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Abstract

We present a uniform method of density elimination for several semilinear substructural logics.
Especially, the density elimination for the involutive uninorm logic IUL is proved. Then the
standard completeness of IUL follows as a lemma by virtue of previous work by Metcalfe and
Montagna.
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Notation

G1 ≡ G2 . . . . . The symbol G1 denotes a complex hypersequent G2 temporarily for convenience.
X ∶= Y . . . . . . . . . . . . . . . . . . . . Define X as Y for two hypersequents (sets or derivations) X and Y .
G0 . . . . . . . . . . . . . . . . . . . . The upper hypersequent of strong density rule in Theorem 1.1, Page 4
τ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A cut-free proof of G0 in GL, in Theorem 1.1, Page 4
P(H) . . . . . . . . . . . . . . . . . . . . . . . . . The position of H ∈ τ, Def. 2.13, Construction 6.1, Page 7,26
⟨Hk⟩H∶H′ and τ2

H∶H′(⟨Hk⟩H∶H′) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Construction 4.7, Page 17
G2

H∶H′ and τ2
H∶H′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notation 4.10, Page 18

τ∗ . . . . . . . The proof of G∣G∗ in GLΩ resulting from preprocessing of τ, Notation 4.13, Page 20
G∣G∗ . . . . . . . . . . . . . . . . The root of τ∗ corresponding to the root G0 of τ, Notation 4.13, Page 20
Hc

i . . .The i-th (pEC)-node in τ∗, the superscript ′c′ means contraction, Notation 4.14, Page 20
S c

i1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The focus sequent of Hc
i , Notation 4.14, Page 20

S c
i or S c

iu . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S c
i1 or one copy of S c

i1, Notation 4.14, Page 20
{Hc

1,⋯,Hc
N} . . . . . . . . . . . . . . . . . . . . . . .The set of all (pEC)-nodes in τ∗, Notation 4.14, Page 20

GLΩ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A restricted subsystem of GL, Definition 4.16, Page 20
[S ]G , [G′]G . . . The minimal closed unit of S and G′ in G, respectively, Definition 5.1, Page 22
(D) . . . . . . . . . . . . . . . . . . . . . . . . . . . The generalized density rule of GLΩ, Definition 5.4, Page 22
τ∗S c

i1
and G∗

S c
i1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Notation 6.5. , Page 28
Hc

i ↝ Hc
j ,H

c
i ↭ Hc

j . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Definition 6.8, Page 28
I = {Hc

i1 ,⋯,H
c
im} . . . . . . . . . . . . . . . . . . . . . . . . . . A subset of {Hc

1,⋯,Hc
N}, Notation 6.10, Page 29

HV
I , HV

i j . . . . . . . . . . . The intersection nodes of I and, that of Hc
i and Hc

j , Notation 6.10, Page 29
I ′ = {S c

i1u1
,⋯,S c

imum
} . . . . . . . . . . . . . . A subset of (pEC)-sequents to I, Definition 6.14, Page 30

I′ = {Gb1 ∣S c
i1u1
,⋯,Gbm ∣S c

imum
} . . . . . . . . . . . A set of closed hypersequents to I, Def. 6.14, Page 30

⟨H⟩I , τ∗I and G∗
I . . . . .The elimination derivation, Construction 6.11, Lemma 6.13, Page 29, 30

τ∗I′ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The elimination rule, Definition 6.14, , Page 30
⌈S c

ik⌉I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . A branch of Hc
ik to I, Definition 7.2, Page 31

G☆(q)
I ,G☆(JI)

I , τ
☆(q)
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Construction 7.3, Page 31

G☆(J)
H∶H1
, τ
☆(J)
H∶H1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Construction 7.5, Page 33
G☆

I , τ
☆
I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Construction 7.7, Theorem 8.2, Page 34, 36

τ☆I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The skeleton of τ☆I , Definition 7.13, Page 35
∂
τ☆I
(H) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Theorem 8.2 (ii), Page 36

τ☆I∶G2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . The module of τ☆I at G2, Definition 8.7, Page 38

1. Introduction

The problem of the completeness of Łukasiewicz infinite-valued logic (Ł for short) was posed
by Łukasiewicz and Tarski in the 1930s. It was twenty-eight years later that it was syntactically
solved by Rose and Rosser [20]. Chang [4] developed at almost the same time a theory of
algebraic systems for Ł, which is called MV-algebras, with an attempt to make MV-algebras
correspond to Ł as Boolean algebras to the classical two-valued logic. Chang [5] subsequently
finished another proof for the completeness of Ł by virtue of his MV-algebras.

It was Chang who observed that the key role in the structure theory of MV-algebras is not
locally finite MV-algebras but linearly ordered ones. The observation was formalized by Hájek
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[12] who showing the completeness for his basic fuzzy logic (BL for short) with respect to lin-
early ordered BL-algebras. Starting with the structure of BL-algebras, Hájek [13] reduced the
problem of the standard completeness of BL to two formulas to be provable in BL. Here and
thereafter, by the standard completeness we mean that logics are complete with respect to alge-
bras with lattice reduct [0, 1]. Cignoli et al. [6] subsequently proved the standard completeness
of BL, i.e., BL is the logic of continuous t-norms and their residua.

Hajek’s approach toward fuzzy logic has been extended by Esteva and Godo in [9], where the
authors introduced the logic MTL which aims at capturing the tautologies of left-continuous t-
norms and their residua. The standard completeness of MTL was proved by Jenei and Montagna
in [15], where the major step is to embed linearly ordered MTL-algebras into the dense ones
under the situation that the structure of MTL-algebras has been unknown as yet.

Esteva and Godo’s work was further promoted by Metcalfe and Montagna [16] who intro-
duced the uninorm logic UL and involutive uninorm logic IUL which aim at capturing tautolo-
gies of left-continuous uninorms and their residua and those of involutive left-continuous ones,
respectively. Recently, Cintula and Noguera [8] introduced semilinear substructural logics which
are substructural logics complete with respect to linearly ordered models. Almost all well-known
families of fuzzy logics such as Ł, BL, MTL, UL and IUL belong to the class of semilinear sub-
structural logics.

Metcalfe and Montagna’s method to prove standard completeness for UL and its extensions
is of proof theory in nature and consists of two key steps. Firstly, they extended UL with the
density rule of Takeuti and Titani [21]:

Γ ⊢ (A→ p) ∨ (p→ B) ∨C
Γ ⊢ (A→ B) ∨C

(D)

where p does not occur in Γ,A,B or C, and then prove the logics with (D) are complete with
respect to algebras with lattice reduct [0,1]. Secondly, they give a syntactic elimination of (D)
that was formulated as a rule of the corresponding hypersequent calculus.

Hypersequents are a natural generalization of sequents which were introduced independent-
ly by Avron [1] and Pottinger [19] and have proved to be particularly suitable for logics with
prelinearity [2, 16]. Following the spirit of Gentzen’s cut elimination, Metcalfe and Montagna
succeeded to eliminate the density rule for GUL and several extensions of GUL by induction on
the height of a derivation of the premise and shifting applications of the rule upwards, but failed
for GIUL and therefore left it as an open problem.

There are several relevant works about the standard completeness of IUL as follows. With
an attempt to prove the standard completeness of IUL, we generalized Jenei and Montagna’s
method for IMTL in [22], but our effort was only partially successful. It seems that the sub-
tle reason why it does not work for UL and IUL is the failure of FMP of these systems [23].
Jenei [14] constructed several classes of involutive FLe-algebras, as he said, in order to gain a
better insight into the algebraic semantic of the substructural logic IUL, and also to the long-
standing open problem about its standard completeness. Ciabattoni and Metcalfe [7] introduced
the method of density elimination by substitutions which is applicable to a general classes of
(first-order) hypersequent calculi but fails to the case of GIUL.

We reconsidered Metcalfe and Montagna’s proof-theoretic method to investigate the stan-
dard completeness of IUL, because they have proved the standard completeness of UL by their
method and we can’t prove such a result by the Jenei and Montagna’s model-theoretic method.
In order to prove the density elimination for GUL, they prove that the following generalized
density rule (D1):

3
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G0 ≡ {Γi, λi p⇒ ∆i}i=1⋯n∣{Σk, (µk+1)p⇒ p}k=1⋯o∣{Π j ⇒ p} j=1⋯m

D1(G0) ≡ {Γi, λiΠ j ⇒ ∆i} j=1⋯m
i=1⋯n ∣{Σk, µkΠ j ⇒ t} j=1⋯m

k=1⋯o

(D1)

is admissible for GUL, where they set two constraints to the form of G0: (i) n,m ⩾ 1 and λi ⩾ 1
for some 1 ⩽ i ⩽ n; (ii) p does not occur in Γi, ∆i, Π j, Σk for i = 1⋯n, j = 1⋯m, k = 1⋯o.

We may regard (D1) as a procedure whose input and output are the premise and conclusion
of (D1), respectively. We denote the conclusion of (D1) by D1(G0) when its premise is G0.
Observe that Metcalfe and Montagna had succeeded to define the suitable conclusion for almost
arbitrary premise in (D1), but it seems impossible for GIUL (See Section 3 for an example). We
then define the following generalized density rule (D0) for

GL ∈ {GUL,GIUL,GMTL,GIMTL}

and prove its admissibility in Section 9.

Theorem 1.1 (Main theorem). Let n,m ⩾ 1, p does not occur in G′,Γi,∆i,Π j or Σ j for all
1 ⩽ i ⩽ n,1 ⩽ j ⩽ m. Then the strong density rule

G0 ≡ G′∣ {Γi, p⇒ ∆i}i=1⋯n ∣ {Π j ⇒ p,Σ j} j=1⋯m

D0 (G0) ≡ G′∣{Γi,Π j ⇒ ∆i,Σ j} i=1⋯n; j=1⋯m
(D0)

is admissible in GL.

In proving the admissibility of (D1), Metcalfe and Montagna made some restriction on the
proof τ of G0, i.e., converted τ into an r-proof. The reason why they need an r-proof is that they
set the constraint (i) to G0. We may imagine the restriction on τ and the constraints to G0 as
two pallets of a balance, i.e., one is strong if another is weak and vice versa. Observe that we
select the weakest form of G0 in (D0) that guarantees the validity of (D). Then it is natural that
we need make the strongest restriction on the proof τ of G0. But it seems extremely difficult to
follow such a way to prove the admissibility of (D0).

In order to overcome such a difficulty, we first of all choose Avron-style hypersequent calculi
as the underlying systems (See A.1). Let τ be a cut-free proof of G0 in GL. Starting with τ,
we construct a proof τ∗ of G∣G∗ in a restricted subsystem GLΩ of GL by a systematic novel
manipulations in Section 4. Roughly speaking, each sequent of G is a copy of some sequent of
G0, and each sequent of G∗ is a copy of some contraction sequent in τ. In Section 5, we define
the generalized density rule (D) in GLΩ and prove that it is admissible.

Now, starting with G∣G∗ and its proof τ∗, we construct a proof τ☆ of G☆ in GLΩ such that
each sequent of G☆ is a copy of some sequent of G. Then ⊢GLΩ D(G☆) by the admissibility of
(D). Then ⊢GL D0(G0) by Lemma 9.1. Hence the density elimination theorem holds in GL.
Especially, the standard completeness of IUL follows from Theorem 62 of [16].

G☆ is constructed by eliminating (pEC)-sequents in G∣G∗ one by one. In order to control
the process, we introduce the set I = {Hc

i1 ,⋯,H
c
im} of (pEC)-nodes of τ∗ and the set I of the

branches relative to I and construct G☆
I such that G☆

I doesn’t contain (pEC)-sequents lower
than any node in I, i.e., S c

j ∈ G☆
I implies Hc

j ∣∣Hc
i for all Hc

i ∈ I. The procedure is called the
separation algorithm of branches in which we introduce another novel manipulation and call it
derivation-grafting operation in Section 7, 8.

4
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2. Preliminaries

In this section, we recall the basic definitions and results involved, which are mainly from
[16]. Substructural fuzzy logics are based on a countable propositional language with formulas
FOR built inductively as usual from a set of propositional variables VAR, binary connectives
⊙,→,∧,∨, and constants �,⊺, t, f with definable connective ¬A ∶= A→ f .

Definition 2.1. ([1, 16]) A sequent is an ordered pair (Γ,∆) of finite multisets (possibly empty)
of formulas, which we denote by Γ ⇒ ∆. Γ and ∆ are called the antecedent and succedents,
respectively, of the sequent and each formula in Γ and ∆ is called a sequent-formula. A hyper-
sequent G is a finite multiset of the form Γ1 ⇒ ∆1∣⋯∣Γn ⇒ ∆n, where each Γi ⇒ ∆i is a sequent
and is called a component of G for each 1 ⩽ i ⩽ n. If ∆i contains at most one formula for i = 1⋯n,
then the hypersequent is single-conclusion, otherwise it is multiple-conclusion.

Definition 2.2. Let S be a sequent and G = S 1∣⋯∣S m a hypersequent. We say that S ∈ G if S is
one of S 1,⋯,S m.

Notation 2.3. Let G1 and G2 be two hypersequents. We will assume from now on that all set
terminology refers to multisets, adopting the conventions of writing Γ,∆ for the multiset union
of Γ and ∆, A for the singleton multiset {A}, and λΓ for the multiset union of λ copies of Γ for
λ ∈ N. By G1 ⊆ G2 we mean that S ∈ G2 for all S ∈ G1 and the multiplicity of S in G1 is
not more than that of S in G2. We will use G1 = G2, G1⋂G2, G1⋃G2, G1/G2 by their standard
meaning for multisets by default and we will declare when we use them for sets. We sometimes

write S 1∣⋯∣S m and G∣

n copies
³¹¹¹¹·¹¹¹¹µ
S ∣⋯∣S as {S 1,⋯,S m}, G∣S n(or G∣{S }n), respectively.

Definition 2.4. ([1]) A hypersequent rule is an ordered pair consisting of a sequence of hyper-
sequents G1,⋯,Gn called the premises (upper hypersequents) of the rule, and a hypersequent G

called the conclusion (lower hypersequent), written by
G1⋯Gn

G
. If n = 0, then the rule has no

premise and is called an initial sequent. The single-conclusion version of a rule adds the re-
striction that both the premises and conclusion must be single-conclusion; otherwise the rule is
multiple-conclusion.

Definition 2.5. ([16]) GUL and GIUL consist of the single-conclusion and multiple-conclusion
versions of the following initial sequents and rules, respectively:
Initial Sequents

A⇒ A
(ID)

Γ⇒ ⊺,∆
(⊺r)

Γ,�⇒ ∆
(�l) ⇒ t

(tr) f ⇒
( fl)

Structural Rules

G∣Γ⇒ A∣Γ⇒ A
G∣Γ⇒ A

(EC)
G

G∣Γ⇒ A
(EW)

G1∣Γ1,Π1 ⇒ Σ1,∆1 G2∣Γ2,Π2 ⇒ Σ2,∆2

G1∣G2∣Γ1,Γ2 ⇒ ∆1,∆2∣Π1,Π2 ⇒ Σ1,Σ2
(COM)

5
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Logical Rules

G∣Γ⇒ ∆
G∣Γ, t,⇒ ∆

(tl)

G1∣Γ1 ⇒ A,∆1 G2∣Γ2, B⇒ ∆2

G1∣G2∣Γ1,Γ2,A→ B⇒ ∆1,∆2
(→l)

G∣Γ,A, B⇒ ∆
G∣Γ,A⊙ B⇒ ∆

(⊙l)

G∣Γ,A⇒ ∆
G∣Γ,A ∧ B⇒ ∆

(∧lr)

G1∣Γ⇒ A,∆ G2∣Γ⇒ B,∆
G1∣G2∣Γ⇒ A ∧ B,∆

(∧r)

G∣Γ⇒ B,∆
G∣Γ⇒ A ∨ B,∆

(∨rl)

G∣Γ⇒ ∆
G∣Γ⇒ f ,∆

( fr)

G∣Γ,A⇒ B,∆
G∣Γ⇒ A→ B,∆

(→r)

G1∣Γ1 ⇒ A,∆1 G2∣Γ2 ⇒ B,∆2

G1∣G2∣Γ1,Γ2 ⇒ A⊙ B,∆1,∆2
(⊙r)

G∣Γ,B⇒ ∆
G∣Γ,A ∧ B⇒ ∆

(∧ll)

G∣Γ⇒ A,∆
G∣Γ⇒ A ∨ B,∆

(∨rr)

G1∣Γ,A⇒ ∆ G2∣Γ, B⇒ ∆
G1∣G2∣Γ,A ∨ B⇒ ∆

(∨l)

Cut Rule

G1∣Γ1,A⇒ ∆1 G2∣Γ2 ⇒ A,∆2

G1∣G2∣Γ1,Γ2 ⇒ ∆1,∆2
(CUT)

Definition 2.6. ([16]) GMTL and GIMTL are GUL and GIUL plus the single conclusion and
multiple-conclusion versions, respectively, of:

G∣Γ⇒ ∆
G∣Γ,A⇒ ∆

(WL),
G∣Γ⇒ ∆

G∣Γ⇒ A,∆
(WR).

Definition 2.7. (i) (I) ∈ {(tl), ( fr), (→r), (⊙l), (∧lr), (∧ll), (∨rr), (∨rl), (WL), (WR)} and
(II) ∈ {(→l), (⊙r), (∧r), (∨l), (COM)};

(ii) By
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (II) (or
G′∣S ′

G′∣H′(I)) we denote an instance of a two-premise rule (II)

(or one-premise rule (I)) of GL, where S ′ and S ′′ are its focus sequents and H′ is its principle
sequent (for (→l), (⊙r), (∧r) and (∨l)) or hypersequent (for (COM), (∧rw) and (∨lw), see
Definition 4.2).

Definition 2.8. ([16]) GLD is GL extended with the following density rule:

G∣Γ1, p⇒ ∆1∣Γ2 ⇒ p,∆2

G∣Γ1,Γ2 ⇒ ∆1,∆2
(D)

where p does not occur in G,Γ1,Γ2,∆1 or ∆2.

Definition 2.9. ([1]) A derivation τ of a hypersequent G from hypersequents G1,⋯,Gn in a
hypersequent calculus GL is a labeled tree with the root labeled by G, leaves labeled initial
sequents or some G1,⋯,Gn, and for each node labeled G′

0 with parent nodes labeled G′
1,⋯,G′

m

(where possibly m = 0),
G′

1⋯G′
m

G′
0

is an instance of a rule of GL.
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Notation 2.10. (i)
G1⋯Gn

G0
⟨τ⟩ denotes that τ is a derivation of G0 from G1,⋯,Gn;

(ii) Let H be a hypersequent. H ∈ τ denotes that H is a node of τ. We call H a leaf hyper-

sequent if H is a leaf of τ, the root hypersequent if it is the root of τ.
G′

1⋯G′
m

G′
0
∈ τ denotes that

G′
0 ∈ τ and its parent nodes are G′

1,⋯,G′
m;

(iii) Let H ∈ τ then τ(H) denotes the subtree of τ rooted at H;
(iv) τ determines a partial order ⩽τ with the root as the least element. H1∥H2 denotes H1 ≰τ

H2 and H2 ≰τ H1 for any H1,H2 ∈ τ. By H1 =τ H2 we mean that H1 is the same node as H2 in τ.
We sometimes write ⩽τ as ⩽;

(v) An inference of the form
G′∣S n

G′∣S
∈ τ is called the full external contraction and denoted by

(EC∗), if n ⩾ 2, G′∣S n is not a lower hypersequent of an application of (EC) whose contraction
sequent is S , and G′∣S not an upper one in τ.

Definition 2.11. Let τ be a derivation of G and H ∈ τ. The thread Thτ(H) of τ at H is a sequence

H0,⋯,Hn of node hypersequents of τ such that H0 =τ H, Hn =τ G,
Hk

Hk+1
∈ τ or there exists G′ ∈ τ

such that
Hk G′

Hk+1
or

G′ Hk

Hk+1
in τ for all 0 ⩽ k ⩽ n − 1.

Proposition 2.12. Let H1,H2 ∈ τ. Then
(i) H1 ⩽ H2 if and only if H1 ∈ Thτ(H2);
(ii) H1∥H2 and H1 ⩽ H3 imply H2∥H3;
(iii) H1 ⩽ H3 and H2 ⩽ H3 imply H1 ∦ H2.

We need the following definition to give each node of τ an identification number, which is
used in Construction 6.1 to differentiate sequents in a hypersequent in a proof.

Definition 2.13. ([A.5.2]) Let H ∈ τ and Th(H) = (H0,⋯,Hn). Let bn ∶= 1,

bk ∶=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 if
G′ Hk

Hk+1
∈ τ,

0 if
Hk

Hk+1
∈ τ or

Hk G′

Hk+1
∈ τ

for all 0 ⩽ k ⩽ n − 1. Then P(H) ∶= ∑k=n
k=0 2kbk and call it the position of H in τ.

Definition 2.14. A rule is admissible for a calculus GL if whenever its premises are derivable in
GL, then so is its conclusion.

Lemma 2.15. ([16]) Cut-elimination holds for GL, i.e., proofs using (CUT) can be trans-
formed syntactically into proofs not using (CUT).

3. Proof of the main theorem: A computational example

In this section, we present an example to illustrate the proof of Main theorem.
Let G0 ≡⇒ p, B∣B⇒ p,¬A⊙¬A∣p⇒ C∣C, p⇒ A⊙A. G0 is a theorem of IUL and a cut-free

proof τ of G0 is shown in Figure 1, where we use an additional rule
Γ,A⇒ ∆
Γ⇒ ¬A,∆

(¬r) for simplicity.
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Note that we denote three applications of (EC) in τ respectively by (EC)1, (EC)2, (EC)3 and
three (⊙r) by (⊙r)1, (⊙r)2 and (⊙r)3.

p⇒ p A⇒ A
A⇒ p∣p⇒ A

(COM)
p⇒ p A⇒ A
A⇒ p∣p⇒ A

(COM)

A⇒ p∣A⇒ p∣p, p⇒ A⊙ A
(⊙r)1

A⇒ p∣p, p⇒ A⊙ A
(EC)1

⇒ p,¬A∣p, p⇒ A⊙ A
(¬r)

p⇒ p A⇒ A
A⇒ p∣p⇒ A

(COM)
p⇒ p A⇒ A
A⇒ p∣p⇒ A

(COM)

A⇒ p∣A⇒ p∣p, p⇒ A⊙ A
(⊙r)2

A⇒ p∣p, p⇒ A⊙ A
(EC)2

⇒ p,¬A∣p, p⇒ A⊙ A
(¬r)

(continued)

C ⇒ C
B⇒ B

⋱⋮...
⇒ p,¬A∣p, p⇒ A⊙ A

⋱⋮...
⇒ p,¬A∣p, p⇒ A⊙ A

H×× ≡⇒ p, p,¬A⊙ ¬A∣p, p⇒ A⊙ A∣p, p⇒ A⊙ A
(⊙r)3

H× ≡⇒ p, p,¬A⊙ ¬A∣p, p⇒ A⊙ A
(EC)3

⇒ p, B∣B⇒ p,¬A⊙ ¬A∣p, p⇒ A⊙ A
(COM)

⇒ p, B∣B⇒ p,¬A⊙ ¬A∣p⇒ C∣C, p⇒ A⊙ A
(COM)

FIGURE 1 A proof τ of G0

By applying (D) to free combinations of all sequents in⇒ p, B∣B⇒ p,¬A⊙ ¬A and in p⇒
C∣C, p⇒ A⊙A, we get that H0 ≡⇒ B,C∣C ⇒ A⊙A,B∣B⇒ C,¬A⊙¬A∣C,B⇒ A⊙A,¬A⊙¬A.
H0 is a theorem of IUL and a cut-free proof ρ of H0 is shown in Figure 2. It supports the validity
of the generalized density rule (D0) in Section 1, as an instance of (D0).

C ⇒ C
B⇒ B

A⇒ A A⇒ A
A,A⇒ A⊙ A

A⇒ ¬A,A⊙ A

A⇒ A A⇒ A
A,A⇒ A⊙ A

A⇒ ¬A,A⊙ A
A,A⇒ ¬A⊙ ¬A,A⊙ A,A⊙ A

A, B⇒ A⊙ A,¬A⊙ ¬A∣A⇒ A⊙ A,B
H1 ≡ A⇒ C∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A,B

C ⇒ C
C ⇒ C

B⇒ B

A⇒ A A⇒ A

A, A⇒ A⊙ A
A⇒ ¬A, A⊙ A

⋱⋮...
H1 = A⇒ C∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

⇒ ¬A,C∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B
A⇒ ¬A⊙ ¬A, A⊙ A,C∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

⇒ B,C∣A, B⇒ ¬A⊙ ¬A, A⊙ A∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B
A⇒ C∣⇒ B,C∣C, B⇒ ¬A⊙ ¬A, A⊙ A∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

A⇒ C∣A⇒ C∣⇒ B,C∣C, B⇒ ¬A⊙ ¬A, A⊙ A∣C, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B
H2 ≡ A⇒ C∣⇒ B,C∣C, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B
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C ⇒ C
C ⇒ C

B⇒ B

A⇒ A A⇒ A

A, A⇒ A⊙ A
A⇒ ¬A, A⊙ A

⋱⋮...
H1 = A⇒ C∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

A⇒ C∣B⇒ ¬A, A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B
A⇒ C∣A, B⇒ ¬A⊙ ¬A, A⊙ A, A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

B, B⇒ ¬A⊙ ¬A, A⊙ A,¬A⊙ ¬A∣A⇒ C∣A⇒ A⊙ A, B∣C ⇒ A⊙ A, B
A⇒ C∣B, B⇒ ¬A⊙ ¬A, A⊙ A,¬A⊙ ¬A∣A⇒ C∣C ⇒ A⊙ A, B∣C ⇒ A⊙ A, B

A⇒ C∣C, B⇒ A⊙ A,¬A⊙ ¬A∣A⇒ C∣B⇒ C,¬A⊙ ¬A∣C ⇒ A⊙ A, B∣C ⇒ A⊙ A, B
H3 ≡ A⇒ C∣C ⇒ A⊙ A, B∣B⇒ C,¬A⊙ ¬A∣C, B⇒ A⊙ A,¬A⊙ ¬A

B⇒ B

⎛
⎜⎜⎜
⎝

⋱⋮...
H2 = A⇒ C∣⇒ B,C∣C, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

⇒ ¬A,C∣⇒ B,C∣C, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

⋱⋮...
H3 = A⇒ C∣C ⇒ A⊙ A, B∣B⇒ C,¬A⊙ ¬A∣C, B⇒ A⊙ A,¬A⊙ ¬A

⇒ ¬A,C∣C ⇒ A⊙ A, B∣B⇒ C,¬A⊙ ¬A∣C, B⇒ A⊙ A,¬A⊙ ¬A

⎞
⎟⎟⎟
⎠

⇒ ¬A⊙ ¬A,C,C∣⇒ B,C∣C, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B∣
C ⇒ A⊙ A, B∣B⇒ C,¬A⊙ ¬A∣C, B⇒ A⊙ A,¬A⊙ ¬A

(⊙r)

B⇒ ¬A⊙ ¬A,C∣⇒ B,C∣⇒ B,C∣C, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B∣
C ⇒ A⊙ A, B∣B⇒ C,¬A⊙ ¬A∣C, B⇒ A⊙ A,¬A⊙ ¬A

(COM)

H0 =⇒ B,C∣C ⇒ A⊙ A, B∣B⇒ C,¬A⊙ ¬A∣C, B⇒ A⊙ A,¬A⊙ ¬A
(EC∗)

Figure 2 a proof ρ of H0

Our task is to construct ρ, starting from τ. The tree structure of ρ is more complicated than
that of τ. Compared with UL, MTL and IMTL, there is no one-to-one correspondence between
nodes in τ and ρ.

Following the method given by G. Metcalfe and F. Montagna, we need to define a generalized
density rule for IUL. We denote such an expected unknown rule by (Dx) for convenience. Then
Dx(H) must be definable for all H ∈ τ. Naturally, Dx(p⇒ p) =⇒ t;Dx(A⇒ p ∣p⇒ A) = A⇒
A;Dx(⇒ p,¬A ∣p, p⇒ A⊙A) =⇒ ¬A,¬A,A⊙A;Dx(⇒ p, B∣B⇒ p,¬A⊙¬A ∣p, p⇒ A⊙A) =⇒
B, B,A⊙ A ∣B,B⇒ A⊙ A,¬A⊙ ¬A,¬A⊙ ¬A∣B⇒ A⊙ A,B,¬A⊙ ¬A;Dx(G0) = D0(G0) = H0.

