 (vi). Thus Hj & Hj by H; < H;}
lqu

Lemma 7.4 shows that Construction 7.3 presents a derivation Tf 0 of Gf’ “ from [S$Ts

such that there doesn’t exist S € Gf(h) satisfying H < Hj, i.e., all S5 € [S{]; satisfying

Hj < Hf are eliminated by Construction 7.3. We generalize this procedure as follows.
Construction 7.5. Let H € 7%, Hy € H and H, S, G|G*. Then G;g{”[) and its derivation

e (Ju: .o .
TH:(H,H ) for 1 = 1,2 are constructed by procedures similar to that of Construction 7.3 such that

Hj & H for all S € Gliglﬁ:”’ ), where G;g)]) = Gg.p,» T;SS]) = Ty.y,, which are defined by

Construction 4.7.

We sometimes write Jy, Jy.m, as J for simplicity. Then the following lemma holds clearly.

H,
Lemma 7.6. (i) = = (TSt ) He ¢ H for atl $6 € GRS,
H:H;

.. #(J

(i) If S¢ € H and HE > H then GH:(SQ =S¢

(iii) If S €. G o1, S €. G is a copy of ¢, and H{ & H then GE:(SJ) =S.

(iv) Let H'|H" ¢ H € T*. Then GEY) - Gﬁ(J)|Gﬁ(J) by suitable assignments of identifi-

H:H'|H" H:H Y H:H"
: ; : ¥ (J) %(J) % (J)
cation numbers to new occurrences of p in constructing T\ TH:H and Ty

(v) GF - U{G;;Eg P86 e [SE1LHS < HOULSS - 86 € [SE1HS & HOU{S ¢ S e
{Sﬂ[,S S G}

Proof. (i) is proved by a procedure similar to that of Lemma 7.4 (iii), (iv) and omitted.
(ii) Since S, is the focus sequent of Hj then it is revised by some rule at the node lower than

H;. Thus S € H is some copy of S§; by Hf > H. Hence S{ has the form S, for some u > 2.

Therefore it is transferred downward to G|G*, i.e., S§ € G|G*. Then G;*;fs‘? = Gpgc = S¢. Since

there exists no S € G;g%),Hj < H then J = 0. Thus Gg:(s? =S¢.

(iii) is proved by a procedure similar to that of (ii) and omitted.

(iv) Since H'|H” < H € 7*, then H'NH" = @ by Proposition 6.2. Thus Gp\) . =

Gl = G |Grrgn = GES”GE:SS,),. Suppose that G;(Ij,)l o = Gf;([;’,) |G§f2,, for some ¢ > 0.
Then all copies {S§,},, of S in G;g,)l o are divided two subsets {S{,},.") ﬂGﬁg,) and
{S¢. N GE:(;,),. Thus we can construct Gz:(gf‘r Fl,),,, Gﬁz(gf " and G:z(gf,r " simultaneously and as-
sign the same identification numbers to new occurrences of p in Gz‘,’:(h?f " and G;gj,f " as the cor-

responding one in Gz:(;,]flr FII),, Hence Gﬁ:(gf‘r Fl,),, = ngg_‘,]f 1)|G§;(5: . Then Gzz(;,)l o = GE:%) |G§:g,),.

Note that the requirement is imposed only on one derivation that distinct occurrence of p

has distinct identification number. We permit Gﬁzg’f,’ D2 G,\ig,), or Gf;:(,jf' D - G;;z(,g,)

above, which has no essential effect on the proof of the claim.
(v) is immediately from (iv). L]

in the proof
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Lemma 7.6(v) shows that Giﬁ ) could be constructed by applying Tg(é) sequentially to each
i

S € [S¢]; satisfying H} < Hj. Thus the requirement H; = < qu in Construction 7.3 is not

lg+1

necessary, but which make the termination of the procedure obvious.

Construction 7.7. Apply (EC{,) to Gf' ) and denote the resulting hypersequent by Gf’ and its

derivation by Tf" . It is possible that (EC{) is not applicable to Gf ) in which case we apply

(IDq) to it for the regularity of the derivation.

[S§1s
Lemma 7.8. (i) = (1{'), Gf' is closed and HS| H for all S € G}';
I
o Gb|Sz€1u
(ii) (" is constructed by applying elimination rules, say, 7G|T <Tz’;bls(_. > and the fully
b|G e "

iqu
Gy . ,
constraint contraction rules, say, = (ECg), where qu < Hf, Gb|S§qu is closed for 0 < g < J — 1,
1

I<u<my.
Proof. Immediately from Lemma 7.4. O

Definition 7.9. Let G’ € Gf D H' c G and S’ € H'. (i) For any sequent-formula A of S’,
define A to be the sequent S of Gf’ ) such that A is a sequent-formula of S or subformula of
a sequent-formula of S; (i) Let S’ be in the form Ay, --,A, = By, B, define §7 to be the
hypersequent which consists of all distinct sequents among Ay, A, B, B (iii) Let H' be
in the form S {|---|S,, define H' to be S1|-++Sm: (iv) We call H' to be separable if H' <. G and,
call it to be separated into H'.

Note that Tf ) is a derivation without (ECq) in GLg. Then we can extract elimination
derivations from it by Construction 4.7.
Notation 7.10. Let H' ¢ G’ ¢ ‘rf ), rﬁé{?ﬂ,} denotes the derivation from H', which extracts
from Tf ) by Construction 4.7, and denote its root by G;:(GJ,:)H,}.

The following two lemmas show that Construction 7.3 and 7.5 force some sequents in [S{],
or H' to be separable.

G,|S, G"|S”
H= GI|GII|HI
Gil (G'IS")s;, G"IS"

i) I e (I1) € 5 . €75, then H' is separable in T
0 = GilG)s, G € Tosi, =T ’
"

Lemma 7.11. Let (I1) € T*. Then (i) H' is separable in Tﬁjﬁ,’,);

f(” and there is

(/) in Giﬁr.

a unique copy 0f§7|GI{H1 G}

Proof. (i) We write < _x«) and <.+ respectively as <y and < for simplicity. Since G;g,) <. G|G*,

H:H'
we divide it into two hypersequents Gour, and G such that GX(T) = G963 ) G0 <,

GG\ e, G,
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Let S € G;(I?, then H{ £ H by Construction 7.5. We prove that H;[|H' in 7'15:(11]') as follows.

If S € Gy then Hj||H' in 7}, by Lemma 6.7(1), 7. € TE:(;,) and H$ £ H. Thus we assume
that S ¢ Gy in the following.

Then, by Lemma 7.4(iv), there exists some T’éb‘sip in T;(;,) such that Hi < H, S5 € Gge.
Then H; & Hj by Lemma 6.6(vi). Hj & H by Hf < H, Hj & H . Thus H{|~Hj. Let
GilS1 G»|S»

G1|G2|H2
Gol(GilS1)s: € Ty, GalS2 € Thiy) by 8¢ € Gy € GGy, € Tyis). Thus HS|oH' by
Gyl (G1|S1)Sp <k GolS < H', Go|S 2 <4 Hj and Gy (G]|S1)S§ %G2|S 2.

(I1) € 7%, where G1|G1|H, = H,, G1|S1 < HY, G,|S 2 < H. Then §; € (G1|S1)Sc,

lj’

Thus HC||H’ in 1'331,) Therefore G;(Iji), NH =@. Then H' C G?}ﬁ, c. G,i.e., H is separable
in T;\;’ g,) .
(ii) Clearly, G I {é )G”|H’ is a copy of Gﬁ:(Gj,z‘ o and, Tﬁffl?G,,lH,} has no difference with Tig,?‘ o

except some applications of (IDg) and identification numbers of some p’s. Then H' is separated
into ' in G by the same reason as that of (i). Then S’,S" are separated into S’ and S7”

T{Hy:H'Y
in 7). respectively. Then 57 |G§1(LIJ)G,,} c Y167 is closed since G”|S" is closed. Thus
all copies of S7 |Gﬁg]):G,,} in TF ) are contracted into one by (EC) in Gy*. O

Lemma 7.12. (i) All copies of S§ in [S{|; are separable in TF(J),'

(ii) Let H e 7, H' € H, H{ < H or H$|H for all S € G}y, Then H' is separable in TH(J).

