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Abstract: In recent years, using multispectral cameras on UAVs has provided an opportunity to 11 
capture separate bands that offer the extraction of spectral features used for early detection of 12 
diseased plants. One of the main steps in disease detection is radiometric calibration that converts 13 
digital numbers to reflectance values commonly using white reference panels. This paper focused 14 
on the necessity of radiometric calibration to distinguish disease trees in orchards based on aerial 15 
multi-spectral images. For this purpose, two study sites with various climate conditions and tree 16 
species as well as different disease types were selected where multispectral images were taken using 17 
a multirotor UAV. The impact of radiometric correction on plant disease detection was assessed in 18 
two ways: 1) comparison of separability between the healthy and diseased classes using T-test and 19 
entropy distances; 2) radiometric calibration effect on the accuracy of classification. The 20 
experimental result showed the insignificant effect of radiometric calibration on separability criteria. 21 
Furthermore, based on T-test and entropy distances criteria, NIR and R spectral features made 22 
highest distances between healthy and Greening infected citrus trees, respectively, at the first study 23 
site while NDRE and BNDVI spectral features made highest distances between healthy and peach 24 
leaf curl infected trees, respectively, at the other study site. In the second strategy, the experimental 25 
result showed that radiometric calibration had no effect on the accuracy of classification. As a result, 26 
the overall accuracy and kappa values for both un-calibrated and calibrated orthomosaic 27 
classifications of the citrus orchard were 96.6% and 0.94%, respectively, using five spectral bands as 28 
well as DVI, NDRE, NDVI and GNDVI vegetation indices using a random forest classifier. The 29 
experimental results were also similar at the other study site. Therefore, the overall accuracy and 30 
kappa values for both the un-calibrated and calibrated orthomosaic classifications were 96.1%, 0.92, 31 
respectively, using five spectral bands as well as NDRE, BNDVI, GNDVI, DVI, and NDVI vegetation 32 
indices. 33 

Keywords: multispectral; radiometric calibration; classification; plant disease; Aerial imagery 34 
 35 

1. Introduction 36 
In recent years, the prediction of effective challenges on the crop yield such as climate change effects, 37 
diseases, and pests has become a critical issue in food managing strategies [1]. Furthermore, because 38 
of the population increase and instability of agricultural production due to climate variability, some 39 
methods and techniques have been developed for monitoring the condition of plants as well as the 40 
quality and quantity of agricultural products. 41 

Apparently, the inspection procedure for the early detection of the bacteria presence is extremely 42 
time consuming. Therefore, it is necessary to find a detection process which will be faster than the 43 
field inspection by experts [2]. The limitations of direct field inspection methods have led researchers 44 

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2019                   

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 13 February 2019                   doi:10.20944/preprints201902.0111.v1

©  2019 by the author(s). Distributed under a Creative Commons CC BY license.

Peer-reviewed version available at European Journal of Remote Sensing 2019, 52, 17-31; doi:10.1080/22797254.2019.1642143

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201902.0111.v1
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/22797254.2019.1642143


 2 of 22 

 

to investigate remote sensing data to quickly and inexpensively obtain plant health information. Non-45 
destructive remote sensing data permits measurement of biophysical and biochemical parameters of 46 
plants for nondestructive monitoring of plant growth and health [3-5]. These methods are based on 47 
the optical properties of plants and can be used for identifying nutrient deficiencies, plants diseases, 48 
minimum water and excess water, insect damage, weeds, etc. [3, 6-8]. Combination of plant 49 
knowledge and remote sensing data can provide information for plant management and even initial 50 
advices about plant stress to prevent the spread of disease or pest infestation by adopting appropriate 51 
reactions in the early stages of stress. 52 

In recent years, numerous remote sensing applications have been studied for monitoring the health 53 
of plants through using satellite [9, 10], airborne [10-14] and ground-based [15-20] remote sensed data. 54 
Multispectral images as well as related vegetation indices status ([21]; [9]; [12, 13]) and hyperspectral 55 
images ([22]; [10], [14]) are used in the airborne and space-borne remote sensing to study the health of 56 
plants. Ground-based remote sensing data is usually used to identify the best wavelengths along with 57 
optimum vegetation indices related to the effect of pest, disease and nutrient deficiency in plants with 58 
high correlation ([15] [18]. [19] [20]). More recently, in the remote sensing application, manned airborne 59 
vehicles are replaced with unmanned aerial vehicles (UAVs), which can be deployed quickly and 60 
repeatedly, and also have flexible flying height and timing of missions as well as high-resolution imagery 61 
[23].  62 

One of the main steps of image post-processing in remote sensing applications is the extraction 63 
of absolute reflectance measurements from the data in the radiometric calibration process [24]. It 64 
should be noted that the necessity of camera calibration is an open question. Therefore, this study 65 
investigated the potential of UAV based multispectral imagery in plant disease detection and 66 
especially concentrated on the necessity of radiometric calibration. 67 