However, we couldn’t find a suitable way to define Dx(H××) and Dx(H×) for H××and H× in
τ, see Figure 1. This is the biggest difficulty we encounter in the case of IUL such that it is hard to
prove density elimination for IUL. A possible way is to defineDx(⇒ p, p,¬A⊙¬A∣p, p⇒ A⊙A)
as⇒ t,A⊙ A,¬A⊙ ¬A. Unfortunately, it is not a theorem of IUL.

Notice that two upper hypersequents⇒ p,¬A∣p, p⇒ A⊙ A of (⊙r)3 are permissible inputs
of (Dx). Why is H×× an invalid input? One reason is that, two applications (EC)1 and (EC)2 cut
off two sequents A⇒ p such that two p′s disappear in all nodes lower than upper hypersequent
of (EC)1 or (EC)2, including H××. These make occurrences of p′s to be incomplete in H××. We
then perform the following operation in order to get complete occurrences of p′s in H××.

Step 1 (Preprocessing of τ). Firstly, we replace H with H∣S ′ for all
G′∣S ′∣S ′

G′∣S ′ (EC)k ∈ τ,

H ⩽ G′∣S ′ then replace
G′∣S ′∣S ′

G′∣S ′∣S ′(EC)k with G′∣S ′∣S ′ for all k = 1,2,3. Then we construct a

proof without (EC), which we denote by τ1, as shown in Figure 3. We call such manipulations
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sequent-inserting operations, which eliminate applications of (EC) in τ.

C ⇒ C
B⇒ B

p⇒ p A⇒ A
A⇒ p∣p⇒ A

p⇒ p A⇒ A
A⇒ p∣p⇒ A

A⇒ p∣A⇒ p∣p, p⇒ A⊙ A
A⇒ p∣⇒ p,¬A∣p, p⇒ A⊙ A

p⇒ p A⇒ A
A⇒ p∣p⇒ A

p⇒ p A⇒ A
A⇒ p∣p⇒ A

A⇒ p∣A⇒ p∣p, p⇒ A⊙ A
A⇒ p∣⇒ p,¬A∣p, p⇒ A⊙ A

H′
×× ≡ A⇒ p∣⇒ p, p,¬A⊙ ¬A∣p, p⇒ A⊙ A∣A⇒ p∣p, p⇒ A⊙ A

A⇒ p∣⇒ p, B∣B⇒ p,¬A⊙ ¬A∣p, p⇒ A⊙ A∣A⇒ p∣p, p⇒ A⊙ A
A⇒ p∣⇒ p,B∣B⇒ p,¬A⊙ ¬A∣p⇒ C∣C, p⇒ A⊙ A∣A⇒ p∣p, p⇒ A⊙ A

FIGURE 3 A proof τ1

However, we also can’t defineDx(H′
××) for H′

×× ∈ τ1 in that⇒ p, p,¬A⊙¬A∣p, p⇒ A⊙A ⊆
H′
××. The reason is that the origins of p′s in H′

×× are indistinguishable if we regard all leaves
in the form p ⇒ p as the origins of p′s which occur in the inner node. For example, we don’t
know which p comes from the left subtree of τ1(H′

××) and which from the right subtree in two
occurrences of p′s in⇒ p, p,¬A⊙ ¬A ∈ H′

××. We then perform the following operation in order
to make all occurrences of p′s in H′

×× distinguishable.
We assign the unique identification number to each leaf in the form p⇒ p ∈ τ1 and transfer

these identification numbers from leaves to the root, as shown in Figure 4. We denote the proof of
G∣G∗ resulting from this step by τ∗, where G ≡⇒ p2,B∣B⇒ p4,¬A⊙¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙A
in which each sequent is a copy of some sequent in G0 and G∗ ≡ A⇒ p1∣A⇒ p3∣p3, p4 ⇒ A⊙A
in which each sequent is a copy of some external contraction sequent in (EC)-node of τ. We call
such manipulations eigenvariable-labeling operations, which make us to trace eigenvariables in
τ.

C ⇒ C
B⇒ B

p1 ⇒ p1 A⇒ A
A⇒ p1∣p1 ⇒ A

p2 ⇒ p2 A⇒ A
A⇒ p2∣p2 ⇒ A

Hc
1 ≡ A⇒ p1∣A⇒ p2∣p1, p2 ⇒ A⊙ A
A⇒ p1∣⇒ p2,¬A∣p1, p2 ⇒ A⊙ A

p3 ⇒ p3 A⇒ A
A⇒ p3∣p3 ⇒ A

p4 ⇒ p4 A⇒ A
A⇒ p4∣p4 ⇒ A

Hc
2 ≡ A⇒ p3∣A⇒ p4∣p3, p4 ⇒ A⊙ A
A⇒ p3∣⇒ p4,¬A∣p3, p4 ⇒ A⊙ A

A⇒ p1∣⇒ p2, p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A
Hc

3 ≡ A⇒ p1∣⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A
A⇒ p1∣⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A

FIGURE 4 A proof τ∗ of G∣G∗

Then all occurrences of p in τ∗ are distinguishable and we regard them as distinct eigenvari-
ables (See Definition 4.16 (i)). Firstly, by selecting p1 as the eigenvariable and applying (D) to
G∣G∗, we get

G′ ≡ A⇒ C∣⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣C, p2 ⇒ A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A.

Secondly, by selecting p2 and applying (D) to G′, we get

G′′ ≡ A⇒ C∣B⇒ p4,¬A⊙ ¬A∣C ⇒ B,A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A.

Repeatedly, we get

G′′′′ ≡ A⇒ C∣A, B⇒ A⊙ A,¬A⊙ ¬A∣C ⇒ A⊙ A, B.
10
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We define such iterative applications of (D) as D-rule (See Definition 5.4). Lemma 5.8 shows
that ⊢GIUL D(G∣G∗) if ⊢GIUL G∣G∗. Then we obtain ⊢GIUL D(G∣G∗), i.e., ⊢GIUL G′′′′.

A miracle happens here! The difficulty that we encountered in GIUL is overcome by con-
verting H′

×× = A ⇒ p∣ ⇒ p, p,¬A ⊙ ¬A∣p, p ⇒ A ⊙ A∣A ⇒ p∣p, p ⇒ A ⊙ A into A ⇒ p1∣ ⇒
p2, p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A and using (D) to replace (Dx).

Why do we assign the unique identification number to each p ⇒ p ∈ τ1? We would return
back to the same situation as that of τ1 if we assign the same indices to all p⇒ p ∈ τ1 or, replace
p3 ⇒ p3 and p4 ⇒ p4 by p2 ⇒ p2 in τ∗.

Note that D(G∣G∗) = H1. So we have built up a one-one correspondence between the proof
τ∗ of G∣G∗ and that of H1. Observe that each sequent in G∗ is not a copy of any sequent in G0.
In the following steps, we work on eliminating these sequents in G∗.

Step 2 (Extraction of Elimination Rules). We select A ⇒ p2 as the focus sequent in Hc
1

in τ∗ and keep A ⇒ p1 unchanged from Hc
1 downward to G∣G∗ (See Figure 4). So we extract a

derivation from A⇒ p2 by pruning some sequents (or hypersequents) in τ∗, which we denote by
τ∗Hc

1 ∶A⇒p2
, as shown in Figure 5.

B⇒ B

A⇒ p2

⇒ p2,¬A

p3 ⇒ p3 A⇒ A
A⇒ p3∣p3 ⇒ A

p4 ⇒ p4 A⇒ A
A⇒ p4∣p4 ⇒ A

A⇒ p3∣A⇒ p4∣p3, p4 ⇒ A⊙ A
A⇒ p3∣⇒ p4,¬A∣p3, p4 ⇒ A⊙ A

⇒ p2, p4,¬A⊙ ¬A ∣A⇒ p3∣p3, p4 ⇒ A⊙ A
⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣A⇒ p3∣p3, p4 ⇒ A⊙ A

FIGURE 5 A derivation τ∗Hc
1 ∶A⇒p2

from A⇒ p2

A derivation τ∗Hc
1 ∶A⇒p1

from A ⇒ p1 is constructed by replacing p2 with p1, p3 with p5 and p4

with p6 in τ∗Hc
1 ∶A⇒p2

, as shown in Figure 6. Notice that we assign new identification numbers to
new occurrences of p in τ∗Hc

1 ∶A⇒p1
.

B⇒ B

A⇒ p1

⇒ p1,¬A

p5 ⇒ p5 A⇒ A
A⇒ p5∣p5 ⇒ A

p6 ⇒ p6 A⇒ A
A⇒ p6∣p6 ⇒ A

A⇒ p5∣A⇒ p6∣p5, p6 ⇒ A⊙ A
A⇒ p5∣⇒ p6,¬A∣p5, p6 ⇒ A⊙ A

⇒ p1, p6,¬A⊙ ¬A ∣A⇒ p5∣p5, p6 ⇒ A⊙ A
⇒ p1,B∣B⇒ p6,¬A⊙ ¬A∣A⇒ p5∣p5, p6 ⇒ A⊙ A

FIGURE 6 A derivation τ∗Hc
1 ∶A⇒p1

from A⇒ p1

Next, we apply τ∗Hc
1 ∶A⇒p1

to A⇒ p1 in G∣G∗. Then we construct a proof τ☆(1)Hc
1 ∶G∣G∗

, as shown in
Figure 7, where G′ ≡ G∣G∗/{A⇒ p1}.
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B⇒ B

G′∣A⇒ p1

G′∣⇒ p1,¬A

p5 ⇒ p5 A⇒ A
A⇒ p5∣p5 ⇒ A

p6 ⇒ p6 A⇒ A
A⇒ p6∣p6 ⇒ A

A⇒ p5∣A⇒ p6∣p5, p6 ⇒ A⊙ A
A⇒ p5∣⇒ p6,¬A∣p5, p6 ⇒ A⊙ A

G′∣⇒ p1, p6,¬A⊙ ¬A∣A⇒ p5∣p5, p6 ⇒ A⊙ A

G☆(1)
Hc

1 ∶G∣G∗
≡ G′∣⇒ p1,B∣B⇒ p6,¬A⊙ ¬A∣A⇒ p5∣p5, p6 ⇒ A⊙ A

FIGURE 7 A proof τ☆(1)Hc
1 ∶G∣G∗

of G☆(1)
Hc

1 ∶G∣G∗

However, G☆(1)
Hc

1 ∶G∣G∗
=⇒ p2, B∣B ⇒ p4,¬A ⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A ⊙ A∣A ⇒ p3∣p3, p4 ⇒

A⊙ A∣⇒ p1, B∣B⇒ p6,¬A⊙¬A∣A⇒ p5∣p5, p6 ⇒ A⊙ A contains more copies of sequents from
G∗ and seems more complex than G∣G∗. We will present a unified method to tackle with it in the
following steps. Other derivations are shown in Figures 8,9,10,11.

C ⇒ C
B⇒ B

A⇒ p1∣⇒ p2,¬A∣p1, p2 ⇒ A⊙ A
A⇒ p4

⇒ p4,¬A
A⇒ p1∣⇒ p2, p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A

A⇒ p1∣⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A
A⇒ p1∣⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A

FIGURE 8 A derivation τ∗Hc
2 ∶A⇒p4

from A⇒ p4

C ⇒ C
B⇒ B

A⇒ p5∣⇒ p6,¬A∣p5, p6 ⇒ A⊙ A
A⇒ p3

⇒ p3,¬A
A⇒ p5∣⇒ p6, p3,¬A⊙ ¬A∣p5, p6 ⇒ A⊙ A

A⇒ p5∣⇒ p6, B∣B⇒ p3,¬A⊙ ¬A∣p5, p6 ⇒ A⊙ A
A⇒ p5∣⇒ p6, B∣B⇒ p3,¬A⊙ ¬A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A

FIGURE 9 A derivation τ∗Hc
2 ∶A⇒p3

from A⇒ p3

B⇒ B

A⇒ p2

⇒ p2,¬A
A⇒ p4

⇒ p4,¬A
⇒ p2, p4,¬A⊙ ¬A

⇒ p2,B∣B⇒ p4,¬A⊙ ¬A

B⇒ B

A⇒ p5

⇒ p5,¬A
A⇒ p3

⇒ p3,¬A
⇒ p5, p3,¬A⊙ ¬A

⇒ p5, B∣B⇒ p3,¬A⊙ ¬A

FIGURE 10 τ∗{Hc
1 ∶A⇒p2,Hc

2 ∶A⇒p4} and τ∗{Hc
1 ∶A⇒p5,Hc

2 ∶A⇒p3}

C ⇒ C p1, p2 ⇒ A⊙ A
p1 ⇒ C∣C, p2 ⇒ A⊙ A

C ⇒ C p3, p4 ⇒ A⊙ A
p3 ⇒ C∣C, p4 ⇒ A⊙ A
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C ⇒ C p5, p6 ⇒ A⊙ A
p5 ⇒ C∣C, p6 ⇒ A⊙ A

FIGURE 11 τ∗Hc
3 ∶p1,p2⇒A⊙A, τ∗Hc

3 ∶p3,p4⇒A⊙A and τ∗Hc
3 ∶p5,p6⇒A⊙A

Step 3 (Separation of one branch). A proof τ☆(2)Hc
1 ∶G∣G∗

is constructed by applying sequentially

τ∗Hc
3 ∶p3,p4⇒A⊙A, τ

∗
Hc

3 ∶p5,p6⇒A⊙A

to p3, p4 ⇒ A ⊙ A and p5, p6 ⇒ A ⊙ A in G☆(1)
Hc

1 ∶G∣G∗
, as shown in Figure 12, where G′′ ≡

G☆(1)
Hc

1 ∶G∣G∗
/{p3, p4 ⇒ A⊙ A, p5, p6 ⇒ A⊙ A}

C ⇒ C
C ⇒ C G′′∣p3, p4 ⇒ A⊙ A∣p5, p6 ⇒ A⊙ A
G′′∣p3 ⇒ C∣C, p4 ⇒ A⊙ A∣p5, p6 ⇒ A⊙ A

G☆(2)
Hc

1 ∶G∣G∗
≡ G′′∣p3 ⇒ C∣C, p4 ⇒ A⊙ A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A

FIGURE 12 A proof τ☆(2)Hc
1 ∶G∣G∗

of G☆(2)
Hc

1 ∶G∣G∗

G☆(2)
Hc

1 ∶G∣G∗
=⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣A⇒ p3∣⇒ p1, B∣

B⇒ p6,¬A⊙ ¬A∣A⇒ p5∣p3 ⇒ C∣C, p4 ⇒ A⊙ A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A.

Notice that
D(B⇒ p4,¬A⊙ ¬A∣A⇒ p3∣p3 ⇒ C∣C, p4 ⇒ A⊙ A)

= D(B⇒ p6,¬A⊙ ¬A∣A⇒ p5∣p5 ⇒ C∣C, p6 ⇒ A⊙ A)

= A⇒ C∣C, B⇒ A⊙ A,¬A⊙ ¬A.

Then it is permissible to cut off the part

B⇒ p6,¬A⊙ ¬A∣A⇒ p5∣p5 ⇒ C∣C, p6 ⇒ A⊙ A

of G☆(2)
Hc

1 ∶G∣G∗
, which corresponds to applying (EC) toD(G☆(2)

Hc
1 ∶G∣G∗

). We regard such a manipulation

as a constrained contraction rule applied to G☆(2)
Hc

1 ∶G∣G∗
and denote it by (ECΩ). Define G☆

Hc
1 ∶G∣G∗

to
be

⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣

A⇒ p3∣⇒ p1,B∣p3 ⇒ C∣C, p4 ⇒ A⊙ A.

Then we construct a proof of G☆
Hc

1 ∶G∣G∗
by

G☆(2)
Hc

1 ∶G∣G∗

G☆
Hc

1 ∶G∣G∗
(ECΩ), which guarantees the validity of

⊢GIUL D(G☆
Hc

1 ∶G∣G∗
)

13
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under the condition
⊢GIUL D(G☆(2)

Hc
1 ∶G∣G∗

).

A change happens here! There is only one sequent which is a copy of a sequent in G∗ in
G☆

Hc
1 ∶G∣G∗

. It is simpler than G∣G∗. So we are moving forward. The above procedure is called the
separation of G∣G∗ as a branch of Hc

1 and reformulated as follows (See Section 7 for details).

G∣G∗

G☆(1)
Hc

1 ∶G∣G∗
⟨τ∗Hc

1 ∶A⇒p1
⟩

G☆(2)
Hc

1 ∶G∣G∗
⟨τ∗Hc

3 ∶p3,p4⇒A⊙A, τ
∗
Hc

3 ∶p5,p6⇒A⊙A⟩

G☆
Hc

1 ∶G∣G∗
⟨ECΩ⟩

The separation of G∣G∗ as a branch of Hc
2 is constructed by a similar procedure as follows.

G∣G∗

G☆(1)
Hc

2 ∶G∣G∗
⟨τ∗Hc

2 ∶A⇒p3
⟩

G☆(2)
Hc

2 ∶G∣G∗
⟨τ∗Hc

3 ∶p3,p4⇒A⊙A⟩

G☆
Hc

2 ∶G∣G∗
⟨ECΩ⟩

Note that D(G☆
Hc

1 ∶G∣G∗
) = H2 and D(G☆

Hc
2 ∶G∣G∗

) = H3. So we have built up one-one correspon-

dences between proofs of G☆
Hc

1 ∶G∣G∗
,G☆

Hc
1 ∶G∣G∗

and those of H2,H3.
Step 3 (Separation algorithm of multiple branches). We will prove ⊢GIUL D0(G0) in a

direct way, i.e., only the major step of Theorem 8.2 is presented in the following. (See A.5.4 for
a complete illustration.) Recall that

G☆
Hc

1 ∶G∣G∗
=⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣

A⇒ p3∣⇒ p1,B∣p3 ⇒ C∣C, p4 ⇒ A⊙ A,

G☆
Hc

2 ∶G∣G∗
= A⇒ p1∣⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣

B⇒ p3,¬A⊙ ¬A∣p3 ⇒ C∣C, p4 ⇒ A⊙ A.

By reassigning identification numbers to occurrences of p′s in G☆
Hc

2 ∶G∣G∗
,

G☆
Hc

2 ∶G∣G∗
= A⇒ p5∣⇒ p6, B∣B⇒ p8,¬A⊙ ¬A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A∣

B⇒ p7,¬A⊙ ¬A ∣p7 ⇒ C∣C, p8 ⇒ A⊙ A.

By applying τ∗{Hc
1 ∶A⇒p5,Hc

2 ∶A⇒p3} to A⇒ p3 in G☆
Hc

1 ∶G∣G∗
and A⇒ p5 in G☆

Hc
2 ∶G∣G∗

, we get ⊢GIUL G′,
where

G′ ≡⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣⇒ p1,B∣

p3 ⇒ C∣C, p4 ⇒ A⊙ A∣⇒ p6,B∣B⇒ p8,¬A⊙ ¬A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A∣
14
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B⇒ p7,¬A⊙ ¬A∣p7 ⇒ C∣C, p8 ⇒ A⊙ A∣⇒ p5,B∣B⇒ p3,¬A⊙ ¬A.

Why do you reassign identification numbers to occurrences of p′s in G☆
Hc

2 ∶G∣G∗
? It makes

different occurrences of p′s to be assigned different identification numbers in two nodes G☆
Hc

1 ∶G∣G∗

and G☆
Hc

2 ∶G∣G∗
of the proof of G′.

By applying ⟨EC∗
Ω⟩ to G′, we get ⊢GIULΩ G☆

I , where

G☆
I ≡⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣⇒ p1,B∣

p3 ⇒ C∣C, p4 ⇒ A⊙ A∣B⇒ p3,¬A⊙ ¬A.

A great change happens here! We have eliminated all sequents which are copies of some
sequents in G∗ and convert G∣G∗ into G☆

I in which each sequent is some copy of a sequent in
G0.

Then ⊢GIUL D(G☆
I ) by Lemma 5.6, where D(G☆

I ) = H0 =

⇒ C,B∣C ⇒ B,A⊙ A∣B⇒ C,¬A⊙ ¬A∣C,B⇒ A⊙ A,¬A⊙ ¬A.

So we have built up one-one correspondences between the proof of G☆
I and that of H0, i.e.,

the proof of H0 can be constructed by applying (D) to the proof of G☆
I . The major steps of

constructing G☆
I are shown in the following figure, where D(G∣G∗) = H1, D(G☆

Hc
1 ∶G∣G∗

) = H2,

D(G☆
Hc

2 ∶G∣G∗
) = H3 and D(G☆

I ) = H0.

G∣G∗ =⇒ p2,B∣B⇒ p4,¬A⊙ ¬A ∣p1 ⇒ C ∣
C, p2 ⇒ A⊙ A∣A⇒ p1 ∣A⇒ p3 ∣p3, p4 ⇒ A⊙ A

⋱⋮... ⋱⋮...

G☆
Hc

2 ∶G∣G∗
= A⇒ p1 ∣⇒ p2, B∣

B⇒ p4,¬A⊙ ¬A ∣p1 ⇒ C ∣
C, p2 ⇒ A⊙ A ∣p3 ⇒ C∣
B⇒ p3,¬A⊙ ¬A∣C, p4 ⇒ A⊙ A

G☆
Hc

1 ∶G∣G∗
=⇒ p2, B∣B⇒ p4,¬A⊙ ¬A ∣

p1 ⇒ C ∣C, p2 ⇒ A⊙ A∣A⇒ p3 ∣
A⇒ p1, B ∣p3 ⇒ C∣C, p4 ⇒ A⊙ A

⋱⋮...

G☆
I =⇒ p2,B∣B⇒ p4,¬A⊙ ¬A ∣p1 ⇒ C ∣C, p2 ⇒ A⊙ A∣

B⇒ ¬A⊙ ¬A, p3 ∣⇒ p1, B ∣p3 ⇒ C∣C, p4 ⇒ A⊙ A

In the above example, D(G☆
I ) = D0(G0). But it is not always the case. In general, we can

prove that ⊢GL D0(G0) if ⊢GL D(G☆
I ), which is shown in the proof of Main theorem in Page 46.

This example shows that the proof of Main theorem essentially presents an algorithm to construct
a proof of D0(G0) from τ.

4. Preprocessing of Proof Tree

Let τ be a cut-free proof of G0 in Main theorem in GL by Lemma 2.15. Starting with τ, we
will construct a proof τ∗ which contains no application of (EC) and has some other properties
in this section.

15

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2019                   doi:10.20944/preprints201902.0159.v1

Peer-reviewed version available at Symmetry 2019, 11, 445; doi:10.3390/sym11040445

http://dx.doi.org/10.20944/preprints201902.0159.v1
http://dx.doi.org/10.3390/sym11040445


Lemma 4.1. (i) If ⊢GL Γ1 ⇒ A,∆1 and ⊢GL Γ2 ⇒ B,∆2

then ⊢GL Γ1 ⇒ A ∧ B,∆1∣Γ2 ⇒ A ∧ B,∆2;

(ii) If ⊢GL Γ1,A⇒ ∆1 and ⊢GL Γ2,B⇒ ∆2

then ⊢GL Γ1,A ∨ B⇒ ∆1∣Γ2,A ∨ B⇒ ∆2.

Proof. (i)

Γ2 ⇒ B,∆2

Γ1 ⇒ A,∆1

B⇒ B
A⇒ A

A⇒ A B⇒ B

A⇒ B∣B⇒ A
(COM)

A⇒ A ∧ B∣B⇒ A
(∧r)

A⇒ A ∧ B∣B⇒ A ∧ B
(∧r)

Γ1 ⇒ A ∧ B,∆1∣B⇒ A ∧ B
(CUT)

Γ1 ⇒ A ∧ B,∆1∣Γ2 ⇒ A ∧ B,∆2
(CUT)

(ii) is proved by a procedure similar to that of (i) and omitted.

We introduce two new rules by Lemma 4.1.

Definition 4.2.
G1∣Γ1 ⇒ A,∆1 G2∣Γ2 ⇒ B,∆2

G1∣G2∣Γ1 ⇒ A ∧ B,∆1∣Γ2 ⇒ A ∧ B,∆2
(∧rw)

and
G1∣Γ1,A⇒ ∆1 G2∣Γ2, B⇒ ∆2

G1∣G2∣Γ1,A ∨ B⇒ ∆1∣Γ2,A ∨ B⇒ ∆2
(∨lw) are called the generalized (∧r) and (∨l) rules,

respectively.

Now, we begin to process τ as follows.
Step 1 A proof τ1 is constructed by replacing inductively all applications of

G1∣Γ⇒ A,∆ G2∣Γ⇒ B,∆
G1∣G2∣Γ⇒ A ∧ B,∆

(∧r) (or
G1∣Γ,A⇒ ∆ G2∣Γ, B⇒ ∆

G1∣G2∣Γ,A ∨ B⇒ ∆
(∨l))

in τ with
G1∣Γ⇒ A,∆ G2∣Γ⇒ B,∆

G1∣G2∣Γ⇒ A ∧ B,∆∣Γ⇒ A ∧ B,∆
(∧rw)

G1∣G2∣Γ⇒ A ∧ B,∆
(EC)

(accordingly

G1∣Γ,A⇒ ∆ G2∣Γ,B⇒ ∆
G1∣G2∣Γ,A ∨ B⇒ ∆∣Γ,A ∨ B⇒ ∆

(∨lw)

G1∣G2∣Γ,A ∨ B⇒ ∆
(EC) for (∨l)).

The replacements in Step 1 are local and the root of τ1 is also labeled by G0.

Definition 4.3. We sometimes may regard
G′

G′ as a structural rule of GL and denote it by (IDΩ)
for convenience. The focus sequent for (IDΩ) is undefined.

Lemma 4.4. Let
G′∣S m

G′∣S
(EC∗) ∈ τ1, Thτ1(G′∣S ) = (H0,H1,⋯,Hn), where H0 = G′∣S and Hn =

G0. A tree τ′ is constructed by replacing each Hk in τ1 with Hk∣S m−1 for all 0 ⩽ k ⩽ n. Then τ′ is
a proof of G0∣S m−1.
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Proof. The proof is by induction on n . Since τ1(G′∣S m) is a proof and
G′∣S m

H0∣S m−1
(IDΩ) is valid in

GL, then τ′(H0∣S m−1) is a proof. Suppose that τ′(Hn−1∣S m−1) is a proof. Since
Hn−1 G′′

Hn
(II)

(or
Hn−1

Hn
(I)) in τ1, then

Hn−1∣S m−1 G′′

Hn∣S m−1
(or

Hn−1∣S m−1

Hn∣S m−1
) is an application of the same rule (II)

(or (I)). Thus τ′(Hn∣S m−1) is a proof.

Definition 4.5. The manipulation described in Lemma 4.4 is called sequent-inserting operation.

Clearly, the number of (EC∗)-applications in τ′ is less than τ1. Next, we continue to process
τ.

Step 2 Let
G′′′

1 ∣{S c
1}m′1

G′
1∣S c

1
(EC∗),⋯,

G′′′
N ∣{S c

N}m′N

G′
N ∣S c

N
(EC∗) be all applications of (EC∗) in τ1 and

G∗
0 ∶= {S c

1}m′1−1∣⋯∣{S c
N}m′N−1. By repeatedly applying sequent-inserting operations, we construct

a proof of G0∣G∗
0 in GL without applications of (EC∗) and denote it by τ2.

Remark 4.6. (i) τ2 is constructed by converting (EC) into (IDΩ); (ii) Each node of τ2 has the
form H0∣H∗

0 , where H0 ∈ τ1 and H∗
0 is a (possibly empty) subset of G∗

0 .

We need the following construction to eliminate applications of (EW) in τ2.

Construction 4.7. Let H ∈ τ2, H′ ⊆ H and Thτ2(H) = (H0,⋯,Hn), where H0 = H, Hn = G0∣G∗
0 .

Hypersequents ⟨Hk⟩H∶H′ and trees τ2
H∶H′(⟨Hk⟩H∶H′) for all 0 ⩽ k ⩽ n are constructed inductively

as follows.
(i) ⟨H0⟩H∶H′ ∶= H′ and τ2

H∶H′(⟨H0⟩H∶H′) consists of a single node H′;

(ii) Let
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′′ (II) (or
G′∣S ′

G′∣S ′′(I)) be in τ2, Hk = G′∣S ′ and Hk+1 = G′∣G′′∣H′′ (ac-

cordingly Hk+1 = G′∣S ′′ for (I)) for some 0 ⩽ k ⩽ n − 1.
If S ′ ∈ ⟨Hk⟩H∶H′

⟨Hk+1⟩H∶H′ ∶= ⟨Hk⟩H∶H′ /{S
′}∣G′′∣H′′

(accordingly ⟨Hk+1⟩H∶H′ ∶= ⟨Hk⟩H∶H′ /{S
′}∣S ′′ for (I))

and τ2
H∶H′(⟨Hk+1⟩H∶H′) is constructed by combining trees

τ2
H∶H′(⟨Hk⟩H∶H′), τ

2(G′′∣S ′′) with
⟨Hk⟩H∶H′ G′′∣S ′′

⟨Hk+1⟩H∶H′
(II)

(accordingly τ2
H∶H′(⟨Hk⟩H∶H′) with

⟨Hk⟩H∶H′
⟨Hk+1⟩H∶H′

(I) for (I))

otherwise ⟨Hk+1⟩H∶H′ ∶= ⟨Hk⟩H∶H′ and τ2
H∶H′(⟨Hk+1⟩H∶H′) is constructed by combining

τ2
H∶H′(⟨Hk⟩H∶H′) with

⟨Hk⟩H∶H′
⟨Hk+1⟩H∶H′

(IDΩ).

