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Abstract: Relationships between drought and fire danger indices are examined to 1) incorporate fire 15 
risk information into the National Integrated Drought Information System California-Nevada 16 
Drought Early Warning System and 2) provide a baseline analysis for application of drought indices 17 
into a fire risk management framework. We analyzed four drought indices that incorporate 18 
precipitation and evaporative demand (E0) and three fire indices that reflect fuel moisture and 19 
potential fire intensity. Seasonally averaged fire danger indices were most strongly correlated to 20 
multi-scalar drought indices that use E0 (the Evaporative Demand Drought Index [EDDI] and 21 
Standardized Precipitation Evapotranspiration Index [SPEI]) at approximately annual time scales 22 
that reflect buildup of antecedent drought conditions. Results indicate that EDDI and SPEI can 23 
inform seasonal fire potential outlooks at the beginning of summer. An E0 decomposition case study 24 
of conditions prior to the Tubbs Fire in Northern California indicate high E0 (97th percentile) driven 25 
predominantly by low humidity signaled increased fire potential several days before the start of the 26 
fire. Initial use of EDDI by fire management groups during summer and fall 2018 highlights several 27 
value-added applications, including seasonal fire potential outlooks, funding fire severity level 28 
requests, and assessing set-up conditions prior to large, explosive fire cases. 29 

Keywords: drought; wildfire; drought index; fuel moisture; California; Nevada; evaporative 30 
demand  31 

 32 

1. Introduction 33 

Wildfire activity is directly linked to variations in weather and climate [1,2], and a number of 34 
studies have examined the link between drought indicators and wildfire occurrence in the western 35 
U.S. [3-5]. A drying trend has been observed in the southwestern U.S. over the past several decades 36 
[6,7] and instrumental records show the 2012-2015 period as one of the driest in California-Nevada 37 
(CA-NV) historical records [8-10] with compounding severe drought impacts driven by elevated 38 
temperatures resulting from climate change [11,12]. Western U.S. wildfires are becoming larger in 39 
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recent decades in terms of area burned [7], with 15 of the top 20 largest wildfires in California’s 40 
history occurring in the 21st century [13]. 41 

A requirement for large and destructive wildfires is abundant masses of fuels (dead and live 42 
vegetation) that are sufficiently dry to burn at high intensity and spread quickly. This is the most 43 
prominent link between drought and wildfire--drying at both climate and weather time scales 44 
critically affects the amount of moisture contained in available fuels. At climate time scales (i.e., ~one 45 
month to several years) meteorological drought can be considered the primary factor in drying of 46 
fuels through accumulated precipitation deficits and a simple lack of available water to support 47 
healthy vegetation in the plant water balance. These drying effects become more severe and 48 
accelerated during periods of above average temperatures when increased evapotranspiration (ET) 49 
leads to increased vegetative stress. A Mediterranean climate prevails over CA-NV (this is more 50 
pronounced in California) with a distinct dry season for about half of the year. This seasonal pattern 51 
leads to a climatological drying of fuels and high fire potential nearly every year that peaks during 52 
late summer into early fall. Climate enables fire and weather drives fire. Persistent hot, dry, and 53 
windy conditions clearly increase fire potential, but even short-term (1-2 weeks) periods of 54 
anomalous high temperature and low atmospheric moisture can lead to flash drying of fuels and a 55 
rapid increase in fire potential. Given the climate and weather patterns of the region, and that both 56 
California and Nevada are fire-prone environments with substantial wildland-urban interface 57 
communities, highlights the value of having an improved understanding of the relationships 58 
between drought and wildfire. More specifically, understanding how drought indices are related to 59 
fire danger indices, both used by the public and fire management. 60 

During the California dry season, lack of precipitation is a dominant factor for fuel drying, but 61 
fire weather (daily time scales out to patterns that can persist for several weeks) is more important 62 
for driving severe and extreme fire. Hot temperature, low humidity, and near-surface high wind 63 
speed are key fire weather variables. These elements can lead to flash drying of fuels early or late in 64 
the dry season and add stress to larger live fuels (i.e., large brush and timber). Impacts from short-65 
term drying conditions and extended drought can have acute effects on fire growth due to the 66 
reduction in fuel moisture, devolving into extreme fire conditions that can be deadly [14]. Yet little 67 
research has been conducted on how drought information relates to fuel moisture and other measures 68 
of fire danger. 69 