The first study area was a citrus orchard with the Greening disease. The citrus Greening disease 68 
has become one of the greatest challenges for citrus growers across the world [25]. Citrus Greening, 69 
transmitted by grafting from citrus to citrus, can severely weaken citrus trees, causing reductions in 70 
fruit yield and quality. A sample of Greening symptoms on citrus tree leaves is presented in  71 

 
(a) 

 
(b) 

Figure 1(a). 72 
 The other study area is a peach orchard with the peach leaf curl (PLC) disease. The PLC fungal 73 

disease is one of the most common diseases of peach trees in the north of Iran that mostly affects peaches 74 
leaves and nectarines. PLC is caused by the ascomycetous fungus Taphrina deformans and causes parts 75 
of individual peach leaves to become curled and pale green or reddish in color ( 76 

 
(a) 

 
(b) 

Figure 1(b)) [26]. Taphrina deformans primarily affects a foliage, but may also affect fruits and young 77 
twigs [27].  78 

 79 
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(a) 

 
(b) 

Figure 1. (a) Greening symptoms on citrus tree leaves; (b) the PLC sample 80 
 81 

1.1. Related Works  82 
The fast technology development in UAV systems and the advent of small scale UAVs, which can carry 83 
small visible and multispectral sensors, provide the opportunity to capture high spatial and spectral 84 
resolution data, especially for agricultural application. In multispectral images, a variety of spectral bands 85 
offer the extraction of vegetation indices to distinguish diseased and healthy plants [23, 28-33]. 86 

To investigate the potential of the nutrient deficiency using UAV based multispectral images, 87 
Agüera et al. compared the correlation between the calculated NDVI from UAV based multispectral 88 
images and the ground-based multispectral radiometer with the nitrogen status in a sunflower field 89 
[28]. Results proved a higher correlation coefficient (R=0.80) using the UAV platform than a ground-90 
based measurement (R=0.71). In another study, Garcia-Ruiz et al. investigated the capability of UAV-91 
based multispectral images using for citrus greening detection in comparison with similar images 92 
captured based on piloted aircraft [29]. They achieved classification accuracy of 67–85% and 61–74% 93 
based on UAV-based and aircraft-based datasets, respectively, using six spectral bands as well as 94 
NDVI, GNDVI, SAVI, NIR–R, R/NIR, green(G)/R and NIR/R vegetation indices. To detect the citrus 95 
Greening disease, Sarkar et al. also presented an UAS sensor set including an onboard active 96 
spectrally selective light source and an RGB-D sensor that measures distance and reflectance of 97 
rotated polarized light [32]. They used a liner SVM classifier and reported 93% classification accuracy. 98 

De Castro et al. evaluated the spatial and spectral of multispectral requirements of images for 99 
quick and accurate detection of laurel wilt (LW) disease in an avocado field, considering the change 100 
in the flight altitudes and spectral sensors. Results demonstrated that most effective spectral 101 
wavelengths were 580–10 nm, 650–10 nm, 740–10 nm, 750–10 nm, 760–10 nm and 850–40 nm with 102 
15.3 cm spatial resolution and the optimum vegetation indices were TCARI760–650, GNDVI, NIR/G, 103 
Redge/G and VIGreen using Redge or NIR bands [31]. 104 

Albetis et al. evaluated the capability of spectral features computed from the UAV multispectral 105 
imagery including spectral bands, vegetation indices and biophysical parameters for discriminating 106 
the Flavescence doréesymptoms disease in red and white cultivars from healthy vine vegetation. 107 
Results presented best with red cultivars, but were not acceptable for white cultivars [33]. 108 

The radiometric calibration of the UAV based multispectral images is one of the main steps of image 109 
processing in remote sensing applications [24]. For the purpose, especially in UAV based remote sensing 110 
applications, usually an image-based empirical approach, called empirical lines based methods, is 111 
used [34]. This technique is based on the assumption of an empirical relationship between the image 112 
DNs and the at-surface reflectance which is made as a field measure of the appropriate Targets[35]. 113 

Kelcey and Lucieer for radiometric calibration of UAV based multispectral images of mini-MCA 114 
camera, used three radiometric targets made of a plywood and backing with a white tyvac, grey 115 
fabric and black fabric covers. The targets’ at-surface reflectance were measured by an ASD 116 
HandHeld 2 Portable Spectrometer [24]. In study, two black and white calibration targets with 3% 117 
and 82% reflectance, respectively, were used during flight for radiometric correction in empirical line 118 
calibration method which was carried out in ENVI software [31].  119 