(iii) Let
G′

G′∣S ′(EW) ∈ τ2, Hk = G′ and Hk+1 = G′∣S ′ then ⟨Hk+1⟩H∶H′ ∶= ⟨Hk⟩H∶H′ and

τ2
H∶H′(⟨Hk+1⟩H∶H′) is constructed by combining τ2

H∶H′(⟨Hk⟩H∶H′) with
⟨Hk⟩H∶H′
⟨Hk+1⟩H∶H′

(IDΩ).
17
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Lemma 4.8. (i) ⟨Hk⟩H∶H′ ⊆ Hk for all 0 ⩽ k ⩽ n;
(ii) τ2

H∶H′(⟨Hk⟩H∶H′) is a derivation of ⟨Hk⟩H∶H′ from H′ without (EC).

Proof. The proof is by induction on k. For the base step, ⟨H0⟩H∶H′ = H′ and τ2
H∶H′(⟨H0⟩H∶H′)

consists of a single node H′. Then ⟨H0⟩H∶H′ ⊆ H0 = H, τ2
H∶H′(⟨H0⟩H∶H′) is a derivation of

⟨H0⟩H∶H′ from H′ without (EC).
For the induction step, suppose that ⟨Hk⟩H∶H′ and τ2

H∶H′(⟨Hk⟩H∶H′) be constructed such that
(i) and (ii) hold for some 0 ⩽ k ⩽ n − 1. There are two cases to be considered.

Case 1 Let
G′∣S ′

G′∣S ′′(I) ∈ τ
2, Hk = G′∣S ′ and Hk+1 = G′∣S ′′. If S ′ ∈ ⟨Hk⟩H∶H′ then

⟨Hk⟩H∶H′ /{S ′} ⊆ G′ by ⟨Hk⟩H∶H′ ⊆ Hk = G′∣S ′. Thus ⟨Hk+1⟩H∶H′ = (⟨Hk⟩H∶H′ /{S ′})∣S ′′ ⊆
G′∣S ′′ = Hk+1. Otherwise S ′ ∉ ⟨Hk⟩H∶H′ then ⟨Hk⟩H∶H′ ⊆ G′ by ⟨Hk⟩H∶H′ ⊆ Hk = G′∣S ′. Thus
⟨Hk+1⟩H∶H′ ⊆ Hk+1 by ⟨Hk+1⟩H∶H′ = ⟨Hk⟩H∶H′ ⊆ G′ ⊆ Hk+1. τ2

H∶H′(⟨Hk+1⟩H∶H′) is a derivation of

⟨Hk+1⟩H∶H′ from H′ without (EC) since τ2
H∶H′(⟨Hk⟩H∶H′) is such one and

⟨Hk⟩H∶H′
⟨Hk+1⟩H∶H′

(I) is a valid

instance of a rule (I) of GL. The case of applications of two-premise rule is proved by a similar
procedure and omitted.

Case 2 Let
G′

G′∣S ′(EW) ∈ τ2, Hk = G′ and Hk+1 = G′∣S ′. Then ⟨Hk+1⟩H∶H′ ⊆ Hk+1 by

⟨Hk+1⟩H∶H′ = ⟨Hk⟩H∶H′ ⊆ Hk ⊆ Hk+1. τ2
H∶H′(⟨Hk+1⟩H∶H′) is a derivation of ⟨Hk+1⟩H∶H′ from H′

without (EC) since τ2
H∶H′(⟨Hk⟩H∶H′) is such one and

⟨Hk⟩H∶H′
⟨Hk+1⟩H∶H′

(IDΩ) is valid by Definition 4.3.

Definition 4.9. The manipulation described in Construction 4.7 is called derivation-pruning op-
eration.

Notation 4.10. We denote ⟨Hn⟩H∶H′ by G2
H∶H′ , τ

2
H∶H′(⟨Hn⟩H∶H′) by τ2

H∶H′ and say that H′ is trans-
formed into G2

H∶H′ in τ2.

Then Lemma 4.8 shows that
H′

G2
H∶H′

⟨τ2
H∶H′⟩, G2

H∶H′ ⊆ G0∣G∗
0 . Now, we continue to process τ

as follows.

Step 3 Let
G′

G′∣S ′(EW) ∈ τ2 then τ2
G′∣S ′∶G′(⟨Hn⟩G′∣S ′∶G′) is a derivation of ⟨Hn⟩G′∣S ′∶G′ from G′

thus a proof of ⟨Hn⟩G′∣S ′∶G′ is constructed by combining τ2(G′) and τ2
G′∣S ′∶G′(⟨Hn⟩G′∣S ′∶G′) with

G′

G′(IDΩ). By repeatedly applying the procedure above, we construct a proof τ3 of G1∣G∗
1 without

(EW) in GL, where G1 ⊆ G0,G∗
1 ⊆ G∗

0 by Lemma 4.8 (i).

Step 4 Let Γ, p,� ⇒ ∆ ∈ τ3 (or Γ, p ⇒ ⊺,∆,
G∣Γ⇒ ∆

G∣Γ, p⇒ ∆
(WL)) then there exists Γ′ ⇒

∆′ ∈ H such that p ∈ Γ′ for all H ∈ Thτ3(Γ, p,� ⇒ ∆) (accordingly H ∈ Thτ3(Γ, p ⇒ ⊺,∆),
H ∈ Thτ3(Γ, p⇒ ∆)) thus a proof is constructed by replacing top-down p in each Γ′ with ⊺.

Let Γ,� ⇒ p,∆ (or Γ ⇒ ⊺, p,∆,
G∣Γ⇒ ∆

G∣Γ⇒ p,∆
(WR)) is a leaf of τ3 then there exists Γ′ ⇒

∆′ ∈ H such that p ∈ ∆′ for all H ∈ Thτ3(Γ,� ⇒ p,∆) (accordingly H ∈ Thτ3(Γ ⇒ ⊺, p,∆) or
H ∈ Thτ3(Γ⇒ p,∆)) thus a proof is constructed by replacing top-down p in each Γ′ with �.

18

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 18 February 2019                   doi:10.20944/preprints201902.0159.v1

Peer-reviewed version available at Symmetry 2019, 11, 445; doi:10.3390/sym11040445

http://dx.doi.org/10.20944/preprints201902.0159.v1
http://dx.doi.org/10.3390/sym11040445


Repeatedly applying the procedure above, we construct a proof τ4 of G2∣G∗
2 in GL such that

there doesn’t exist occurrence of p in Γ or ∆ at each leaf labeled by Γ,�⇒ ∆ or Γ⇒ ⊺,∆, or p

is not the weakening formula A in
G∣Γ⇒ ∆

G∣Γ⇒ A,∆
(WR) or

G∣Γ⇒ ∆
G∣Γ,A⇒ ∆

(WL) when (WR) or (WL)

is available. Define two operations σl and σr on sequents by σl(Γ, p ⇒ ∆) ∶= Γ,⊺ ⇒ ∆ and
σr(Γ ⇒ p,∆) ∶= Γ ⇒ �,∆. Then G2∣G∗

2 is obtained by applying σl and σr to some designated
sequents in G1∣G∗

1 .

Definition 4.11. The manipulation described in Step 4 is called eigenvariable-replacing opera-
tion.

Step 5 A proof τ∗ is constructed from τ4 by assigning inductively one unique identification
number to each occurrence of p in τ4 as follows.

One unique identification number, which is a positive integer, is assigned to each leaf of the
form p ⇒ p in τ4 which corresponds to pk ⇒ pk in τ∗. Other nodes of τ4 are processed as
follows.

● Let
G1∣Γ, λp⇒ µp,∆

G1∣Γ′, λp⇒ µp,∆′
(I) ∈ τ4. Suppose that all occurrences of p in G1∣Γ, λp ⇒ µp,∆

are assigned identification numbers and have the form G′
1∣Γ, pi1 ,⋯, piλ ⇒ p j1 ,⋯, p jµ ,∆ in τ∗,

which we often write as G′
1∣Γ,{pik}λk=1 ⇒ {p jk}

µ
k=1,∆. Then G1∣Γ′, λp ⇒ µp,∆′ has the form

G′
1∣Γ′,{pik}λk=1 ⇒ {p jk}

µ
k=1,∆

′.

● Let
G′ G′′

G′′′ (∧rw) ∈ τ4, where G′ ≡ G1∣Γ, λp ⇒ µp,A,∆, G′′ ≡ G2∣Γ, λp ⇒ µp,B,∆,

G′′′ ≡ G1∣G2∣Γ, λp⇒ µp,A ∧ B,∆∣Γ, λp⇒ µp,A ∧ B,∆. Suppose that G′ and G′′ have the forms
G′

1∣Γ,{pi1k}λk=1 ⇒ {p j1k}
µ
k=1,A,∆ and G′

2∣Γ,{pi2k}λk=1 ⇒ {p j2k}
µ
k=1,B,∆ in τ∗, respectively. Then

G′′′ has the form G′
1∣G′

2∣Γ,{pi1k}λk=1 ⇒ {p j1k}
µ
k=1,A ∧ B,∆∣Γ,{pi2k}λk=1 ⇒ {p j2k}

µ
k=1,A ∧ B,∆. All

applications of (∨lw) are processed by the procedure similar to that of (∧rw).

● Let
G′ G′′

G′′′ (⊙r) ∈ τ4, where G′ ≡ G1∣Γ1, λ1 p⇒ µ1 p,A,∆1,

G′′ ≡ G2∣Γ2, λ2 p⇒ µ2 p,B,∆2, G′′′ ≡ G1∣G2∣Γ1,Γ2, (λ1 + λ2)p⇒ (µ1 + µ2)p,A⊙ B,∆1,∆2. Sup-
pose that G′ and G′′ have the forms G′

1∣Γ1,{pi1k}
λ1
k=1 ⇒ {p j1k}

µ1
k=1,A,∆1 and G′

2∣Γ2,{pi2k}
λ2
k=1 ⇒

{p j2k}
µ2
k=1,B,∆2 in τ∗, respectively. Then G′′′ has the form G′

1∣G′
2∣Γ1,Γ2,{pi1k}

λ1
k=1,{pi2k}

λ2
k=1 ⇒

{p j1k}
µ1
k=1,{p j2k}

µ2
k=1,A⊙ B,∆1,∆2. All applications of (→l) are processed by the procedure simi-

lar to that of (⊙r).

● Let
G′ G′′

G′′′ (COM) ∈ τ4, where G′ ≡ G1∣Γ1,Π1, λ1 p⇒ µ1 p,Σ1,∆1,

G′′ ≡ G2∣Γ2,Π2, λ2 p⇒ µ2 p,Σ2,∆2, G′′′ ≡ G1∣G2∣Γ1,Γ2, (λ11 + λ21)p⇒ (µ11 + µ21)p,∆1,∆2∣
Π1,Π2, (λ12 + λ22)p ⇒ (µ12 + µ22)p,Σ1,Σ2, where λ11 + λ12 = λ1, λ21 + λ22 = λ2, µ11 + µ12 =
µ1, µ21 + µ22 = µ2.

Suppose that G′ and G′′ have the forms G′
1∣Γ1,Π1,{pi1k

}λ1
k=1 ⇒ {p j1k

}µ1
k=1,Σ1,∆1 and

G′
2∣Γ2,Π2,{pi2k

}λ2
k=1 ⇒ {p j2k

}µ2
k=1,Σ2,∆2 in τ∗, respectively. Then G′′′ has the form

G′
1∣G′

2∣Γ1,Γ2,{pi11k
}λ11

k=1,{pi21k
}λ21

k=1 ⇒ {p j11k
}µ11

k=1,{p j21k
}µ21

k=1,∆1,∆2∣
Π1,Π2,{pi12k

}λ12
k=1,{pi22k

}λ22
k=1 ⇒ {p j12k

}µ12
k=1,{p j22k

}µ22
k=1,Σ1,Σ2, where

{piwk }
λw
k=1 = {piw1k

}λw1
k=1⋃{piw2k

}λw2
k=1,{p jwk }

µw
k=1 = {p jw1k

}µw1
k=1⋃{p jw2k

}µw2
k=1 for w = 1,2.

Definition 4.12. The manipulation described in Step 5 is called eigenvariable-labeling operation.
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Notation 4.13. Let G2 and G∗
2 be converted to G and G∗ in τ∗, respectively. Then τ∗ is a proof

of G∣G∗.

In the preprocessing of τ, each
G′′′

i ∣{S c
i }m′i

G′′′
i ∣S c

i
(EC∗)i is converted into

G′′
i ∣{S c

i }m′i

G′′
i ∣{S c

i }m′i
(IDΩ)i in

Step 2, where G′′′
i ⊆ G′′

i by Lemma 4.4.
G′

G′∣S ′(EW) ∈ τ2 is converted into
G′′

G′′(IDΩ) in Step

3, where G′′ ⊆ G′ by Lemma 4.8(i). Some G′∣Γ′, p ⇒ ∆′ ∈ τ3 (or G′∣Γ′ ⇒ p,∆′ ) is revised as
G′∣Γ′,⊺ ⇒ ∆′ (or G′∣Γ′ ⇒ �,∆′) in Step 4. Each occurrence of p in τ4 is assigned the unique
identification number in Step 5. The whole preprocessing above is depicted by Figure 13.

τÐ→G0
S tep 1∶ τ1ÐÐÐÐ→
∧rw,∨lw

G0
S tep 2∶ τ2ÐÐÐÐ→

EC
G0∣G∗0

S tep 3∶ τ3ÐÐÐÐ→
EW

G1∣G∗1

S tep 4∶ τ4ÐÐÐÐ→
⊺,�,W

G2∣G∗2
S tep 5∶ τ∗ÐÐÐÐÐ→

ID numbers
G∣G∗

FIGURE 13 Preprocessing of τ

Notation 4.14. Let
G′′′

i ∣{S c
i }m′i

G′′′
i ∣S c

i
(EC∗)i,1 ⩽ i ⩽ N be all (EC∗)-nodes of τ1 and G′′′

i ∣{S c
i }m′i be

converted to G′′
i ∣{S c

i }mi in τ∗. Note that there are no identification numbers for occurrences of
variable p in S c

i ∈ G′′′
i ∣{S c

i }m′i meanwhile they are assigned to p in S c
i ∈ G′′

i ∣{S c
i }mi . But we use

the same notations for S c
i ∈ G′′′

i ∣{S c
i }m′i and S c

i ∈ G′′
i ∣{S c

i }mi for simplicity.
In the whole paper, let Hc

i = G′
i ∣{S c

i }mi denote the unique node of τ∗ such that Hc
i ⩽ G′′

i ∣{S c
i }mi

and S c
i is the focus sequent of Hc

i in τ∗, in which case we denote the focus one S c
i1 and others

S c
i2∣⋯∣S c

imi
among {S c

i }mi . We sometimes denote Hc
i also by G′

i ∣{S c
iv}

mi
v=1 or G′

i ∣S c
i1∣{S c

iv}
mi
v=2. We

then write G∗ as {S c
iv}

v=2⋯mi
i=1⋯N .

We call Hc
i , S c

iu the i-th pseudo-(EC) node of τ∗ and pseudo-(EC) sequent, respectively. We
abbreviate pseudo-EC as pEC. Let H ∈ τ∗, by S c

i ∈ H we mean that S c
iu ∈ H for some 1 ⩽ u ⩽ mi.

It is possible that there doesn’t exist Hc
i ⩽ G′′

i ∣{S c
i }mi such that S c

i is the focus sequent of Hc
i

in τ∗, in which case {S c
i }mi ⊆ G∣G∗, then it hasn’t any effect on our argument to treat all such

S c
i as members of G. So we assume that all Hc

i are always defined for all G′′
i ∣{S c

i }mi in τ∗, i.e.,
Hc

i > G∣G∗.

Proposition 4.15. (i) {S c
iv}v=2⋯mi ⊆ H for all H ⩽ Hc

i ; (ii) G∗ = {S c
iv}

v=2⋯mi
i=1⋯N .

Now, we replace locally each
G′

G′(IDΩ) in τ∗ with G′ and denote the resulting proof also

by τ∗, which has no essential difference with the original one but could simplify subsequent
arguments. We introduce the system GLΩ as follows.

Definition 4.16. GLΩ is a restricted subsystem of GL such that
(i) p is designated as the unique eigenvariable by which we mean that it is not used to built

up any formula containing logical connectives and only used as a sequent-formula.
(ii) Each occurrence of p on each side of every component of a hypersequent in GL is as-

signed one unique identification number i and written as pi in GLΩ. Initial sequent p⇒ p of GL
has the form pi ⇒ pi in GLΩ.
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(iii) Each sequent S of GL in the form Γ, λp⇒ µp,∆ has the form

Γ,{pik}λk=1 ⇒ {p jk}
µ
k=1,∆

in GLΩ, where p does not occur in Γ or ∆, ik ≠ il for all 1 ⩽ k < l ⩽ λ, jk ≠ jl for all 1 ⩽ k < l ⩽ µ.
Define vl(S ) = {i1,⋯, iλ} and vr(S ) = { j1,⋯, jµ}. Let G be a hypersequent of GLΩ in the
form S 1∣⋯∣S n then vl(S k)⋂ vl(S l) = ∅ and vr(S k)⋂ vr(S l) = ∅ for all 1 ⩽ k < l ⩽ n. Define
vl(G) = ⋃n

k=1 vl(S k), vr(G) = ⋃n
k=1 vr(S k). Here, l and r in vl and vr indicate the left side and

right side of a sequent, respectively.
(iv) A hypersequent G of GLΩ is called closed if vl(G) = vr(G). Two hypersequents G′ and

G′′ of GLΩ are called disjoint if vl(G′)⋂ vl(G′′) = ∅, vl(G′)⋂ vr(G′′) = ∅, vr(G′)⋂ vl(G′′) = ∅
and vr(G′)⋂ vr(G′′) = ∅. G′′ is a copy of G′ if they are disjoint and there exist two bijections
σl ∶ vl(G′) → vl(G′′) and σr ∶ vr(G′) → vr(G′′) such that G′′ can be obtained by applying σl to
antecedents of sequents in G′ and σr to succedents of sequents in G′, i.e., G′′ = σr ○σl(G′).

(v) A closed hypersequent G′∣G′′∣G′′′ can be contracted as G′∣G′′ in GLΩ under the condition
that G′′ and G′′′ are closed and G′′′ is a copy of G′′. We call it the constraint external contraction
rule and denote by

G′∣G′′∣G′′′

G′∣G′′ (ECΩ).

Furthermore, if there doesn’t exist two closed hypersequents H′,H′′ ⊆ G′∣G′′ such that H′′ is a

copy of H′ then we call it the fully constraint contraction rule and denote by
G′∣G′′∣G′′′

G′∣G′′ ⟨EC∗
Ω⟩.

(vi) (EW) and (CUT) of GL are forbidden. (EC), (∧r) and (∨l) of GL are replaced with
(ECΩ), (∧rw) and (∨lw) in GLΩ, respectively.

(vii) G1∣S 1 and G2∣S 2 are closed and disjoint for each two-premise rule
G1∣S 1 G2∣S 2

G1∣G2∣H′ (II) of GLΩ and, G′∣S ′ is closed for each one-premise rule
G′∣S ′

G′∣S ′′(I).

(viii) p doesn’t occur in Γ or ∆ for each initial sequent Γ,�⇒ ∆ or Γ⇒ ⊺,∆ and, p doesn’t

act as the weakening formula A in
G∣Γ⇒ ∆

G∣Γ⇒ A,∆
(WR) or

G∣Γ⇒ ∆
G∣Γ,A⇒ ∆

(WL) when (WR) or (WL)

is available.

Lemma 4.17. Let τ be a cut-free proof of G0 in L and τ∗ be the tree resulting from preprocessing
of τ.

(i) If
G′∣S ′

G′∣S ′′(I) ∈ τ
∗ then vl(G′∣S ′′) = vr(G′∣S ′′) = vr(G′∣S ′) = vl(G′∣S ′);

(ii) If
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (II) ∈ τ∗ then vl(G′∣G′′∣H′) = vl(G′∣S ′)⋃ vl(G′′∣S ′′) = vr(G′∣G′′∣H′) =

vr(G′∣S ′)⋃ vr(G′′∣S ′′);
(iii) If H ∈ τ∗ and k ∈ vl(H) then k ∈ vr(H);
(iv) If H ∈ τ∗ and k ∈ vl(H) (or k ∈ vr(H)) then H ⩽ pk ⇒ pk;
(v) τ∗ is a proof of G∣G∗ in GLΩ without (ECΩ);
(vi) If H′,H′′ ∈ τ∗ and H′∥H′′ then vl(H′)⋂ vl(H′′) = ∅, vr(H′)⋂ vr(H′′) = ∅.

Proof. Claims from (i) to (iv) are immediately from Step 5 in preprocessing of τ and Definition
4.16. (v) is from Notation 4.13 and Definition 4.16. Only (vi) is proved as follows.
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Suppose that k ∈ vl(H′)⋂ vl(H′′). Then H′ ⩽ pk ⇒ pk, H′′ ⩽ pk ⇒ pk by Claim (iv). Thus
H′ ⩽ H′′ or H′′ ⩽ H′, a contradiction with H′∥H′′ hence vl(H′)⋂ vl(H′′) = ∅.
vr(H′)⋂ vr(H′′) = ∅ is proved by a similar procedure and omitted.

5. The generalized density rule (D) for GLΩ

In this section, we define the generalized density rule (D) for GLΩ and prove that it is
admissible in GLΩ.

Definition 5.1. Let G be a closed hypersequent of GLΩ and S ∈ G. Define [S ]G = ⋂{H ∶ S ∈
H ⊆ G, vl(H) = vr(H)}, i.e., [S ]G is the minimal closed unit of G containing S . In general, for
G′ ⊆ G, define [G′]G = ⋂{H ∶ G′ ⊆ H ⊆ G, vl(H) = vr(H)}.

Clearly, [S ]G = S if vl(S ) = vr(S ) or p does not occur in S . The following construction
gives a procedure to construct [S ]G for any given S ∈ G.

Construction 5.2. Let G and S be as above. A sequence G1,G2,⋯,Gn of hypersequents is
constructed recursively as follows. (i) G1 = {S }; (ii) Suppose that Gk is constructed for k ⩾ 1.
If vl(Gk) ≠ vr(Gk) then there exists ik+1 ∈ vl(Gk)/vr(Gk) (or ik+1 ∈ vr(Gk)/vl(Gk)) thus there
exists the unique S k+1 ∈ G/Gk such that ik+1 ∈ vr(S k+1)/vl(S k+1) (or ik+1 ∈ vl(S k+1)/vr(S k+1))
by vl(G) = vr(G) and Definition 4.16 then let Gk+1 = Gk∣S k+1 otherwise the procedure terminates
and n ∶= k.

Lemma 5.3. (i) Gn = [S ]G;
(ii)Let S ′ ∈ [S ]G then [S ′]G = [S ]G;
(iii)Let G′ ≡ G∣H′, G′′ ≡ G∣H′′,vl(G′) = vr(G′), vl(G′′) = vr(G′′), vl(H′) ⊖ vr(H′) = vl(H′′) ⊖
vr(H′′) then [H′]G′ /H′ = [H′′]G′′ /H′′, where A⊖ B is the symmetric difference of two multisets
A, B;
(iv)Let vlr(Gk) = vl(Gk)⋂ vr(Gk) then ∣vlr(Gk)∣ + 1 ⩾ ∣Gk∣ for all 1 ⩽ k ⩽ n;
(v) ∣vl([S ]G)∣ + 1 ⩾ ∣[S ]G∣ .

Proof. (i) Since Gk ⊆ Gk+1 for 1 ⩽ k ⩽ n − 1 and S ∈ G1 then S ∈ Gn ⊆ G thus [S ]G ⊆ Gn by
vl(Gn) = vr(Gn). We prove Gk ⊆ [S ]G for 1 ⩽ k ⩽ n by induction on k in the following. Clearly,
G1 ⊆ [S ]G. Suppose that Gk ⊆ [S ]G for some 1 ⩽ k ⩽ n − 1. Since ik+1 ∈ vl(Gk)/vr(Gk) (or
ik+1 ∈ vr(Gk)/vl(Gk)) and ik+1 ∈ vr(S k+1) (or ik+1 ∈ vl(S k+1)) then S k+1 ∈ [S ]G by Gk ⊆ [S ]G
and vl([S ]G) = vr([S ]G) thus Gk+1 ⊆ [S ]G. Then Gn ⊆ [S ]G thus Gn = [S ]G.

(ii) By (i), [S ]G = S 1∣S 2∣⋯∣S n, where S 1 = S . Then S ′ = S k for some 1 ⩽ k ⩽ n thus
ik ∈ vr(S k)/vl(S k) (or ik ∈ vl(S k)/vr(S k)) hence there exists the unique k′ < k such that ik ∈
vl(S k′)/vr(S k′) (or ik ∈ vr(S k′)/vl(S k′)) if k ≥ 2 hence S k′ ∈ [S k]G. Repeatedly, S 1 ∈ [S k]G, i.e.,
S ∈ [S ′]G then [S ]G ⊆ [S ′]G. [S ′]G ⊆ [S ]G by S ′ ∈ [S ]G then [S ′]G = [S ]G.

(iii) It holds immediately from Construction 5.2 and (i).
(iv) The proof is by induction on k. For the base step, let k = 1 then ∣Gk∣ = 1 thus ∣vlr(Gk)∣+1 ⩾

∣Gk∣ by ∣vlr(Gk)∣ ⩾ 0. For the induction step, suppose that ∣vlr(Gk)∣ + 1 ⩾ ∣Gk∣ for some 1 ⩽ k < n.
Then ∣vlr(Gk+1)∣ ⩾ ∣vlr(Gk)∣ + 1 by ik+1 ∈ vlr(Gk+1)/vlr(Gk) and vlr(Gk) ⊆ vlr(Gk+1). Then
∣vlr(Gk+1)∣ + 1 ⩾ ∣Gk+1∣ by ∣Gk+1∣ = ∣Gk∣ + 1 = k + 1.

(v) It holds by (iv) and vlr([S ]G) = vl([S ]G).
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Definition 5.4. Let G = S 1∣⋯∣S r and S l be in the form Γl,{pilk
}λl

k=1 ⇒ {p jlk
}µl

k=1,∆l for 1 ⩽ l ⩽ r.
(i) If S ∈ G and [S ]G be S k1 ∣⋯∣S ku then DG(S ) is defined as

Γk1 ,⋯,Γku ⇒ (∣vl([S ]G)∣ − ∣[S ]G∣ + 1)t,∆k1 ,⋯,∆ku ;
(ii) Let ⋃v

k=1 [S qk]G = G and [S qk]G⋂ [S ql]G = ∅ for all 1 ⩽ k < l ⩽ v then D(G) is defined as
DG(S q1)∣⋯∣DG(S qv).

(iii) We call (D) the generalized density rule of GLΩ, whose conclusion D(G) is defined by
(ii) if its premise is G.

Clearly, D(pk ⇒ pk) is⇒ t and D(S ) = S if p does not occur in S .

Lemma 5.5. Let G′ ≡ G∣S and G′′ ≡ G∣S 1∣S 2 be closed and [S 1]G′′ ⋂ [S 2]G′′ = ∅, where
S 1 = Γ1,{pi1k

}λ1
k=1 ⇒ {p j1k

}µ1
k=1,∆1; S 2 = Γ2,{pi2k

}λ2
k=1 ⇒ {p j2k

}µ2
k=1,∆2;

S = Γ1,Γ2,{pi1k
}λ1

k=1,{pi2k
}λ2

k=1 ⇒ {p j1k
}µ1

k=1,{p j2k
}µ2

k=1,∆1,∆2; DG′′(S 1) = Γ1,Σ1 ⇒ Π1,∆1 and
DG′′(S 2) = Γ2,Σ2 ⇒ Π2,∆2. Then DG′(S ) = Γ1,Σ1,Γ2,Σ2 ⇒ Π1,∆1,Π2,∆2.