Many drought indices are driven by standard climate variables of precipitation and/or 70 
temperature, but more recent developments include variables that express conditions at the land 71 
surface-atmosphere interface such as vegetation health [15], soil moisture [16,17], actual ET [18], and 72 
evaporative demand (E0) [19-21]. These biophysical variables have also shown stronger correlations 73 
to forested area burned in the western U.S. compared to just temperature or precipitation, and the 74 
strongest relationships in northern California and the Southwest were found using E0 [22]. Physically 75 
based E0 methods use temperature, humidity, wind speed, and solar radiation: these are also the key 76 
variables used for computing national fire danger indices. 77 

This study examines connections between drought indices, based on standard and biophysical 78 
climate variables, and fire danger indices. One relevant use of this information is to help inform 79 
inputs for product generation such as the Predictive Services’ [23] significant fire potential outlooks 80 
that are currently issued at both weather and seasonal time scales. A correlation analysis was 81 
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conducted using drought and fire danger indices in CA-NV using wildland fire-management regions 82 
to answer several research questions:  83 

● Which drought index, or combination of indices, is most strongly related to fire 84 
danger indices? 85 

● For multi-scalar drought indices, what time scales relate best to fire danger indices?  86 
● Do strong correlations exist at lag times useful for potential predictive purposes? 87 

In this paper, a case study is also described using a recent large and destructive wildfire in 88 
northern California to highlight the potential use of E0-decomposition methods to identify the drivers 89 
and early onset of increased fire potential. 90 

2. Study Area  91 

The study was conducted over California and Nevada in the western U.S. Recently, the National 92 
Integrated Drought Information System (NIDIS) began development of the California Nevada 93 
Drought Early Warning System (CA-NV DEWS) [24] with a goal of providing information on 94 
drought and wildfire to CA-NV DEWS stakeholders and the wildland fire management community. 95 
Predictive Service Areas (PSAs), spatial boundaries used by Predictive Services for wildland fire 96 
activity monitoring and forecasting, were used as spatial averaging domains for all indices. 97 

Figure 1 shows the seasonal distribution of the total number of large wildfires (>1000 acres) for 98 
each PSA over the period 1984-2015. Fire count data is from the Monitoring Trends in Burn Severity 99 
database [25]. A clear seasonal cycle in fire can be seen with most fires occurring during the summer 100 
(the climatological dry season). However, large wildfires can occur during any season, particularly 101 
in California. As a case in point: two extreme wildfire events occurred during October and December 102 
of 2017 [26, 27] and two more during November of 2018 [13]. These events emphasize the need to 103 
conduct fire related studies during all periods of the year, and not just the dry season. 104 
 105 
3. Data and Methods 106 
 107 
3.1. Climate Data 108 
 109 

All derived indices in this study were calculated using the University of Idaho’s gridded 110 
meteorological data (gridMET) [28]. The gridMET data cover the contiguous U.S. at a 4-km spatial 111 
resolution and daily temporal resolution. For this study, the 1979-2015 period was used for the 112 
correlation analysis and 2017 data were used for the case study. gridMET has recently become a 113 
popular tool for fire-related studies due to its high space-time resolution and availability of additional 114 
fire-related variables, including humidity, wind speed, and solar radiation.  115 
 116 
3.2. Drought Indices 117 
 118 

Four established drought indices were used in this study. The Palmer Drought Severity Index 119 
[29] has historically been one of the most heavily used indices for drought monitoring. The PDSI 120 
relies on precipitation and E0 as inputs to a simplified soil-water balance and is considered a good 121 
indicator of soil moisture at time scales of about 9-12 months or longer [19]. PDSI calculations are 122 
made as part of the gridMET archive and were downloaded for the period 1979-2015. Traditionally, 123 
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PDSI is calculated monthly, but gridMET PDSI uses a modified formula to estimate values at 10-day 124 
time steps [30]. The American Society for Civil Engineers standardized reference ET [31] computed 125 
from temperature, wind speed, humidity, and solar radiation was used for E0 in the gridMET PDSI, 126 
and all other E0-based drought indices described below. 127 