On the other hand, along with a UAV based multispectral cameras, a white calibration panel is 120 
usually provided for radiometric calibration. Miura and Huete evaluated three white calibration 121 
panel based radiometric calibration methods in the hypersonic airborne data, called “reflectance 122 
mode”, “linear interpolation” and “continuous panel” [36]. These methods used white calibration 123 
panel to convert DN to at-surface reflectance. Clemens modified the “reflectance mode” method from 124 
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Miura and Huete (2009) to reduce the reflectance value conversion bias [37]. In this study, an average 125 
of the pre- and post-flight panel readings in the reflectance conversion is used which assumed a 126 
linearity due to the short time of flight. Garcia-Ruiz et al. used white board for radiometric calibration 127 
of the UAV-based images to ensure that 100% reflectance corresponding with a digital number of 255 128 
[29]. Albetis et al. also used the calibrated ground panel, before and after the flight, to convert the DN 129 
to at-surface reflectance in each band [33]. 130 

As shown in the literature, radiometric calibration is considered as the main step in UAV based 131 
plant disease detection, and measurements of reference targets are implemented in empirical line 132 
based methods by default, while the efficacy and necessity of this step is unclear. Therefore, the 133 
efficacy and necessity of the radiometric calibration step in plant disease detection using UAV based 134 
multispectral images were investigated in this study. 135 

 136 

2. Materials and Methods  137 

2.1. Study Area and Imaging System  138 
Two different agricultural fields located in the north and south of Iran were selected as the study 139 

area. The first one, a citrus orchard outbreak with Greening disease, is located in Fasa County, Fars 140 
Province, Iran ( 141 

`  
          (a)                                                                     (b) 

Figure 2-a). The second field is located in Neka City, Mazandaran Province, Iran, which is a 142 
peach orchard affected by the PLC disease ( 143 

`  
          (a)                                                                     (b) 

Figure 2-b). 144 
 145 
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`  
          (a)                                                                     (b) 

Figure 2. a) First data set; Citrus orchard in Fasa, b) Second data set; Peach orchard in Neka 146 

A small multirotor platform that is equipped with Micasense RedEdge multispectral camera, 147 
which is especially designed for agriculture applications, is selected for imaging of both test fields. A 148 
summary on specifications of both platform and imaging system is presented in Table 1. 149 

Table 1. Platform and imaging system specifications 150 

Platform Multispectral sensor 

Platform Type Hexa-copter Spectral bands Blue- Green-Red-RE-NIR 

Flight Duration 40 min size 12.1 x 6.6 x 4.6 cm 
Max Flight Altitude 200m AGL weight 150g 
Max takeoff weight 6 kg Field of view 47.2 º HFOV 

Dimension 1.2 m Focal length 5.5 mm 
 

 
  

 151 
To achieve reliable and efficient multispectral images, accurate flight planning is needed in order 152 

to achieve optimum image resolution and accuracy at the best flight time and cost. Some details on 153 
the flight planning parameters in the both study areas are presented in Table 2. 154 

 155 
Table 2. The flight planning parameters of the study sites 156 

 Fasa  Neka  
Flight Altitude (m) 25 10 

Area (m2) 16.2e+03 3.44e+03 
Flight Time (min) ~17  ~15  

Ground Resolution (mm/pix) 12.7 6.43 
Number of Images 494 760 

No of Strips 20 17 
Footprint (m2) 16.25x12.45 8.23x6.17 

Overlap 75% 80 % 
Sidelap 75% 70 % 

Disease and healthy trees as ground truth were selected by the experts’ visual inspection and 157 
labeled using special targets (Figure 5) before image acquisition to train and test the classifier. 158 
Therefore, 15 citrus Greening infected and 10 healthy trees at the Fasa study area as well as 20 PLC 159 
infected and 12 healthy trees at the other study area were selected as ground truth data. 160 
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 161 

2.2. Processing Methodology 162 
Figure 3 summarizes the workflow of proposed methodology for plants disease detection based 163 

on multispectral imagery and assessment of radiometric calibration evaluation necessity. 164 

Acquired multilens images were registered band-to-band in the first step and then aligned in 165 
the bundle adjustment process. Regarding the image acquisition under different illumination 166 
conditions, the normalization of image blocks is necessary in order to produce homogeneous block 167 
which is done based on radiometric block adjustment. Finally, Band registered aligned Images 168 
stitched together to produce ortho-music. In [24, 29, 31, 33, 38, 39], commonly radiometric calibration 169 
is done as the main step that convert DN to reflectance. In order to evaluate the radiometric 170 
calibration necessity of multispectral images and to inspect its effects on the quality of final results, 171 
classification process is performed both on DN (Strategy II) and reflections based data (Strategy I) 172 
and results were evaluated and discussed. The classification process consisted of three main steps: 173 
feature space generation; train classifier and performs classification to generate disease map. 174 