Proof. (i) and (ii) are proved by a procedure similar to that of Lemma 7.11 and omitted. [

Definition 7.13. The skeleton of Ti* , which we denote by ff , 1s constructed by replacing all

GylS Gy|S§

— 1 [ _x bie : iqut * =

7G;,|G§(_. (TGbIS,?“> € 17 with GGt ( G, ). i.e, Gy|S§ , is the parent node of Gb|Gquu in7p.
i

Lemma 7.14. ‘T'f is a linear structure with the lowest node Gf" and the highest [S¢];.
Proof. Tt holds by all T(*JbIS? and EC{ in Tf being one-premise rules. O
i

Definition 7.15. We call Construction 7.3 together with 7.7 the separation algorithm of one
branch and, Construction 7.5 the separation algorithm along H.
8. Separation algorithm of multiple branches

In this section, let I = {Hj ,--, H{ } € {HY{,-, Hy} such that H |H; forall | <k <I<m
We will generalize the separation algorithm of one branch to that of multiple branches. Roughly
speaking, we give an algorithm to eliminate all S € G|G* satisfying H; < H; for some H; € 1.

Definition 8.1. 1:= {H¢: H; < H{ for some Hf €I}.
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Theorem 8.2. ([A.4,A.5.4]) Let I = {[S{ |1, [S{ |r}. Then there exist one closed hyperse-
quent Gi* €. G|G* and its derivation t}" from [S¢ 1y, ..., [S§ 11 in GLg such that
(i) Tl* is constructed by applying elimination rules, say,

Gb1|S51 Gb2|S;2 be S;w
* _ w * <T1j> ’
Glj - {Gbk}k:1|GIj

G,
and the fully constraint contraction rules, say = (EC{), where 1 < w < m, HS « Hj for all
1

1
I<k<l<w I={HS, - H;} L Li={S,S5} §j = {Gy, S5, Gy, |56, } and Gy, |S¢, is
closed for all 1 <k <w. Then H{ & H for all S € G7, and Hi € I.

(ii) For all H € TF,

G
071* (H) := G|G* H is the root of ‘T'f or Gy in G:j(ECS*) or IDq) € i—iﬁ’,

c . c * o =W
Hj, H is Gp,|S¢, in T, €Ty for some 1 <k<w,

where, ‘?f is the skeleton of ‘rf which is defined as Definition 7.13. Then
0 _» (ij) <0 x (Gbk|S§k)f0r some 1 <k<win Ti:,.
I I

(iii) Let H € 7}, G|G* < 0 «(H) < Hy, then G:;V(Q € 17 and it is constructed by applying
I 1

the separation algorithm along H) to H and, is an upper hypersequent of either (EC},) if it is
applicable, or (IDgq) otherwise.

(iv) S5 e Gy implies HS||H; for all Hf € I and, S € G, for some T, € 7 or S¢S e[S5 11 for
some Hy € I satisfying HS £ H.

Note that in Claim (i), bold j in [, Z; or I; indicates the w-tuple (ji,--, jw) in S, S¢ .
Claim (iv) shows the final aim of Theorem 8.2, i.e., there exists no S € Gy such that Hj < H;
for some Hj ¢ I. It is almost impossible to construct T}ﬁ’ in a non-recursive way. Thus we use
Claims (i), (ii) and (iii) in Theorem 8.2 to characterize the structure of T;A’ in order to construct it
recursively.

Proof. 1} is constructed by induction on |1|. For the base case, let || = 1. Then 7}" is constructed

by Construction 7.3 and 7.7. Here, Claim (i) holds by Lemma 7.8(ii), Lemma 7.4(i) and Lemma

6.6 (vi), Claim (ii) by Lemma 7.4(i), (iii) is clear and (iv) by Lemma 7.4(iv).

GI|S 4 GII|S "

——————(II) et*, where G'|G"|H’ = H} . Then
GI|GII|HI

{H; -, H; } is divided into two subsets /; = {Hfl,m,Hfm(l)},I, = {H;,, ~--,Hfm(r)}, which occur

in the left subtree 7*(G’|S’) and right subtree 7*(G”|S") of 7*(H] ), respectively. Then m([) +

m(r) =m. LetI; = {[S,CI]I, . [Sfm(’)]l},lr ={[85, 1. [Sfm(r)]l}. Suppose that derivations Tﬁ’
of Gﬁ" and Tff of Gﬁ’ are constructed such that Claims from (i) to (iv) hold. There are three cases
to be considered in the following.
Case 1S’ ¢ (G'|S")g, forall7j e 4. Then 7{" := 7{" and G} := G}
e For Claim (i), let Ti:,[ € ‘rf and S € G}j . By the induction hypothesis, Hf £ Hj for all
i

H{ € I. Since S’ ¢ (G’|S’)Ijl then G”|H’ﬂ(G’|G"|H’)IjI = @. Thus G;,V:G"|H' NGz, = @by
36
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Lemma 6.3 and 6.4. Then S ¢ GHV Gl Thus G”|S"" & Hj by Proposition 4.15(i). Hence, for
all Hf € I,, H; £ HS by G”|S” HC Then Hf & HS for all Hf € I. Claims (ii) and (iii) follow
directly from the induction hypothesis.

e For Claim (iv), let ¢ € Gy*. Tt follows from the induction hypothesis that HS||H; for all

H; €l and, S5 € G, for some 7y € Tﬁ or §¢ e [S; ], for some Hj € I, H £ Hj . Then HS & H)
by HS|Hf ,H/ < Hj.

If S¢ € [S]]; for some H € I, H; £ Hj then H{|H; for all Hf € I by the definition of
branches to 1. Thus we assume that S € G}j’ for some Tfjl € Tf in the following. If G'|S” < Hj
then H¢|H; for all H € I, thus HS[ Hf for all Hf € I. Thus let G'|S’ £ H¢ in the following. By
the proof of Claim (i) above, G”|S” & H¢. Then H) ¢ Hj by G'|S” « HS and G"|S" & HS. Thus
HS|HY . Hence HS|| Hf for all Hf € 1.

Case2 5" ¢ (G"[S")7, forall 7y e 5. Then 7{" := 7f° and GJ* := G}'. This case is proved
by a procedure similar to that of Case 1 and omitted.

Case3 S’ € (G'|S’ ) for some TI € TI and S € (G”|S”)I;{ for some 7j € Tff.

Given
Gbr]

) GoalS5, - Golss,
— v * (le,) €7y,

G, ={Gp, }1<:1|szr

such that S € (G”|S")Ij and HS, > Hj forall 1 <k < v, where, 1 <

is closed for all 1 < k < = {H¢ i m,- H‘ } c I, I, = {Sjw e /n} I, =

{Gp, IS¢, Gy, IS5 }. Then H,‘j/ > G"|S" by I, < I and HS, > H} forall 1 < k < v. Thus

H{ ~ Hj for all Hj € IJr and Hf € [; by §" € (G"|S")7, and Construction 6.11.

For each TI € TI above, we construct a derivation 7y (TI ) in which you may regard TI

J rk

as a subroutine, and 7y as its input in the following stage 1. Then a derivation T (TI (ty,)) is
constructed by calling 7y’ (TI ) in Stage 2, in which you may regard 7y’ (TII (ty,)) as a routine
and 7y, (ler) as its subroutine.

Firstly, we present some properties of Tf’ which are derived from Claims (i) ~ (iv) and appli-
cable to Tﬁ' or Tfr' under the induction hypothesis.