Proof. Since [S 1]G′′ ⋂ [S 2]G′′ = ∅ then [S ]G′ = [S 1]G′′ /{S 1}⋃ [S 2]G′′ /{S 2}⋃
{S } by vl(S ) = vl(S 1∣S 2), vr(S ) = vr(S 1∣S 2) and Lemma 5.3 (iii). Thus
∣vl([S ]G′)∣ = ∣vl([S 1]G′′)∣ + ∣vl([S 2]G′′)∣, ∣[S ]G′ ∣ = ∣[S 1]G′′ ∣ + ∣[S 2]G′′ ∣ − 1. Hence

∣vl([S ]G′)∣ − ∣[S ]G′ ∣ + 1 = ∣vl([S 1]G′′)∣ − ∣[S 1]G′′ ∣ + 1 + ∣vl([S 2]G′′)∣ − ∣[S 2]G′′ ∣ + 1.

Therefore DG′(S ) = Γ1,Σ1,Γ2,Σ2 ⇒ Π1,∆1,Π2,∆2 by

Π1 = (∣vl([S 1]G′′)∣ − ∣[S 1]G′′ ∣ + 1)t,Π1/(∣vl([S 1]G′′)∣ − ∣[S 1]G′′ ∣ + 1)t

Π2 = (∣vl([S 2]G′′)∣ − ∣[S 2]G′′ ∣ + 1)t,Π2/(∣vl([S 2]G′′)∣ − ∣[S 2]G′′ ∣ + 1)t

DG′(S ) = Γ1,Σ1,Γ2,Σ2 ⇒ (∣vl([S ]G′)∣ − ∣[S ]G′ ∣ + 1)t,

Π1/(∣vl([S 1]G′′)∣ − ∣[S 1]G′′ ∣ + 1)t,∆1,Π2/(∣vl([S 2]G′′)∣ − ∣[S 2]G′′ ∣ + 1)t,∆2

where λt = { t,⋯, t
²
λ

}.

Lemma 5.6. ([A.5.1]) If there exists a proof τ of G in GLΩ then there exists a proof of D(G) in
GL, i.e., (D) is admissible in GLΩ.

Proof. We proceed by induction on the height of τ. For the base step, if G is pk ⇒ pk thenD(G)
is⇒ t otherwise D(G) is G then ⊢GL D(G) holds. For the induction step, the following cases
are considered.

● Let
G′∣S ′

G′∣S ′′(→r) ∈ τ

where
S ′ ≡ A,Γ,{pik}λk=1 ⇒ {p jk}

µ
k=1,∆,B,

S ′′ ≡ Γ,{pik}λk=1 ⇒ {p jk}
µ
k=1,∆,A→ B.

Then [S ′′]G′∣S ′′ = [S ′]G′∣S ′ /{S ′}∣S ′′ by vl(S ′) = vl(S ′′), vr(S ′) = vr(S ′′) and Lemma 5.3 (iii).
Let DG′∣S ′(S ′) = A,Γ,Γ′′ ⇒ ∆′′,∆, B then DG′∣S ′′(S ′′) = Γ,Γ′′ ⇒ ∆′′,∆,A → B thus a proof of
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D(G′∣S ′′) is constructed by combining the proof of D(G′∣S ′) and
DG′∣S ′(S ′)
DG′∣S ′′(S ′′)

(→r). Other rules

of type (I) are processed by a procedure similar to above.
● Let

G1∣S 1 G2∣S 2

G1∣G2∣S 3
(⊙r) ∈ τ

where
S 1 ≡ Γ1,{pi1k

}λ1
k=1 ⇒ {p j1k

}µ1
k=1,A,∆1

S 2 ≡ Γ2,{pi2k
}λ2

k=1 ⇒ {p j2k
}µ2

k=1,B,∆2

S 3 ≡ Γ1,Γ2,{pi1k
}λ1

k=1,{pi2k
}λ2

k=1 ⇒ {p j2k
}µ2

k=1,{p j1k
}µ1

k=1,A⊙ B,∆1,∆2.

Let
DG1∣S 1(S 1) = Γ1,Γ11 ⇒ ∆11, (∣vl([S 1]G1∣S 1

)∣ − ∣[S 1]G1∣S 1
∣ + 1)t,A,∆1,

DG2∣S 2(S 2) = Γ2,Γ21 ⇒ ∆21, (∣vl([S 2]G2∣S 2
)∣ − ∣[S 2]G2∣S 2

∣ + 1)t,B,∆2.

Then DG1∣G2∣S 3(S 3) is
Γ1,Γ2,Γ11,Γ21 ⇒ ∆11,∆21,A⊙ B,∆1,∆2,

(∣vl([S 1]G1∣S 1
)∣ + ∣vl([S 2]G2∣S 2

)∣ − ∣[S 1]G1∣S 1
∣ − ∣[S 2]G2∣S 2

∣ + 2)t

by [S 3]G1∣G2∣S 3
= ([S 1]G1∣S 1

/{S 1})⋃([S 2]G2∣S 2
/{S 2})⋃{S 3}. Then the proof of D(G1∣G2∣S 3)

is constructed by combining ⊢GL D(G1∣S 1) and

⊢GL D(G2∣S 2) with
DG1∣S 1(S 1) DG2∣S 2(S 2)

DG1∣G2∣S 3(S 3)
(⊙r). All applications of (→l) are processed by a

procedure similar to that of ⊙r and omitted.
● Let

G′ G′′

G′′′ (∧rw) ∈ τ

where
G′ ≡ G1∣S 1, G′′ ≡ G2∣S 2, G′′′ ≡ G1∣G2∣S ′

1∣S ′
2,

S w ≡ Γw,{piwk }
λw
k=1 ⇒ {p jwk }

µw
k=1,Aw,∆w,

S ′
w ≡ Γw,{piwk }

λw
k=1 ⇒ {p jwk }

µw
k=1,A1 ∧ A2,∆w

for w = 1,2. Then [S ′
1]G′′′ = [S 1]G′ /{S 1}∣S ′

1, [S ′
2]G′′′ = [S 2]G′′ /{S 2}∣S ′

2 by Lemma 5.3 (iii).
Let

DGw∣S w(S w) = Γw,Γw1 ⇒ ∆w1, (∣vl([S w]Gw∣S w
)∣ − ∣[S w]Gw∣S w

∣ + 1)t,Aw,∆1

for w = 1,2. Then

DG′′′(S ′
w) = Γw,Γw1 ⇒ ∆w1, (∣vl([S w]Gw∣S w

)∣ − ∣[S w]Gw∣S w
∣ + 1)t,A1 ∧ A2,∆w

for w = 1,2. Then the proof ofD(G′′′) is constructed by combining ⊢GL D(G′) and ⊢GL D(G′′)

with
DG′(S 1) DG′′(S 2)
DG′′′(S ′

1∣S ′
2)

(∧rw). All applications of (∨lw) are processed by a procedure similar

to that of (∧rw) and omitted.
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● Let
G′ G′′

G′′′ (COM) ∈ τ

where
G′ ≡ G1∣S 1, G′′ ≡ G2∣S 2, G′′′ ≡ G1∣G2∣S 3∣S 4

S 1 ≡ Γ1,Π1,{pi1k
}λ1

k=1 ⇒ {p j1k
}µ1

k=1,Σ1,∆1,

S 2 ≡ Γ2,Π2,{pi2k
}λ2

k=1 ⇒ {p j2k
}µ2

k=1,Σ2,∆2,

S 3 ≡ Γ1,Γ2,{pi11k
}λ11

k=1,{pi21k
}λ21

k=1 ⇒ {p j11k
}µ11

k=1,{p j21k
}µ21

k=1,∆1,∆2,

S 4 ≡ Π1,Π2,{pi12k
}λ12

k=1,{pi22k
}λ22

k=1 ⇒ {p j12k
}µ12

k=1,{p j22k
}µ22

k=1,Σ1,Σ2

where {piwk }
λw
k=1 = {piw1k

}λw1
k=1⋃{piw2k

}λw2
k=1,{p jwk }

µw
k=1 = {p jw1k

}µw1
k=1⋃{p jw2k

}µw2
k=1 for w = 1,2.

Case 1 S 3 ∈ [S 4]G′′′ . Then [S 3]G′′′ = [S 4]G′′′ by Lemma 5.3 (ii) and
[S 3]G′′′ = [S 1]G′ ∣ [S 2]G′′ ∣S 3∣S 4/{S 1,S 2} by Lemma 5.3 (iii). Then

∣vl([S 3]G′′′)∣ − ∣[S 3]G′′′ ∣ + 1 = ∣vl([S 1]G′)∣ + ∣vl([S 2]G′′)∣ − ∣[S 1]G′ ∣ − ∣[S 2]G′′ ∣ + 1 ⩾ 0.

Thus ∣vl([S 1]G′)∣ − ∣[S 1]G′ ∣ + 1 ⩾ 1 or ∣vl([S 2]G′′)∣ − ∣[S 2]G′′ ∣ + 1 ⩾ 1. Hence we assume that,
without loss of generality,

DG′(S 1) = Γ1,Π1,Γ
′ ⇒ ∆′, t,Σ1,∆1,

DG′′(S 2) = Γ2,Π2,Γ
′′ ⇒ ∆′′,Σ2,∆2.

Then
DG′′′(S 3∣S 4) = Γ1,Π1,Γ

′,Γ2,Π2,Γ
′′ ⇒ ∆′,Σ1,∆1,∆

′′,Σ2,∆2.

Thus the proof of
DG′(S 1) DG′′(S 2)
DG′′′(S 3∣S 4)

is constructed by

Γ1,Π1,Γ
′ ⇒ ∆′, t,Σ1,∆1

Γ2,Π2,Γ
′′ ⇒ ∆′′,Σ2,∆2

Γ2,Π2,Γ′′, t⇒ ∆′′,Σ2,∆2
(tl)

Γ1,Π1,Γ′,Γ2,Π2,Γ′′ ⇒ ∆′,Σ1,∆1,∆′′,Σ2,∆2
(CUT).

Case 2 S 3 ∉ [S 4]G′′′ . Then [S 3]G′′′ ⋂ [S 4]G′′′ = ∅ by Lemma 5.3 (ii). Let

S 3w ≡ Γw,{piw1k
}λw1

k=1 ⇒ {p jw1k
}µw1

k=1,∆w,

S 4w ≡ Πw,{piw2k
}λw2

k=1 ⇒ {p jw2k
}µw2

k=1,Σw,

for w = 1,2. Then

[S 3]G′′′ = [S 31]G1∣S 31∣S 41
/{S 31}⋃ [S 32]G2∣S 32∣S 42

/{S 32}⋃{S 3},

[S 4]G′′′ = [S 41]G1∣S 31∣S 41
/{S 41}⋃ [S 42]G2∣S 32∣S 42

/{S 42}⋃{S 4}

by vl(S 3) = vl(S 31∣S 32), vl(S 1) = vl(S 31∣S 41), vl(S 2) = vl(S 32∣S 42) and
vl(S 4) = vl(S 41∣S 42). Let

DGw∣S 3w∣S 4w(S 3w) = Γw,X3w ⇒ Ψ3w,∆w,
25
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DGw∣S 3w∣S 4w(S 4w) = Πw,X4w ⇒ Ψ4w,Σw

for w = 1,2. Then
DG′(S 1) = Γ1,Π1,X31,X41 ⇒ Ψ31,Ψ41,Σ1,∆1,

DG′′(S 2) = Γ2,Π2,X32,X42 ⇒ Ψ32,Ψ42,Σ2,∆2,

DG′′′(S 3) = Γ1,X31,Γ2,X32 ⇒ Ψ31,∆1,Ψ32,∆2,

DG′′′(S 4) = Π1,X41,Π2,X42 ⇒ Ψ41,Σ1,Ψ42,Σ2

by Lemma 5.5, [S 3]G′′′ ⋂ [S 4]G′′′ = ∅, [S 31]G1∣S 31∣S 41
⋂ [S 41]G1∣S 31∣S 41

= ∅,
[S 32]G2∣S 32∣S 42

⋂ [S 42]G2∣S 32∣S 42
= ∅. Then the proof of DG′′′(S 3∣S 4) is constructed by combing

the proofs of DG′(S 1) and DG′′(S 2) with
DG′(S 1) DG′′(S 2)
DG′′′(S 3∣S 4)

(COM).

●
G′∣G′′∣G′′′

G′∣G′′ (ECΩ) ∈ τ. Then G′,G′′ and G′′′ are closed and G′′′ is a copy of G′′ thus

DG′∣G′′∣G′′′(G′′) = DG′∣G′′∣G′′′(G′′′) hence a proof of D(G′∣G′′) is constructed by combining the

proof of D(G′∣G′′∣G′′′) and
D(G′∣G′′∣G′′′)
D(G′∣G′′)

(EC∗).

The following two lemmas are corollaries of Lemma 5.6.

Lemma 5.7. If there exists a derivation of G0 from G1,⋯,Gr in GLΩ then there exists a deriva-
tion of D(G0) from D(G1),⋯,D(Gr) in GL.

Lemma 5.8. Let τ be a cut-free proof of G0 in GL and τ∗ be the proof of G∣G∗ in GLΩ resulting
from preprocessing of τ. Then ⊢GL D(G∣G∗).

6. Extraction of Elimination Rules

In this section, we will investigate Construction 4.7 further to extract more derivations from
τ∗.

Any two sequents in a hypersequent seem independent of one another in the sense that they
can only be contracted into one by (EC) when it is applicable. Note that one-premise logical
rules just modify one sequent of a hypersequent and two-premise rules associate a sequent in a
hypersequent with one in a different hypersequent.
τ∗ (or any proof without (ECΩ) in GLΩ) has an essential property, which we call the dis-

tinguishability of τ∗, i.e., any variables, formulas, sequents or hypersequents which occur at the
node H of τ∗ occur inevitably at H′ < H in some forms.

Let H ≡ G′∣S ′∣S ′′ ∈ τ∗. If S ′ is equal to S ′′ as two sequents then the case that τ∗H∶S ′ is equal
to τ∗H∶S ′′ as two derivations could possibly happen. This means that both S ′ and S ′′ are the focus
sequent of one node in τ∗ when G∗

H∶S ′ ≠ S ′ and G∗
H∶S ′′ ≠ S ′′, which contradicts that each node

has the unique focus sequent in any derivation. Thus we need differentiate S ′ from S ′′ for all
G′∣S ′∣S ′′ ∈ τ∗.

Define S ′ ∈ τ∗ such that G′∣S ′∣S ′′ ⩽ S ′, S ′ ∈ S ′ and S ′ is the principal sequent of S ′. If S ′

has the unique principal sequent, NS ′ ∶= 0, otherwise NS ′ ∶= 1 (or NS ′ = 2) to indicate that S ′

is one designated principal sequent (or accordingly NS ′ = 2 for another) of such an application
as (COM), (∧rw) or (∨lw). Then we may regard S ′ as (S ′;P(S ′),NS ′). Thus S ′ is always
different from S ′′ by P(S ′) ≠ P(S ′′) or, P(S ′) = P(S ′′) and NS ′ ≠ NS ′′ . We formulate it by the
following construction.
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Construction 6.1. ([A.5.2]) A labeled tree τ∗∗, which has the same tree structure as τ∗, is
constructed as follows.

(i) If S is a leaf τ∗, define S = S , NS = 0 and the node P(S ) of τ∗∗ is labeled by
(S ;P(S ),NS );

(ii) If
G′∣S ′

H ≡ G′∣S ′′(I) ∈ τ
∗ and P(G′∣S ′) be labeled by G′∣(S ′;P(S ′),NS ′) in τ∗∗. Then define

S ′′ = H, NS ′′ = 0 and the node P(H) of τ∗∗ is labeled by G′∣(S ′′;P(S ′′),NS ′′);

(iii) If
G′∣S ′ G′′∣S ′′

H ≡ G′∣G′′∣H′ (II) ∈ τ∗, P(G′∣S ′) and P(G′′∣S ′′) be labeled by G′∣(S ′;P(S ′),NS ′)

and G′′∣(S ′′;P(S ′′),NS ′′) in τ∗∗, respectively. If H′ = S 1∣S 2 then define S 1 = S 2 = H, NS 1 = 1,
NS 2 = 2 and the node P(H) of τ∗∗ is labeled by G′∣G′′∣(S 1;P(S 1),NS 1)∣(S 2;P(S 2),NS 2). If
H′ = S 1 then define S 1 = H, NS 1 = 0 and P(H) is labeled by G′∣G′′∣(S 1;P(S 1),NS 1).

In the whole paper, we treat τ∗ as τ∗∗ without mention of τ∗∗. Note that in preprocessing of
τ, some logical applications could also be converted to (IDΩ) in Step 3 and we need fix the focus
sequent at each node H and subsequently assign valid identification numbers to each H′ < H by
eigenvariable-labeling operation.

Proposition 6.2. (i) G′∣S ′∣S ′′ ∈ τ∗ implies {S ′}⋂{S ′′} = ∅; (ii) H ∈ τ∗ and H′∣H′′ ⊆ H imply
H′⋂H′′ = ∅; (iii) Let H ∈ τ∗ and S c

i ∈ H then H ⩽ Hc
i or Hc

i ⩽ H.

Proof. (iii) Let S c
i ∈ H then S c

i = S c
iu for some 1 ⩽ u ⩽ mi by Notation 4.14. Thus S c

i ∈ Hc
i

also by Notation 4.14. Hence H ⩽ S c
i and Hc

i ⩽ S c
i by Construction 6.1. Therefore H ⩽ Hc

i or
Hc

i ⩽ H.

Lemma 6.3. Let H ∈ τ∗ and Th(H) = (H0,⋯,Hn), where H0 = H, Hn = G∣G∗, Gk ⊆ H for
1 ⩽ k ⩽ 3.

(i) If G3 = G1⋂G2 then ⟨Hi⟩H∶G3
= ⟨Hi⟩H∶G1

⋂ ⟨Hi⟩H∶G2
for all 0 ⩽ i ⩽ n;

(ii) If G3 = G1∣G2 then ⟨Hi⟩H∶G3
= ⟨Hi⟩H∶G1

∣ ⟨Hi⟩H∶G2
for all 0 ⩽ i ⩽ n.

Proof. The proof is by induction on i for 0 ⩽ i < n. Only (i) is proved as follows and (ii) by a
similar procedure and omitted.

For the base step, ⟨H0⟩H∶G3
= ⟨H0⟩H∶G1

⋂ ⟨H0⟩H∶G2
holds by ⟨H0⟩H∶G1

= G1, ⟨H0⟩H∶G2
= G2,

⟨H0⟩H∶G3
= G3 and G3 = G1⋂G2.

For the induction step, suppose that ⟨Hi⟩H∶G3
= ⟨Hi⟩H∶G1

⋂ ⟨Hi⟩H∶G2
for some 0 ⩽ i < n. Only

is the case of one-premise rule given in the following and other cases are omitted.

Let
G′∣S ′

G′∣S ′′(I) ∈ τ
∗, Hi = G′∣S ′ and Hi+1 = G′∣S ′′.

Let S ′ ∈ ⟨Hi⟩H∶G3
. Then ⟨Hi+1⟩H∶G3

= (⟨Hi⟩H∶G3
/{S ′})∣S ′′,

⟨Hi+1⟩H∶G1
= (⟨Hi⟩H∶G1

/{S ′})∣S ′′ by S ′ ∈ ⟨Hi⟩H∶G1
and

⟨Hi+1⟩H∶G2
= (⟨Hi⟩H∶G2

/{S ′})∣S ′′ by S ′ ∈ ⟨Hi⟩H∶G2
. Thus

⟨Hi+1⟩H∶G3
= ⟨Hi+1⟩H∶G1

⋂ ⟨Hi+1⟩H∶G2
by ⟨Hi⟩H∶G3

= ⟨Hi⟩H∶G1
⋂ ⟨Hi⟩H∶G2

.
Let S ′ ∉ ⟨Hi⟩H∶G1

and S ′ ∉ ⟨Hi⟩H∶G2
. Then ⟨Hi+1⟩H∶G1

= ⟨Hi⟩H∶G1
,

⟨Hi+1⟩H∶G2
= ⟨Hi⟩H∶G2

and ⟨Hi+1⟩H∶G3
= ⟨Hi⟩H∶G3

. Thus
⟨Hi+1⟩H∶G3

= ⟨Hi+1⟩H∶G1
⋂ ⟨Hi+1⟩H∶G2

by ⟨Hi⟩H∶G3
= ⟨Hi⟩H∶G1

⋂ ⟨Hi⟩H∶G2
.

Let S ′ ∉ ⟨Hi⟩H∶G1
,S ′ ∈ ⟨Hi⟩H∶G2

. Then ⟨Hi+1⟩H∶G1
= ⟨Hi⟩H∶G1

,
⟨Hi+1⟩H∶G3

= ⟨Hi⟩H∶G3
and ⟨Hi+1⟩H∶G2

= (⟨Hi⟩H∶G2
/{S ′})∣S ′′. Thus

⟨Hi+1⟩H∶G3
= ⟨Hi+1⟩H∶G1

⋂ ⟨Hi+1⟩H∶G2
by ⟨Hi⟩H∶G3

= ⟨Hi⟩H∶G1
⋂ ⟨Hi⟩H∶G2

, S ′′ ∉ ⟨Hi+1⟩H∶G1
.

The case of S ′ ∉ ⟨Hi⟩H∶G2
,S ′ ∈ ⟨Hi⟩H∶G1

is proved by a similar procedure and omitted.
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Lemma 6.4. (i) Let G′∣S ′ ∈ τ∗ then G∗
G′∣S ′∶S ′ ⋂G∗

G′∣S ′∶G′ = ∅,G
∗
G′∣S ′∶G′ ∣G

∗
G′∣S ′∶S ′ = G∣G∗;

(ii) H ∈ τ∗, H′∣H′′ ⊆ H then G∗
H∶H′∣H′′ = G∗

H∶H′ ∣G∗
H∶H′′ .

Proof. (i) and (ii) are immediately from Lemma 6.3.

Notation 6.5. We write τ∗Hc
i ∶S

c
i1
, G∗

Hc
i ∶S

c
i1

as τ∗S c
i1
, G∗

S c
i1
, respectively, for the sake of simplicity.

Lemma 6.6. (i) G∗
S c

i1
⊆ G∣G∗;

(ii) τ∗S c
i1

is a derivation of G∗
S c

i1
from S c

i1, which we denote by
S c

i1

G∗
S c

i1

⟨τ∗S c
i1
⟩;

(iii) G∗
S c

iu
= S c

iu and τ∗S c
iu

consists of a single node S c
iu for all 2 ⩽ u ⩽ mi;

(iv) vl(G∗
S c

i1
)/vl(S c

i1) = vr(G∗
S c

i1
)/vr(S c

i1);
(v) ⟨H⟩S c

i1
∈ τ∗S c

i1
implies H ⩽ Hc

i . Note that ⟨H⟩S c
i1

is undefined for any H > Hc
i or H∥Hc

i .
(vi) S c

j ∈ G∗
S c

i1
implies Hc

i ≰ Hc
j .

Proof. Claims from (i) to (v) are immediately from Construction 4.7 and Lemma 4.8.
(vi) Since S c

j ∈ G∗
S c

i1
⊆ G∣G∗ then S c

j has the form S c
ju for some u ≥ 2 by Notation 4.14.

Then G∗
S c

j
= S c

j by (iii). Suppose that Hc
i ⩽ Hc

j . Then S c
j is transferred from Hc

j downward to Hc
i

and in side-hypersequent of Hc
i by Notation 4.14 and G∣G∗ < Hc

i ⩽ Hc
j . Thus {S c

i1}⋂{S c
j} = ∅

at Hc
i since S c

i1 is the unique focus sequent of Hc
i . Hence S c

j ∉ G∗
S c

i1
by Lemma 6.3 and (iii), a

contradiction therefore Hc
i ≰ Hc

j .

Lemma 6.7. Let
G′∣S ′ G′′∣S ′′

H ≡ G′∣G′′∣H′ (II) ∈ τ∗. (i) If S c
j ∈ G∗

H∶H′ then Hc
j ⩽ H or Hc

j∥H; (ii) If

S c
j ∈ G∗

H∶G′′ then Hc
j ⩽ H or Hc

j∥G′∣S ′.

Proof. (i) We impose a restriction on (II) such that each sequent in H′ is different from S ′ or S ′′

otherwise we treat it as an (EW)-application. Since S c
j ∈ G∗

H∶H′ ⊆ G∣G∗ then S c
j has the form S c

ju
for some u ≥ 2 by Notation 4.14. Thus G∗

S c
j
= S c

j. Suppose that Hc
j > H. Then S c

j is transferred
from Hc

j downward to H. Thus S c
j ∈ H′ by G∗

S c
j
= S c

j ∈ G∗
H∶H′ and Lemma 6.3. Hence S c

j = S ′ or
S c

j = S ′′, a contradiction with the restriction above. Therefore Hc
j ⩽ H or Hc

j∥H.
(ii) Let S c

j ∈ G∗
H∶G′′ . If Hc

j > H then S c
j ∈ H by Proposition 4.15(i) and thus S c

j ∈ G′′ by
Lemma 6.3 and, hence Hc

j ∥ G′∣S ′ by Hc
j ⩾ G′′∣S ′′, G′∣S ′∥G′′∣S ′′. If Hc

j∥H then Hc
j ∥ G′∣S ′ by

H ⩽ G′∣S ′. Thus Hc
j ⩽ H or Hc

j∥G′∣S ′.

Definition 6.8. (i) By Hc
i ↝ Hc

j we mean that S c
ju ∈ G∗

S c
i1

for some 2 ⩽ u ⩽ m j; (ii) By Hc
i ↭ Hc

j

we mean that Hc
i ↝ Hc

j and Hc
j ↝ Hc

i ; (iii) Hc
i ↝̸ Hc

j means that S c
ju ∉ G∗

S c
i1

for all 2 ⩽ u ⩽ m j.

Then Lemma 6.6 (vi) shows that Hc
i ↝ Hc

j implies Hc
i ≰ Hc

j .

Lemma 6.9. Let Hc
i ∥Hc

j , Hc
i ↝ Hc

j ,
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (II) ∈ τ∗ such that G′∣S ′ ⩽ Hc
i , G′′∣S ′′ ⩽ Hc

j .

Then S ′ ∈ ⟨G′∣S ′⟩S c
i1
.

Proof. Suppose that S ′ ∉ ⟨G′∣S ′⟩S c
i1
. Then ⟨G′∣S ′⟩S c

i1
⊆ G′ by ⟨G′∣S ′⟩S c

i1
⊆ G′∣S ′, ⟨G′∣G′′∣H′⟩S c

i1
=

⟨G′∣S ′⟩S c
i1

by Construction 4.7. Thus ⟨G′∣G′′∣H′⟩S c
i1
⊆ G′. Hence G′′∣H′⋂ ⟨G′∣G′′∣H′⟩S c

i1
= ∅ by

Proposition 6.2 (ii). Therefore S c
ju ∉ G∗

S c
i1

for all 1 ⩽ u ⩽ m j by Lemma 6.3, i.e., Hc
i ↝̸ Hc

j , a
contradiction and hence S ′ ∈ ⟨G′∣S ′⟩S c

i1
.
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Lemma 6.6 (ii) shows that τ∗S c
i1

is a derivation of G∗
S c

i1
from one premise S c

i1. We generalize
it by introducing derivations from multiple premises in the following. In the remainder of this
section, let I = {Hc

i1 ,⋯,H
c
im} ⊆ {H

c
1,⋯,Hc

N}, Hc
ik ↭ Hc

iq for all 1 ⩽ k < q ⩽ m. Then Hc
ik ≰ Hc

iq and
Hc

iq ≰ Hc
ik by Lemma 6.6 (vi) thus Hc

ik∥H
c
iq for all 1 ⩽ k < q ⩽ m.

Notation 6.10. HV
I denotes the intersection node of Hc

i1 ,⋯,H
c
im . We sometimes write the inter-

section node of Hc
i and Hc

j as HV
i j . If I = {Hc

i }, HV
I ∶= Hc

i , i.e., the intersection node of a single
node is itself.

Let
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (II) ∈ τ∗ such that G′∣G′′∣H′ = HV
I . Then I is divided into two subsets

Il = {Hc
l1 ,⋯,H

c
lm(l)} and Ir = {Hc

r1
,⋯,Hc

rm(r)
}, which occur in the left subtree τ∗(G′∣S ′) and right

subtree τ∗(G′′∣S ′′) of τ∗(G′∣G′′∣H′), respectively.
Let I = {S c

i11,⋯,S c
im1}, Il = {S c

l11,⋯,S c
lm(l)1}, Ir = {S c

r11,⋯,S c
rm(r)1} such that I = Il⋃Ir. A

derivation τ∗I of ⟨G∣G∗⟩I from S c
i11,⋯,S c

im1 is constructed by induction on ∣I∣. The base case of
∣I∣ = 1 has been done by Construction 4.7. For the induction case, suppose that derivations τ∗Il

of
⟨G∣G∗⟩Il

from S c
l11,⋯,S c

lm(l)1 and τ∗Ir
of ⟨G∣G∗⟩Ir

from S c
r11,⋯,S c

rm(r)1 are constructed. Then τ∗I
of ⟨G∣G∗⟩I from S c

i11,⋯,S c
im1 is constructed as follows.