The Standardized Precipitation Index (SPI) [32] is based only on precipitation and was the first 128 
drought index to allow for drought time scales to be defined by the user. The Standardized 129 
Precipitation Evapotranspiration Index (SPEI) [19] is a variation of the SPI by incorporating E0 and 130 
examining the accumulated difference between precipitation and E0. The Evaporative Demand 131 
Drought Index (EDDI) [20,21] looks only at E0, which has been shown to signal the onset of rapid 132 
drying and flash drought before other indicators such as precipitation, soil moisture, and actual ET 133 
[21,33,34]. A key advantage of multiscalar drought indices is the ability to link different durations of 134 
drought to other natural processes such as hydroclimatic variability [35-37], ecological indicators [38], 135 
and wildland fire fuel moisture. Precipitation and E0 data were based on gridMET for our study 136 
period, and SPI, SPEI, and EDDI were computed using a non-parametric plotting position-based 137 
probability approach [39,40]. Seventeen drought index time scales were examined in this study: 1- to 138 
3-week, 1- to 12-, 15-, and 18-month. 139 

 140 
Figure 1: Total number of large wildfires (> 1000 acres burned) for (a) winter, (b) spring, (c) summer, 141 
and (d) fall across the period 1984-2015 for each PSA in California and Nevada. Note the scale changes 142 
for each season.  143 
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3.3. Fire Danger Indices 144 
 145 

Fire-management agencies rely heavily on National Fire Danger Rating System indices (NFDRS) 146 
[41] for operational monitoring and wildland fire assessments. The following three NFDRS indices 147 
were used in this study: 100-hour fuel moisture, 1000-hour fuel moisture, and the Energy Release 148 
Component (ERC). These indices are computed using the fire weather variables of precipitation, 149 
temperature, humidity, solar radiation, and wind speed. The 100- and 1000-hour fuel moisture 150 
indices estimate dead fuel moisture at 2.5-7.6 cm and 7.6-20.3 cm diameters, respectively, while the 151 
ERC is an energy measure of the combined effects of fire intensity and dead and live fuel moisture 152 
[41]. All fire danger indices are computed as part of the gridMET archive and were downloaded for 153 
the study period. 154 
 155 
3.4. Correlation Analysis 156 
 157 

A correlation analysis was performed to establish basic relationships between fire danger indices 158 
and drought indices. For each PSA in CA-NV fire danger indices were first averaged spatially across 159 
the entire PSA and then averaged temporally over each season in each year, resulting in four 37-year 160 
time series for each index: winter (December-February), spring (March-May), summer (June-August), 161 
and fall (September-November). For drought indices, PDSI and gridMET precipitation and E0 were 162 
averaged over each PSA. Spatially averaged gridMET variables were then used to compute SPI, SPEI, 163 
and EDDI time series at 17 different time scales ranging from 1-week to 18-months. A Pearson 164 
correlation was then calculated between seasonally averaged fire danger and daily drought indices 165 
for each time scale. Correlations between drought index values and seasonal average fire-danger 166 
indices were calculated beginning on the last day of each season (February 28, May 31, August 31, 167 
and November 30) and then lagged daily (every 10 days for PDSI) out to the first day of each season. 168 
In this paper, we define "lag" as the time from the end of a timescale for a drought index to the end 169 
of the timescale for a fire danger index. For example, comparing a 3-month SPEI on June 1 to a 170 
summer-long ERC on August 31 represents a 91-day lag, as the end of the ERC period occurs 91 days 171 
after the end of the SPEI period. Daily lag analysis was done to find any lags associated with 172 
maximum correlations and to look for potential predictability of fire danger in antecedent drought 173 
conditions through drought index memory. First, the maximum correlations found were documented 174 
along with the associated drought index time scale (EDDI, SPEI, and SPI) and lag time in days. This 175 
answers the questions of which of the 17 different time scales are associated with maximum 176 
correlation. Second, the correlation at the start of each season (~90-day lag) was obtained along with 177 
the time scale that resulted in that greatest start of season correlation. 178 
 179 
3.5. Case Study: Tubbs Fire Evaporative Demand Decomposition 180 
 181 