 175 
Figure 3. Data Processing Flow Diagram. Strategy I: Processing without Radiometric Calibration; 176 
Strategy-II: Processing based on reflectance orthomusaic by perform Radiometric Calibrated 177 

  178 
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2.2.1. Band-to-band Registration 179 

Recent developed UAV based multispectral cameras are usually composed of multilens 180 
structure (Figure 4). Due to the low altitude of flight in small UAV, Band miss-registration of 181 
multispectral images acquired by multilenses cameras is a great challenge [40]. In this study, SIFT1 182 
algorithm is applied to extract corresponding features from images. It is well suited for the feature 183 
detection and description because it is able to handle the special characteristics of the input data such 184 
as low image contrast as well as rotation, translation and scale differences [41]. After extraction of 185 
feature points using SIFT algorithm, the matching process can be done by comparing the minimum 186 
Euclidean distance between the extracted feature vectors. With the matched features, the 187 
mathematical relationship between the two images will be computable. Finally, the images were 188 
registered and resampled based on the projection transformation [42]. 189 

 190 
Figure 4: The MicaSense RedEdge as an advanced multilens and multispectral camera specially 191 
designed for small UAVs. 192 

2.2.2. Image Alignment 193 
Image alignment provides interior and exterior orientation parameters in the bundle adjustment 194 

process that use tie points in overlapping images [43]. Tie points could be extracted by the SIFT 195 
algorithm. The SIFT algorithm detects features and matches corresponding features in overlapping 196 
images; moreover, outliers and improper matches are eliminated simultaneously [44]. Thus, a sparse 197 
point cloud will be an output of the bundle adjustment [39]. This process is carried out effectively 198 
due to consideration of sufficient overlap and side laps of images during a flight mission.  199 

 200 

2.2.3. Radiometric Normalization 201 
Regarding the image acquisition under different illumination conditions, the radiometric 202 

normalization of image blocks is necessary in order to produce homogeneous orthomusaic. 203 
According to Gehrke and Beshah [45], the radiometric normalization parameters for all images in the 204 
block are computed in the least squares adjustment using radiometric tie points. The main 205 
observation equation for each radiometric tie point (extracted geometric tie points in image alignment 206 
step) between two images can be expressed as Equation (1): 207 

gBxyxyxygAxyxyxy bDNcbDNc ImIm }{}{0   (1)

where cxy and bxy are the normalization parameters. For the radiometric control points on the 208 
reference image, Equation (1) is rewritten as Equation (2):  209 

gAAdjxyxyxygfxy bDNcDN ImImRe }{}{    (2) 

Radiometric control points were applied to define the ‘radiometric datum’ [45].  210 

                                                
1 Scale Invariant Feature Transform 
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2.2.4. Orthomusaic Generation 211 
Because of the small footprint of each image, the acquired images were geometrically corrected and 212 
merged to produce a seamless orthomusaic of the whole area.  213 

In UAV imagery based applications, dense point cloud extraction based on the aligned images 214 
is a main step commonly [30, 39, 46, 47]. Finally, orthomusaic was generated based on aligned images 215 
and dense point cloud; Thus, the topographic relief of trees was considered there. However, in this 216 
study, an orthomusaic without trees topographic relief consideration satisfied our goals. Therefore, 217 
orthomusaic is generated based on aligned images and one coarse DSM producing from the sparse 218 
point cloud.  219 

2.2.5. Radiometric Calibration 220 
One of the main steps in image processing for remote sensing applications is the radiometric 221 

calibration process where the absolute reflectance measurements from the DN data is extracted [24]. 222 
Acquired images could be calibrated using radiometric reference images that captured from a 223 
calibrated reflectance panel before and after each flight [37]. 224 

In this study, “reflectance mode” method is applied for radiometric calibration based on Clemens 225 
[37]. In the Clemens method, an average of the pre- and post-flight panel measurements is used in the 226 
reflectance conversion. Equation (3) presents the basis of the reflectance factor calculation in the 227 
reflectance mode method. 228 

R
R

T
T R

DN
DNR   (3) 

where DNT is digital numbers of the target; DNR is the average of the pre- and post-flight in reference 229 
in images; and RR is the reflectance factor of the white panel which will determine RT, the reflectance 230 
factor of the unknown surface. 231 

 232 

2.2.6. Feature Space Generation 233 

One of the simplest techniques to map the vegetation is to use vegetation indices that are easily 234 
calculable and understandable [48]. Numerous vegetation indices are calculated as the difference or 235 
ratio of two or several bands in the wide range of the spectrum (e.g., NDVI, RVI, etc.). They constitute 236 
the simple and straight method to extract highly correlated information to biophysical parameters of 237 
plants from remotely sensed data. After extraction of ortho images, spectral features including five 238 
spectral bands and 12 vegetation indices were extracted to be applied in the classification (Table 3). 239 
In Table 3, B, G, R, RE and NIR are the blue, green, red, red edge, and near infra-red bands of the 240 
multispectral images, respectively. 241 