Notation 8.3. Let - P
G = 87IG 0 |G \(SIS7} and

HY:G" 1 HY

Gy = {Gu, Y S71G 5 |G*‘“ \{$7[57}

HV G”) HV H'
be two close hypersequents, G < H for some H € TI/ and G:\{Gy,, }}_, € H for some H € Tf: .

Generally, S ¢ G; is a copy of 57 ¢ G, i.e., eigenvariables in 57 ¢ G+ have different
identification numbers with those in §”' ¢ G+, so are H',G",S’.

Lemma 8.4. S¢ € G implies H || G'|S".
Proof. Let S € Gy ¢ Gﬁ‘S'JG)”\H" Then HS £ H)' by Lemma 7.6(i). Thus HS > H) or H$|H/ .
v
If HS|H} then HS || G'|S" by H[ < G'|S" and Proposition 2.12(ii). If H{ > H then S¢ ¢ H)
by Proposition 4.15(i). Thus S¢ € G” by Lemma 6.3, Lemma 6.7(i). Hence H¢ || G'|S’ by
H;?G”|S”, G,|S,HG"|S”. D
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Lemma 8.5. (1) ‘T'f is an m-ary tree and, Ti* is a binary tree;
(2) Let H € T[* then (9_1_]1)( (H) < Hj, for some 1 <k <m;
(3) Let H € Ty then HY ¥ 0 (H);
(4) Letw > 1 in Tfj € ‘rf' then Hy < H forall 1 <k<w.
(5) Let 7y, € 7, 6T;¢>(Gbk|55k) < HY for some 1 <k <w. Thenw = 1.

Proof. (1) is immediately from Claim (i). (2) holds by G|G* < Hj and Hj < Hj forsome H; €1
by I; € 1. (3) holds by Proposition 2.12(iii), (2) and H}/ <Hj.

For (4), let w > 1. Then Hj, HH;k for each 2 < k < w, HS < Hfg and Hj < Hj for some

H; Hj € Iby (2). Thus Hj |Hj and HS |H; by Proposition 2.12(ii). Hence Hj £ Hi‘g/ih by
HY, < Hj,and H{ & H}, by H;, < Hf. Thus H/ < Hj, and H] < HS, by 3), H] < H} ;.
Hence H}/ < ij forall 1 <k <w. (5)is from (4). O
Hiy - Hiw, | % ) .
Lemma 8.6. Ler 7H7<Tli(i)> € 1[ forall 1 < i< n such that (97? (Ho1) = G|G* and

i-1,1
0, (Hn1) < H{. Then 0.5 (Hix) < H{ andw;=1forall 1<i<n

Proof. The proof is by induction on n. Let n = 1 then w; = 1 by Lemma 8.5(5) and 0 _» (Hy1) <
I
H{ . For the induction step, let 0.x(Hi1) < H) for some 1 < i < nthen w; = 1 by Lemma 8.5(5).
I

Hi, - Hy,
Since ———— (‘rfj(i)> € 7)° then 0 % (Hi-11) < 0% (Hjx) for some 1 <k < w; by Claim (ii).
i-1,1 ! !
Then 8_x (Hi-1,1) < % (H;1) < H} by w; = 1. Thus w;_; = 1 by Lemma 8.5(5). O
I I

G

Definition 8.7. Let G:Z(ECS*)) € 77°. The module of 77° at G,, which we denote by Tsz, is
1

H,--H,

defined as follows: (1) G, € ‘rsz; 2) (Ti: ) € Tﬁ"Gz if Hy € TﬁGz; (3) Hy ¢ TﬁGz if

Each node of Tf’Gz is determined bottom-up, starting with G,, whose root is G, and leaves
may be branches, leaves of 7* or lower hypersequents of (ECg)-applications. While each node
of 7} is determined top-down, starting with H’', whose root is a subset of G|G* and leaves
contain H' and some leaves of 7*.

Lemma 8.8. (/) ‘rsz is a derivation without (EC{,) in GLq.
(2) Let H' € ‘ff’cz and 67;* (H') > H]. Then 6TI¢( (H) > H) forall H ¢ ?sz and H > H'.

Proof. (1) is clear and (2) immediately from Lemma 8.6. O]

Stage 1 Construction of Subroutine ‘rﬁ" (71, ). Roughly speaking, Tﬁ’ (71, ) is constructed
by replacing some nodes Ti:_ € Tf’ with -1-1*j U, in post-order. However, the ordinal postorder-

traversal algorithm cannot be used to construct Tf’ (71, ) because the tree structure of Tff (ty,) is
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generally different from that of ‘rf at some nodes H € Tﬁ" satisfying d_« (H) < HI‘[/ . Thus we
L

%(9) of trees for all q > 0 inductively as follows.

For the base case, we mark all (ECg)-applications in Tf as unprocessed and define such

construct a sequence TI

marked derivation to be ‘rﬁ ) For the induction case, let TI{;’ (@) pe constructed. If all applications

of (EC§) in Tf" (@) are marked as processed, we firstly delete the root of the tree resulting from the
procedure and then, apply (ECS) to the root of the resulting derivation if it is applicable otherwise
add an (IDg)-application to it and finally, terminate the procedure. Otherwise we select one of

oo

q+1
the outermost unprocessed (EC,)-applications in Tf @, say, (EC})C.,, and perform the

GZ+1 g+1
G2, Gyt
following steps to construct T*(q " in which —(ECQ) 41 berevised as =———=(ECy))_,, such
gq+1 ! q+1
that

¥ (q)

is constructed by locally revising 7y, 622, and leaving other nodes of Tﬁ(q)

(a) Ti‘: (g+1) .

changed, part1cularly including G, ,;
(b) E"(qﬂ)(GqH) is a derivation in GLg;
(©) G,y =Gg2 it S" ¢ (G'|S’ )I for all TI €Ty (G2

oo Mg+1 Mgt
G3\G, |G, """ for some mq+1 > 1.

o21) otherwise

G;1.+1 =
Remark 8.9. By two superscripts o and - in (ECQ) 4+ or (ECg),,,» we indicate the unprocessed
state and processed state, respectively. This procedure determines an ordering for all (EC{)-
applications in Tﬁ’ and the subscript g + 1 indicates that it is the g + 1-th application of (ECg) in
a post-order transversal of TI G;%and G, (G, and G, ) are the premise and conclusion of

(ECL) (ECg),, ), respectively.

q+1 (
Step 1 (Delete). Take the module 7y, (G‘Q, out of Tﬁ(q). Since (ECg,). ,, is the unique unpro-

cessed (ECg)-applications in 7y (Q)(Gqﬂ) by its choice criteria, 7y ((;%)o is the same as TﬁGoo by
g+l

Claim (a). Thus it is a derivation. If d_s (H) < H}/ forall H € Tfié@o , delete all internal nodes of
I atl
Tf{,(G‘Q, . Otherwise there exists
Y g1
c
Ghl’l |Sjl’] Gbl’2|SJI'2 sz’ / |S]l’ - % (q)

- ( Ij,> € TrGee

Gl’ = {Gbl'k}kII Ij,/ i q+1

such that 9 ﬁ(Gb’,k|S ) > HY forall 1 < k < u and 6Tf> (Gr) < H} by Lemma 8.8(2) and

Jrk

9 ﬁ( ai1) = GIG™ < H/, then delete all H € ng{,)o , G°°

gn1 S H < Gp. We denote the structure

resultrng from the deletion operation above by ‘r Since 0 » (Gr) < Hj / then Tﬁ(q) is
L

Goo (1) Goo (1)

a tree by Lemma 8.6. Thus it is also a derivation.

G 4
Step 2 (Update). For each G, ¢ Tﬁg{,)o i which satisfies 7(ECQ) € Tf(q) and S’ €
ql
(G'|S’ ) for some TI €1y, (G°°) we replace H with H\G;|G; for each H € @) Gy <

1:G2, (1)
39


http://dx.doi.org/10.20944/preprints201902.0159.v1
http://dx.doi.org/10.3390/sym11040445

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 February 2019 d0i:10.20944/preprints201902.0159.v1

H<Gy.