On 9 October, 2017 a series of large and destructive wildfires ignited in California north of the 182 
San Francisco Bay with rapid spread driven by a severe Diablo wind event. The Tubbs Fire was the 183 
most destructive of these fires and resulted in 5,636 structures destroyed and 22 fatalities [27]. 184 
Following the approach in Hobbins [42] anomalies in E0 were decomposed to provide the 185 
contribution from the anomaly in each of its four drivers (temperature, specific humidity, wind speed, 186 
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and downwelling solar radiation). We used spatially averaged E0 data from Sonoma County, 187 
California, at the 2-week time scale (14-day running sum) to identify the dominant drivers of E0 188 
leading up to and during the Tubbs Fire. 189 

 190 

4. Results 191 

4.1. Correlation Analysis 192 

An example for the Northern Sierra, California PSA using summer average ERC is presented in 193 
Figure 2 to guide the reader on the methods used to create subsequent Figures 3-7 based on drought 194 
index time scale and lag. Maximum R2 (mapped in Figure 3) for EDDI (Figure 2a) is 0.86 at a 4-month 195 
time scale (mapped in Figure 4) and a 0-day lag (mapped in Figure 5). Similarly, the maximum R2, 196 
associated time scale, and associated lag for SPEI (Figure 2b) and SPI (Figure 2c) were mapped 197 
spatially by PSA in Figure 3. The plume of higher correlations extending back from the end of August 198 
indicates drought index memory in relation to fire danger (ERC in this case) and highlights potential 199 
predictability of the fire-danger indices at the start of the season (1 June in this case). Start of season 200 
maximum R2 was 0.50 for EDDI (Figure 2a), 0.40 for SPEI (Figure 2b), and 0.36 for SPI (Figure 2c), 201 
and these are mapped spatially by PSA in Figure 6. Time scales associated with maximum start of 202 
season R2 were 6-month (December-May) for EDDI, 12-month (June-May) for SPEI, and 11-month 203 
(July-May) for SPI, and these are mapped spatially by PSA in Figure 7. 204 
 205 

 206 
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Figure 2: Average summer ERC correlated to (a) EDDI, (b) SPEI, and (c) SPI at the Northern Sierra 207 
Nevada, California PSA. Vertical axis indicates drought index time scale in weeks (wk) or months (m) 208 
and horizontal axis shows the drought index ending day for the correlation. The zero-day lag is 209 
indicated at 31 August and the start of season lag (~90-day) is indicated at 1 June.  210 

Maximum correlations between the four drought indices and seasonal ERC (summarized results 211 
for 1000-hr fuel and 100-hr fuel shown in tables S1 and S2) are shown in Figure 3. Seasonally, only 212 
minor variations in R2 were found with spring showing the strongest relationships (domain mean R2; 213 
Table 1) for all drought indices. When considering CA-NV average R2 across all PSAs, the SPEI and 214 
EDDI consistently show the strongest relationships (with the exception of winter, when SPI had a 215 
greater R2 than EDDI) and often accounted for >80% of the ERC variance at individual PSAs, followed 216 
by SPI. PDSI demonstrated the weakest relationships across all seasons.  217 

 218 
Figure 3: Maximum R2 of each drought index with the seasonal Energy Release Component (ERC) 219 
fire danger index by season across the period 1979-2015 for each PSA in California and Nevada. 220 

Overall, timescales of three to four months were most commonly associated with the maximum 221 
correlations (Figure 4). Substantial variability can be found at the PSA level and also between 222 
different indices and different seasons. For example, during the fall, maximum correlations mostly 223 
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corresponded to 3- and 4-month time scales with EDDI (Figure 4d), but for SPEI (Figure 4e) maximum 224 
correlations at many PSAs in central and northern California corresponded to 5-month to 7-month 225 
timescales and to 2-month timescales in northern Nevada. In winter, maximum correlations 226 
corresponded to 9-month and 10-month timescales for SPEI (Figure 3h) and SPI (Figure 4i) in several 227 
central California PSAs. 228 