After calculating the spectral features, the most suitable features that discriminated between the 242 
healthy and unhealthy trees were selected in this study. Decreasing the number of features, increases 243 
the generalization capability and reduces the computational complexity of the classification 244 
algorithm [49]. The T-test and entropy distances measure the separability between two classes and 245 
can be used as criteria to evaluate the efficacy of each feature for discriminating between healthy and 246 
unhealthy trees classes. 247 

 248 

 249 

 250 

 251 
 252 
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Table 3. Applied vegetation indices 253 
Index Formula Reference 

Ratio Vegetation Index ܴܸܫ =
ܴܫܰ
ܴ  [50] 

Normalized Difference Vegetation Index ܰܫܸܦ = 	
ܴܫܰ − ܴ
ܴܫܰ + ܴ [17, 51] 

Green Normalized Difference Vegetation Index ܫܸܦܰܩ =
ܴܫܰ − ܩ
ܴܫܰ +  [52] ܩ

Green Ratio Vegetation Index ܫܸܴܩ =
ܴܫܰ
ܩ  [53] 

Blue Normalized Difference Vegetation Index ܫܸܦܰܤ =
ܴܫܰ − ܤ
ܴܫܰ +  [54] ܤ

Red Edge Normalized Difference Vegetation Index ܰܧܴܦ = 	
ܴܫܰ − ܧܴ
ܴܫܰ +  [55 ,17] ܧܴ

Infrared Percentage Vegetation Index ܫܸܲܫ = 	
ܴܫܰ

ܴܫܰ + ܴ [56] 

Structure Insensitive Pigment Index ܵܫܲܫ = 	
ܴܫܰ − ܤ
ܴܫܰ − ܴ [17, 57] 

Optimized Soil-Adjusted Vegetation Index OSAVI = (NIR-R)/(NIR+R+0.16) [9] 

Chlorophyll Index ܫܥ =
ܴܫܰ
ܩ − 1 [58, 59] 

Difference Vegetation Index DVI = NIR-R [60] 

Greenness Index ܫܩ =
ܩ
ܴ [61] 

 254 

2.2.7. Classification 255 
After feature space generation, the final step towards health map generation is the classification of images 256 

based on selected training data. For this purpose, a random forest classifier, developed by Breiman [62], is used 257 
due to its simplicity and high performance [63, 64]. Random forests non-parametric classifier is an ensemble-258 
based machine-learning algorithm that engages the multiple decision tree classifiers in a voting strategy to 259 
provide the final prediction. It consists of several decision tree classifiers that build using a bootstrap sample of 260 
the data with a random variable set at each node to split on.  261 

Implementation of random forest classifiers requires a few parameters, including the number of trees and 262 
the number of randomly selected predictor variables [65]. So random forest offer less complex computations 263 
and running time, as well as high performances in computer vision domain especially [66]. In this study, we 264 
used a random forest classifier consisting of 100 decision trees. 265 

The final accuracy in detection of the diseased and healthy trees is tested by calculating error 266 
matrices of the test data (references). The error matrix presents the error of omission, error of 267 
commission, overall accuracy and kappa (κ) values (references). 268 

 269 

3. Experiments and Results  270 
In this study, we evaluated the impact of radiometric calibration on UAV based multispectral plant 271 
disease detection using the two datasets with different disease and environmental conditions. For 272 
this, 557 images from the Fasa test area and 683 images from the Neka test area were captured based 273 
on the flight plan.  274 

3.1. Band-to-band Registration 275 
The first processing step is spectral bands registration of images. Due to the multilenses structure of 276 
multispectral camera, a considerable geometric displacement between images captured by lenses 277 
appeared. To remove the displacements, the red band was selected as the master and the rest were 278 
considered as slaves which should be registered to the master. The band registration of all the images 279 
were conducted based on the proposed strategy and the RMSE value of 0.4 pixels was available based 280 
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on the target measurement. Figure 5 shows two false color images of the same scene: original image 281 
and band registered image as a sample. 282 
 283 

 284 

Figure 5. Spectral bands registration of Micasense RedEdge camera images; Right: uncorrected, Left: 285 
Corrected. 286 

3.2. Image Alignment and Seamless Orthomosaic Generation 287 
After band registration step, a seamless orthomosaic of the whole area covering in the imagery 288 

step should be generated with five spectral bands. For this purpose, multispectral images must be 289 
aligned. In this step, geometric tie points were extracted, and image interior and exterior parameters 290 
were estimated. Table 4 presents the summary of the block adjustment parameters.  291 