G I
GO
(EC)-application in 7y

Since =—

(ECQ) €T) (q)(GqH) and (EC;—;);H is the outermost unprocessed

#(9) then q < gand (ECS),, has been processed. Thus Claims (b) and

G../
G%] is a valid (EC{ )-application since
q/

(¢) hold for TE‘{ (@) (G,) by the induction hypothesis. Then
Goo qul G:ﬂqr

—, —and ——
G:' G Gy

are valid, where G, = G°°\G < |G .G, = G \G+|Gs.

Lemma 8.10. Let Gy < H< Gy, Then d «(H) > G'|S".
L

Jre
i
G’|S’. Otherwise all applications between G and H are one-premise rules by Lemma 8.6. Then
Hj, < 0% (H) by Claim (ii). Thus d_«(H) > G'|S’ by H| < HS, , 0 »(H) < H;j, for some
I, I L

ik e’

<k’ <m(l) by Claim (i). O

Proof. Since Gy < H then Gy, |SS < H for some 1 <k <u'. If §_«(H) > H) then 8_»(H) >
I I

Since - (H) > G'|S” by Lemma 8.10 and H{|G'|S" for each S € G; by Lemma 8.4, then
Gy cHas 51de -hypersequent of H. Thus this step updates the revision of G, downward to Gp

Let m’ be the number of G, satisfying the above conditions, T*GOZ 1y’ Gy and Gy, |S
¥ (q) : 7 (q)
all 1 < k < u’ be updated as 7, 1:G2,(2)° Gy, Gb, IS¢ G respectively. Then 7, 1G22, (2) is a derivation

and Glﬂ = G[/\Gl;q |G§:n .
Step 3 (Replace). All 7j € Tf’_ é‘{,{ @)
1 g+l
and Hj € I, it proceeds by the following procedure otherwise it remains unchanged. Let 7, be
a1

L

are processed in post-order. If H; ~ Hj for all Hj € I

in the form

SL

Gb” |S Jiu

Jn Gb12|S . Gblu
G = {Gblk}k=1 |G§‘j’
<SG

Then H¢, > G'|S’ for all 1 <k < u by Lemma 8.10, Gy, |S,
. P . "
Firstly, replace T, with T, - We may rewrite the roots of TIJ,[ and T4, ur, 8

jn

{Gblk}k 1|GHV G’ |GHV G//lH/ and

Glr = {Gblk}k 1|GHV Gz |{Gbrk}k llGHV G”) |H">

respectively.
Let G» < H < G;. By Lemma 8.10, 4 ﬁ(H) > G'|S’. By Lemma 6.7, HS < H) <

G'|S! or H”HG’|S for all S € GHV G| Thus GHV o S

« O
H\GHV G//|H'|{Gbrk}k:1 |GH;/:<GN)Ijr Y for all Gy < H < G;. Let m"” be the number ofTIjl € TI,:(G‘%IQ)

C H. Secondly, we replace H with

satisfying the replacement conditions above, Tf g{,c () G and Gh, |SC forall 1 < k < u' be
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Gy, Gy, |S, . respectively. Then T*(q)

updated as ‘r 163

G°° .(3) 3 is a derivation of Gy~ and

Glm = Gl”\{GHV G”|H’}m |{{Gbrk }k 1|GHV (G”) ‘H’}m .
Step 4 (Separation along H)'). Apply the separation algorithm along H)' to Gy~ and denote
#(@) whose root is labeled by G, ;. Thenall G;

1:G%2, (4) HY(G") 7, H'
Q(q) Gl|s/ GH|S "

T, Go0, (4)° Since —H}/ - G’|G”|H’(H) €T,

the resulting derivation by 7, in Gy

v (J)

are transformed into GH,V: ("), 1 inTt

{Gou}ia{G'1S7) 7, G i (GTIST)
Gou i {Gbi 311 (G ), [(G")g, |H

% (q)

J
" (
(1) e g, o, € Thgee, (3

H', S’ and §" are separable in TI{i (G?il (4y by a procedure similar to that of Lemma 7.11. Let § !
and " be separated into S’ and 57, respectively. By Claim (iii), G;V(:JG) =G5
ijv"g” G2 \GY |G by Lemma 7.6(iv),
Gyt =Gt
= G, MGty MG JialG o}
= Ghio MSTITIG 0, IG R SIS |
G Nl S7IG 0, 167 ST

Y (J m m'’
- GH‘EG?H\GT |G¢

= {Gq+1\Gm |G 1\GY |Gy
1\G"'l +m |Gm +m
q+
1\qu+l |qu+1
q+
where mg, :==m' +m".
G-

1
and mark —G%Jr(EC;fz);+1 as
g+l

% (q)
1G22, (4)

Step 5 (Put back). Replace ‘rf (G‘Q) in TI* @ with 7

¥ (q)

processed, i.e., revise (ECg*z) o1 88 (ECS), .. Among leaves of 7y G2, all G, are updated as

*(q)
1:G° (4)°

g+1°

G, and others keep unchanged in 7 Then this replacement is feasible, especially, Gg3,

be replaced with G- Define the tree resulting from Step 5 to be Tﬁ @1 Then Claims (a), (b)
and (c) hold for ¢ + 1 by the above construction.
Finally, we construct a derivation of G*\GT|G¢ from [S{ 17, [S] (1)] 1 G, 1S5, G,

rv

in GLgq, which we denote by 7 (TI ).
Remark 8.11. All elimination rules used in constructing Tf’ are extracted from 7. Since Tfj is
a derivation in GLg without (ECgq), we may extract elimination rules from Tf which we may

use to construct Ty, (‘z'I ) by a procedure similar to that of constructing TI with minor revision
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at every node H that 0 «(H) < H{. Note that updates and replacements in Steps 2 and 3 are
L

essentially inductive operations but we neglect it for simplicity.
We may also think of constructlng T (‘rI ) as grafting TI in ‘rI by adding TI to some

TI € TI Since the rootstock Tl of the graftmg process is invariant in Stage 2, we encapsulate
= G,

T (‘z'I ) as an rule in GLo whose premises are Gy, [S¢, , G,
ST G Hat G, 167w \(STSTHGE,

HV G” HVZH'

, - and conclusion is
] 2 Jrv
Ip’

Gb,l

Gy,

G, IS5

. i}(J) =) = <T§(Tfj- )> ’
S"KG, }i-1|G |G \{5757}|G§: '

HV G”) HV H'

c
Jr1

I[\

where, Gf:" L= Gi‘;‘r \G+ is closed.

¥ (q)

Stage 2 Construction of Routine 7" (TII (‘z'I )). A sequence 7y, of trees for all ¢ > 0 is

(e]o)

7 (0) »ﬁz(q) G"*

constructed inductively as follows. 7y, 7 —(E CQ) . are defined as those of Stage 1.

