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11 Abstract: In recent years, using multispectral cameras on UAVs has provided an opportunity to
12 capture separate bands that offer the extraction of spectral features used for early detection of
13 diseased plants. One of the main steps in disease detection is radiometric calibration that converts
14 digital numbers to reflectance values commonly using white reference panels. This paper focused
15 on the necessity of radiometric calibration to distinguish disease trees in orchards based on aerial
16 multi-spectral images. For this purpose, two study sites with various climate conditions and tree
17 species as well as different disease types were selected where multispectral images were taken using
18 a multirotor UAV. The impact of radiometric correction on plant disease detection was assessed in
19 two ways: 1) comparison of separability between the healthy and diseased classes using T-test and
20 entropy distances; 2) radiometric calibration effect on the accuracy of classification. The
21 experimental result showed the insignificant effect of radiometric calibration on separability criteria.
22 Furthermore, based on T-test and entropy distances criteria, NIR and R spectral features made
23 highest distances between healthy and Greening infected citrus trees, respectively, at the first study
24 site while NDRE and BNDVI spectral features made highest distances between healthy and peach
25 leaf curl infected trees, respectively, at the other study site. In the second strategy, the experimental
26 result showed that radiometric calibration had no effect on the accuracy of classification. As a result,
27 the overall accuracy and kappa values for both un-calibrated and calibrated orthomosaic
28 classifications of the citrus orchard were 96.6% and 0.94%, respectively, using five spectral bands as
29 well as DVI, NDRE, NDVI and GNDVI vegetation indices using a random forest classifier. The
30 experimental results were also similar at the other study site. Therefore, the overall accuracy and
31 kappa values for both the un-calibrated and calibrated orthomosaic classifications were 96.1%, 0.92,
32 respectively, using five spectral bands as well as NDRE, BNDVI, GNDVI, DVI, and NDVI vegetation
33 indices.
34 Keywords: multispectral; radiometric calibration; classification; plant disease; Aerial imagery
35

36 1. Introduction

37  Inrecent years, the prediction of effective challenges on the crop yield such as climate change effects,
38  diseases, and pests has become a critical issue in food managing strategies [1]. Furthermore, because
39  of the population increase and instability of agricultural production due to climate variability, some
40  methods and techniques have been developed for monitoring the condition of plants as well as the
41  quality and quantity of agricultural products.

42 Apparently, the inspection procedure for the early detection of the bacteria presence is extremely
43 time consuming. Therefore, it is necessary to find a detection process which will be faster than the
44  field inspection by experts [2]. The limitations of direct field inspection methods have led researchers
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45  toinvestigate remote sensing data to quickly and inexpensively obtain plant health information. Non-
46  destructive remote sensing data permits measurement of biophysical and biochemical parameters of
47  plants for nondestructive monitoring of plant growth and health [3-5]. These methods are based on
48  the optical properties of plants and can be used for identifying nutrient deficiencies, plants diseases,
49 minimum water and excess water, insect damage, weeds, etc. [3, 6-8]. Combination of plant
50  knowledge and remote sensing data can provide information for plant management and even initial
51  advices about plant stress to prevent the spread of disease or pest infestation by adopting appropriate
52 reactions in the early stages of stress.

53 In recent years, numerous remote sensing applications have been studied for monitoring the health
54 of plants through using satellite [9, 10], airborne [10-14] and ground-based [15-20] remote sensed data.
55 Multispectral images as well as related vegetation indices status ([21]; [9]; [12, 13]) and hyperspectral
56  images ([22]; [10], [14]) are used in the airborne and space-borne remote sensing to study the health of
57  plants. Ground-based remote sensing data is usually used to identify the best wavelengths along with
58  optimum vegetation indices related to the effect of pest, disease and nutrient deficiency in plants with
59  high correlation ([15] [18]. [19] [20]). More recently, in the remote sensing application, manned airborne
60  vehicles are replaced with unmanned aerial vehicles (UAVs), which can be deployed quickly and
61  repeatedly, and also have flexible flying height and timing of missions as well as high-resolution imagery
62 [23]

63 One of the main steps of image post-processing in remote sensing applications is the extraction
64  of absolute reflectance measurements from the data in the radiometric calibration process [24]. It
65  should be noted that the necessity of camera calibration is an open question. Therefore, this study
66  investigated the potential of UAV based multispectral imagery in plant disease detection and
67  especially concentrated on the necessity of radiometric calibration.

68 The first study area was a citrus orchard with the Greening disease. The citrus Greening disease
69  has become one of the greatest challenges for citrus growers across the world [25]. Citrus Greening,
70 transmitted by grafting from citrus to citrus, can severely weaken citrus trees, causing reductions in
s tree leaves is presented in

71 fruit yield and quality. A sample of Greening symptoms on citru
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72 Figure 1(a).