Table 4. Summary of the block adjustment parameters 292 
 Fasa Site Neka Site 

Number of images 1470 3800 
Tie points 2,529,731 2,534,329 

RMS reprojection error (0.66246 pix)  (0.85034 pix) 

Max reprojection error (31.9115 pix)  (27.3773 pix) 

 293 

Based on the aligned band registered images, a dense point cloud was produced and used in 294 
orthomosaics generation. The specification of the dense point cloud and orthomosaics are presented 295 
in Table 5. 296 

Table 5. Specification of dense point clouds and orthomosaics 297 
  Fasa Site Neka Site 

Orthomosaic 
Resolution(cm/pix) 1.27 0.643 

Size (pixel) 12713x15413 7485x15283 

Dense Point Cloud Size (point) 26909315 25386097 

 298 
The generated orthomosaics are depicted in Figure 6. 299 
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 300 
Figure 6: Left up: Fasa study site orthomosaic without radiometric normalization, Right Up: Fasa 301 
study site orthomosaic with radiometric normalization. Left down: Neka study site orthomosaic 302 
without radiometric normalization, Right down: Neka study site orthomosaic with radiometric 303 
normalization. 304 

As is depicted in Figure 6, a seamless orthomosaics was generated after radiometric 305 
normalization which was prepared for the feature extraction and classification processing step. 306 

3.3. Radiometric Calibration 307 
For the radiometric calibration process, reference images of a white panel were captured immediately 308 
before and after each flight. A sample image acquired from the calibrated reflectance panel is 309 
presented in Figure 7. 310 

  
 311 

Figure 7. Left: reflectance panel image acquisition, right: Red edge band captured from reflectance 312 
panel. 313 
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Maximum DNs in the images captured from the white panel, before and after the flight (BF and 314 
AF, respectively), are listed in Table 6 for the both study data sets.  315 

 316 
Table 6. The maximum DN of the white panel in the five spectral bands 317 

 Fasa Site Neka Site 

Spectral Band BF AF BF AF 

Blue 57488 55424 52000 32320 

Green 59152 58304 47744 34480 

Red 54480 53248 42816 28128 

NIR 58048 55280 44208 29696 

RedEdge 59472 53696 44624 26784 

 318 
DNs values are related with at-sensor radiance directly; Thus, Table 6 shows the decrease in at-319 

sensor radiance during the both flights. The rate of this reduction was much higher at the Neka site, which 320 
indicated a significant change in illumination conditions during that flight. The mean DN values of BF 321 
and AF were used in Equation (3) to calculate the reflectance-based values and new orthomosaics 322 
were generated based on these new values for each study data.  323 

3.4. Spectral Feature Analysis 324 
Feature space in our study includes five spectral bands (Blue, Green, Red, RE and NIR) and 12 325 

vegetation indices (RVI, NDVI, GNDVI, GRVI, BNDVI, NDRE, IPVI, SIPI, OSAVI, CI, DVI and GI).  326 
In order to investigate the necessity of sensor calibration for vegetation disease detection, 327 

separability between healthy and un-healthy tree classes, related features were investigated using T-328 
test and entropy criteria using ground truth data collected from the calibrated and un-calibrated data 329 
for the both study areas. The experimental results are presented in Figure 8. 330 

 331 
Figure 8: The distance between healthy and un-healthy classes based on T-test and entropy criteria 332 

in ground truth data collected from calibrated and un-calibrated based orthomosaics 333 

Considering the achieved values presented in Figure 8, it can be concluded that the camera 334 
calibration did not have any effects on the result based on T-test and entropy distances. However, 335 
comparing the extracted feature values in ground truth data measured in calibrated and un-336 
calibrated orthomosaics states partly different values in the both study areas (Figure 9).  337 
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 338 

Figure 9: The feature values in ground truth data collected from calibrated and un-calibrated based 339 
orthomosaics  340 

3.5. Classification 341 

Three main classes were determined as un-healthy trees, healthy trees and non-trees at the study 342 
sites. Using the red and near infra-red spectral bands, the non-tree class was easily separated exactly 343 
from the trees classes. However, the detection of healthy and un-healthy trees classes remained as 344 
the main challenge.   345 

Five spectral bands, as well as some VI that have high discrimination between healthy and un-346 
healthy classes based on T-test and entropy criteria (Figure 8) and low correlation together (Table 7) 347 
were used in a random forest classifier consisting of 100 decision trees. 348 

 349 
Table 7. Vegetation indices correlations at the Fasa study site 350 

 351 
 352 

From Table 7, it is obvious that there were higher correlations between RVI, NDVI, IPVI, OSAVI, 353 
and CI, between BNDVI and SIPI, and between GNDVI and GI; similar results were obtained for the 354 
other study site. 355 