G;+1
G;"
Then we perform the following steps to construct ‘r*(q D in which =—— (EC}) g+l be revised as
q+1
Gq+l
o (ECQ) .1 such that Claims (a) and (b) are same as those of Stage 1 and (c) Gy = Gqul if
gq+1
S"¢(G"|s"). ) for all TI ey (Gqul otherwise

G = °L\{S'|G§§2,}mw|{GI*,\,}'"4+1 for some g+ > 1.
Step 1 (Delete). Tﬁ%)il and Tf;(qu)o (1) are defined as before.
Gb,’1|S(j{,I] |Sj/2 Gbll S

- % (q)
(ler ) e TI GOO

q+1

”' = {Gbr’k }k:1|G§j ,

satisfies 8« (Gy,, |55, ) > Hf forall 1 <k <v' and 8« (G,) < Hj .
I, r 1,
G“’

Step 2 (Update). For all Gy, € 7, g{,)o (1) which satisfy G*Z

EC:Y, € 59D and §”
Qlg I,

q
(G"[S ">Ij, for some Tfjr € ‘rﬁ' (Gy7), we replace H with H\{S\’|G§IV(:JG),}|G}£’N forall H € Tﬁ%)il (1y

Gy <HK Gz,. Then Claims (a) and (b) are proved by a procedure as before. Let m’ be the num-

ber of G'q, satisfying the above conditions. ‘rf, g{,)o (1)’ G, and Gb,fk|S ;r,k forall 1 < k <V be

updated as T*g’o)o ) G, Gy, ,A|S 5, respectively. Then T*(Go)o e, is a derivation and G,» =
Srx ) ym m'

crr\{s'|GH;:g,} {Gi )"

Step 3 (Replace). All 7y, € T?(qu (2) are processed in post-order. If Hf ~ H for all Hf € Ij,
" T g+l

and Hj € I; it proceeds by the following procedure otherwise it remains unchanged. Let Ti:, be in
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the form
Gy,

jn GpalS5, -+ G, IS5,
G, = {Gbrk }k:I |G§

Then there exists the unique 1 < k" <V’ such that G,» < Gy, ,,|S

Firstly, we replace rf, with 7 (TI )- We may rewrite the roots of 7j , }f’ (r1,) as G, =
% (J % (J .
{G, 31 1|GHV Gy, |GHV > O = {Gbrk}k IS71G ) |G ) \{S’|S”}|G‘f§r, respective-

<G,.

Jergr X

HV G" H[V:HI
ly.
Let G,» < H < G,. Then d_s (H) > G”|S" by Lemma 8.10. Thus ijé‘g,lH, H{S6:5%¢€
I
* (o c . c * J C c . c
G any,, H5 > G"IS"} = {85+ 55 ¢ GHV(()G,,) , G"|S"}. Define Gji* = {S¢ : S¢ ¢

,S; be the focus sequent of some H' € Tﬁ(q) H<H <G,}.

H;/:(G”)Ijr I,:G;j_l(Z)’

Then we replace H with
H\(Gly ey, \Gi G ISTHG S Oy \Gi HNGED (S5 GE

HY:(c" HVIH' Il\

for all Gy, [S%,, < H<G,.

Let m"" be the number of Tfj e 749

1.6, (2)
T, (qu)o (@) G and G |85, for all 1 < k <v' be updated as i (G")° 3y
¥ (q)

1:G%2,(3)

satisfying the replacement conditions as above,

Gy, G, |S§, . respec-

Jm
tively. Then 7 is a derivation and G, = G,»\H"" |[H2" , where

**
H() - G Sc s

b k' ek
Hl = GHV G” \H0|GHV G’lH”
H, s~|G;fV<Q,, \HOGH\(STSTHGE,
Step 4 (Separation along H)). Apply the separation algorithm along H} to G, and denote

the resulting derivation by 7, (Go)o (@)

By Claim (iii), ijég =G,
v,

whose root is labeled by G

Y (J ¥ (J m m’
Gyta, = G MG oISy {GE 3™

*() _ %x() ﬁ(l) *(J)
GHV:H _GHV:(G") \G |GHV:G’|H”

Ghin =S ~|Gj;<1>,, \G,‘j;j;|G3;2,\{s'|s"}|01,\

Then

Gi‘:(f) Gi‘«’(/) \{Gi‘«’(l) }m"|{Su|Gﬁ(1) \{S |S"}|Glz\y}m"

HVGH/ HVGN HIV:G’lH’ HV :H'

=Gyt MG g IS [{GE .
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Then

Y (J T () \mg, mgy
Gyt =Gt = GEaMSIG 0y G e
where mg,y :==m’ +m".
G
Step 5 (Put back). Replace Tf" g]o)o in T*(Q) with Tf .(qu)e (4) and revise G%(EC;))Z .1 as
g+
g+1

G,
EC] . Define the resulting tree from Step 5 to be 5@ then Claims (a), (b) and (c)
G° Qlyq g p I,
gq+1
hold for g + 1 by the above construction.

Finally, we construct a derivation of G;‘f \{§" |G§V(:JG),}|G“* from [S¢ 7, ..., [S{ |7 in GLq.

Since the major operation of Stage 2 is to replace Tf, with 7 (T (,r)) for all Tf € Tf" satisfying
S” e (G"|S") 700 then we denote the resulting derivation from Stage 2by 1y (TI, (71,))-

In the following, we prove that the claims from (i) to (iv) hold if TI = Tﬁ’ (Tff (‘1'1j )) and

a1~ (J
Gy = Gﬁ\{5'|GH,V(:c;}|GIz\

. . .. Hl Hw * % c * c

e For Claim (i), (ii): Let 7To (le) €7 and S € GIJ,. Then a_{_;{,& (Hy) £ HS for all

<k <wby Lemma 6.13(iv).

If 6 fr(Hk/) < Hj for some 1 < k' < w, then H £ HY for all Hf € I by 8 ﬁ(Hk/) < H| < Hf.
Thus Clalm (1) holds and Claim (ii) holds by Lemma 8. 5(5) and Lemma 7. 6(1) Note that Lemma
8.5(5) is independent of Claims from (ii) to (iv).

Otherwise 7y, is built up from 7, € Tff T, or Ty, o, € Tﬁ (71, ) by keeping their focus and
principal sequents unchanged and making their side-hypersequents possibly to be modified, but
which has no effect on discussing Claim (ii) and then Claim (ii) holds for Tf' by the induction
hypothesis on Claim (ii) of TI or Tf"

If 7 is from TIJI o, then ' e (G’|S )IJ and $” € (G"|S")7, by the choice of 7y, and 7y,
at Stage 1. By the induction hypothesis, Hf & Hf for all S € G}j[, H; € I and H{ £ H¢ for all
Sj € G}jr, Hf € I,. Then H{ & Hj for all S; € G;j = G}jluzjr, Hf e I by GEJ'IUIJ‘, = G}j’ ﬂG}jr,
I=1Lul,.

If 7f, is from Tf, then ' ¢ (G’|S’)Ij] by Step 3 at Stage 1. Then (G’|G"|H’>Ij, N(G"|H") = @.
Thus S¢ ¢ GHV G| Hence G"|S" & Hj. Therefore Hf 4 H¢ for all H € I, by G"|S" < HE.
Thus Hf & Hj for all Hi € I'by S§ € G7, = G} and the induction hypothesis from 7y, € Tf’ . The
case of TI bu11t up from TI is proved by a procedure similar to above and omitted.

o Claim (iii) holds by Step 4 at Stage 1 and 2. Note that in the whole of Stage 1, we treat
{Gbs, }i=, as a side-hypersequent. But it is possible that there exists S € {Gy, };_, such that
Hj < H/. Since we haven’t applied the separation algorithm to {Gy, };_, in Step 4 at Stage
1, then it could make Claim (iii) invalid. But it is not difficult to find that we just move the
separation of such S to Step 4 at Stage 2. Of course, we can move it to Step 4 at Stage 1, but

which make the d1scuss1on complicated.

e For Claim (iv), we prove (1) H; |Hj for all S € Gf"l\ and Hf € 1, (2) H{ |Hj for all S €
fo \{§7 |G3‘§:]C3'} and H{ € I. Only (1) is proved as follows and (2) by a similar procedure and
omitted.
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Let S € Gff . Then S¢ € Gff and S ¢ §7|G(0), |G ) \{S7|S7} by the definition of Gf' .

HY{:G" " H:H'
By a procedure similar to that of Claim (iv) in Case 1, we get H £ H) and assume that § S € G}j
4
for some 7j, € TEr and let G'|S” & H¢ in the following.
!

Suppose that G”[S” < HS. Then S € G;}/:G” and S’ € (G’|S’)Ijl by S¢ e G}j,. Hence

A G;;V(:JG),, by HS > G"|S" > H{. Therefore S e 57 |G§V(:JG),,|G§V(2,\{.S"\’ IS}, a contradiction

thus G”|S" & HS. Then H)' ¢ HS by G'|S’ & HS and G”|S" & HS. Thus HS|H/ . Hence HS|Hf
for all H; € I. This completes the proof of Theorem 8.2.
O

Definition 8.12. The manipulation described in Theorem 8.2 is called derivation-grafting oper-
ation.