Construction 6.11. ([A.5.2]) (i)

⟨H⟩I ∶= ⟨H⟩Il
for all G′∣S ′ ⩽ H ⩽ Hc

i for some Hc
i ∈ Il,

⟨H⟩I ∶= ⟨H⟩Ir
for all G′′∣S ′′ ⩽ H ⩽ Hc

i for some Hc
i ∈ Ir,

τ∗I(⟨G′∣S ′⟩I) ∶= τ
∗
Il
(⟨G′∣S ′⟩Il

), τ∗I(⟨G′′∣S ′′⟩I) ∶= τ
∗
Ir
(⟨G′′∣S ′′⟩Ir

);
(ii)

⟨G′∣G′′∣H′⟩I ∶= ⟨G
′⟩Il
∣ ⟨G′′⟩Ir

∣H′

and
⟨G′∣S ′⟩Il

⟨G′′∣S ′′⟩Ir

⟨G′∣G′′∣H′⟩I
(II) ∈ τ∗I ;

(iii) Other nodes of τ∗I are built up by Construction 4.7 (ii).

The following lemma is a generalization of Lemma 6.6.

Lemma 6.12. Let Th(Hc
ik) = (H

c
ik0,⋯,Hc

iknik
), where 1 ⩽ k ⩽ m,Hc

ik0 = Hc
ik and Hc

iknik
= G∣G∗.

Then, for all 0 ⩽ u ⩽ nik ,
(i)

⟨Hc
iku⟩I =⋂{⟨H

c
iku⟩S c

j1
∶ Hc

j ∈ I,Hc
iku ⩽ Hc

j};

(ii)
{S c

j1 ∶ Hc
j ∈ I,Hc

iku ⩽ Hc
j}

⟨Hc
iku⟩I

⟨τ∗I(⟨Hc
iku⟩I)⟩ ;

(iii)
vl(⟨Hc

iku⟩I)/⋃{vl(S c
j1) ∶ Hc

j ∈ I,Hc
iku ⩽ Hc

j} =

vr(⟨Hc
iku⟩I)/⋃{vr(S c

j1) ∶ Hc
j ∈ I,Hc

iku ⩽ Hc
j};

(iv) ⟨H⟩I ∈ τ∗I if and only if H ⩽ Hc
i for some Hc

i ∈ I. Note that ⟨H⟩I is undefined if H > Hc
i

or H∥Hc
i for all Hc

i ∈ I.
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Proof: (i) is proved by induction on ∣I∣. For the base step, let ∣I∣ = 1 then the claim holds
clearly. For the induction step, let ∣I∣ ⩾ 2 then ∣Il∣ ⩾ 1 and ∣Ir ∣ ⩾ 1. Then S ′ ∈ ⟨G′∣S ′⟩S c

i1
for all

Hc
i ∈ Il by Lemma 6.9 and Hc

i ↝ Hc
j for all Hc

j ∈ Ir. ⟨G′∣S ′⟩Il
= ⋂Hc

i ∈Il ⟨G′∣S ′⟩S c
i1

by the induction
hypothesis then S ′ ∈ ⟨G′∣S ′⟩Il

thus ⟨G′∣G′′∣H′⟩Il
= ⟨G′⟩Il

∣G′′∣H′ by G′∣S ′ ⩽ HV
Il

.
⟨G′∣G′′∣H′⟩Ir

= ⟨G′′⟩Ir
∣G′∣H′ holds by a procedure similar to above then

⟨G′∣G′′∣H′⟩I = ⟨G
′⟩Il
∣ ⟨G′′⟩Ir

∣H′

= (⟨G′⟩Il
∣G′′∣H′)⋂(⟨G′′⟩Ir

∣G′∣H′)

= ⟨G′∣G′′∣H′⟩Il
⋂ ⟨G′∣G′′∣H′⟩Ir

by ⟨G′⟩Il
⊆ G′ and ⟨G′′⟩Ir

⊆ G′′. Other claims hold immediately from Construction 6.11.

Lemma 6.13. (i) Let G∗
I denote ⟨G∣G∗⟩I then G∗

I = ⋂Hc
i ∈I G∗

S c
i1
;

(ii)
S c

i11 ⋯ S c
im1

G∗
I

⟨τ∗I⟩ ;

(iii) vl(G∗
I)/⋃Hc

j∈I vl(S c
j1) = vr(G∗

I)/⋃Hc
j∈I vr(S c

j1);
(iv) S c

j ∈ G∗
I implies Hc

i ≰ Hc
j for all Hc

i ∈ I.

Proof. (i), (ii) and (iii) are immediately from Lemma 6.12. (iv) holds by (i) and Lemma 6.6
(vi).

Lemma 6.13 (iv) shows that there exists no copy of S c
ik in G∗

I for any 1 ⩽ k ⩽ m. Then we
may regard them to be eliminated in τ∗I . We then call τ∗I an elimination derivation.

Let I ′ = {S c
i1u1
,⋯,S c

imum
} be another set of sequents to I such that G′ ≡ S c

i1u1
∣⋯∣S c

imum
is a copy

of G′′ ≡ S c
i11∣⋯∣S c

im1. Then G′ and G′′ are disjoint and there exist two bijections σl ∶ vl(G′) →
vl(G′′) and σr ∶ vr(G′) → vr(G′′) such that σr ○ σl(G′) = G′′. By applying σr ○ σl to τ∗I , we
construct a derivation from S c

i1u1
,⋯,S c

imum
and denote it by τ∗I′ and its root by G∗

I′ .
Let I′ = {Gb1 ∣S c

i1u1
,⋯,Gbm ∣S c

imum
} be a set of hypersequents to I, where Gbk ∣S c

ikuk
be closed

for all 1 ⩽ k ⩽ m. By applying τ∗I′ to S c
i1u1
,⋯,S c

imum
in Gb1 ∣S c

i1u1
,⋯,Gbm ∣S c

imum
, we construct a

derivation from
Gb1 ∣S c

i1u1
,⋯,Gbm ∣S c

imum

and denote it by τ∗I′ and its root by G∗
I′ . Then G∗

I′ = {Gbk}m
k=1∣G∗

I′ .

Definition 6.14. We will use all τ∗I′ as rules of GLΩ and call them elimination rules. Further,
we call S c

i1u1
,⋯,S c

imum
focus sequents and, all sequents in G∗

I′ principal sequents and, Gb1 ,⋯,Gbm

side-hypersequents of τ∗I′ .

Remark 6.15. We regard Construction 4.7 as a procedure F , whose inputs are τ2,H,H′ and
output τ2

H∶H′ . With such a viewpoint, we write τ2
H∶H′ as FH∶H′(τ2). Then τ∗I can be constructed

by iteratively applying F to τ∗, i.e., τ∗I = FHc
im
∶S c

im1
(⋯FHc

i1
∶S c

i11
(τ∗)⋯).

We replace locally each
G′

G′(IDΩ) in τ∗I with G′ and denote the resulting derivation also by

τ∗I . Then each non-root node in τ∗I has the focus sequent.
Let H ∈ τ∗I . Then there exists a unique node in τ∗, which we denote by O(H) such that H

comes from O(H) by Construction 4.7 and 6.11. Then the focus sequent of O(H) in τ∗ is the
focus of H in τ∗I if H is a non-root node and, O(H) = H or H ⊆ O(H) as two hypersequents.
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Since the relative position of any two nodes in τ∗ keep unchanged in constructing τ∗I , H1 ⩽τ∗I H2
if and only if O(H1) ⩽τ∗ O(H2) for any H1,H2 ∈ τ∗I . Especially, O(S c

ik1) = Hc
ik for S c

ik1 ∈ τ∗I .
Let H ∈ τ∗I . Then H′ ≡ σr ○ σl(H) ∈ τ∗I′ and H′′ ≡ {Gbk ∶ H ⩽τ∗I S c

ik1and1 ⩽ k ⩽ m} ∣ H′ ∈
τ∗I′ . Define O(H′) = O(H′′) = O(H). Then O(G∗

I′) = G∣G∗ and O(Gbk ∣S c
ikuk
) = Hc

ik for all
Gbk ∣S c

ikuk
∈ τ∗I′ .

Since G∗
I = ⟨G∣G∗⟩I ⊆ G∣G∗, then each (pEC)-sequent in G∗

I has the form S c
jv for some

1 ⩽ j ⩽ N, 2 ⩽ v ⩽ m j by Proposition 4.15(ii). Then we introduce the following definition.

Definition 6.16. (i) By S c
j ∈ G∗

I we means that there exists H ∈ τ∗I such that S c
j ∈ H,O(H) = Hc

j .
So is S c

j ∈ G∗
I′ .

(ii) Let S c
j ∈ G∗

I . By Hc
j ⩽τ∗I Hc

i we means that there exist H,H′ ∈ τ∗I such that S c
j ∈ H,

O(H) = Hc
j ,O(H′) = Hc

i and Hc
j ⩽τ∗ Hc

i . We usually write ⩽τ∗I as ⩽.

7. Separation of one branch

In the remainder of this paper, we assume that p occur at most one time for each sequent in
G0 as the one in Main theorem, τ be a cut-free proof of G0 in GL and τ∗ the proof of G∣G∗ in
GLΩ resulting from preprocessing of τ. Then ∣vl(S )∣ + ∣vr(S )∣ ≤ 1 for all S ∈ G, which plays a
key role in discussing the separation of branches.

Definition 7.1. By S ′ ∈c G′ we mean that there exists some copy of S ′ in G′. G′ ⊆c G′′ if
S ′ ∈c G′′ for all S ′ ∈ G′. G′ =c G′′ if G′ ⊆c G′′ and G′′ ⊆c G′. Let G11,⋯,G1m be m copies of G1
then we denote G′∣G11∣⋯∣G1m by G′∣{G1u}m

u=1 or G′∣{G1}m.

Definition 7.2. Let I = {Hc
i1 ,⋯,H

c
im} ⊆ {H

c
1,⋯,Hc

N}, Hc
ik∥H

c
il for all 1 ⩽ k < l ⩽ m. ⌈S c

ik⌉I is called
a branch of Hc

ik to I if it is a closed hypersequent such that

(i) ⌈S c
ik⌉I ⊆c G∣G∗,

(ii) S c
ik ∈ ⌈S

c
ik⌉I ,

(iii) S c
j ∈ ⌈S c

ik⌉I implies Hc
j ⩽ Hc

ik or Hc
j∥Hc

i for all Hc
i ∈ I.

Then (i) S c
il ∉c ⌈S

c
ik⌉I for all 1 ⩽ k, l ⩽ m, k ≠ l; (ii) S c

j ∈ ⌈S c
ik⌉I and Hc

j ≰ Hc
ik imply Hc

j ∉ I.
In this section, let I = {Hc

i }, I = {⌈S c
i ⌉I}, we will give an algorithm to eliminate all S c

j ∈ ⌈S c
i ⌉I

satisfying Hc
j ⩽ Hc

i .

Construction 7.3. ([A.3]) A sequence of hypersequents G☆(q)
I and their derivations τ☆(q)I from

⌈S c
i ⌉I for all q ⩾ 0 are constructed inductively as follows.

For the base case, define G☆(0)
I to be ⌈S c

i ⌉I and, τ☆(0)I be
G☆(0)

I

. For the induction case,

suppose that τ☆(q)I and G☆(q)
I are constructed for some 0 ⩽ q. If there exists no S c

j ∈ G☆(q)
I such

that Hc
j ⩽ Hc

i , then the procedure terminates and define JI to be q; otherwise define Hc
iq such that

S c
iq ∈ G☆(q)

I , Hc
iq ⩽ Hc

i and Hc
j ⩽ Hc

iq for all S c
j ∈ G☆(q)

I ,Hc
j ⩽ Hc

i . Let S c
iq1,⋯,S c

iqmq
be all copies

of S c
iq in G☆(q)

I then define G☆(q+1)
I = G☆(q)

I /{S c
iqu}

mq

u=1∣{G
∗
S c

iqu
}mq

u=1 and its derivation τ☆(q+1)
I is

constructed by sequentially applying τ∗S c
iq1
,⋯, τ∗S c

iqmq
to S c

iq1,⋯,S c
iqmq

in G☆(q)
I , respectively. Notice

that we assign new identification numbers to new occurrences of p in τ∗S c
iqu

for all 0 ⩽ q ⩽ JI − 1,
1 ⩽ u ⩽ mq.
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Lemma 7.4. (i) Hc
i0 = Hc

i and Hc
iq+1
< Hc

iq for all 0 ⩽ q ⩽ JI − 2;

(ii) G☆(q)
I ⊆c G∣G∗ is closed for all 0 ⩽ q ⩽ JI;

(iii)
⌈S c

i ⌉I
G☆(q)

I

⟨τ☆(q)I ⟩ for all 0 ⩽ q ⩽ JI, especially,
⌈S c

i ⌉I
G☆(JI)

I

⟨τ☆(JI)
I ⟩;

(iv) S c
j ∈ G☆(JI)

I implies Hc
j∥Hc

i and, S c
j ∈ G∗

S c
iqu

for some τ∗Gb∣S c
iqu
∈ τ☆(JI)

I or S c
j ∈ ⌈S c

i ⌉I ,

Hc
j ≰ Hc

i , where Gb = G☆(q)
I /{S c

iqv}u
v=1∣{G∗

S c
iqv
}u−1

v=1 , Gb∣S c
iqu is closed and 0 ⩽ q ⩽ JI−1, 1 ⩽ u ⩽ mq.

Proof. (i) Since S c
i ∈ G☆(0)

I by S c
i ∈ ⌈S c

i ⌉I = G☆(0)
I and, Hc

j ⩽ Hc
i for all S c

j ∈ G☆(0)
I ,Hc

j ⩽ Hc
i

then Hc
i0 = Hc

i . If S c
iq+1
∈ G☆(q)

I /{S c
iqu}

mq

u=1 then Hc
iq+1
⩽ Hc

iq by S c
iq+1
∈ G☆(q)

I , Hc
iq+1
⩽ Hc

i thus

Hc
iq+1
< Hc

iq by all copies of S c
iq in G☆(q)

I being collected in {S c
iqu}

mq

u=1. If S c
iq+1
∈ {G∗

S c
iqu
}mq

u=1 then

Hc
iq ≰ Hc

iq+1
by Lemma 6.6 (vi) thus Hc

iq+1
< Hc

iq by Hc
iq ⩽ Hc

i , Hc
iq+1
⩽ Hc

i . Then Hc
iq+1
< Hc

iq by

G☆(q+1)
I = G☆(q)

I /{S c
iqu}

mq

u=1∣{G
∗
S c

iqu
}mq

u=1. Note that Hc
iJI

is undefined in Construction 7.3.

(ii) vl(G☆(0)
I ) = vr(G☆(0)

I ),G☆(0)
I ⊆c G∣G∗ by G☆(0)

I = ⌈S c
i ⌉I . Suppose that vl(G☆(q)

I ) =
vr(G☆(q)

I ),G☆(q)
I ⊆c G∣G∗ then vl(G☆(q+1)

I ) = vr(G☆(q+1)
I ),G☆(q+1)

I ⊆c G∣G∗ by G☆(q+1)
I =

G☆(q)
I /{S c

iqu}
mq

u=1∣{G
∗
S c

iqu
}mq

u=1, vl(G∗
S c

iqu
/{S c

iqu}) = vr(G∗
S c

iqu
/{S c

iqu}) and G∗
S c

iqu
⊆c G∣G∗ for all 1 ⩽

u ⩽ mq.

(iii) τ☆(0)I is
G☆(0)

I

⟨τ☆(0)I ⟩. Given
⌈S c

i ⌉I
G☆(q)

I

⟨τ☆(q)I ⟩ then
⌈S c

i ⌉I
G☆(q+1)

I

⟨τ☆(q+1)
I ⟩ is constructed

by linking up the conclusion of previous derivation to the premise of its successor in the sequence
of derivations

⌈S c
i ⌉I

G☆(q)
I

⟨τ☆(q)I ⟩ ,
G☆(q)

I /{S c
iq1}∣S c

iq1

G☆(q)
I /{S c

iq1}∣G∗
S c

iq1

⟨τ∗S c
iq1
⟩ ,⋯,

G☆(q)
I /{S c

iqu}
mq−1
u=1 ∣S

c
iqmq
∣{G∗

S c
iqu
}mq−1

u=1

G☆(q+1)
I = G☆(q)

I /{S c
iqu}

mq

u=1∣{G∗
S c

iqu
}mq

u=1

⟨τ∗S c
iqmq
⟩ ,

as shown in the following figure.

[S c
i ]I

G☆(q)
I = G☆(q)

I /{S c
iqu}

mq

u=1∣{S
c
iqu}

mq

u=2∣S
c
iq1

G☆(q)
I /{S c

iqu}
mq

u=1∣{S c
iqu}

mq

u=3∣S c
iq2∣G∗

S c
iq1

⟨τ∗S c
iq1
⟩

⟨τ☆(q)I ⟩

⋮
⟨τ∗S c

iq2
⟩

G☆(q)
I /{S c

iqu}
mq

u=1∣S c
iqmq
∣{G∗

S c
iqu
}mq−1

u=1

G☆(q+1)
I = G☆(q)

I /{S c
iqu}

mq

u=1∣{G∗
S c

iqu
}mq

u=1

⟨τ∗S c
iqmq
⟩

A derivation of G☆(q+1)
I from G☆(q)

I

(iv) Let S c
j ∈ G☆(JI)

I . Then Hc
j ≰ Hc

i by the definition of JI. If S c
j ∈ ⌈S c

i ⌉I , then Hc
j∥Hc

i by
Hc

j ≰ Hc
i and the definition of ⌈S c

i ⌉I . Otherwise, by Construction 7.3, there exists some τ∗Gb∣S c
iqu
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in τ☆(JI)
I such that S c

j ∈ G∗
S c

iqu
. Then Hc

iq ≰ Hc
j by Lemma 6.6 (vi). Thus Hc

i ≰ Hc
j by Hc

iq ⩽ Hc
i .

Hence Hc
j∥Hc

i .

Lemma 7.4 shows that Construction 7.3 presents a derivation τ☆(JI)
I of G☆(JI)

I from ⌈S c
i ⌉I

such that there doesn’t exist S c
j ∈ G☆(JI)

I satisfying Hc
j ⩽ Hc

i , i.e., all S c
j ∈ ⌈S c

i ⌉I satisfying
Hc

j ⩽ Hc
i are eliminated by Construction 7.3. We generalize this procedure as follows.

Construction 7.5. Let H ∈ τ∗, H1 ⊆ H and H2 ⊆c G∣G∗. Then G
☆(JH∶Hl)
H∶Hl

and its derivation

τ
☆(JH∶Hl)
H∶Hl

for l = 1,2 are constructed by procedures similar to that of Construction 7.3 such that

Hc
j ≰ H for all S c

j ∈ G
☆(JH∶Hl)
H∶Hl

, where G☆(0)
H∶H1

∶= G∗
H∶H1

, τ☆(0)H∶H1
∶= τ∗H∶H1

, which are defined by
Construction 4.7.

We sometimes write JI, JH∶Hl as J for simplicity. Then the following lemma holds clearly.

Lemma 7.6. (i)
Hl

G☆(J)
H∶Hl

⟨τ☆(J)H∶Hl
⟩, Hc

j ≰ H for all S c
j ∈ G☆(J)

H∶Hl
.

(ii) If S c
i ∈ H and Hc

i > H then G☆(J)
H∶S c

i
= S c

i .

(iii) If S ∈c G or, S ∈c G∗ is a copy of S c
i1 and Hc

i ≰ H then G☆(J)
H∶S = S .

(iv) Let H′∣H′′ ⊆ H ∈ τ∗. Then G☆(J)
H∶H′∣H′′ = G☆(J)

H∶H′ ∣G
☆(J)
H∶H′′ by suitable assignments of identifi-

cation numbers to new occurrences of p in constructing τ☆(J)H∶H′∣H′′ , τ
☆(J)
H∶H′ and τ☆(J)H∶H′′ .

(v) G☆(J)
I = ⋃{G☆(J)

Hc
i ∶S

c
j
∶ S c

j ∈ ⌈S c
i ⌉I ,Hc

j ⩽ Hc
i }∣⋃{S c

j ∶ S c
j ∈ ⌈S c

i ⌉I ,Hc
j ≰ Hc

i }∣⋃{S ∶ S ∈
⌈S c

i ⌉I ,S ∈c G}.

Proof. (i) is proved by a procedure similar to that of Lemma 7.4 (iii), (iv) and omitted.
(ii) Since S c

i1 is the focus sequent of Hc
i then it is revised by some rule at the node lower than

Hc
i . Thus S c

i ∈ H is some copy of S c
i1 by Hc

i > H. Hence S c
i has the form S c

iu for some u ≥ 2.
Therefore it is transferred downward to G∣G∗, i.e., S c

i ∈ G∣G∗. Then G☆(0)
H∶S c

i
= G∗

H∶S c
i
= S c

i . Since

there exists no S c
j ∈ G☆(0)

H∶S c
j
,Hc

j ⩽ H then J = 0. Thus G☆(J)
H∶S c

i
= S c

i .
(iii) is proved by a procedure similar to that of (ii) and omitted.
(iv) Since H′∣H′′ ⊆ H ∈ τ∗, then H′⋂H′′ = ∅ by Proposition 6.2. Thus G☆(0)

H∶H′∣H′′ =
G∗

H∶H′∣H′′ = G∗
H∶H′ ∣G∗

H∶H′′ = G☆(0)
H∶H′ ∣G

☆(0)
H∶H′′ . Suppose that G☆(q)

H∶H′∣H′′ = G☆(q)
H∶H′ ∣G

☆q)
H∶H′′ for some q ≥ 0.

Then all copies {S c
iqu}

mq

u=1 of S c
iq in G☆(q)

H∶H′∣H′′ are divided two subsets {S c
iqu}

mq

u=1⋂G☆(q)
H∶H′ and

{S c
iqu}

mq

u=1⋂G☆(q)
H∶H′′ . Thus we can construct G☆(q+1)

H∶H′∣H′′ ,G
☆(q+1)
H∶H′ and G☆(q+1)

H∶H′′ simultaneously and as-

sign the same identification numbers to new occurrences of p in G☆(q+1)
H∶H′ and G☆(q+1)

H∶H′′ as the cor-
responding one in G☆(q+1)

H∶H′∣H′′ . Hence G☆(q+1)
H∶H′∣H′′ = G☆(q+1)

H∶H′ ∣G
☆(q+1)
H∶H′′ . Then G☆(J)

H∶H′∣H′′ = G☆(J)
H∶H′ ∣G

☆(J)
H∶H′′ .

Note that the requirement is imposed only on one derivation that distinct occurrence of p
has distinct identification number. We permit G☆(q+1)

H∶H′′ = G☆(q)
H∶H′′ or G☆(q+1)

H∶H′ = G☆(q)
H∶H′ in the proof

above, which has no essential effect on the proof of the claim.
(v) is immediately from (iv).
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Lemma 7.6(v) shows that G☆(J)
I could be constructed by applying τ☆(J)Hc

i ∶S
c
j
sequentially to each

S c
j ∈ ⌈S c

i ⌉I satisfying Hc
j ⩽ Hc

i . Thus the requirement Hc
iq+1
< Hc

iq in Construction 7.3 is not
necessary, but which make the termination of the procedure obvious.

Construction 7.7. Apply (EC∗
Ω) to G☆(J)

I and denote the resulting hypersequent by G☆
I and its

derivation by τ☆I . It is possible that (EC∗
Ω) is not applicable to G☆(J)

I in which case we apply
⟨IDΩ⟩ to it for the regularity of the derivation.

Lemma 7.8. (i)
⌈S c

i ⌉I
G☆

I
⟨τ☆I ⟩, G☆

I is closed and Hc
j∥Hc

i for all S c
j ∈ G☆

I ;

(ii) τ☆I is constructed by applying elimination rules, say,
Gb∣S c

iqu

Gb∣G∗
S c

iqu

⟨τ∗Gb∣S c
iqu
⟩, and the fully

constraint contraction rules, say,
G2

G1
⟨EC∗

Ω⟩, where Hc
iq ⩽ Hc

i , Gb∣S c
iqu is closed for 0 ⩽ q ⩽ J − 1,

1 ⩽ u ⩽ mq.

Proof. Immediately from Lemma 7.4.

Definition 7.9. Let G′ ∈ G☆(J)
I , H′ ⊆ G′ and S ′ ∈ H′. (i) For any sequent-formula A of S ′,

define Â to be the sequent S of G☆(J)
I such that A is a sequent-formula of S or subformula of

a sequent-formula of S ; (ii) Let S ′ be in the form A1,⋯,An ⇒ B1,⋯,Bm, define Ŝ ′ to be the
hypersequent which consists of all distinct sequents among Â1,⋯, Ân, B̂1,⋯, B̂m; (iii) Let H′ be
in the form S 1∣⋯∣S m, define Ĥ′ to be Ŝ 1∣⋯∣Ŝ m; (iv) We call H′ to be separable if Ĥ′ ⊆c G and,
call it to be separated into Ĥ′.

Note that τ☆(J)I is a derivation without (ECΩ) in GLΩ. Then we can extract elimination
derivations from it by Construction 4.7.

Notation 7.10. Let H′ ⊆ G′ ∈ τ☆(J)I . τ☆(J)I{G′∶H′} denotes the derivation from H′, which extracts

from τ☆(J)I by Construction 4.7, and denote its root by G☆(J)
I{G′∶H′}.

The following two lemmas show that Construction 7.3 and 7.5 force some sequents in ⌈S c
i ⌉I

or H′ to be separable.

Lemma 7.11. Let
G′∣S ′ G′′∣S ′′

H ≡ G′∣G′′∣H′ (II) ∈ τ∗. Then (i) H′ is separable in τ☆(J)H∶H′ ;

(ii) If
Gb∣ ⟨G′∣S ′⟩S c

iqu
G′′∣S ′′

H1 ≡ Gb∣ ⟨G′⟩S c
iqu
∣G′′∣H′(II) ∈ τ∗Gb∣S c

iqu
∈ τ☆I , then H′ is separable in τ☆(J)I and there is

a unique copy of Ŝ ′′∣G☆(J)
I{H1∶G′′} in G☆

I .

Proof. (i) We write ⩽
τ
☆(J)
H∶H′

and ⩽τ∗ respectively as ⩽☆ and ⩽ for simplicity. Since G☆(J)
H∶H′ ⊆c G∣G∗,

we divide it into two hypersequents G0(J)
H∶H′ and G∗(J)

H∶H′ such that G☆(J)
H∶H′ = G0(J)

H∶H′ ∣G
∗(J)
H∶H′ ,G

0(J)
H∶H′ ⊆c

G,G∗(J)
H∶H′ ⊆c G∗.
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Let S c
j ∈ G∗(J)

H∶H′ then Hc
j ≰ H by Construction 7.5. We prove that Hc

j∥H′ in τ☆(J)H∶H′ as follows.

If S c
j ∈ G∗

H∶H′ then Hc
j ∣∣H′ in τ∗H∶H′ by Lemma 6.7(i), τ∗H∶H′ ∈ τ

☆(J)
H∶H′ and Hc

j ≰ H. Thus we assume
that S c

j ∉ G∗
H∶H′ in the following.

Then, by Lemma 7.4(iv), there exists some τ∗Gb∣S c
i

in τ☆(J)H∶H′ such that Hc
i ⩽ H, S c

j ∈ G∗
S c

i
.

Then Hc
i ≰ Hc

j by Lemma 6.6(vi). Hc
j ≰ Hc

i by Hc
i ⩽ H, Hc

j ≰ H . Thus Hc
i ∥τ∗Hc

j . Let
G1∣S 1 G2∣S 2

G1∣G2∣H2
(II) ∈ τ∗, where G1∣G2∣H2 = HV

i j , G1∣S 1 ⩽ Hc
i , G2∣S 2 ⩽ Hc

j . Then S 1 ∈ ⟨G1∣S 1⟩S c
i
,

Gb∣ ⟨G1∣S 1⟩S c
i
∈ τ☆(J)H∶H′ , G2∣S 2 ∈ τ☆(J)H∶H′ by S c

j ∈ G∗
S c

i
⊆ Gb∣G∗

S c
i
∈ τ☆(J)H∶H′ . Thus Hc

j∥☆H′ by
Gb∣ ⟨G1∣S 1⟩S c

i
⩽☆ Gb∣S c

i ⩽☆ H′, G2∣S 2 ⩽☆ Hc
j and Gb∣ ⟨G1∣S 1⟩S c

i
∥☆G2∣S 2.