At the Fasa study site, five spectral bands as well as DVI, NDRE, NDVI, and GNDVI vegetation 356 
indices were used in the classification process of un-calibrated and calibrated orthomosaics. Figure 10 357 
shows the generated map of the healthy and Greening infected trees and non-trees. There was 358 
insignificant difference in the classification maps (Figure 10). Small differences in results were observable, 359 
although were not significant. 360 
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Figure 10. The classification map of healthy trees (green), Greening infected trees (yellow) and non-361 
trees (red) based on the un-calibrated (Left) and calibrated (Right) orthomosaics at the Fasa study site 362 

 363 

The overall accuracy and kappa values for both un-calibrated and calibrated based orthomosaic 364 
classifications were 96.6% and 0.94, respectively. The confusion matrix and estimated user’s and 365 
producer’s accuracy measures are also presented in Table 8 (un-calibrated orthomosaic) and Table 9 366 
(calibrated orthomosaic). 367 

Table 8. The confusion matrix and estimated user’s and producer’s accuracy of un-calibrated 368 
orthomosaic at the Fasa site  369 

Confusion Matrix 
 Classified Data 

Disease Healthy Non-tree 

Test Data 
Disease 93.1% 7.8% 0.1% 
Healthy 6.9% 92.2% 0% 
Non-tree 0% 0% 99.9% 
User’s and Producer ‘s Accuracy 

Class/Accuracy User (%) Producer (%) 
Un-healthy 93.1 96.6 
Healthy 92.2 84.6 
Non-tree 99.99 100 

Table 9. The confusion matrix and estimated user’s and producer’s accuracy of calibrated 370 
orthomosaics at the Fasa site  371 

Confusion Matrix 
 Classified Data 

Disease Healthy Non-tree 

Test Data 
Disease 92.8% 6.9% 0.1% 
Healthy 7.1% 93.1% 0% 
Non-tree 0% 0% 99.9% 
User’s and Producer ‘s Accuracy 

Class/Accuracy User (%) Producer (%) 
Un-healthy 93.1 96.6 
Healthy 92.2 84.6 
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Non-tree 99.99 100 

At the Neka study site, classification of the un-calibrated and calibrated orthomosaics is 372 
performed using five spectral bands as well as NDRE, BNDVI, GNDVI, DVI, and NDVI vegetation 373 
indices.  374 

  

Figure 11 the classification result of healthy, Leaf Peach Curve infected and non-trees at the Neka 375 
study site. As in the Fasa data set, no significant difference in the classification map is observable ( 376 

  

Figure 11). 377 
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Figure 11. The classification map of healthy trees (green), leaf peach curve infected trees (yellow) and non-trees 378 
(red) or the un-calibrated (left) and calibrated (right) orthomosaics at the Neka study site 379 

Achieved overall accuracy and kappa values for both the un-calibrated and calibrated 380 
orthomosaic classifications were 96.1% and 0.92, respectively. The confusion matrix and estimated 381 
user’s and producer’s accuracy measures are also computed and presented in Table 10 and  382 

 383 

 384 

Table 11, respectively. 385 

Table 10. The confusion matrix and estimated user’s and producer’s accuracy of un-calibrated 386 
orthomosaic at the Neka site 387 

Confusion Matrix 
 Classified Data 

Disease Healthy Non-tree 

Test Data 
Disease 87.6% 9.7% 0.1% 
Healthy 11.9% 90.3% 0.1% 
Non-tree 0.5% 0% 99.8% 
User’s and Producer ‘s Accuracy 

Class/Accuracy User (%) Producer (%) 
Disease 87.6 86.0 
Healthy 90.3 91.2 
Non-tree 99.8 99.9 

 388 

 389 

 390 

Table 11. The confusion matrix and estimated user’s and producer’s accuracy of calibrated 391 
orthomosaics at the Neka site 392 
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Confusion Matrix 
 Classified Data 

Disease Healthy Non-tree 

Test Data 
Disease 86.7% 9.1% 0.1% 
Healthy 12.6% 90.8% 0.1% 
Non-tree 0.7% 0.1% 99.8% 
User’s and Producer ‘s Accuracy 

Class/Accuracy User (%) Producer (%) 
Disease 86.7 86.8 
Healthy 90.8 90.7 
Non-tree 99.8 99.8 

 393 
Inspecting results, it can be concluded that radiometric calibration of images has minor effect on 394 

the classification accuracy. In the both statuses, almost the same precision was achieved and the 395 
confusion matrix components were not significantly different.  396 

4. Discussion  397 
Radiometric calibration is mentioned as one of the main steps in UAV based plant disease detection, 398 
and measurements of reference targets are implemented in empirical line based methods by default.. 399 
To study the necessity of this process, in this paper, two study data with different environmental conditions and 400 
affected by different diseases were classified to generate a tree health state map. Therefore, different processing 401 
steps were analyzed and the focus was on the necessity of radiometric calibration. 402 