73 The other study area is a peach orchard with the peach leaf curl (PLC) disease. The PLC fungal
74 disease is one of the most common diseases of peach trees in the north of Iran that mostly affects peaches
75  leaves and nectarines. PLC is caused by the ascomycetous fungus Taphrina deformans and causes parts
76  of individual peach leaves to become curled d ale green or reddish iIn’C010r (

TSR 4 i

(b)

77 Figure 1(b)) [26]. Taphrina deformans primarily affects a foliage, but may also affect fruits and young
78  twigs [27].
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80 Figure 1. (a) Greening symptoms on citrus tree leaves; (b) the PLC sample
81

82  1.1. Related Works

83  The fast technology development in UAV systems and the advent of small scale UAVs, which can carry
84  small visible and multispectral sensors, provide the opportunity to capture high spatial and spectral
85  resolution data, especially for agricultural application. In multispectral images, a variety of spectral bands
86  offer the extraction of vegetation indices to distinguish diseased and healthy plants [23, 28-33].
87 To investigate the potential of the nutrient deficiency using UAV based multispectral images,
88  Agiiera et al. compared the correlation between the calculated NDVI from UAV based multispectral
89  images and the ground-based multispectral radiometer with the nitrogen status in a sunflower field
90  [28]. Results proved a higher correlation coefficient (R=0.80) using the UAV platform than a ground-
91  based measurement (R=0.71). In another study, Garcia-Ruiz et al. investigated the capability of UAV-
92  based multispectral images using for citrus greening detection in comparison with similar images
93 captured based on piloted aircraft [29]. They achieved classification accuracy of 67-85% and 61-74%
94  based on UAV-based and aircraft-based datasets, respectively, using six spectral bands as well as
95 NDVI, GNDVI, SAV], NIR-R, R/NIR, green(G)/R and NIR/R vegetation indices. To detect the citrus
96  Greening disease, Sarkar et al. also presented an UAS sensor set including an onboard active
97  spectrally selective light source and an RGB-D sensor that measures distance and reflectance of
98  rotated polarized light [32]. They used a liner SVM classifier and reported 93% classification accuracy.
99 De Castro et al. evaluated the spatial and spectral of multispectral requirements of images for
100  quick and accurate detection of laurel wilt (LW) disease in an avocado field, considering the change
101  in the flight altitudes and spectral sensors. Results demonstrated that most effective spectral
102 wavelengths were 580-10 nm, 650-10 nm, 740-10 nm, 750-10 nm, 760-10 nm and 850—40 nm with
103 15.3 cm spatial resolution and the optimum vegetation indices were TCARI760-650, GNDVI, NIR/G,
104  Redge/G and VIGreen using Redge or NIR bands [31].
105 Albetis et al. evaluated the capability of spectral features computed from the UAV multispectral
106  imagery including spectral bands, vegetation indices and biophysical parameters for discriminating
107  the Flavescence doréesymptoms disease in red and white cultivars from healthy vine vegetation.
108 Results presented best with red cultivars, but were not acceptable for white cultivars [33].
109 The radiometric calibration of the UAV based multispectral images is one of the main steps of image
110 processing in remote sensing applications [24]. For the purpose, especially in UAV based remote sensing
111  applications, usually an image-based empirical approach, called empirical lines based methods, is
112 used [34]. This technique is based on the assumption of an empirical relationship between the image
113 DNs and the at-surface reflectance which is made as a field measure of the appropriate Targets[35].
114 Kelcey and Lucieer for radiometric calibration of UAV based multispectral images of mini-MCA
115 camera, used three radiometric targets made of a plywood and backing with a white tyvac, grey
116  fabric and black fabric covers. The targets’ at-surface reflectance were measured by an ASD
117  HandHeld 2 Portable Spectrometer [24]. In study, two black and white calibration targets with 3%
118  and 82% reflectance, respectively, were used during flight for radiometric correction in empirical line
119 calibration method which was carried out in ENVI software [31].
120 On the other hand, along with a UAV based multispectral cameras, a white calibration panel is
121 usually provided for radiometric calibration. Miura and Huete evaluated three white calibration
122 panel based radiometric calibration methods in the hypersonic airborne data, called “reflectance
123 mode”, “linear interpolation” and “continuous panel” [36]. These methods used white calibration
124 panel to convert DN to at-surface reflectance. Clemens modified the “reflectance mode” method from
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Miura and Huete (2009) to reduce the reflectance value conversion bias [37]. In this study, an average
of the pre- and post-flight panel readings in the reflectance conversion is used which assumed a
linearity due to the short time of flight. Garcia-Ruiz et al. used white board for radiometric calibration
of the UAV-based images to ensure that 100% reflectance corresponding with a digital number of 255
[29]. Albetis et al. also used the calibrated ground panel, before and after the flight, to convert the DN
to at-surface reflectance in each band [33].