9. The proof of Main theorem
Recall that in Main theorem Gy = G'|{I;, p = A; b1 {ILj = p. 25} ot

Lemma 9.1. (i) If G, = Go\{T'1, p = A, } and g1, Do(G) then g1, Do(Go);
(i,) IfG2 = G()\{H] = p,Zl} and gL D()(Gz) then gL DQ(GQ),‘

(ii) [fG2 = G0|{F1,p = Al} and gL DQ(GQ) then gL DQ(Go);

(ii") If G2 = Go[{I1; = p, %1} and gL Do(G2) then g1, Do(Go);

(iii) Isz = Go\{F],p = A1}|{F1, T= A]} and gL Do(Gz) then gL, Do(Go),‘
(iii,) Isz = Go\Hl = p,21|H1 = 1,2 and gL D()(Gz) then gL, D()(G())

PVOOﬁ (1) Since Do(Gg) = G’|{1"i,Hj = A,’,Zj}i=2...,,;j=1...,n c G’|{1"1,1'[j = A],Zj}j=1...m|
{10 = ALZj}imoemj=1.m = Do(Go) then g, Do(Go) holds. If n = 1, we replace al-
lpinIl; = p,%; with L. Then ~g1, Dy(Go) holds by applying (CUT) to I'j, L= A, and
G = L,%} jtm-

(i1) Since D()(Gz) = G,|{F1,Hj = Al,Zj}j=1...m|{l",»,Hj = A,-,Ej},‘zl...,,;jﬂ.“m then
Far. Do(Go) holds by applying (EC*) to Dy(G3).

(111) Since DO(G2) = G’|F1, T= A1|{1",-,Hj = A,-,Zj},-zz‘..,,;jﬂ...m then ~GL G" = G’|F1,H1 =
A],Z]HF,‘,H]' = Ai,E_,-}izz..‘n;jzl...m holds by applylng (CUT) to F[,T = A] in DQ(Gz) and
IT; = T1,%;. Thus Fgr, Do(Go) holds by applying (EW) to G”.

("), (ii") and (iii") are proved by a procedure respectively similar to those of (i), (ii) and (iii)
and omitted. O

Let! = {Hf] ARTN Hfm} c {HS,---,H5}, Gy denote a closed hypersequent such that G; <. G|G*
and HS| Hf for all S € Gy and H; € I.

Lemma 9.2. There exists Gy such that ~gL, Gy for all I < {Hf,---, Hy }.

Proof. The proof is by induction on m. For the base step, let m = 0, then I = @ and G, := G|G*
and gL, Gy by Lemma 4.17(v).

For the induction step, suppose that m > 1 and there exists G; such that g, G, for all
|[I| < m~ 1. Then there exist G\ y for all 1 <k <m such that ~gL, G\ and H||Hf for all

ik i
If H{|Hj, forall S € Gp(y y then G == G\ (¢ y and the claim holds clearly. Otherwise there
Tk Tk
exists S € G’\{ka} such that Hj < Hj or HS > Hj, then we rewrite GI\{H;} as [Sfi]{Hf;}Ul\{Hﬁc}’
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where we define Hf,,( such that Sl‘Z € GI\{H&} and, S € Gl\{Hka} implies Hf < HiCL or Hj|H; for
all Hf ¢ {chl} uI\{H; }. If we can’t define G; to be G,\{H’g-k} foreach 1 < k < m, let I' :=
{Hf; s Hf;” }. Then G is constructed by applying the separation algorithm of multiple branches
(or one branch if m = 1) to [Sfi]l”"" [S;;,ﬂ]p Then Fgr, Gr by FgLg [S%]I/,---,l—GLQ [S,?,',"],/,
Theorem 8.2 (or Lemma 7.8 (i) for one branch). Let G, := Gy then ¢y, G/ clearly. ]

The proof of Main theorem: Let / = {HY,---, Hy, } in Lemma 9.2. Then there exists G, such
that +gr,, Gs, G; <. G|G* and HJCHHf for all S¢ € G; and Hj € I. Then kgL D(G;) by Lemma
5.6.

Suppose that S§ € G;. Then H[ Hf for all Hf € I. Thus H{|H{ by H¢ € 1, a contradiction
with H;ﬁ < H;ﬁ and hence there doesn’t exist S;ﬁ € G;. Therefore G; ¢. G by G; S, G|G™.

By removing the identification number of each occurrence of p in G, we obtain the sub-
hypersequent G, of G»|G5, which is the root of 7* resulting from Step 4 in Section 4. Then
FeL Do(G2) by —grL D(G/) and G, €. G. Since G, is constructed by adding or removing some
[i,p = A;jorIl; = p,X; from Gy, or replacing I';, p = A; with I;, T = A;, or I1; = p,X; with
Il; =1,%;, then gL, Do(Go) by Lemma 9.1. This completes the proof of Main theorem.[]

Theorem 9.3. Density elimination holds for all GL in {GUL, GIUL, GMTL, GIMTL}.

Proof. It follows immediately from Main theorem. O

10. Final remarks and open problems

Recently, we have generalized our method described in this paper to the non-commutative
substructural logic GpsUL” in [24]. This result shows that GpsUL” is the logic of pseudo-
uninorms and their residua and answered the question posed by Prof. Metcalfe, Olivetti, Gabbay
and Tsinakis in [17, 18].

It has often been the case in the past that metamathematical proofs of the standard complete-
ness have the corresponding algebraic ones, and vise verse. In particular, Baldi and Terui [3]
had given an algebraic proof of the standard completeness of UL and their method had also been
extended by Galatos and Horcik [11]. A natural problem is whether there is an algebraic proof
corresponding to our proof-theoretic one. It seems difficult to obtain it by using the insights
gained from the approach described in this paper because ideas and syntactic manipulations in-
troduced here are complicated and specialized. In addition, Baldi and Terui [3] also mentioned
some open problems. Whether our method could be applied to their problems is another research
direction.
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Appendices

A.1 Why do we adopt Avron-style hypersequent calculi?
A hypersequent calculus is called Pottinger-style if its two-premise rules are in the form of

G|sl G|S" o G,|S, GII|SII

——————(1II) and, Avron-style if in the form of —————
G|HI GI|GII|HI

style systems, each application of two-premise rules contains implicitly applications of (EC) in
Pottinger-style systems, as shown in the following.

(II). In the viewpoint of Avron-

GIS' G|s” an
G|S ! G|S " corresponds to G|G|H'
IS” Gl (a1 pon 6] (EC*)
G|H’ in Avron—style system G|H’
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The choice of the underlying system of hypersequent calculus is vital to our purpose and
it gives the background or arena. In Pottinger-style system, Gy in Section 3 is proved without
application of (EC) as follows. But it seems helpless to prove that Hy is a theorem of TUL.

p=>p A=A p=2p A=>Ap=>p A=A p=p A=A

A=plp=>A A=plp=>A A=plp=A A=plp=A

A=plp,p=>A0A A=plpp=>A0A
B=B =p,-Alp,p=>A0A =p,-Alp,p=A0A
C=>C B=Blp,p=>A0A =p,p,~A@-Alpp=A0A
C=C|= p,BB=p,-A0-A = p,BB=p,-A0-Alp,p=A0A

=p,BB=p,-A0-Alp=C|C,p=>A0A

The peculiarity of our method is not only to focus on controlling the role of the external con-

traction rule in the hypersequent calculus but also introduce other syntactic manipulations. For

example, we label occurrences of the eigenvariable p introduced by an application of the density

rule in order to be able to trace these occurrences from the leaves (axioms) of the derivation to
the root (the derived hypersequent).

A.2 Why do we need the constrained external contraction rule?