The multi-lenses structure of the multispectral camera in low flight altitude missions created a 403 
considerable geometric displacement between the spectral bands (Figure 5) which is up to 25 pixels 404 
for our data. Here, the maximum height difference is about 10 meters. Ignoring this displacement 405 
will result in different spectral features for the same objects and will lead to unsuitable training data. 406 
Therefore, the band-to-band registration step is important in the application; here, even leaf size is 407 
important and will reduce the registration error up to an average RMSE of 0.4 Pixel. It has to be 408 
mentioned that in images with extremely small relief variances with respect to flight height or with 409 
not much small focusing elements, the registration process can be neglected. In this situation, the 410 
ortho generation process can reduce the displacement to an acceptable level.  411 

Orthomusaic is generated based on aligned images with the accuracy of 0.85 pixel and generated 412 
dense point cloud. However, different illumination conditions in each capturing station 413 
heterogeneous final orthomosaics (Figure 6-Left) and corrupts training data like the previous step. 414 

The next step to prepare the training data is radiometric calibration which is performed based on 415 
empirical lines and changes pixel values linearly in each band. Therefore, outputs of this step can 416 
change the spectral features values. As shown in Figure 9, variation in most of the VIs is small due to 417 
their relative nature.  418 

The detection of the healthy and un-healthy tree classes was performed using a random forest 419 
classifier. For this purpose, feature space was produced, including five spectral bands and 12 420 
vegetation indices. The best features were selected based on the separation criteria of the tree classes 421 
and the correlation between the features. The correlation ranges from 94.5% to 100% between RVI, 422 
NDVI, IPVI, OSAVI, and CI, is 94.7% between BNDVI and SIPI, and is 97.6% between GNDVI and 423 
GI (Table 7); thus, six features can be eliminated. Moreover, at the Fasa study site, the spectral bands 424 
DVI and NDRE made the highest separation whereas the spectral band BNDVI made the lowest 425 
separation between the healthy and un-healthy tree classes. On the other hand, at the Neka study 426 
site, NDRE and BNDVI made the highest separation while GRVI made the lowest separation between 427 
classes. Classification was carried out using the selected features, and results are presented in Table 428 
8 to  429 

 430 
 431 
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Table 11. At the Fasa study site, citrus orchard with the greening disease, the overall accuracy 432 
and kappa values for both the un-calibrated and calibrated orthomosaic classifications were 96.6% 433 
and 0.94, respectively. Similarly, the experimental results at the Neka study site with PLC yielded the 434 
same conclusions. The overall accuracy and kappa values for both the un-calibrated and calibrated 435 
orthomosaic classifications were 96.1% and 0.92, respectively. However, because of the linear 436 
structure of radiometric calibration, separation of the healthy and un-healthy tree classes based on t-437 
test and entropy criteria did not change using the most spectral features (Figure 8); consequently, 438 
there were insignificant differences in the classification results after radiometric calibration.  439 

  440 

5. Conclusions 441 

This study investigated the necessity of radiometric calibration in UAV based multispectral imagery 442 
for plant tree disease detection and classification applications. For this purpose, two study sites with 443 
different conditions of climate, date, tree species and disease types were selected and multispectral 444 
images were captured using a RedEdge camera mounted on a multirotor UAV. 445 

Due to the multi-lens structure of the camera and the low flying altitude, the band-to-band miss-446 
registration error was not negligible; therefore, in the first step, they were registered. Then, to 447 
generate seamless orthomosaics, the registered images were aligned and radiometric normalization 448 
was implemented.  449 

Radiometric calibration effects on plant classification and disease detection were evaluated in 450 
two scenarios. First, discrimination of the healthy and un-healthy classes was compared using T-test 451 
and entropy distances considering ground truth data collected from calibrated and un-calibrated 452 
orthomosaics. The experimental results showed that the effects of radiometric calibration on 453 
separability criteria using most spectral features were insignificant . In the other scenario, the 454 
radiometric calibration effects on the accuracy of classification were investigated. For this purpose, 455 
the best features were selected based on the separation criteria of the tree classes and the correlation 456 
between the features. The random forest classifier was applied to detect diseased trees. Experimental 457 
results showed insignificant differences in the classification results after radiometric calibration. At 458 
the Fasa study site, the overall accuracy and kappa values for both un-calibrated and calibrated 459 
orthomosaic classifications were 96.6% and 0.94, respectively. On the other study site, the overall 460 
accuracy and kappa values for both un-calibrated and calibrated orthomosaic classifications were 461 
96.1% and 0.92. 462 

It should also be noted that the classifier was trained based on the training data collected from 463 
the original data; therefore, due to the small change in the vegetation indices values, future studies 464 
will focus on the efficiency of radiometric calibration on the classification based on spectral library 465 
training data. 466 
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