Thus Hc
j ∣∣H′ in τ☆(J)H∶H′ . Therefore G∗(J)

H∶H′ ⋂ Ĥ′ = ∅. Then Ĥ′ ⊆ G0(J)
H∶H′ ⊆c G, i.e., H′ is separable

in τ☆(J)H∶H′ .
(ii) Clearly, G☆(J)

I{H1∶G′′∣H′} is a copy of G☆(J)
H∶G′′∣H′ and, τ☆(J)I{H1∶G′′∣H′} has no difference with τ☆(J)H∶G′′∣H′

except some applications of (IDΩ) and identification numbers of some p′s. Then H′ is separated
into Ĥ′ in G☆(J)

I{H1∶H′} by the same reason as that of (i). Then S ′,S ′′ are separated into Ŝ ′ and Ŝ ′′

in τ☆(J)I , respectively. Then Ŝ ′′∣G☆(J)
I{H1∶G′′} ⊆ G0(J)

I ∣G∗(J)
I is closed since G′′∣S ′′ is closed. Thus

all copies of Ŝ ′′∣G☆(J)
I{H1∶G′′} in τ☆(J)I are contracted into one by (EC∗

Ω) in G☆
I .

Lemma 7.12. (i) All copies of S c
i in ⌈S c

i ⌉I are separable in τ☆(J)I ;
(ii) Let H ∈ τ∗, H′ ⊆ H, Hc

j ⩽ H or Hc
j∥H for all S c

j ∈ G∗
H∶H′ . Then H′ is separable in τ☆(J)H∶H′ .

Proof. (i) and (ii) are proved by a procedure similar to that of Lemma 7.11 and omitted.

Definition 7.13. The skeleton of τ☆I , which we denote by τ̄☆I , is constructed by replacing all
Gb∣S c

iqu

Gb∣G∗
S c

iqu

⟨τ∗Gb∣S c
iqu
⟩ ∈ τ☆I with

Gb∣S c
iqu

Gb∣G∗
S c

iqu

(τ∗Gb∣S c
iqu
), i.e, Gb∣S c

iqu is the parent node of Gb∣G∗
S c

iqu
in τ̄☆I .

Lemma 7.14. τ̄☆I is a linear structure with the lowest node G☆
I and the highest ⌈S c

i ⌉I .

Proof. It holds by all τ∗Gb∣S c
iqu

and EC∗
Ω in τ☆I being one-premise rules.

Definition 7.15. We call Construction 7.3 together with 7.7 the separation algorithm of one
branch and, Construction 7.5 the separation algorithm along H.

8. Separation algorithm of multiple branches

In this section, let I = {Hc
i1 ,⋯,H

c
im} ⊆ {H

c
1,⋯,Hc

N} such that Hc
ik∥H

c
il for all 1 ⩽ k < l ⩽ m.

We will generalize the separation algorithm of one branch to that of multiple branches. Roughly
speaking, we give an algorithm to eliminate all S c

j ∈ G∣G∗ satisfying Hc
j ⩽ Hc

ik for some Hc
ik ∈ I.

Definition 8.1. I ∶= {Hc
j ∶ Hc

j ⩽ Hc
i f or some Hc

i ∈ I}.
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Theorem 8.2. ([A.4,A.5.4]) Let I = {⌈S c
i1⌉I ,⋯, ⌈S

c
im⌉I}. Then there exist one closed hyperse-

quent G☆
I ⊆c G∣G∗ and its derivation τ☆I from ⌈S c

i1⌉I , . . . , ⌈S c
im⌉I in GLΩ such that

(i) τ☆I is constructed by applying elimination rules, say,

Gb1 ∣S c
j1 Gb2 ∣S c

j2 ⋯ Gbw ∣S c
jw

G∗
Ij
= {Gbk}w

k=1∣G∗
Ij

⟨τ∗Ij
⟩ ,

and the fully constraint contraction rules, say
G2

G1
⟨EC∗

Ω⟩, where 1 ⩽ w ⩽ m, Hc
jk ↭ Hc

jl for all

1 ⩽ k < l ⩽ w, Ij = {Hc
j1 ,⋯,H

c
jw} ⊆ I, Ij = {S c

j1 ,⋯,S
c
jw}, Ij = {Gb1 ∣S c

j1 ,⋯,Gbw ∣S c
jw} and Gbk ∣S c

jk is
closed for all 1 ⩽ k ⩽ w. Then Hc

i ≰ Hc
j for all S c

j ∈ G∗
Ij

and Hc
i ∈ I.

(ii) For all H ∈ τ̄☆I ,

∂
τ☆I
(H) ∶=

⎧⎪⎪⎪⎨⎪⎪⎪⎩

G∣G∗ H is the root o f τ̄☆I or G2 in
G2

G1
⟨EC∗

Ω or IDΩ⟩ ∈ τ̄☆I ,

Hc
jk H is Gbk ∣S c

jk in τ∗Ij
∈ τ̄☆I f or some 1 ⩽ k ⩽ w,

where, τ̄☆I is the skeleton of τ☆I which is defined as Definition 7.13. Then
∂
τ☆I
(G∗

Ij
) ⩽ ∂

τ☆I
(Gbk ∣S c

jk) for some 1 ⩽ k ⩽ w in τ∗Ij
.

(iii) Let H ∈ τ̄☆I , G∣G∗ < ∂
τ☆I
(H) ⩽ HV

I , then G☆(J)
HV

I ∶H
∈ τ☆I and it is constructed by applying

the separation algorithm along HV
I to H and, is an upper hypersequent of either ⟨EC∗

Ω⟩ if it is
applicable, or ⟨IDΩ⟩ otherwise.

(iv) S c
j ∈ G☆

I implies Hc
j∥Hc

i for all Hc
i ∈ I and, S c

j ∈ G∗
Ij

for some τ∗Ij
∈ τ☆I or S c

j ∈ ⌈S c
ik⌉I for

some Hc
ik ∈ I satisfying Hc

j ≰ Hc
ik .

Note that in Claim (i), bold j in Ij,Ij or Ij indicates the w-tuple ( j1,⋯, jw) in S c
j1 ,⋯,S

c
jw .

Claim (iv) shows the final aim of Theorem 8.2, i.e., there exists no S c
j ∈ G☆

I such that Hc
j ⩽ Hc

i

for some Hc
i ∈ I. It is almost impossible to construct τ☆I in a non-recursive way. Thus we use

Claims (i), (ii) and (iii) in Theorem 8.2 to characterize the structure of τ☆I in order to construct it
recursively.

Proof. τ☆I is constructed by induction on ∣I∣. For the base case, let ∣I∣ = 1. Then τ☆I is constructed
by Construction 7.3 and 7.7. Here, Claim (i) holds by Lemma 7.8(ii), Lemma 7.4(i) and Lemma
6.6 (vi), Claim (ii) by Lemma 7.4(i), (iii) is clear and (iv) by Lemma 7.4(iv).

For the induction case, let ∣I∣ ⩾ 2. Let
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (II) ∈ τ∗, where G′∣G′′∣H′ = HV
I . Then

{Hc
i1 ,⋯,H

c
im} is divided into two subsets Il = {Hc

l1 ,⋯,H
c
lm(l)}, Ir = {Hc

r1
,⋯,Hc

rm(r)
}, which occur

in the left subtree τ∗(G′∣S ′) and right subtree τ∗(G′′∣S ′′) of τ∗(HV
I ), respectively. Then m(l) +

m(r) = m. Let Il = {⌈S c
l1⌉I ,⋯, ⌈S

c
lm(l)⌉I}, Ir = {⌈S c

r1
⌉I ,⋯, ⌈S c

rm(r)
⌉I}. Suppose that derivations τ☆Il

of G☆
Il

and τ☆Ir
of G☆

Ir
are constructed such that Claims from (i) to (iv) hold. There are three cases

to be considered in the following.
Case 1 S ′ ∉ ⟨G′∣S ′⟩Ijl

for all τ∗Ijl
∈ τ☆Il

. Then τ☆I ∶= τ☆Il
and G☆

I ∶= G☆
Il

.

● For Claim (i), let τ∗Ijl
∈ τ☆Il

and S c
j ∈ G∗

Ijl
. By the induction hypothesis, Hc

i ≰ Hc
j for all

Hc
i ∈ Il. Since S ′ ∉ ⟨G′∣S ′⟩Ijl

then G′′∣H′⋂ ⟨G′∣G′′∣H′⟩Ijl
= ∅. Thus G∗

HV
I ∶G′′∣H′

⋂G∗
Ijl
= ∅ by
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Lemma 6.3 and 6.4. Then S c
j ∉ G∗

HV
I ∶G′′∣H′

. Thus G′′∣S ′′ ≰ Hc
j by Proposition 4.15(i). Hence, for

all Hc
i ∈ Ir, Hc

i ≰ Hc
j by G′′∣S ′′ ⩽ Hc

i . Then Hc
i ≰ Hc

j for all Hc
i ∈ I. Claims (ii) and (iii) follow

directly from the induction hypothesis.
● For Claim (iv), let S c

j ∈ G☆
I . It follows from the induction hypothesis that Hc

j∥Hc
i for all

Hc
i ∈ Il and, S c

j ∈ G∗
Ijl

for some τ∗Ijl
∈ τ☆Il

or S c
j ∈ ⌈S c

lk⌉I for some Hc
lk ∈ Il,Hc

j ≰ Hc
lk . Then Hc

j ≰ HV
I

by Hc
j∥Hc

l1 ,H
V
I < Hc

l1 .
If S c

j ∈ ⌈S c
lk⌉I for some Hc

lk ∈ Il,Hc
j ≰ Hc

lk then Hc
j∥Hc

i for all Hc
i ∈ I by the definition of

branches to I. Thus we assume that S c
j ∈ G∗

Ijl
for some τ∗Ijl

∈ τ☆Il
in the following. If G′∣S ′ ⩽ Hc

j

then Hc
j∥Hc

i for all Hc
i ∈ Ir thus Hc

j∥Hc
i for all Hc

i ∈ I. Thus let G′∣S ′ ≰ Hc
j in the following. By

the proof of Claim (i) above, G′′∣S ′′ ≰ Hc
j . Then HV

I ≮ Hc
j by G′∣S ′ ≰ Hc

j and G′′∣S ′′ ≰ Hc
j . Thus

Hc
j∥HV

I . Hence Hc
j∥Hc

i for all Hc
i ∈ I.

Case 2 S ′′ ∉ ⟨G′′∣S ′′⟩Ijr
for all τ∗Ijr

∈ τ☆Ir
. Then τ☆I ∶= τ☆Ir

and G☆
I ∶= G☆

Ir
. This case is proved

by a procedure similar to that of Case 1 and omitted.
Case 3 S ′ ∈ ⟨G′∣S ′⟩Ijl

for some τ∗Ijl
∈ τ☆Il

and S ′′ ∈ ⟨G′′∣S ′′⟩I☆jr
for some τ∗Ijr

∈ τ☆Ir
.

Given
Gbr1 ∣S c

jr1
Gbr2 ∣S c

jr2
⋯ Gbrv ∣S c

jrv

Gr ≡ {Gbrk}v
k=1∣G∗

Ijr

⟨τ∗Ijr
⟩ ∈ τ☆Ir

such that S ′′ ∈ ⟨G′′∣S ′′⟩Ijr
and Hc

jrk
> HV

I for all 1 ⩽ k ⩽ v, where, 1 ⩽ v ⩽ m(r), Gbrk ∣S c
jrk

is closed for all 1 ⩽ k ⩽ v, Ijr = {Hc
jr1
,Hc

jr2
,⋯,Hc

jrv
} ⊆ Ir, Ijr = {S c

jr1
,S c

jr2
,⋯,S c

jrv
}, Ijr =

{Gbr1 ∣S c
jr1
,⋯,Gbrv ∣S c

jrv
}. Then HV

Ijr
⩾ G′′∣S ′′ by Ijr ⊆ Ir and Hc

jrk
> HV

I for all 1 ⩽ k ⩽ v. Thus
Hc

j ↝ Hc
i for all Hc

j ∈ Ijr and Hc
i ∈ Il by S ′′ ∈ ⟨G′′∣S ′′⟩Ijr

and Construction 6.11.
For each τ∗Ijr

∈ τ☆Ir
above, we construct a derivation τ☆Il

(τ∗Ijr
) in which you may regard τ☆Il

as a subroutine, and τ∗Ijr
as its input in the following stage 1. Then a derivation τ☆Ir

(τ☆Il
(τ∗Ijr
)) is

constructed by calling τ☆Il
(τ∗Ijr
) in Stage 2, in which you may regard τ☆Ir

(τ☆Il
(τ∗Ijr
)) as a routine

and τ☆Il
(τ∗Ijr
) as its subroutine.

Firstly, we present some properties of τ☆I which are derived from Claims (i) ∼ (iv) and appli-
cable to τ☆Il

or τ☆Ir
under the induction hypothesis.

Notation 8.3. Let
G† ∶= Ŝ ′′∣G☆(J)

HV
I ∶G′′
∣G☆(J)

HV
I ∶H′
/{Ŝ ′∣Ŝ ′′} and

G‡ ∶= {Gbrk}v
k=1∣Ŝ ′′∣G☆(J)

HV
I ∶⟨G

′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}

be two close hypersequents, G† ⊆ H for some H ∈ τ☆Il
and G‡/{Gbrk}v

k=1 ⊆ H for some H ∈ τ☆Ir
.

Generally, Ŝ ′′ ⊆ G† is a copy of Ŝ ′′ ⊆ G‡, i.e., eigenvariables in Ŝ ′′ ⊆ G† have different
identification numbers with those in Ŝ ′′ ⊆ G‡, so are H′,G′′,S ′.

Lemma 8.4. S c
j ∈ G† implies Hc

j ∥ G′∣S ′.

Proof. Let S c
j ∈ G† ⊆ G☆(J)

HV
I ∶G′′∣H′

. Then Hc
j ≰ HV

I by Lemma 7.6(i). Thus Hc
j > HV

I or Hc
j∥HV

I .

If Hc
j∥HV

I then Hc
j ∥ G′∣S ′ by HV

I < G′∣S ′ and Proposition 2.12(ii). If Hc
j > HV

I then S c
j ∈ HV

I
by Proposition 4.15(i). Thus S c

j ∈ G′′ by Lemma 6.3, Lemma 6.7(i). Hence Hc
j ∥ G′∣S ′ by

Hc
j ⩾ G′′∣S ′′, G′∣S ′∥G′′∣S ′′.
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Lemma 8.5. (1) τ̄☆I is an m-ary tree and, τ☆I is a binary tree;
(2) Let H ∈ τ̄☆I then ∂

τ☆I
(H) ⩽ Hc

ik for some 1 ⩽ k ⩽ m;

(3) Let H ∈ τ̄☆I then HV
I ∦ ∂τ☆I (H);

(4) Let w > 1 in τ∗Ij
∈ τ☆I then HV

I < Hc
jk for all 1 ⩽ k ⩽ w.

(5) Let τ∗Ij
∈ τ☆I , ∂

τ☆I
(Gbk ∣S c

jk) ⩽ HV
I for some 1 ⩽ k ⩽ w. Then w = 1.

Proof. (1) is immediately from Claim (i). (2) holds by G∣G∗ ⩽ Hc
jk and Hc

jk ⩽ Hc
ik for some Hc

ik ∈ I
by Ij ⊆ I. (3) holds by Proposition 2.12(iii), (2) and HV

I ⩽ Hc
ik .

For (4), let w > 1. Then Hc
j1∥H

c
jk for each 2 ⩽ k ⩽ w, Hc

j1 ⩽ Hc
ig and Hc

jk ⩽ Hc
ih for some

Hc
ig ,H

c
ih ∈ I by (2). Thus Hc

j1∥H
c
ih and Hc

jk∥H
c
ig by Proposition 2.12(ii). Hence Hc

j1 ≰ HV
igih by

HV
igih < Hc

ih , and Hc
jk ≰ HV

igih by HV
igih < Hc

ig . Thus HV
I < Hc

j1 and HV
I < Hc

jk by (3), HV
I ⩽ HV

j1 jk .
Hence HV

I < Hc
jk for all 1 ⩽ k ⩽ w. (5) is from (4).

Lemma 8.6. Let
Hi,1 ⋯ Hi,wi

Hi−1,1
⟨τ∗Ij(i)⟩ ∈ τ

☆
I for all 1 ⩽ i ⩽ n such that ∂

τ☆I
(H0,1) = G∣G∗ and

∂
τ☆I
(Hn,1) ⩽ HV

I . Then ∂
τ☆I
(Hi,1) ⩽ HV

I and wi = 1 for all 1 ⩽ i ⩽ n.

Proof. The proof is by induction on n. Let n = 1 then w1 = 1 by Lemma 8.5(5) and ∂
τ☆I
(H1,1) ⩽

HV
I . For the induction step, let ∂

τ☆I
(Hi,1) ⩽ HV

I for some 1 < i ⩽ n then wi = 1 by Lemma 8.5(5).

Since
Hi,1 ⋯ Hi,wi

Hi−1,1
⟨τ∗Ij(i)⟩ ∈ τ

☆
I then ∂

τ☆I
(Hi−1,1) ⩽ ∂τ☆I (Hi,k) for some 1 ⩽ k ⩽ wi by Claim (ii).

Then ∂
τ☆I
(Hi−1,1) ⩽ ∂τ☆I (Hi,1) ⩽ HV

I by wi = 1. Thus wi−1 = 1 by Lemma 8.5(5).

Definition 8.7. Let
G2

G1
⟨EC∗

Ω⟩ ∈ τ
☆
I . The module of τ☆I at G2, which we denote by τ☆I∶G2

, is

defined as follows: (1) G2 ∈ τ☆I∶G2
; (2)

H1⋯Hu

H0
⟨τ∗Ij
⟩ ∈ τ☆I∶G2

if H0 ∈ τ☆I∶G2
; (3) H1 ∉ τ☆I∶G2

if

H1

H0
⟨EC∗

Ω⟩ ∈ τ
☆
I , H0 ∈ τ☆I∶G2

.

Each node of τ☆I∶G2
is determined bottom-up, starting with G2, whose root is G2 and leaves

may be branches, leaves of τ∗ or lower hypersequents of ⟨EC∗
Ω⟩-applications. While each node

of τ∗H∶H′ is determined top-down, starting with H′, whose root is a subset of G∣G∗ and leaves
contain H′ and some leaves of τ∗.

Lemma 8.8. (1) τ☆I∶G2
is a derivation without ⟨EC∗

Ω⟩ in GLΩ.
(2) Let H′ ∈ τ̄☆I∶G2

and ∂
τ☆I
(H′) > HV

I . Then ∂
τ☆I
(H) > HV

I for all H ∈ τ̄☆I∶G2
and H ⩾ H′.

Proof. (1) is clear and (2) immediately from Lemma 8.6.

Stage 1 Construction of Subroutine τ☆Il
(τ∗Ijr
). Roughly speaking, τ☆Il

(τ∗Ijr
) is constructed

by replacing some nodes τ∗Ijl
∈ τ☆Il

with τ∗Ijl ⋃ Ijr
in post-order. However, the ordinal postorder-

traversal algorithm cannot be used to construct τ☆Il
(τ∗Ijr
) because the tree structure of τ☆Il

(τ∗Ijr
) is
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generally different from that of τ☆Il
at some nodes H ∈ τ☆Il

satisfying ∂
τ☆Il

(H) < HV
Il

. Thus we

construct a sequence τ☆(q)Il
of trees for all q ⩾ 0 inductively as follows.

For the base case, we mark all ⟨EC∗
Ω⟩-applications in τ☆Il

as unprocessed and define such

marked derivation to be τ☆(0)Il
. For the induction case, let τ☆(q)Il

be constructed. If all applications

of ⟨EC∗
Ω⟩ in τ☆(q)Il

are marked as processed, we firstly delete the root of the tree resulting from the
procedure and then, apply ⟨EC∗

Ω⟩ to the root of the resulting derivation if it is applicable otherwise
add an ⟨IDΩ⟩-application to it and finally, terminate the procedure. Otherwise we select one of

the outermost unprocessed ⟨EC∗
Ω⟩-applications in τ☆(q)Il

, say,
G○○

q+1

G○
q+1
⟨EC∗

Ω⟩
○
q+1, and perform the

following steps to construct τ☆(q+1)
Il

in which
G○○

q+1

G○
q+1
⟨EC∗

Ω⟩
○
q+1 be revised as

G⋅⋅
q+1

G○
q+1
⟨EC∗

Ω⟩
⋅
q+1 such

that
(a) τ☆(q+1)

Il
is constructed by locally revising τ☆(q)Il∶G○○q+1

and leaving other nodes of τ☆(q)Il
un-

changed, particularly including G○
q+1;

(b) τ☆(q+1)
Il

(G⋅⋅
q+1) is a derivation in GLΩ;

(c) G⋅⋅
q+1 = G○○

q+1 if S ′ ∉ ⟨G′∣S ′⟩Ijl
for all τ∗Ijl

∈ τ☆Il
(G○○

q+1) otherwise

G⋅⋅
q+1 = G○○

q+1/G
mq+1

† ∣Gmq+1

‡ for some mq+1 ⩾ 1.

Remark 8.9. By two superscripts ○ and ⋅ in ⟨EC∗
Ω⟩

○
q+1 or ⟨EC∗

Ω⟩
⋅
q+1, we indicate the unprocessed

state and processed state, respectively. This procedure determines an ordering for all ⟨EC∗
Ω⟩-

applications in τ☆Il
and the subscript q + 1 indicates that it is the q + 1-th application of ⟨EC∗

Ω⟩ in
a post-order transversal of τ☆Il

. G○○
q+1 and G○

q+1 (G⋅⋅
q+1 and G⋅

q+1) are the premise and conclusion of
⟨EC∗

Ω⟩
○
q+1 (⟨EC∗

Ω⟩
⋅
q+1), respectively.

Step 1 (Delete). Take the module τ☆(q)Il∶G○○q+1
out of τ☆(q)Il

. Since ⟨EC∗
Ω⟩

○
q+1 is the unique unpro-

cessed ⟨EC∗
Ω⟩-applications in τ☆(q)Il

(G○
q+1) by its choice criteria, τ☆(q)Il∶G○○q+1

is the same as τ☆Il∶G○○q+1
by

Claim (a). Thus it is a derivation. If ∂
τ☆Il

(H) ⩽ HV
I for all H ∈ τ☆(q)Il∶G○○q+1

, delete all internal nodes of

τ
☆(q)
Il∶G○○q+1

. Otherwise there exists

Gbl′1 ∣S
c
jl′1

Gbl′2 ∣S
c
jl′2

⋯ Gbl′u′ ∣S
c
jl′u′

Gl′ ≡ {Gbl′k}u′
k=1∣G∗

Ijl′

⟨τ∗Ijl′
⟩ ∈ τ☆(q)Il∶G○○q+1

such that ∂
τ☆Il

(Gbl′k ∣S
c
jl′k
) > HV

I for all 1 ⩽ k ⩽ u′ and ∂
τ☆Il

(Gl′) ⩽ HV
I by Lemma 8.8(2) and

∂
τ☆Il

(G○○
q+1) = G∣G∗ ⩽ HV

I , then delete all H ∈ τ☆(q)Il∶G○○q+1
, G○○

q+1 ⩽ H < Gl′ . We denote the structure

resulting from the deletion operation above by τ☆(q)Il∶G○○q+1(1)
. Since ∂

τ☆Il

(Gl′) ⩽ HV
I then τ☆(q)Il∶G○○q+1(1)

is

a tree by Lemma 8.6. Thus it is also a derivation.

Step 2 (Update). For each G○
q′ ∈ τ

☆(q)
Il∶G○○q+1(1)

which satisfies
G⋅⋅

q′

G○
q′
⟨EC∗

Ω⟩
⋅
q′ ∈ τ

☆(q)
Il

and S ′ ∈

⟨G′∣S ′⟩Ijl
for some τ∗Ijl

∈ τ☆Il
(G○○

q′ ), we replace H with H/G†∣G‡ for each H ∈ τ☆(q)Il∶G○○q+1(1)
, Gl′ ⩽
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H ⩽ G○
q′ .

Since
G⋅⋅

q′

G○
q′
⟨EC∗

Ω⟩
⋅
q′ ∈ τ

☆(q)
Il
(G○○

q+1) and ⟨EC∗
Ω⟩

○
q+1 is the outermost unprocessed

⟨EC∗
Ω⟩-application in τ☆(q)Il

then q′ ⩽ q and ⟨EC∗
Ω⟩

⋅
q′ has been processed. Thus Claims (b) and

(c) hold for τ☆(q)Il
(G⋅

q′) by the induction hypothesis. Then
G⋅⋅

q′

G⋅
q′

is a valid ⟨EC∗
Ω⟩-application since

G○○
q′

G○
q′

,
G

mq′

†

G†
and

G
mq′

‡

G‡
are valid, where G⋅⋅

q′ = G○○
q′ /G

mq′

† ∣G
mq′

‡ , G⋅
q′ = G○

q′/G†∣G‡.

Lemma 8.10. Let Gl′ < H ⩽ G○
q′ . Then ∂

τ☆Il

(H) ⩾ G′∣S ′.

Proof. Since Gl′ < H then Gbl′k ∣S
c
jl′k
⩽ H for some 1 ⩽ k ⩽ u′. If ∂

τ☆Il

(H) ⩾ HV
Il

then ∂
τ☆Il

(H) ⩾
G′∣S ′. Otherwise all applications between Gl′ and H are one-premise rules by Lemma 8.6. Then
Hc

jl′k
⩽ ∂

τ☆Il

(H) by Claim (ii). Thus ∂
τ☆Il

(H) ⩾ G′∣S ′ by HV
I < Hc

jl′k
, ∂
τ☆Il

(H) ⩽ Hc
lk′

for some

1 ⩽ k′ ⩽ m(l) by Claim (i).

Since ∂
τ☆Il

(H) ⩾ G′∣S ′ by Lemma 8.10 and Hc
j∥G′∣S ′ for each S c

j ∈ G† by Lemma 8.4, then

G† ⊆ H as side-hypersequent of H. Thus this step updates the revision of G⋅⋅
q′ downward to Gl′ .

Let m′ be the number of G○
q′ satisfying the above conditions, τ☆(q)Il∶G○○q+1(1)

, Gl′ and Gbl′k ∣S
c
jl′k

for

all 1 ⩽ k ⩽ u′ be updated as τ☆(q)Il∶G○○q+1(2)
, Gl′′ , G′

bl′k
∣S c

jl′k
, respectively. Then τ☆(q)Il∶G○○q+1(2)

is a derivation

and Gl′′ = Gl′/Gm′
† ∣Gm′

‡ .

Step 3 (Replace). All τ∗Ijl
∈ τ☆(q)Il∶G○○q+1(2)

are processed in post-order. If Hc
i ↝ Hc

j for all Hc
i ∈ Ijl

and Hc
j ∈ Ijr it proceeds by the following procedure otherwise it remains unchanged. Let τ∗Ijl

be
in the form

Gbl1 ∣S c
jl1 Gbl2 ∣S c

jl2 ⋯ Gblu ∣S c
jlu

Gl ≡ {Gblk}u
k=1∣G∗

Ijl

.

Then Hc
jlk ⩾ G′∣S ′ for all 1 ⩽ k ⩽ u by Lemma 8.10, Gblk ∣S c

jlk > Gl′′ .
Firstly, replace τ∗Ijl

with τ∗Ijl
∪Ijr

. We may rewrite the roots of τ∗Ijl
and τ∗Ijl

∪Ijr
as

Gl = {Gblk}u
k=1∣G∗

HV
I ∶⟨G′⟩Ijl

∣G∗
HV

I ∶G′′∣H′
and

Gl,r ≡ {Gblk}u
k=1∣G∗

HV
I ∶⟨G′⟩Ijl

∣{Gbrk}v
k=1∣G∗

HV
I ∶⟨G′′⟩Ijr

∣H′ ,

respectively.
Let Gl′′ < H ⩽ Gl. By Lemma 8.10, ∂

τ☆Il

(H) ⩾ G′∣S ′. By Lemma 6.7, Hc
j ⩽ HV

I <
G′∣S ′ or Hc

j∥G′∣S ′ for all S c
j ∈ G∗

HV
I ∶G′′∣H′

. Thus G∗
HV

I ∶G′′∣H′
⊆ H. Secondly, we replace H with

H/G∗
HV

I ∶G′′∣H′
∣{Gbrk}v

k=1∣G∗
HV

I ∶⟨G′′⟩Ijr
∣H′ for all Gl′ ⩽ H ⩽ Gl. Let m′′ be the number of τ∗Ijl

∈ τΩ(q)Il∶G○○q+1(2)

satisfying the replacement conditions above, τ☆(q)Il∶G○○q+1(2)
, Gl′′ and G′

bl′k
∣S c

jl′k
for all 1 ⩽ k ⩽ u′ be
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updated as τ☆(q)Il∶G○○q+1(3)
, Gl′′′ , G′′

bl′k
∣S c

jl′k
, respectively. Then τ☆(q)Il∶G○○q+1(3)

is a derivation of Gl′′′ and

Gl′′′ = Gl′′/{G∗
HV

I ∶G′′∣H′
}m′′ ∣{{Gbrk}v

k=1∣G∗
HV

I ∶⟨G′′⟩Ijr
∣H′}

m′′ .