We use the example in Section 3 to answer this question. Firstly, we illustrate Notation
4.14 as follows. In Figure 4, let S§;, = A = p»;S{, = A = pi555, = A = ps;85, = A =
385 = p1.p2 = AOA; S5, = p3,pa = AQA Gl = p1,pr = A0AG) = p3,ps = AQA;
G4y =A = pi| = p2,BB= ps,-A©®-A|A = ps. Then H{ = G|S§|S¢, fori = 1,2,3. H are
(pEC)-nodes and, S§; and S¢, are (pEC)-sequents.

Let Ghepmp, == P2, B|B = p4,—-A ® -A|A = p3|p3, ps = A © A. We denote the derivation

A=p

*
G

* M M *
<TH€: A s ) Since we focus on sequents in G
‘A=p:

* *
TheA=p, OF Gheassp, from A = py by
c
ST

0 C c
§518%

. . . . A=p
in the separation algorithm, we abbreviate ———— (THT: A p2> t
He:A=p)

(T§€l > and further to

¥

is abbreviated as
H¢:G|G*

e (77). Then the separation algorithm 7

123
i

2,|2 (Tg’T;’>

> (ECq)

where 2" and 3’ are abbreviations of A = ps and ps, ps = A ® A, respectively. We also write
2" and 3’ respectively as 2 and 3 for simplicity. Then the whole separation derivation is given as

follows.
123 . 123 .
SRR (T = ({7
2323 - 113 .
2|2 ( 3’T3> 1|1 (T3>
3 (ECq) ; (ECq)
{T2y)
& {12}
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where @ is an abbreviation of G”' in Page 14 and means that all sequents in it are copies of
sequents in Go. Note that the simplified notations become intractable when we decide whether
(ECq) is applicable to resulting hypersequents. If no application of (ECgq) is used in it, all
resulting hypersequents fall into the set {1|2| 3|3, 2|2| 3|---|3, 1|1| 3]--|3 : I >0,m > 0,n > 0}

~—— ~— ~——
1 m n
and @ is never obtained.
A.3 Why do we need the separation of branches?
p] . p2 = A ® A

In Figure 11, p; and p; in the premise of <T;§»l) could be viewed as

C,pp=A0A
being tangled in one sequent p;, p» = A ® A but in the conclusion of (ngl ) they are separated

p1=C

into two sequents p; = C and C, p, = A ® A, which are copies of sequents in Gy. In Figure 5,
p2 in A = p, falls into = p,, B in the root of T};i-: A—p, a0d = po, B is a copy of a sequent in Go.

The same is true for ps in A = p4 in Figure 8. But it’s not the case.
c

St
Lemma 6.6 (vi) shows that in the elimination rule G <T§11 ), S5 € Gg. implies Hj < Hj or
S

Hj || Hj. If there exists no §§ € G such that H < H;, then 5 € Gg. implies H || H; and,
thus each occurrence of p’s in S¢, is fell into a unique sequent which is a copy of a sequent in
Go. Otherwise there exists §§ € Gg. such that Hj < Hf, then we apply (ng) to 8§ in Gg. and
the whole operations can be written as

i1 §
#(0) _ o . (TS‘)
Gy =Gy \{SyIss 1

%) _ cx \(gel|r <T§”->'
quf )z Gs;l\{SjHG ¢ !

Repeatedly we can get G?}f]) such that S € Gfﬁ.fj) implies Hj || Hf. Then each occurrence of

p'sin S, is fell into a unique sequent in G;ﬁ:fj) which is a copy of a sequent in Gy. In such case,

. e :
we call occurrences of p’s in S, are separated in GSC( ) and call such a procedure the separation
11

algorithm. It is the starting point of the separation algorithm. We introduce branches in order
to tackle the case of multiple-premise separation derivations for which it is necessary to apply
(ECq) to the resulting hypersequents.

A.4 Some questions about Theorem 8.2

In Theorem 8.2, Tf*' is constructed by induction on the number |/| of branches. As usual, we
take the algorithm of |/| — 1 branches as the induction hypothesis. Why do we take ‘rf and Tf:’ as
the induction hypothesises?

Roughly speaking, it degenerates the case of || branches into the case of two branches in
the following sense. The subtree 7*(G”|S") of 7* is as a whole contained in ‘r}j’ or not in it.
Similarly, 7*(G’|S") of 7* is as a whole contained in 77, or not in it. It is such a division of /
into [; and I, that makes the whole algorithm possible.
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Claim (i) of Theorem 8.2 asserts that Hi £ H¢ for all S € Gz, and Hj € I. It guarantees
that T}j is not far from the final aim of Theorem 8.2 but roughly close to it if we define some
complexity to calculate it. If H; < Hj, the complexity of Gf is more than or equal to that of [S¢],
under such a definition of complex1ty and thus such an apphcatlon of TI is redundant at least.
Claim (iii) of Theorem 8.2 guarantees the valldlty of the step 4 of Stage 1 "and 2.

The tree structure of the skeleton of 7y (Tl ) can be obtained by deleting some node H ¢ TI

satisfying 0 ﬁ (H) < Hy . The same is true for o if L5 (TI ) is treated as a rule or a subroutine
whose premlses are same as ones of ‘rIj . However, it is incredibly difficult to imagine or describe

the structure of Tf" if you want to expand it as a normal derivation, a binary tree.
All syntactic manipulations in constructing Tiﬁ' are performed on the skeletons of Tf’ or Tﬁ .
The structure of the proof of Theorem 8.2 is depicted in the following figure.

Y (J
|{Gbrk}k 1|GH\§ )G”) ‘
¥ rafting < Z
G* G gl g L, Gﬁ(/)\{sl‘su}lcll\
(Target) T:"'\" into rl“;‘
. . I
lmk Inducllon” hypothesis — T, (‘r[ )
: gifts us s Tcall
d !
i .z % % (J)
! : T GF\{§7|G GF
(Route) r‘:* grafting T (r;j,) I \{87] HV G,}\ I,
—_—
r into rﬁ
Ir (T (TI )

A.5 Illustrations of notations and algorithms

We use the example in Section 3 to illustrate some notations and algorithms in this paper.

A.5.1 [llustration of two cases of (COM) in the proof of Lemma 5.6

Gl GII :>p1 { Y
G (COM) be A=>p1|p1 ) (COM), where G' =S| = p; = p1; G" =8, =

A= A;S3=A= p;;S4=p = Aand G" = §3|S4. Then [S3]5m = [Salgms Do (S1) ==
Dg/(S1) Do (S2)

Let

t; Dgn(S2) = A = A; Dgn(S3]S4) = A = A. Thus the proof of is
Dgr(S3/S4)
A=A
Aol
constructed by : (cur).
A=A
= P2, Pa,~A © -A|p1, pr = A O A
"G b= A= pi|A= pilps,pa=>A0A
Let (COM) be d (com),

G ( = p2, B|B = p4,-A © -A|A = pi| )

PPy =>AOA|A= ps|ps,ps=>A0A
where G' =S| =B = B; G, = p1,p» = AOQA|A = pi|A= p3|ps,ps = AG A
S, == pz,p4,—|A ©-A; G' = G2|Sz; S3 == pg,B; S4=B= p4,—|A ©®-Aand G = G2|S3|S4.
Then DG'(S1) =B= B; D(;H(Sz) :A,A = A @A, -A©® —\A,A @A; DG"I(S3) =A=> B,A @A;
Do (S4)=A,B=>A0A,-A®-A; D (S3|S4) = Dgm(S4)|Dgm(Sy4).
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Dg/(S1) Do (S2)
DG/(S3|S4)

Thus the proof of

is constructed by

B=B A A=>A0A-A0-A,A0CA
A= BAQAAB=>AGA -AG-A

A.5.2 lllustration of Construction 6.1
Let 7* be

H,=A=BB=A Hs=A=BB=A
H=A=BJA=BB,B=A0A
H =A=B|=B,-AB,B=A0A

By Construction 6.1, 7%* is then given as follows.