 229 

 230 
Table 1. California-Nevada domain-average maximum R2 between seasonally averaged ERC and 231 
drought indices. 232 

 Maximum R2 All Lags Maximum R2 90-day Lag 

JJA   

EDDI 0.76 0.44 

SPEI 0.79 0.43 

SPI 0.65 0.36 

PDSI 0.56 0.30 

SON   

EDDI 0.76 0.21 

SPEI 0.76 0.20 

SPI 0.65 0.16 

PDSI 0.48 0.10 

DJF   

EDDI 0.70 0.23 

SPEI 0.82 0.24 

SPI 0.75 0.23 

PDSI 0.53 0.06 
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MAM   

EDDI 0.86 0.29 

SPEI 0.87 0.32 

SPI 0.75 0.28 

PDSI 0.63 0.20 

 233 
Figure 4: Time scale of each drought index associated with the maximum correlations shown in Figure 234 
2. 235 
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Lag times associated with maximum correlations to ERC (maximum correlations shown in 236 
Figure 3) are shown in Figure 5. Generally, lags of less than 10 days were found with some variability 237 
at the PSA level. Most notably lags of 30-70 days were found with SPI in northern CA-NV during the 238 
fall. 239 

 240 
Figure 5: Lag (in days) at which the maximum correlation (highest R2) is found between each of the 241 
four drought indices (EDDI, SPEI, SPI, and PDSI) and the Energy Release Component (ERC) fire-242 
danger index, broken down by season and by PSA across California and Nevada. 243 

Daily lag correlations revealed that maximum correlations almost always occurred within the 244 
target season (lags < 90 days) and often close to the end of the target season. However, looking at the 245 
lag correlations matrices revealed substantial memory in the drought indices with strong correlations 246 
often beyond the 90-day lag. Figure 6 shows correlations for the 90-day (approximately one season) 247 
lag to highlight potential windows of seasonal fire danger predictability by drought indices. Summer 248 
showed the strongest correlations across the entire region with EDDI (domain mean R2 = 0.44) and 249 
SPEI (domain mean R2 = 0.43) again most frequently having the highest R2. EDDI summer correlations 250 
were strongest in California with several PSAs above 0.5 R2 and a peak of 0.59 at the Mid Coast to 251 
Mendocino PSA. For SPEI in summer, the Central Valley California PSA had the strongest correlation 252 
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with an R2 of 0.6, while R2 in most of central and northeast Nevada was above 0.5. Fairly strong 253 
relationships were also found in spring with EDDI, SPEI, and SPI, but limited primarily to the 254 
southernmost PSAs where several locations had R2 values between 0.5 and 0.59. Winter and fall 255 
correlations were weak overall with the exception of a few PSAs where EDDI, SPEI, and SPI were 256 
able to explain about 30-40% of the seasonal ERC variability. 257 

 258 

Figure 6: Start of season (90-day lag) R2 of each drought index with the seasonal Energy Release 259 
Component (ERC) fire danger index by season across the period 1979-2015 for each PSA in California 260 
and Nevada. 261 

Timescales associated with maximum 90-day lag correlations are displayed in Figure 7. Overall, 262 
these timescales are much different than those shown in Figure 3, which primarily are associated with 263 
much shorter lags. Summer correlations corresponded mostly to longer time scales of 10-15 months 264 
for most PSAs. Notably shorter time scales were found in much of central and northern California 265 
for EDDI and mostly northern coastal California for SPEI and SPI. For spring, the southern PSAs 266 
(where moderate correlations were found) time scales of maximum correlation were much shorter--267 
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mostly in the range of 1-3 months. Given the weak relationships found in fall and winter (Figure 6), 268 
little value or physical meaning should be given to the associated time scales. 269 

 270 

Figure 7: Time scale of each drought index associated with the 90-day lag correlations shown in Figure 271 
5. 272 