Step 4 (Separation along HV
I ). Apply the separation algorithm along HV

I to Gl′′′ and denote
the resulting derivation by τ☆(q)Il∶G○○q+1(4)

whose root is labeled by G⋅⋅
q+1. Then all G∗

HV
I ∶⟨G′′⟩Ijr

∣H′ in Gl′′′

are transformed into G☆(J)
HV

I ∶⟨G′′⟩Ijr
∣H′ in τΩ(q)Il∶G○○q+1(4)

. Since
G′∣S ′ G′′∣S ′′

HV
I = G′∣G′′∣H′(II) ∈ τ∗,

{Gblk}u
k=1∣ ⟨G′∣S ′⟩Ijl

{Gbrk}v
k=1∣ ⟨G′′∣S ′′⟩Ijr

{Gblk}u
k=1∣{Gbrk}v

k=1∣ ⟨G′⟩Ijl
∣ ⟨G′′⟩Ijr

∣H′ (II) ∈ τ∗Ijl
∪Ijr
∈ τ☆(q)Il∶G○○q+1(3)

,

H′, S ′ and S ′′ are separable in τ☆(q)Il∶G○○q+1(4)
by a procedure similar to that of Lemma 7.11. Let S ′

and S ′′ be separated into Ŝ ′ and Ŝ ′′, respectively. By Claim (iii), G☆(J)
HV

I ∶Gl′
= G○○

q+1.

G☆(J)
HV

I ∶Gl′′
= G○○

q+1/Gm′
† ∣Gm′

‡ by Lemma 7.6(iv),

G⋅⋅
q+1 = G☆(J)

HV
I ∶Gl′′′

= G☆(J)
HV

I ∶Gl′′
/{G☆(J)

HV
I ∶G′′∣H′

}m′′ ∣{{Gbrk}v
k=1∣G

☆(J)
HV

I ∶⟨G′′⟩Ijr
∣H′}

m′′

= G☆(J)
HV

I ∶Gl′′
/{Ŝ ′∣Ŝ ′′∣G☆(J)

HV
I ∶G′′
∣G☆(J)

HV
I ∶H′
/{Ŝ ′∣Ŝ ′′}}m′′ ∣

{{Gbrk}v
k=1∣Ŝ ′∣Ŝ ′′∣G☆(J)

HV
I ∶⟨G

′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}}m′′

= G☆(J)
HV

I ∶Gl′′
/Gm′′

† ∣Gm′′
‡

= {G○○
q+1/Gm′

† ∣Gm′
‡ }/Gm′′

† ∣Gm′′
‡

= G○○
q+1/Gm′+m′′

† ∣Gm′+m′′
‡

= G○○
q+1/G

mq+1

† ∣Gmq+1

‡

where mq+1 ∶= m′ +m′′.

Step 5 (Put back). Replace τ☆(q)Il∶G○○q+1
in τ☆(q)Il

with τ☆(q)Il∶G○○q+1(4)
and mark

G⋅⋅
q+1

G○
q+1
⟨EC∗

Ω⟩
○
q+1 as

processed, i.e., revise ⟨EC∗
Ω⟩

○
q+1 as ⟨EC∗

Ω⟩
⋅
q+1. Among leaves of τ☆(q)Il∶G○○q+1

, all G○
q′ are updated as

G⋅
q′ and others keep unchanged in τ☆(q)Il∶G○○q+1(4)

. Then this replacement is feasible, especially, G○○
q+1

be replaced with G⋅⋅
q+1. Define the tree resulting from Step 5 to be τ☆(q+1)

Il
. Then Claims (a), (b)

and (c) hold for q + 1 by the above construction.
Finally, we construct a derivation of G☆

Il
/G†∣G‡ from ⌈S c

l1⌉I ,⋯, ⌈S
c
lm(l)⌉I , Gbr1 ∣S c

jr1
,⋯,Gbrv ∣S c

jrv

in GLΩ, which we denote by τ☆Il
(τ∗Ijr
).

Remark 8.11. All elimination rules used in constructing τ☆Il
are extracted from τ∗. Since τ∗Ijr

is
a derivation in GLΩ without (ECΩ), we may extract elimination rules from τ∗Ijr

which we may
use to construct τ☆Il

(τ∗Ijr
) by a procedure similar to that of constructing τ☆Il

with minor revision
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at every node H that ∂
τ☆Il

(H) ⩽ HV
I . Note that updates and replacements in Steps 2 and 3 are

essentially inductive operations but we neglect it for simplicity.
We may also think of constructing τ☆Il

(τ∗Ijr
) as grafting τ∗Ijr

in τ☆Il
by adding τ∗Ijr

to some
τ∗Ijl
∈ τ☆Il

. Since the rootstock τ☆Il
of the grafting process is invariant in Stage 2, we encapsulate

τ☆Il
(τ∗Ijr
) as an rule in GLΩ whose premises are Gbr1 ∣S c

jr1
,Gbr2 ∣S c

jr2
,⋯,Gbrv ∣S c

jrv
and conclusion is

Ŝ ′′ ∣{Gbrk}v
k=1∣G

☆(J)
HV

I ∶⟨G
′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r
, i.e.,

Gbr1 ∣S c
jr1

Gbr2 ∣S c
jr2

⋯ Gbrv ∣S c
jrv

Ŝ ′′ ∣{Gbrk}v
k=1∣G

☆(J)
HV

I ∶⟨G
′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r

⟨τ☆Il
(τ∗Ijr
)⟩ ,

where, G☆
Il/r
= G☆

Il
/G† is closed.

Stage 2 Construction of Routine τ☆Ir
(τ☆Il
(τ∗Ijr
)). A sequence τ☆(q)Ir

of trees for all q ⩾ 0 is

constructed inductively as follows. τ☆(0)Ir
, τ☆(q)Ir

,
G○○

q+1

G○
q+1
⟨EC∗

Ω⟩
○
q+1 are defined as those of Stage 1.

Then we perform the following steps to construct τ☆(q+1)
Ir

in which
G○○

q+1

G○
q+1
⟨EC∗

Ω⟩
○
q+1 be revised as

G⋅⋅
q+1

G○
q+1
⟨EC∗

Ω⟩
⋅
q+1 such that Claims (a) and (b) are same as those of Stage 1 and (c) G⋅⋅

q+1 = G○○
q+1 if

S ′′ ∉ ⟨G′′∣S ′′⟩I(tr )jr

for all τ∗Ijr
∈ τ☆Ir
(G○○

q+1) otherwise

G⋅⋅
q+1 = G○○

q+1/{Ŝ ′∣G☆(J)
HV

I ∶G′
}mq+1 ∣{G☆

Il/r
}mq+1 for some mq+1 ⩾ 1.

Step 1 (Delete). τ☆(q)Ir ∶G○○q+1
and τ☆(q)Ir ∶G○○q+1(1)

are defined as before.

Gbr′1 ∣S
c
jr′1

Gbr′2 ∣S
c
jr′2

⋯ Gbr′v′ ∣S
c
jr′v′

Gr′ ≡ {Gbr′k}
v′
k=1∣G∗

Ijr′

⟨τ∗Ijr′
⟩ ∈ τ☆(q)Ir ∶G○○q+1

satisfies ∂
τ☆Ir
(Gbr′k ∣S

c
jr′k
) > HV

I for all 1 ⩽ k ⩽ v′ and ∂
τ☆Ir
(Gr′) ⩽ HV

I .

Step 2 (Update). For all G○
q′ ∈ τ

☆(q)
Ir ∶G○○q+1(1)

which satisfy
G⋅⋅

q′

G○
q′
⟨EC∗

Ω⟩
⋅
q′ ∈ τ

☆(q)
Ir

and S ′′ ∈

⟨G′′∣S ′′⟩Ijr
for some τ∗Ijr

∈ τ☆Ir
(G○○

q′ ), we replace H with H/{Ŝ ′∣G☆(J)
HV

I ∶G′
}∣G☆

Il/r
for all H ∈ τ☆(q)Ir ∶G○○q+1(1)

,

Gr′ ⩽ H ⩽ G○
q′ . Then Claims (a) and (b) are proved by a procedure as before. Let m′ be the num-

ber of G⋅
q′ satisfying the above conditions. τ☆(q)Ir ∶G○○q+1(1)

, Gr′ and Gbr′k ∣S
c
jr′k

for all 1 ⩽ k ⩽ v′ be

updated as τ☆(q)Ir ∶G○○q+1(2)
, Gr′′ , G′

br′k
∣S c

jr′k
, respectively. Then τ☆(q)Ir ∶G○○q+1(2)

is a derivation and Gr′′ =

Gr′/{Ŝ ′∣G☆(J)
HV

I ∶G′
}m′ ∣{G☆

Il/r
}m′ .

Step 3 (Replace). All τ∗Ijr
∈ τΩ(q)Ir ∶G○○q+1(2)

are processed in post-order. If Hc
i ↝ Hc

j for all Hc
i ∈ Ijr

and Hc
j ∈ Il it proceeds by the following procedure otherwise it remains unchanged. Let τ∗Ijr

be in
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the form
Gbr1 ∣S c

jr1
Gbr2 ∣S c

jr2
⋯ Gbrv ∣S c

jrv

Gr ≡ {Gbrk}v
k=1∣G∗

Ijr

.

Then there exists the unique 1 ⩽ k′ ⩽ v′ such that Gr′′ < Gbr′k′ ∣S
c
jr′k′
⩽ Gr.

Firstly, we replace τ∗Ijr
with τ☆Il

(τ∗Ijr
). We may rewrite the roots of τ∗Ijr

, τ☆Il
(τ∗Ijr
) as Gr =

{Gbrk}v
k=1∣G∗

HV
I ∶⟨G′′⟩I jr

∣G∗
HV

I ∶G′∣H′
, Gl/r ≡ {Gbrk}v

k=1∣Ŝ ′′∣G☆(J)
HV

I ∶⟨G
′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r
, respective-

ly.
Let Gr′′ < H ⩽ Gr. Then ∂

τ☆Ir
(H) ⩾ G′′∣S ′′ by Lemma 8.10. Thus G☆(0)

HV
I ∶G′∣H′

⊆ H,{S c
j ∶ S c

j ∈

G∗
HV

I ∶⟨G′′⟩I jr

,Hc
j ⩾ G′′∣S ′′} = {S c

j ∶ S c
j ∈ G☆(J)

HV
I ∶⟨G′′⟩I jr

,Hc
j ⩾ G′′∣S ′′}. Define G∗∗

H = {S c
j ∶ S c

j ∈

G∗
HV

I ∶⟨G′′⟩I jr

,S c
j be the focus sequent of some H′ ∈ τ☆(q)Ir ∶G○○q+1(2)

,H ⩽ H′ ⩽ Gr}.
Then we replace H with

H/{G∗
HV

I ∶⟨G′′⟩I jr

/G∗∗
H ∣G∗

HV
I ∶G′∣H′

}∣Ŝ ′′∣{G☆(J)
HV

I ∶⟨G
′′⟩Ijr

/G∗∗
H }∣G

☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r

for all Gbr′k′ ∣S
c
jr′k′
⩽ H ⩽ Gr.

Let m′′ be the number of τ∗Ijr
∈ τΩ(q)Ir ∶G○○q+1(2)

satisfying the replacement conditions as above,

τ
☆(q)
Ir ∶G○○q+1(2)

, Gr′′ and G′
br′k
∣S c

jr′k
for all 1 ⩽ k ⩽ v′ be updated as τ☆(q)Ir ∶G○○q+1(3)

, Gr′′′ , G′′
br′k
∣S c

jr′k
, respec-

tively. Then τ☆(q)Ir ∶G○○q+1(3)
is a derivation and Gr′′′ = Gr′′/Hm′′

1 ∣Hm′′
2 , where

H0 = G∗∗
G′br′k

∣S c
jr′k
,

H1 = G∗
HV

I ∶⟨G′′⟩I jr

/H0∣G∗
HV

I ∶G′∣H′
,

H2 = Ŝ ′′∣G☆(J)
HV

I ∶⟨G
′′⟩Ijr

/H0∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r
.

Step 4 (Separation along HV
I ). Apply the separation algorithm along HV

I to Gr′′′ and denote
the resulting derivation by τ☆(q)Ir ∶G○○q+1(4)

whose root is labeled by G⋅⋅
q+1.

By Claim (iii), G☆(J)
HV

I ∶Gr′
= G○○

q+1.

G☆(J)
HV

I ∶Gr′′
= G○○

q+1/{G
☆(J)
HV

I ∶G′
∣Ŝ ′}m′ ∣{G☆

Il/r
}m′ ,

G☆(J)
HV

I ∶H1
= G☆(J)

HV
I ∶⟨G′′⟩I jr

/G☆(J)
HV

I ∶H3
∣G☆(J)

HV
I ∶G′∣H′

,

G☆(J)
HV

I ∶H2
= Ŝ ′′∣G☆(J)

HV
I ∶⟨G

′′⟩Ijr

/G☆(J)
HV

I ∶H3
∣G☆(J)

HV
I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r
.

Then

G☆(J)
HV

I ∶Gr′′′
= G☆(J)

HV
I ∶Gr′′
/{G☆(J)

HV
I ∶G′∣H′

}m′′ ∣{Ŝ ′′∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r
}m′′

= G☆(J)
HV

I ∶Gr′′
/{G☆(J)

HV
I ∶G′
∣Ŝ ′}m′′ ∣{G☆

Il/r
}m′′ .
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Then
G⋅⋅

q+1 = G☆(J)
HV

I ∶Gr′′′
= G○○

q+1/{Ŝ ′∣G☆(J)
HV

I ∶G′
}mq+1 ∣{G☆

Il/r
}mq+1

where mq+1 ∶= m′ +m′′.

Step 5 (Put back). Replace τ☆(q)Ir ∶G○○q+1
in τ☆(q)Ir

with τ☆(q)Ir ∶G○○q+1(4)
and revise

G⋅⋅
q+1

G○
q+1
⟨EC∗

Ω⟩
○
q+1 as

G⋅⋅
q+1

G○
q+1
⟨EC∗

Ω⟩
⋅
q+1. Define the resulting tree from Step 5 to be τ☆(q+1)

Ir
then Claims (a), (b) and (c)

hold for q + 1 by the above construction.
Finally, we construct a derivation of G☆

Ir
/{Ŝ ′∣G☆(J)

HV
I ∶G′
}∣G☆

Il/r
from ⌈S c

i1⌉I , . . . , ⌈S c
im⌉I in GLΩ.

Since the major operation of Stage 2 is to replace τ∗Ijr
with τ☆Il

(τ∗
I(tr)jr

) for all τ∗Ijr
∈ τ☆Ir

satisfying

S ′′ ∈ ⟨G′′∣S ′′⟩I(tr)jr
, then we denote the resulting derivation from Stage 2 by τ☆Ir

(τ☆Il
(τ∗Ijr
)).

In the following, we prove that the claims from (i) to (iv) hold if τ☆I ∶= τ☆Ir
(τ☆Il
(τ∗Ijr
)) and

G☆
I ∶= G☆

Ir
/{Ŝ ′∣G☆(J)

HV
I ∶G′
}∣G☆

Il/r
.

● For Claim (i), (ii): Let
H1 ⋯ Hw

H0
⟨τ∗Ij
⟩ ∈ τ☆I and S c

j ∈ G∗
Ij

. Then ∂
τ☆I
(Hk) ≰ Hc

j for all

1 ⩽ k ⩽ w by Lemma 6.13(iv).
If ∂

τ☆I
(Hk′) ⩽ HV

I for some 1 ⩽ k′ ⩽ w, then Hc
i ≰ Hc

j for all Hc
i ∈ I by ∂

τ☆I
(Hk′) ⩽ HV

I ⩽ Hc
i .

Thus Claim (i) holds and Claim (ii) holds by Lemma 8.5(5) and Lemma 7.6(i). Note that Lemma
8.5(5) is independent of Claims from (ii) to (iv).

Otherwise τ∗Ij
is built up from τ∗Ijr

∈ τ☆Ir
, τ∗Ijl

or τ∗Ijl
∪Ijr
∈ τ☆Il
(τ∗Ijr
) by keeping their focus and

principal sequents unchanged and making their side-hypersequents possibly to be modified, but
which has no effect on discussing Claim (ii) and then Claim (ii) holds for τ☆I by the induction
hypothesis on Claim (ii) of τ☆Il

or τ☆Ir
.

If τ∗Ij
is from τ∗Ijl

∪Ijr
then S ′ ∈ ⟨G′∣S ′⟩Ijl

and S ′′ ∈ ⟨G′′∣S ′′⟩Ijr
by the choice of τ∗Ijl

and τ∗Ijr

at Stage 1. By the induction hypothesis, Hc
i ≰ Hc

j for all S c
j ∈ G∗

Ijl
, Hc

i ∈ Il and Hc
i ≰ Hc

j for all
S c

j ∈ G∗
Ijr
, Hc

i ∈ Ir. Then Hc
i ≰ Hc

j for all S c
j ∈ G∗

Ij
= G∗

Ijl
∪Ijr

, Hc
i ∈ I by G∗

Ijl
∪Ijr
= G∗

Ijl
⋂G∗

Ijr
,

I = Il ∪ Ir.
If τ∗Ij

is from τ∗Ijl
then S ′ ∉ ⟨G′∣S ′⟩Ijl

by Step 3 at Stage 1. Then ⟨G′∣G′′∣H′⟩Ijl
⋂(G′′∣H′) = ∅.

Thus S c
j ∉ G∗

HV
I ∶G′′∣H′

. Hence G′′∣S ′′ ≰ Hc
j . Therefore Hc

i ≰ Hc
j for all Hc

i ∈ Ir by G′′∣S ′′ ⩽ Hc
i .

Thus Hc
i ≰ Hc

j for all Hc
i ∈ I by S c

j ∈ G∗
Ij
= G∗

Ijl
and the induction hypothesis from τ∗Ijl

∈ τ☆Il
. The

case of τ∗Ij
built up from τ∗Ijr

is proved by a procedure similar to above and omitted.
● Claim (iii) holds by Step 4 at Stage 1 and 2. Note that in the whole of Stage 1, we treat

{Gbrk}v
k=1 as a side-hypersequent. But it is possible that there exists S c

j ∈ {Gbrk}v
k=1 such that

Hc
j ⩽ HV

I . Since we haven’t applied the separation algorithm to {Gbrk}v
k=1 in Step 4 at Stage

1, then it could make Claim (iii) invalid. But it is not difficult to find that we just move the
separation of such S c

j to Step 4 at Stage 2. Of course, we can move it to Step 4 at Stage 1, but
which make the discussion complicated.

● For Claim (iv), we prove (1) Hc
i ∥Hc

j for all S c
j ∈ G☆

Il/r
and Hc

i ∈ I, (2) Hc
i ∥Hc

j for all S c
j ∈

G☆
Ir
/{Ŝ ′∣G☆(J)

HV
I ∶G′
} and Hc

i ∈ I. Only (1) is proved as follows and (2) by a similar procedure and
omitted.
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Let S c
j ∈ G☆

Il/r
. Then S c

j ∈ G☆
Il

and S c
j ∉ Ŝ ′′∣G☆(J)

HV
I ∶G′′
∣G☆(J)

HV
I ∶H′
/{Ŝ ′∣Ŝ ′′} by the definition of G☆

Il/r
.

By a procedure similar to that of Claim (iv) in Case 1, we get Hc
j ≰ HV

I and assume that S c
j ∈ G∗

Ijl

for some τ∗Ijl
∈ τ☆Il

and let G′∣S ′ ≰ Hc
j in the following.

Suppose that G′′∣S ′′ ⩽ Hc
j . Then S c

j ∈ G∗
HV

I ∶G′′
and S ′ ∈ ⟨G′∣S ′⟩Ijl

by S c
j ∈ G∗

Ijl
. Hence

S c
j ∈ G☆(J)

HV
I ∶G′′

by Hc
j ⩾ G′′∣S ′′ > HV

I . Therefore S c
j ∈ Ŝ ′′∣G☆(J)

HV
I ∶G′′
∣G☆(J)

HV
I ∶H′
/{Ŝ ′∣Ŝ ′′}, a contradiction

thus G′′∣S ′′ ≰ Hc
j . Then HV

I ≮ Hc
j by G′∣S ′ ≰ Hc

j and G′′∣S ′′ ≰ Hc
j . Thus Hc

j∥HV
I . Hence Hc

j∥Hc
i

for all Hc
i ∈ I. This completes the proof of Theorem 8.2.

Definition 8.12. The manipulation described in Theorem 8.2 is called derivation-grafting oper-
ation.

9. The proof of Main theorem

Recall that in Main theorem G0 ≡ G′∣{Γi, p⇒ ∆i}i=1⋯n∣{Π j ⇒ p,Σ j} j=1⋯m.

Lemma 9.1. (i) If G2 = G0/{Γ1, p⇒ ∆1} and ⊢GL D0(G2) then ⊢GL D0(G0);
(i′) If G2 = G0/{Π1 ⇒ p,Σ1} and ⊢GL D0(G2) then ⊢GL D0(G0);
(ii) If G2 = G0∣{Γ1, p⇒ ∆1} and ⊢GL D0(G2) then ⊢GL D0(G0);
(ii′) If G2 = G0∣{Π1 ⇒ p,Σ1} and ⊢GL D0(G2) then ⊢GL D0(G0);
(iii) If G2 = G0/{Γ1, p⇒ ∆1}∣{Γ1,⊺⇒ ∆1} and ⊢GL D0(G2) then ⊢GL D0(G0);
(iii′) If G2 = G0/Π1 ⇒ p,Σ1∣Π1 ⇒ �,Σ1 and ⊢GL D0(G2) then ⊢GL D0(G0).

Proof. (i) Since D0(G2) = G′∣{Γi,Π j ⇒ ∆i,Σ j}i=2⋯n; j=1⋯m ⊆ G′∣{Γ1,Π j ⇒ ∆1,Σ j} j=1⋯m∣
{Γi,Π j ⇒ ∆i,Σ j}i=2⋯n; j=1⋯m = D0(G0) then ⊢GL D0(G0) holds. If n = 1, we replace al-
l p in Π j ⇒ p,Σ j with ⊥. Then ⊢GL D0(G0) holds by applying (CUT) to Γ1,⊥⇒ ∆1 and
G′∣{Π j ⇒⊥,Σ j} j=1⋯m.

(ii) Since D0(G2) = G′∣{Γ1,Π j ⇒ ∆1,Σ j} j=1⋯m∣{Γi,Π j ⇒ ∆i,Σ j}i=1⋯n; j=1⋯m then
⊢GL D0(G0) holds by applying (EC∗) to D0(G2).

(iii) Since D0(G2) = G′∣Γ1,⊺⇒ ∆1∣{Γi,Π j ⇒ ∆i,Σ j}i=2⋯n; j=1⋯m then ⊢GL G′′ ≡ G′∣Γ1,Π1 ⇒
∆1,Σ1∣{Γi,Π j ⇒ ∆i,Σ j}i=2⋯n; j=1⋯m holds by applying (CUT) to Γ1,⊺ ⇒ ∆1 in D0(G2) and
Π1 ⇒ ⊺,Σ1. Thus ⊢GL D0(G0) holds by applying (EW) to G′′.
(i′), (ii′) and (iii′) are proved by a procedure respectively similar to those of (i), (ii) and (iii)

and omitted.

Let I = {Hc
i1 ,⋯,H

c
im} ⊆ {H

c
1,⋯,Hc

N}, GI denote a closed hypersequent such that GI ⊆c G∣G∗

and Hc
j∥Hc

i for all S c
j ∈ GI and Hc

i ∈ I.

Lemma 9.2. There exists GI such that ⊢GLΩ GI for all I ⊆ {Hc
1,⋯,Hc

N}.

Proof. The proof is by induction on m. For the base step, let m = 0, then I = ∅ and GI ∶= G∣G∗

and ⊢GLΩ GI by Lemma 4.17(v).
For the induction step, suppose that m ⩾ 1 and there exists GI such that ⊢GLΩ GI for all

∣I∣ ⩽ m − 1. Then there exist GI/{Hc
ik
} for all 1 ⩽ k ⩽ m such that ⊢GLΩ GI/{Hc

ik
} and Hc

j∥Hc
i for all

S c
j ∈ GI/{Hc

ik
} and Hc

i ∈ I/{Hc
ik}.

If Hc
j∥Hc

ik for all S c
j ∈ GI/{Hc

ik
} then GI ∶= GI/{Hc

ik
} and the claim holds clearly. Otherwise there

exists S c
j ∈ GI/{Hc

ik
} such that Hc

j ⩽ Hc
ik or Hc

j > Hc
ik then we rewrite GI/{Hc

ik
} as ⌈S c

i′k
⌉{Hc

i′k
}∪I/{Hc

ik
},
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where we define Hc
i′k

such that S c
i′k
∈ GI/{Hc

ik
} and, S c

j ∈ GI/{Hc
ik
} implies Hc

j ⩽ Hc
i′k

or Hc
j∥Hc

i for
all Hc

i ∈ {Hc
i′k
} ∪ I/{Hc

ik}. If we can’t define GI to be GI/{Hc
ik
} for each 1 ⩽ k ⩽ m, let I′ ∶=

{Hc
i′1
,⋯,Hc

i′m
}. Then GI′ is constructed by applying the separation algorithm of multiple branches

(or one branch if m = 1) to ⌈S c
i′1
⌉I′ ,⋯, ⌈S c

i′m
⌉I′ Then ⊢GLΩ GI′ by ⊢GLΩ ⌈S c

i′1
⌉I′ ,⋯,⊢GLΩ ⌈S c

i′m
⌉I′ ,

Theorem 8.2 (or Lemma 7.8 (i) for one branch). Let GI ∶= GI′ then ⊢GLΩ GI clearly.

The proof of Main theorem: Let I = {Hc
1,⋯,Hc

N} in Lemma 9.2. Then there exists GI such
that ⊢GLΩ GI , GI ⊆c G∣G∗ and Hc

j∥Hc
i for all S c

j ∈ GI and Hc
i ∈ I. Then ⊢GL D(GI) by Lemma

5.6.
Suppose that S c

j ∈ GI . Then Hc
j∥Hc

i for all Hc
i ∈ I. Thus Hc

j∥Hc
j by Hc

j ∈ I, a contradiction
with Hc

j ⩽ Hc
j and hence there doesn’t exist S c

j ∈ GI . Therefore GI ⊆c G by GI ⊆c G∣G∗.
By removing the identification number of each occurrence of p in G, we obtain the sub-

hypersequent G2 of G2∣G∗
2 , which is the root of τ4 resulting from Step 4 in Section 4. Then

⊢GL D0(G2) by ⊢GL D(GI) and GI ⊆c G. Since G2 is constructed by adding or removing some
Γi, p ⇒ ∆i or Π j ⇒ p,Σ j from G0, or replacing Γi, p ⇒ ∆i with Γi,⊺ ⇒ ∆i, or Π j ⇒ p,Σ j with
Π j ⇒⊥,Σ j, then ⊢GL D0(G0) by Lemma 9.1. This completes the proof of Main theorem.◻

Theorem 9.3. Density elimination holds for all GL in {GUL,GIUL,GMTL,GIMTL}.

Proof. It follows immediately from Main theorem.

10. Final remarks and open problems

Recently, we have generalized our method described in this paper to the non-commutative
substructural logic GpsUL∗ in [24]. This result shows that GpsUL∗ is the logic of pseudo-
uninorms and their residua and answered the question posed by Prof. Metcalfe, Olivetti, Gabbay
and Tsinakis in [17, 18].