As shown in the literature, radiometric calibration is considered as the main step in UAV based
plant disease detection, and measurements of reference targets are implemented in empirical line
based methods by default, while the efficacy and necessity of this step is unclear. Therefore, the
efficacy and necessity of the radiometric calibration step in plant disease detection using UAV based
multispectral images were investigated in this study.

2. Materials and Methods

2.1. Study Area and Imaging System

Two different agricultural fields located in the north and south of Iran were selected as the study
area. The first one, a citrus orchard outbreak with Greening disease, is located in Fasa County, Fars
Province, Iran (
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Figure 2-a). The second field is located in Neka City, Mazandaran Province, Iran, which is a

peach orchard affected by the PLC disease (
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Figure 2. a) First data set; Citrus orchard in Fasa, b) Second data set; Peach orchard in Neka
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A small multirotor platform that is equipped with Micasense RedEdge multispectral camera,
which is especially designed for agriculture applications, is selected for imaging of both test fields. A
summary on specifications of both platform and imaging system is presented in Table 1.

Table 1. Platform and imaging system specifications

Platform Multispectral sensor
Platform Type Hexa-copter Spectral bands Blue- Green-Red-RE-NIR
Flight Duration 40 min size 12.1x 6.6 x 4.6 cm
Max Flight Altitude 200m AGL weight 150g
Max takeoff weight 6 kg Field of view 47.2 ¢ HFOV
Dimension 1.2m Focal length 5.5 mm

e

To achieve reliable and efficient multispectral images, accurate flight planning is needed in order
to achieve optimum image resolution and accuracy at the best flight time and cost. Some details on
the flight planning parameters in the both study areas are presented in Table 2.

Table 2. The flight planning parameters of the study sites

Flight Altitude (m)

Area (m?)

Flight Time (min)

Ground Resolution (mm/pix)

Number of Images
No of Strips
Footprint (m2)

Overlap
Sidelap

Fasa

25
16.2e+03

=17
12.7

494
20
16.25x12.45
75%
75%

Neka
10
3.44e+03
~15
6.43
760
17
8.23x6.17
80 %
70 %

Disease and healthy trees as ground truth were selected by the experts’ visual inspection and
labeled using special targets (Figure 5) before image acquisition to train and test the classifier.
Therefore, 15 citrus Greening infected and 10 healthy trees at the Fasa study area as well as 20 PLC
infected and 12 healthy trees at the other study area were selected as ground truth data.
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161
162 2.2. Processing Methodology
163 Figure 3 summarizes the workflow of proposed methodology for plants disease detection based
164  on multispectral imagery and assessment of radiometric calibration evaluation necessity.
165 Acquired multilens images were registered band-to-band in the first step and then aligned in

166  the bundle adjustment process. Regarding the image acquisition under different illumination
167  conditions, the normalization of image blocks is necessary in order to produce homogeneous block
168  which is done based on radiometric block adjustment. Finally, Band registered aligned Images
169 stitched together to produce ortho-music. In [24, 29, 31, 33, 38, 39], commonly radiometric calibration
170  is done as the main step that convert DN to reflectance. In order to evaluate the radiometric
171  calibration necessity of multispectral images and to inspect its effects on the quality of final results,
172 classification process is performed both on DN (Strategy II) and reflections based data (Strategy I)
173 and results were evaluated and discussed. The classification process consisted of three main steps:
174  feature space generation; train classifier and performs classification to generate disease map.

MS Image Block

— e

Band to Band Registration
Image Alignment

Y

Radiometric Normalization

L

Ortho-mosaic Generation 1
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Strategy I
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175
176 Figure 3. Data Processing Flow Diagram. Strategy I: Processing without Radiometric Calibration;

rategy-1I: Processing based on reflectance orthomusaic by perform Radiometric Calibrate

177 Strategy-II: P ing based flect th ic by perform Radiometric Calibrated

178
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179 2.2.1. Band-to-band Registration

180 Recent developed UAV based multispectral cameras are usually composed of multilens
181  structure (Figure 4). Due to the low altitude of flight in small UAV, Band miss-registration of
182  multispectral images acquired by multilenses cameras is a great challenge [40]. In this study, SIFT!
183  algorithm is applied to extract corresponding features from images. It is well suited for the feature
184  detection and description because it is able to handle the special characteristics of the input data such
185 as low image contrast as well as rotation, translation and scale differences [41]. After extraction of
186  feature points using SIFT algorithm, the matching process can be done by comparing the minimum
187 Euclidean distance between the extracted feature vectors. With the matched features, the
188  mathematical relationship between the two images will be computable. Finally, the images were
189  registered and resampled based on the projection transformation [42].