4.2. Evaporative demand attribution leading up to the Tubbs Fire 273 

To illustrate the relationship of the drivers of E0 and developing fire potential, Figure 8 tracks 274 
the development of the E0 anomaly and the contributions from each of its drivers across Sonoma 275 
County, California from mid-August through the end of October, 2018, covering the period of eight 276 
weeks prior to three weeks following the ignition of the Tubbs Fire. To minimize the noise of day-to-277 
day weather patterns, all variables are aggregated over a two-week window moving forward daily. 278 
E0 is elevated above its climatological mean throughout the period, with two notable spikes of E0 279 
percentiles elevated above 90% for extended periods. The first spike occurred from 31 August until 5 280 
September (prior to the fire outbreak): its greatest early contribution was from above-normal 281 
temperatures, with the effects of the other drivers acting to mitigate the rise in E0 for at least part of 282 
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the time—particularly humidity, which remained above normal. During the first two weeks of 283 
September, the above-normal temperatures abate, leading to a declining, though still positive, E0 284 
anomaly. However, the mitigating effects of above-normal humidity and below-normal wind speeds 285 
and solar radiation all reverse during this period to leave E0 near normal for the second half of 286 
September. After this point, temperature remains near normal, but the combined effects of now-287 
below-normal humidity and above-normal wind speed and solar radiation dominate the E0 anomaly, 288 
which climbs again through the day of the fire ignition (October 8) and afterwards. On the day of 289 
ignition, E0 reaches its second spike when it exceeds its 95th percentile. This indicates that near-290 
surface moisture was decreasing and a drying of the air mass was taking place even during a period 291 
of temperatures declining to near-normal values. It is also worth noting that wind speed had the 292 
largest contributions during the onset of the second spike from 29 September through 2 October. 293 
These patterns are suggestive of an important role of rapid (flash) meteorological impacts on fuels. 294 

 295 
Figure 8: Attribution of evaporative demand (E0) anomaly prior to and during the Tubbs Fire in 296 
Sonoma County, California, into contributions from each of its meteorological and radiative drivers. 297 
The 2-week E0 anomaly (black line) is spatially averaged across Sonoma County. The contributions 298 
from each of its drivers are shown as colored lines (temperature (T) in red, specific humidity (Q) in 299 
blue, downwelling shortwave radiation (Rd) in purple, wind speed (U2) in green); percentiles of 2-300 
week E0 are shown in dashed grey (right-hand axis); and the ignition date of the Tubbs Fire is shown 301 
as a vertical brown line. 302 

5. Discussion 303 

Findings from the maximum correlation analysis (Figure 3) demonstrate that the multi-scalar 304 
drought indices that incorporate E0 (EDDI and SPEI) typically have the strongest relationships to fire 305 
danger indices. This is not a surprising finding given that fire danger indices are computed with the 306 
same inputs as EDDI and SPEI, but it emphasizes an opportunity to take advantage of the multi-307 
scalar features of EDDI and SPEI to incorporate antecedent drought information into fire 308 
management. That is, multi-scalar drought indices could serve to complement the existing NFDRS 309 
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daily derived indices. One exception to EDDI having the strongest relationships was winter when 310 
SPI is better correlated than EDDI, which is most likely due to the fact that most of the annual 311 
precipitation in the region (especially in California) falls during the winter. Precipitation is much 312 
more limited during the warm-season months of April through September, and evaporative 313 
dynamics--driven by high temperatures, high wind, and low humidity---have a greater effect on 314 
drying of fuel moisture. The PDSI, which consistently showed the weakest relationships, also 315 
incorporates E0 but uses a much different model than EDDI and SPEI to depict drought, and has a 316 
static time scale of about 9-12 months that is clearly too long to reflect seasonal changes in fuel 317 
moisture. 318 

One application of drought indices that are strongly linked to fuel moisture is input for wildland 319 
fire outlooks. In the United States, Predictive Services issues monthly a National Significant Wildland 320 
Fire Potential Outlook [43] for fire management strategic planning and decision making. The drought 321 
index lag correlations described here offer potential for informing fire outlook products. This is most 322 
apparent in summer when EDDI and SPEI will likely provide the best results. A refinement of the 323 
correlations could be to develop statistical regression models at the PSA level based on the best 324 
combinations of drought indices to predict fuel moisture and fire potential. A combination of drought 325 
indices is suggested since large variability was found when looking at individual PSAs and there was 326 
not a single drought index “champion” for the entire region. A statistical model could help improve 327 
summer outlooks given the poor skill currently found in seasonal dynamical precipitation forecasts 328 
[44-47] and since precipitation plays only a minor role in fire danger during the summer in CA-NV. 329 
The connection between E0 and fire danger indices also highlights the possibility of using seasonal 330 
E0 forecasts as a tool for fire potential which have been shown to provide better skill than 331 
precipitation forecasts in the U.S. [47].  332 