It has often been the case in the past that metamathematical proofs of the standard complete-
ness have the corresponding algebraic ones, and vise verse. In particular, Baldi and Terui [3]
had given an algebraic proof of the standard completeness of UL and their method had also been
extended by Galatos and Horcik [11]. A natural problem is whether there is an algebraic proof
corresponding to our proof-theoretic one. It seems difficult to obtain it by using the insights
gained from the approach described in this paper because ideas and syntactic manipulations in-
troduced here are complicated and specialized. In addition, Baldi and Terui [3] also mentioned
some open problems. Whether our method could be applied to their problems is another research
direction.
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[13] P. Hájek, Basic fuzzy logic and BL-algebras, Soft Computing 2(1998), 124-128.
[14] S. Jenei, Co-rotation constructions of residuated semigroups, Fuzzy Sets and Systems 252(2014), 25-34.
[15] S. Jenei, F. Montagna, A proof of standard completeness of Esteva and Godo’s monoidal logic MTL, Studia Logica

70(2)(2002), 184-192.
[16] G. Metcalfe, F. Montagna, Substructural fuzzy logics, Journal of Symbolic Logic 7(3)(2007),834-864.
[17] G. Metcalfe, N. Olivetti and D. Gabbay. Proof Theory for Fuzzy Logics, Springer Series in Applied Logic, Vol.36,

2009.
[18] G. Metcalfe, C. Tsinakis, Density revisited, Soft computing, 2017, 21(1): 175-189.
[19] G. Pottinger, Uniform cut-free formulations of T, S4 and S5 (abstract), Journal of Symbolic Logic 48(1983),900-

901.
[20] A. Rose, J. B. Rosser, Fragments of many-valued statement calculi, Transactions of the American Mathematical

Society 87(1958), 1-53.
[21] G. Takeuti, T. Titani, Intuitionistic fuzzy logic and intuitionistic fuzzy set theory, Journal of Symbolic Logic

49(3)(1984), 851-866.
[22] S. M. Wang, Involutive uninorm logic with the n-potency axiom, Fuzzy Sets and Systems, 218(2013), 1-23.
[23] S. M. Wang, The Finite Model Property for Semilinear Substructural Logics, Mathematical Logic Quarterly 59(4-

5)(2013), 268-273.
[24] S. M. Wang, The logic of pseudo-uninorms and their residua, arXiv preprint arXiv:1707.05441, 2017.

Appendices

A.1 Why do we adopt Avron-style hypersequent calculi?

A hypersequent calculus is called Pottinger-style if its two-premise rules are in the form of
G∣S ′ G∣S ′′

G∣H′ (II) and, Avron-style if in the form of
G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (II). In the viewpoint of Avron-

style systems, each application of two-premise rules contains implicitly applications of (EC) in
Pottinger-style systems, as shown in the following.

G∣S ′ G∣S ′′

G∣H′ (II)
corresponds to

ÐÐÐÐÐÐÐÐÐÐ→
in Avron−style system

G∣S ′ G∣S ′′

G∣G∣H′ (II)

G∣H′ (EC∗)
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The choice of the underlying system of hypersequent calculus is vital to our purpose and
it gives the background or arena. In Pottinger-style system, G0 in Section 3 is proved without
application of (EC) as follows. But it seems helpless to prove that H0 is a theorem of IUL.

C ⇒ C

C ⇒ C∣⇒ p, B∣B⇒ p,¬A⊙ ¬A

B⇒ B

B⇒ B ∣p, p⇒ A⊙ A

p⇒ p A⇒ A

A⇒ p ∣p⇒ A

p⇒ p A⇒ A

A⇒ p ∣p⇒ A
A⇒ p ∣p, p⇒ A⊙ A
⇒ p,¬A ∣p, p⇒ A⊙ A

p⇒ p A⇒ A

A⇒ p ∣p⇒ A

p⇒ p A⇒ A

A⇒ p ∣p⇒ A
A⇒ p ∣p, p⇒ A⊙ A
⇒ p,¬A ∣p, p⇒ A⊙ A

⇒ p, p,¬A⊙ ¬A ∣p, p⇒ A⊙ A
⇒ p, B∣B⇒ p,¬A⊙ ¬A ∣p, p⇒ A⊙ A

⇒ p, B∣B⇒ p,¬A⊙ ¬A ∣p⇒ C∣C, p⇒ A⊙ A

The peculiarity of our method is not only to focus on controlling the role of the external con-
traction rule in the hypersequent calculus but also introduce other syntactic manipulations. For
example, we label occurrences of the eigenvariable p introduced by an application of the density
rule in order to be able to trace these occurrences from the leaves (axioms) of the derivation to
the root (the derived hypersequent).

A.2 Why do we need the constrained external contraction rule?

We use the example in Section 3 to answer this question. Firstly, we illustrate Notation
4.14 as follows. In Figure 4, let S c

11 = A ⇒ p2; S c
12 = A ⇒ p1; S c

21 = A ⇒ p4; S c
22 = A ⇒

p3; S c
31 = p1, p2 ⇒ A ⊙ A; S c

32 = p3, p4 ⇒ A ⊙ A;G′
1 = p1, p2 ⇒ A ⊙ A;G′

2 = p3, p4 ⇒ A ⊙ A;
G′

3 = A ⇒ p1 ∣ ⇒ p2,B∣B ⇒ p4,¬A ⊙ ¬A ∣A ⇒ p3. Then Hc
i = G′

i ∣S c
i1∣S c

i2 for i = 1,2,3. Hc
i are

(pEC)-nodes and, S c
i1 and S c

i2 are (pEC)-sequents.
Let G∗

Hc
1 ∶A⇒p2

=⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣A⇒ p3∣p3, p4 ⇒ A⊙ A. We denote the derivation

τ∗Hc
1 ∶A⇒p2

of G∗
Hc

1 ∶A⇒p2
from A⇒ p2 by

A⇒ p2

G∗
Hc

1 ∶A⇒p2

⟨τ∗Hc
1 ∶A⇒p2

⟩. Since we focus on sequents in G∗

in the separation algorithm, we abbreviate
A⇒ p2

G∗
Hc

1 ∶A⇒p2

⟨τ∗Hc
1 ∶A⇒p2

⟩ to
S c

11

S c
22∣S c

32
⟨τ∗S c

11
⟩ and further to

1
2∣3
⟨τ∗1 ⟩. Then the separation algorithm τ☆Hc

1 ∶G∣G∗
is abbreviated as

1∣2∣3
2′∣3′∣2∣3

⟨τ∗1 ⟩

2′∣2
⟨τ∗3 , τ∗3′⟩

2
⟨ECΩ⟩

where 2′ and 3′ are abbreviations of A ⇒ p5 and p5, p6 ⇒ A ⊙ A, respectively. We also write
2′ and 3′ respectively as 2 and 3 for simplicity. Then the whole separation derivation is given as
follows.

1∣2∣3
2∣3∣2∣3

⟨τ∗1 ⟩

2∣2
⟨τ∗3 , τ∗3 ⟩

2
⟨ECΩ⟩

1∣2∣3
1∣1∣3

⟨τ∗2 ⟩

1∣1
⟨τ∗3 ⟩

1
⟨ECΩ⟩

∅
⟨τ∗{1,2}⟩
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where ∅ is an abbreviation of G′′ in Page 14 and means that all sequents in it are copies of
sequents in G0. Note that the simplified notations become intractable when we decide whether
⟨ECΩ⟩ is applicable to resulting hypersequents. If no application of ⟨ECΩ⟩ is used in it, all
resulting hypersequents fall into the set {1∣2∣ 3∣⋯∣3

²
l

, 2∣2∣ 3∣⋯∣3
²

m

, 1∣1∣ 3∣⋯∣3
²

n

∶ l ≥ 0,m ≥ 0,n ≥ 0}

and ∅ is never obtained.

A.3 Why do we need the separation of branches?

In Figure 11, p1 and p2 in the premise of
p1, p2 ⇒ A⊙ A

p1 ⇒ C∣C, p2 ⇒ A⊙ A
⟨τ∗S c

31
⟩ could be viewed as

being tangled in one sequent p1, p2 ⇒ A ⊙ A but in the conclusion of ⟨τ∗S c
31
⟩ they are separated

into two sequents p1 ⇒ C and C, p2 ⇒ A ⊙ A, which are copies of sequents in G0. In Figure 5,
p2 in A⇒ p2 falls into⇒ p2, B in the root of τ∗Hc

1 ∶A⇒p2
and⇒ p2,B is a copy of a sequent in G0.

The same is true for p4 in A⇒ p4 in Figure 8. But it’s not the case.

Lemma 6.6 (vi) shows that in the elimination rule
S c

11

G∗
S c

11

⟨τ∗S c
11
⟩, S c

j ∈ G∗
S c

11
implies Hc

j < Hc
i or

Hc
j ∥ Hc

i . If there exists no S c
j ∈ G∗

S c
11

such that Hc
j < Hc

i , then S c
j ∈ G∗

S c
11

implies Hc
j ∥ Hc

i and,
thus each occurrence of p′s in S c

11 is fell into a unique sequent which is a copy of a sequent in
G0. Otherwise there exists S c

j ∈ G∗
S c

11
such that Hc

j < Hc
i , then we apply ⟨τ∗S c

j
⟩ to S c

j in G∗
S c

11
and

the whole operations can be written as

S c
11

G☆(0)
S c

11
≡ G∗

S c
11
/{S c

j}∣S c
j

⟨τ∗S c
11
⟩

G☆(1)
S c

11
≡ G∗

S c
11
/{S c

j}∣G∗
S c

j

⟨τ∗S c
j
⟩ .

Repeatedly we can get G☆(J)
S c

11
such that S c

j ∈ G☆(J)
S c

11
implies Hc

j ∥ Hc
1. Then each occurrence of

p′s in S c
11 is fell into a unique sequent in G☆(J)

S c
11

which is a copy of a sequent in G0. In such case,

we call occurrences of p′s in S c
11 are separated in G☆(J)

S c
11

and call such a procedure the separation
algorithm. It is the starting point of the separation algorithm. We introduce branches in order
to tackle the case of multiple-premise separation derivations for which it is necessary to apply
(ECΩ) to the resulting hypersequents.

A.4 Some questions about Theorem 8.2

In Theorem 8.2, τ☆I is constructed by induction on the number ∣I∣ of branches. As usual, we
take the algorithm of ∣I∣− 1 branches as the induction hypothesis. Why do we take τ☆Il

and τ☆Ir
as

the induction hypothesises?
Roughly speaking, it degenerates the case of ∣I∣ branches into the case of two branches in

the following sense. The subtree τ∗(G′′∣S ′′) of τ∗ is as a whole contained in τ∗Ijl
or not in it.

Similarly, τ∗(G′∣S ′) of τ∗ is as a whole contained in τ∗Ijr
or not in it. It is such a division of I

into Il and Ir that makes the whole algorithm possible.
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Claim (i) of Theorem 8.2 asserts that Hc
i /⩽ Hc

j for all S c
j ∈ G∗

Ij
and Hc

i ∈ I. It guarantees
that τ∗Ij

is not far from the final aim of Theorem 8.2 but roughly close to it if we define some
complexity to calculate it. If Hc

i ⩽ Hc
j , the complexity of G∗

Ij
is more than or equal to that of ⌈S c

i ⌉I
under such a definition of complexity and thus such an application of τ∗Ij

is redundant at least.
Claim (iii) of Theorem 8.2 guarantees the validity of the step 4 of Stage 1 and 2.

The tree structure of the skeleton of τ☆Il
(τ∗Ijr
) can be obtained by deleting some node H ∈ τ̄☆Il

satisfying ∂
τ☆Il

(H) ⩽ HV
I . The same is true for τ☆I if τ☆Il

(τ∗Ijr
) is treated as a rule or a subroutine

whose premises are same as ones of τ∗Ijr
. However, it is incredibly difficult to imagine or describe

the structure of τ☆I if you want to expand it as a normal derivation, a binary tree.
All syntactic manipulations in constructing τ☆I are performed on the skeletons of τ☆Il

or τ☆Ir
.

The structure of the proof of Theorem 8.2 is depicted in the following figure.

G☆I
(Target)

⋮
link
⋮
τ☆I

(Route)

Induction hypothesis
ÐÐÐÐÐÐÐÐÐÐÐÐÐ→

gifts us

G☆Il
⋮
τ☆Il

↑↓

G☆Ir
⋮
τ☆Ir

grafting τ∗IjrÐÐÐÐÐÐÐ→
into τ☆Il

Ŝ ′′∣{Gbrk}
v
k=1∣G

☆(J)
HV

I ∶⟨G
′′⟩Ijr

∣

G☆(J)
HV

I ∶H
/{Ŝ ′∣Ŝ ′′}∣G☆Il/r

⋮
τ☆Il
(τ∗Ijr
)

↑ call

grafting τ
☆
Il
(τ∗Ijr

)

ÐÐÐÐÐÐÐÐÐÐ→
into τ

☆
Ir

G☆Ir
/{Ŝ ′∣G☆(J)

HV
I ∶G
′}∣G

☆
Il/r

⋮
τ☆Ir
(τ☆Il
(τ∗Ijr
))

.

A.5 Illustrations of notations and algorithms

We use the example in Section 3 to illustrate some notations and algorithms in this paper.

A.5.1 Illustration of two cases of (COM) in the proof of Lemma 5.6

Let
G′ G′′

G′′′ (COM) be
p1 ⇒ p1 A⇒ A
A⇒ p1∣p1 ⇒ A

(COM), where G′ = S 1 = p1 ⇒ p1; G′′ = S 2 =

A ⇒ A; S 3 = A ⇒ p1; S 4 = p1 ⇒ A and G′′′ = S 3∣S 4. Then [S 3]G′′′ = [S 4]G′′′ ; DG′(S 1) =⇒

t; DG′′(S 2) = A ⇒ A; DG′′′(S 3∣S 4) = A ⇒ A. Thus the proof of
DG′(S 1) DG′(S 2)
DG′(S 3∣S 4)

is

constructed by
⇒ t

A⇒ A
A, t⇒ A

(tl)

A⇒ A
(CUT).

Let
G′ G′′

G′′′ (COM) be

B⇒ B(
⇒ p2, p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A∣

A⇒ p1∣A⇒ p3∣p3, p4 ⇒ A⊙ A
)

(
⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣A⇒ p1∣

p1, p2 ⇒ A⊙ A∣A⇒ p3∣p3, p4 ⇒ A⊙ A
)
(COM),

where G′ = S 1 = B⇒ B; G2 = p1, p2 ⇒ A⊙ A∣A⇒ p1∣A⇒ p3∣p3, p4 ⇒ A⊙ A;
S 2 =⇒ p2, p4,¬A⊙ ¬A; G′′ = G2∣S 2; S 3 =⇒ p2, B; S 4 = B⇒ p4,¬A⊙ ¬A and G′′′ = G2∣S 3∣S 4.
Then DG′(S 1) = B⇒ B; DG′′(S 2) = A,A⇒ A⊙ A,¬A⊙ ¬A,A⊙ A; DG′′′(S 3) = A⇒ B,A⊙ A;
DG′′′(S 4) = A, B⇒ A⊙ A,¬A⊙ ¬A;DG′′′(S 3∣S 4) = DG′′′(S 4)∣DG′′′(S 4).
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Thus the proof of
DG′(S 1) DG′(S 2)
DG′(S 3∣S 4)

is constructed by

B⇒ B A,A⇒ A⊙ A,¬A⊙ ¬A,A⊙ A
A⇒ B,A⊙ A∣A, B⇒ A⊙ A,¬A⊙ ¬A

(COM).

A.5.2 Illustration of Construction 6.1

Let τ∗ be

H8 ≡ B⇒ B H9 ≡ A⇒ A
H4 ≡ A⇒ B∣B⇒ A

(COM)
H10 ≡ B⇒ B H11 ≡ A⇒ A

H5 ≡ A⇒ B∣B⇒ A
(COM)

H2 ≡ A⇒ B∣A⇒ B∣B,B⇒ A⊙ A
(⊙r)

H1 ≡ A⇒ B∣⇒ B,¬A∣B, B⇒ A⊙ A
(¬r).

By Construction 6.1, τ∗∗ is then given as follows.

(B⇒ B; 8,0) (A⇒ A; 9,0)
(A⇒ B; 4,1)∣(B⇒ A; 4,2)

(COM)
(B⇒ B; 10,0) (A⇒ A; 11,0)
(A⇒ B; 5,1)∣(B⇒ A; 5,2)

(COM)

(A⇒ B; 4,1)∣(A⇒ B; 5,1)∣(B, B⇒ A⊙ A; 2,0)
(⊙r)

(A⇒ B; 4,1)∣(⇒ B,¬A; 1,0)∣(B,B⇒ A⊙ A; 2,0)
(¬r).

As an example, we calculate ℘(H8). Since Th(H8) = (H8,H4,H2,H1), then b3 = 1, b2 =
b1 = b0 = 0 by Definition 2.13. Thus ℘(H8) = b020 + b121 + b222 + b323 = 8.

Note that we can’t distinguish the one from the other for two A⇒ B′s in H2 ∈ τ∗. If we divide
H2 into H′∣H′′, where H′ ≡ A⇒ B and H′′ ≡ A⇒ B∣B, B⇒ A⊙ A, then H′⋂H′′ = {A⇒ B} in
the conventional meaning of hypersequents. Thus only in the sense that we treat τ∗ as τ∗∗, the
assertion that H′⋂H′′ = ∅ for any H′∣H′′ ⊆ H in Proposition 6.2 holds.

A.5.3 Illustration of Notation 6.10 and Construction 6.11

Let I = {Hc
1,H

c
2}, Il = {Hc

1}, Ir = {Hc
2},I = {S c

11,S
c
21},Il = {S c

11},Ir = {S c
21},

G′∣S ′ G′′∣S ′′

G′∣G′′∣H′ (⊙r) ∈ τ∗,

where G′∣G′′∣H′ = HV
I ;G′ ≡ A⇒ p1∣p1, p2 ⇒ A⊙ A; S ′ ≡⇒ p2,¬A;

G′′ ≡ A⇒ p3∣p3, p4 ⇒ A⊙ A; S ′′ ≡⇒ p4,¬A; H′ ≡⇒ p2, p4,¬A⊙ ¬A
(See Figure 4).
⟨G′∣S ′⟩Il

=⇒ p2,¬A; ⟨G′⟩Il
= ∅; ⟨G′∣G′′∣H′ ⟩Il

= A ⇒ p3∣ ⇒ p2, p4,¬A ⊙ ¬A∣ p3, p4 ⇒
A ⊙ A; ⟨G∣G∗⟩Il

= G∗
Il
= G∗

S c
11
=⇒ p2, B∣B⇒ p4,¬A ⊙ ¬A∣A ⇒ p3∣p3, p4 ⇒ A ⊙ A (See Figure

5).
⟨G′′∣S ′′⟩Ir

=⇒ p4,¬A; ⟨G′∣G′′∣H′⟩Ir
= A⇒ p1∣⇒ p2, p4,¬A⊙ ¬A∣p1, p2 ⇒ A⊙ A;

⟨G∣G∗⟩Ir
= G∗

Ir
= G∗

S c
21
= A⇒ p1∣⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A (See Figure

8).
⟨G′∣G′′∣H′⟩I =⇒ p2, p4,¬A ⊙ ¬A; ⟨G∣G∗⟩I = G∗

I = G∗
{S c

11 ,S
c
21}
= G∗

Il ⋂G∗
Ir
=⇒ p2, B∣B ⇒

p4,¬A⊙ ¬A (See Figure 10).
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A.5.4 Illustration of Theorem 8.2

Note that sequents in [] are principal sequents of elimination rules in the following. Let
I, Ir, Il be the same as in A.5.3 and, I = {⌈S c

1⌉I , ⌈S
c
2⌉I}, Il = {⌈S c

1⌉I}, Ir = {⌈S c
2⌉I},

⌈S c
1⌉I = G☆

Hc
2 ∶G∣G∗

= A⇒ p5∣⇒ p6, B∣B⇒ p8,¬A⊙ ¬A∣ p5 ⇒ C∣
C, p6 ⇒ A⊙ A∣B⇒ p7,¬A⊙ ¬A∣p7 ⇒ C ∣C, p8 ⇒ A⊙ A,

⌈S c
2⌉I = G☆

Hc
1 ∶G∣G∗

=⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣
A⇒ p3∣⇒ p1,B∣p3 ⇒ C∣C, p4 ⇒ A⊙ A.

τ☆Il
=

⌈S c
1⌉I

G☆(1)
Il

⟨τ∗Hc
1 ∶A⇒p5

⟩

G☆(2)
Il

⟨τ∗Hc
3 ∶p9,p10⇒A⊙A⟩

G☆
Il

⟨EC∗
Ω⟩ ,

where G☆(1)
Il
= [⇒ p5,B∣B⇒ p10,¬A⊙ ¬A∣A⇒ p9∣p10, p9 ⇒ A⊙ A] ∣⇒ p6, B∣
B⇒ p8,¬A⊙ ¬A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A∣B⇒ p7,¬A⊙ ¬A∣
p7 ⇒ C∣C, p8 ⇒ A⊙ A,

G☆(2)
Il
=⇒ p5,B∣B⇒ p10,¬A⊙ ¬A∣A⇒ p9∣[p9 ⇒ C∣C, p10 ⇒ A⊙ A]∣
⇒ p6, B∣B⇒ p8,¬A⊙ ¬A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A∣
B⇒ p7,¬A⊙ ¬A∣p7 ⇒ C ∣C, p8 ⇒ A⊙ A,

G☆
Il
=⇒ p5, B∣A⇒ p9∣p9 ⇒ C ∣⇒ p6,B∣B⇒ p8,¬A⊙ ¬A∣

p5 ⇒ C∣C, p6 ⇒ A⊙ A∣B⇒ p7,¬A⊙ ¬A∣p7 ⇒ C ∣C, p8 ⇒ A⊙ A,
G☆(J)

HV
I ∶G′′

= A ⇒ p9∣p9 ⇒ C∣C, p10 ⇒ A ⊙ A; Ŝ ′′ = B ⇒ p10,¬A ⊙ ¬A; Ŝ ′ =⇒ p5,B;

G☆(J)
HV

I ∶H′
= G∗

HV
I ∶H′
= Ŝ ′∣Ŝ ′′; G† = A⇒ p9∣p9 ⇒ C∣C, p10 ⇒ A⊙ A∣B⇒ p10,¬A⊙ ¬A.

τ☆Ir
=

⌈S c
2⌉I

G☆(1)
Ir

⟨τ∗Hc
2 ∶A⇒p3

⟩

G☆
Ir

⟨EC∗
Ω⟩ ,

where G☆(1)
Ir
=⇒ p2,B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣
⇒ p1, B∣p3 ⇒ C∣C, p4 ⇒ A⊙ A∣[A⇒ p11∣⇒ p12,B∣
B⇒ p3,¬A⊙ ¬A∣p11 ⇒ C∣C, p12 ⇒ A⊙ A],

G☆
Ir
=⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣

⇒ p1, B∣p3 ⇒ C∣C, p4 ⇒ A⊙ A∣A⇒ p11∣B⇒ p3,¬A⊙ ¬A∣p11 ⇒ C.
Since there is only one elimination rule in τ☆Ir

, the case we need to process is τ∗Hc
2 ∶A⇒p3

, i.e.,

τ∗Ijr
=
⌈S c

2⌉I
G☆(1)

Hc
2 ∶⌈S

c
2⌉I

⟨τ∗Hc
2 ∶A⇒p3

⟩ .

Then v = 1, S c
jr1
= A⇒ p3; Gbr1 =⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣

C, p2 ⇒ A⊙ A∣⇒ p1, B∣p3 ⇒ C∣C, p4 ⇒ A⊙ A in τ∗Ijr
.
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τ
☆(0)
Il
=

⌈S c
1⌉I

G☆(1)
Il

⟨τ∗Hc
1 ∶A⇒p5

⟩

G☆(2)
Il

⟨τ∗Hc
3 ∶p9,p10⇒A⊙A⟩

G☆
Il

⟨EC∗
Ω⟩

○
1 ,

where ∂
τ☆Il

(⌈S c
1⌉I) = Hc

1, ∂
τ☆Il

(G☆(1)
Il
) = Hc

3 < HV
I ,∂
τ☆Il

(G☆(2)
Il
) = ∂

τ☆Il

(G☆
Il
) = G∣G∗, G○○

1 = G☆(2)
Il

,

G○
1 = G☆

Il
.

τ
☆(0)
Il∶G○○1

=

⌈S c
1⌉I

G☆(1)
Il

⟨τ∗Hc
1 ∶A⇒p5

⟩

G☆(2)
Il

⟨τ∗Hc
3 ∶p9,p10⇒A⊙A⟩ ,

τ
☆(0)
Il∶G○○1 (1)

= τ☆(0)Il∶G○○1 (2)
=
⌈S c

1⌉I
G☆(1)

Il

⟨τ∗Hc
1 ∶A⇒p5

⟩ .

Since there is only one elimination rule in τ☆(0)Il∶G○○1 (2)
, the case we need to process is τ∗Hc

1 ∶A⇒p5
,

i.e.,

τ∗Ijl
=
⌈S c

1⌉I
G☆(1)

Il

⟨τ∗Hc
1 ∶A⇒p5

⟩ .

Then u = 1, S c
j(tl1)l1

= A⇒ p5; Gbl1 =⇒ p6,B∣B⇒ p8,¬A⊙ ¬A∣
p5 ⇒ C∣C, p6 ⇒ A⊙ A∣B⇒ p7,¬A⊙ ¬A∣p7 ⇒ C∣C, p8 ⇒ A⊙ A in τ∗Ijl

.
τ∗Ijl

is replaced with τ∗Ijl∪Ijr
in Step 3 of Stage 1, i.e.,

⌈S c
1⌉I ⌈S

c
2⌉I

Gl,r
⟨τ∗{Hc

1 ∶A⇒p5,Hc
2 ∶A⇒p3}⟩ = τ

☆(0)
Il∶G○○1 (3)

= τ☆(0)Il∶G○○1 (4)
, where

Gl,r =⇒ p5, B∣B⇒ p3,¬A⊙ ¬A∣Gbr1 ∣Gbl1 =
⇒ p2, B∣B⇒ p4,¬A⊙ ¬A∣p1 ⇒ C∣C, p2 ⇒ A⊙ A∣⇒ p1,B∣
p3 ⇒ C∣C, p4 ⇒ A⊙ A∣⇒ p6, B∣B⇒ p8,¬A⊙ ¬A∣
p5 ⇒ C∣C, p6 ⇒ A⊙ A∣B⇒ p7,¬A⊙ ¬A∣p7 ⇒ C∣
⇒ C, p8 ⇒ A⊙ A∣p5,B∣B⇒ p3,¬A⊙ ¬A.

Replacing τ☆(0)Il∶G○○1
in τ☆(0)Il

with τ☆(0)Il∶G○○1 (4)
, then deleting G☆

Il
and after that applying ⟨EC∗

Ω⟩ to
Gl,r and keeping Gbr1 unchanged, we get

τ☆Il
(τ∗Ijr
) =

⌈S c
1⌉I ⌈S c

2⌉I
Gl,r

⟨τ∗{Hc
1 ∶A⇒p5,Hc

2 ∶A⇒p3}⟩

Ŝ ′′∣Gbr1 ∣G
☆(J)
HV

I ∶⟨G′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r

⟨EC∗
Ω⟩ ,

where G☆(J)
HV

I ∶⟨G′′⟩Ijr

= G∗
HV

I ∶⟨G′′⟩Ijr

= ∅; Ŝ ′ =⇒ p5,B;

Ŝ ′′ = B⇒ p3,¬A⊙ ¬A; G‡ = Gbr1 ∣Ŝ ′′; G☆(J)
HV

I ∶H′
= G∗

HV
I ∶H′
= Ŝ ′∣Ŝ ′′;
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G☆
Il/r
=⇒ p5, B∣⇒ p6,B∣B⇒ p7,¬A⊙ ¬A∣p5 ⇒ C∣C, p6 ⇒ A⊙ A∣

p7 ⇒ C∣C, p8 ⇒ A⊙ A∣B⇒ p8,¬A⊙ ¬A.

Stage 2 τ☆(0)Ir ∶G○○1
= τ☆(0)Ir ∶G○○1 (1)

= τ☆(0)Ir ∶G○○1 (2)
=
⌈S c

2⌉I
G☆(1)

Ir

⟨τ∗Hc
2 ∶A⇒p3

⟩ ,

τ
☆(0)
Ir ∶G○○1 (3)

= τ☆(0)Ir ∶G○○1 (4)
=

⌈S c
1⌉I ⌈S c

2⌉I
Ŝ ′′∣Gbr1 ∣G

☆(J)
HV

I ∶⟨G′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r

⟨τ☆Il
(τ∗Ijr
)⟩ .

Replacing τ☆(0)Ir ∶G○○1
in τ☆(0)Ir

with τ☆(0)Ir ∶G○○1 (4)
, then deleting G☆

Ir
and after that applying ⟨EC∗

Ω⟩ to

Ŝ ′′∣Gbr1 ∣G
☆(J)
HV

I ∶⟨G′′⟩Ijr

∣G☆(J)
HV

I ∶H′
/{Ŝ ′∣Ŝ ′′}∣G☆

Il/r
, we get τ☆I .
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