(B=B;8,0) (A :>A;9,O)/COM) (B= B;10,0) (A= A;11,0)

(A= B;4,1)|(B= A;4,2)" (A= B;5,1)|(B= A;5,2) p
(A= B;4,1)|(A= B;5,1)|(B,B=A0A;2,0) (@)
(A= B;4,1)|(= B,-A;1,0)|(B,B= A0 A;2,0)

(COM)

(_\r).

As an example, we calculate p(Hg). Since Th(Hs) = (Hs, Hs, Hy, Hy), then b3 = 1, by =
by = by = 0 by Definition 2.13. Thus @ (Hg) = bg2° + b12! + by2? + b32° = 8.

Note that we can’t distinguish the one from the other for two A = B'sin H, € 7*. If we divide
H, into H'|H", where H =A = Band H' = A= B|B,B=A®A,then HHNH" = {A = B} in
the conventional meaning of hypersequents. Thus only in the sense that we treat 7* as 7**, the
assertion that H' N H"' = @ for any H'|H" ¢ H in Proposition 6.2 holds.

A.5.3 Illustration of Notation 6.10 and Construction 6.11
Let ! = (HS Hs). 1 = (HE Y1, = {H5).T = {85,853 = {56, 1., = {5},

Gllsl G”|S”
——(0,) e,
GI|GII|HI
where G'|G"|H' = H/;G' = A = pi|p1,p» = A® A;S' == p,,-A;

G"=z=A= p3|p3.ps = AOA;S" == py,-A;H' == p1,ps,~A O -A

(See Figure 4).

(G'1S")7, == p2,-As(G')g, = @:(G'|G"|H" )7, = A = p3| = p2,ps,~A © -A|ps, ps =
AGA; (G|G*)L =G1 = G;?l ==> py, B|B = p4,-A © -A|A = p3|p3, ps = A © A (See Figure
5).

(G"S") 1 == p4,-A;(G'|G"|H'); = A= pi| = p2,ps,-A @ -A|p1,p2 = A O A;
(GIG*); =G, = Gs, =A= p1| = P2, B|B = p4,-A © -A|p; = C|C, p; = A ® A (See Figure
).

(GIG"|H'); == pa.pic~A © ~A:(GIG"); = G = Gl o, = G NGy, == pa.BIB =
P4, A © -A (See Figure 10).
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A.5.4 Illustration of Theorem 8.2

Note that sequents in [] are principal sequents of elimination rules in the following. Let
I,1,,1; be the same as in A.5.3 and, I = {[S{],,[S5],}, L = {[S{],}. L = {[S5],}
[S9], = G:g:cw* = A = ps| = pe, B|B = pg,-A @ -A|ps = C|
C,ps =>AGA|B= p;,-A®-A|p; = C|C,ps = AOA,
[S5], = G:{':GlG* == py, B|B = p4,-A ® -A|p; = C|C,p, = A0 A|

A= ps3| = p1,Blp3 = C|C,ps = AG A.
L( * >

% (1) THT:A:pS
Gy,

TX'
G«;}(z) H$:pg,plo=A0A

Tﬁ = Gi‘% (ECS),
1

v (1) =[

where G/

= ps, B|B = p1o, ~A © ~A|A = po|p10, p9 = A © A]| = ps, B|
B = pg,-A © -A|ps = C|C,ps = A ® A|B = p;7,-A © -A|
)2 =>C|C,pg =A0A,
== ps, B|B = p19,~A © =A|A = po|[ps = C|C,p1o = A0 A]]|
= pe, B|B = ps,—~A @ -=A|ps = C|C, ps = A © A|
B = p;,-A®-A|p; = C|C,ps = A G A,
G} == ps. B|A = po|py = C| = pe, BB = ps,~A @ -A|
ps :>C|C’P6 :>A®A|B:>p7,—|A®—|A|p7 :>C|C’P8 :>A®A,

G¥ - A = polps = C|C,pio = A®A; §7 = B = pip,-A ® -A; §7 == ps, B;

#(2)
Gy,

HY:G"
Gﬁég, = G;lV:H’ = S‘\,|§W’ GT =A=> p9|p9 = C|C,p10 =A @A|B = plO’_‘A ® -A.
s I

[S5]
G;u; (Fisar)

= (ECE),

, Glﬁ:
where Gﬁ(l) == py,B|B = p4,-A® -Alp; = C|C,p, = A G A|
= p1,Blp; = C|C,ps = A© A|[A = p11| = p12, B
B = p3,-A®-Alp;; = C|C,p; = A0 A],
G;j’ == ps2,B|B= p4y,~A© -A|p; = C|C,p» => AGA|
= p],B|p3 = C|C,p4 :>A®A|A = p11|B = p3,-A® —\A|p1] = C.
Since there is only one elimination rule in ‘rf , the case we need to process is T,*,;

Ay 1€,

[S51;
TIjr = G*T (THE:AﬁP,?) .
HE:[SE]I

Thenv=1,5¢ =A= p3; Gy, == D2, B|B = ps,-A ® -Alp = C|
C.p»=>A©A|=p1,Blps = C|C,ps = A0 AinT] .
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W (TH?’Aﬁps>
I .
¥ (2) (TH§1P9sP|0:>A®A>
#(0) _ Gy, N
TIZ G* <ECQ)1 )

where @ « ([S5],) = Hc,aﬁ(c*“)) HS < HY .0 ﬁ(G*@)) 3 s (G) GlG*, Gy = GF®,
L

G; =Gy
[ST1,
i‘z(l) (TH?’:A=>[75>
2O _ L <T* )
1:Go° Gﬁ(2) HS:po,pro=>AGA [

[Sil,
%O O <T* )
TG = TGpe2) ~ Gx \"HiA=ps ]
I

. . .. . . 0
Since there is only one elimination rule in Tf, (G°) @)
1

the case we need to process is Tje.4, s
c;

ie.,

Thenu=1,S°¢ o = = A = ps; Gy, == ps, B| B = pg,—~A © -A|

ps = C|C, ps :>A®A|B:>p7,—|A®—|A|p7 =C|C,ps=>A0Ai 1n‘rI
lel is replaced with TI.i/UI.ir in Step 3 of Stage 1, i.e.,
[S71; (SEL
Gl,r == p5,B|B = P3, —|A ©
= p2, B|B = p4,~A © -Alp; = CIC,pz = A®A| = p.. B
p3 = C|C,ps = A® A| = pg, B|B = ps,-A © -A|
ps = C|C,ps = A© A|B = p7,-A © -A|p; = C|
= C,ps = A® Al|ps, B|B= p3,—-A ©® -A.
. 0) . 0
Replacing Tf" (Gol in Tf ©) with Tﬁ(c??, (@)
G, and keeping Gb, unchanged, we get

[Sil,[S51;
G, (

% (0) ¥ (0)

= Thceo(3) = TLGe0(4)? where

then deleting fo' and after that applying (ECg) to

T‘»‘r
{H:A=>ps Hy:A=>ps }

7 (7 ) === %(J) %(J) (ECa),
S Gy, GH1V=(G")IJ-, |GH},:H,\{S’|S”}|GII\
where GI‘;;[V(ZJ()G,% = G;v (G, T =@ 8 == Ds, B;

*(J) _ I
) =Gy =SS
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Gy. == ps.B| = ps, BIB = p7,~A © -Alps = C|C, ps = A0 A|
p7 = C|C,ps = A®A|B = pg,~A © -A.
S5
%(0) _ _%(0) Q) [S2l,
Stage 2 TIrZGTo = TI Gco(l) I G°°(2) Gﬁ(l) <TH§:A$]J3> 5
I
2O 2(0) [l [S31; ( (0 ))
B T T 571G, G, G\ ST HGE
Replacing 75O in 75O with Tﬁ(oo)o , then deleting G¥ and after that applying (EC o) to
L:GS I 1:G%°(4) I Q
S71GlGf o, |G,§§Q,\{s'|s~}|cl\ we get 7y
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