 Results from the E0 attribution highlight the potential to use this method as a tool to monitor 333 
set-up conditions that are conducive to explosive fire growth and behavior as was seen with the 334 
Tubbs Fire. Further examination of this methodology may show climatological signatures of fire 335 
weather in E0 and its drivers that are typical to a particular region and season; this may prove to be 336 
of predictive use to fire managers. Our correlation analysis focused on seasonal time scales but the 337 
attribution example shows the potential for using E0 and EDDI and as a tool for guidance in short-338 
term products such as the Predictive Services’ 7-day Significant Fire Potential outlooks. Notably, the 339 
drying of the air mass that began in mid-September and the steady increase in specific humidity 340 
contributions (becoming the dominant driver several days before the fire began) to the E0 anomaly 341 
combined with positive contributions from wind speed could be seen as an early warning signal for 342 
increased fire potential when used in conjunction with many of the other indicators that were also 343 
signaling extreme fire potential in the days leading up to the Tubbs Fire [28]. One case study greatly 344 
limits the confidence in using this type of information for fire risk and more work is needed looking 345 
at E0 and EDDI for prediction of short-term fire potential. 346 

6. Conclusions 347 

Strong relationships exist between all drought indices and fire danger indices tested at all 348 
seasons and at most PSAs. Drought indices that incorporate E0 and are multi-scalar (i.e., EDDI and 349 
SPEI) typically were found to have the strongest correlations to fire danger indices. This suggests that 350 
seasonally (3- to 4-month EDDI, SPEI, and SPI), more severe drought conditions will be coincident 351 
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will dryer fuel moisture and greater fire danger. Some predictive potential exists for start of season 352 
fire potential outlooks using drought indices but is restricted to summer (entire region) and spring 353 
(southern PSAs) with EDDI and SPEI providing the most value. Time scales associated with start of 354 
season lag correlations indicate that antecedent drought conditions from the previous fall and winter 355 
play a strong role in determining summer fuel moisture and fire danger in CA-NV.  356 

To advance the understanding and value added of using drought indices for fire management, 357 
real world testing and application is the next needed step. A partnership between Predictive Services 358 
in northern California and the team of researchers who conducted this study has been established, 359 
and beta-testing of EDDI as a management tool was performed during summer and fall of 2018. Initial 360 
feedback indicates that EDDI was useful in determining set-up conditions prior to the Carr Fire (23 361 
July), near Redding, California, and Camp Fire (8 November) in Paradise, California [48,49]. Both 362 
fires were among the top 20 largest in California history and the Camp Fire was by far the most 363 
destructive in history with 85 deaths and nearly 19,000 structures destroyed [13]. Two specific 364 
applications of EDDI included using operational EDDI maps to replace the U.S. Drought Monitor 365 
(USDM) [50] in U.S. Forest Service Region 5 severity funding requests (requests are made throughout 366 
each fire season during periods with potential for abnormally severe fire behavior) and use of EDDI 367 
graphics in North Ops Predictive Services’ seasonal fire potential outlooks. The USDM does not 368 
explicitly consider fire potential and was not designed to be used operationally by fire managers, but 369 
project stakeholders consistently pointed to using the USDM as the primary tool to assess drought 370 
conditions related to fire potential. This is largely due to lack of training or engagement describing 371 
proper tools that more accurately depict drought relationships to fire potential at various time scales. 372 
This project highlights a value of connecting drought researchers to the fire management community. 373 

Several web-based applications have been developed recently that can provide CONUS-wide 374 
access to drought and fire danger indices in near real-time including the Google Earth Engine [51] 375 
cloud computing tool Climate Engine [52], the West Wide Drought Tracker [53], and NOAA’s 376 
operational EDDI tools [54]. These tools can be used with guidance from this analysis and feedback 377 
from stakeholders to build the drought-fire connection capacity in the CA-NV DEWS. Further studies 378 
in other regions, more research linking short-term drought (i.e., sub-monthly drought index time 379 
scales) to real-time fire potential (i.e., flash drying of fuels) and behavior, and applied stakeholder 380 
testing outside of northern California is needed and encouraged to successfully expand the 381 
application of drought information for operational fire management purposes. 382 
 383 
Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: California-384 
Nevada domain-average maximum R2 between seasonally averaged 1000-hr fuel moisture and drought indices, 385 
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and drought indices. 387 
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