Imager 1 Imager 2
(Blue) (Green)

Imager 5
(Red Edge)
Imager 4 Imager 3
190 (NIR) (Red)
191 Figure 4: The MicaSense RedEdge as an advanced multilens and multispectral camera specially
192 designed for small UAVs.
193 2.2.2. Image Alignment
194 Image alignment provides interior and exterior orientation parameters in the bundle adjustment

195  process that use tie points in overlapping images [43]. Tie points could be extracted by the SIFT
196  algorithm. The SIFT algorithm detects features and matches corresponding features in overlapping
197  images; moreover, outliers and improper matches are eliminated simultaneously [44]. Thus, a sparse
198  point cloud will be an output of the bundle adjustment [39]. This process is carried out effectively
199 due to consideration of sufficient overlap and side laps of images during a flight mission.

200

201 2.2.3. Radiometric Normalization

202 Regarding the image acquisition under different illumination conditions, the radiometric
203  normalization of image blocks is necessary in order to produce homogeneous orthomusaic.
204  According to Gehrke and Beshah [45], the radiometric normalization parameters for all images in the
205  block are computed in the least squares adjustment using radiometric tie points. The main
206  observation equation for each radiometric tie point (extracted geometric tie points in image alignment
207  step) between two images can be expressed as Equation (1):

0 = {cxyDny +bxy}lmgA - {cxyDny +bxy}lmgB (1)

208  where ¢y and by are the normalization parameters. For the radiometric control points on the
209  reference image, Equation (1) is rewritten as Equation (2):

{Dny}RefImg = {cxyDny + bxy}Aq'fImgA (2)

210  Radiometric control points were applied to define the ‘radiometric datum’ [45].

I Scale Invariant Feature Transform
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211 2.2.4. Orthomusaic Generation

212 Because of the small footprint of each image, the acquired images were geometrically corrected and
213 merged to produce a seamless orthomusaic of the whole area.

214 In UAV imagery based applications, dense point cloud extraction based on the aligned images
215  isamain step commonly [30, 39, 46, 47]. Finally, orthomusaic was generated based on aligned images
216  and dense point cloud; Thus, the topographic relief of trees was considered there. However, in this
217  study, an orthomusaic without trees topographic relief consideration satisfied our goals. Therefore,
218  orthomusaic is generated based on aligned images and one coarse DSM producing from the sparse
219  point cloud.

220  2.2.5. Radiometric Calibration

221 One of the main steps in image processing for remote sensing applications is the radiometric
222 calibration process where the absolute reflectance measurements from the DN data is extracted [24].
223 Acquired images could be calibrated using radiometric reference images that captured from a
224  calibrated reflectance panel before and after each flight [37].

225 In this study, “reflectance mode” method is applied for radiometric calibration based on Clemens
226  [37]. In the Clemens method, an average of the pre- and post-flight panel measurements is used in the
227  reflectance conversion. Equation (3) presents the basis of the reflectance factor calculation in the
228  reflectance mode method.

_ DN,
" DN,

Ry Ry (3)
229  where DNr is digital numbers of the target; DNr is the average of the pre- and post-flight in reference
230  inimages; and Rr is the reflectance factor of the white panel which will determine Rr, the reflectance
231  factor of the unknown surface.

232
233 2.2.6. Feature Space Generation

234 One of the simplest techniques to map the vegetation is to use vegetation indices that are easily
235 calculable and understandable [48]. Numerous vegetation indices are calculated as the difference or
236  ratio of two or several bands in the wide range of the spectrum (e.g., NDVI, RV], etc.). They constitute
237  the simple and straight method to extract highly correlated information to biophysical parameters of
238  plants from remotely sensed data. After extraction of ortho images, spectral features including five
239  spectral bands and 12 vegetation indices were extracted to be applied in the classification (Table 3).
240  In Table 3, B, G, R, RE and NIR are the blue, green, red, red edge, and near infra-red bands of the
241  multispectral images, respectively.

242 After calculating the spectral features, the most suitable features that discriminated between the
243 healthy and unhealthy trees were selected in this study. Decreasing the number of features, increases
244  the generalization capability and reduces the computational complexity of the classification
245  algorithm [49]. The T-test and entropy distances measure the separability between two classes and
246  canbe used as criteria to evaluate the efficacy of each feature for discriminating between healthy and
247  unhealthy trees classes.

248
249
250

251
252
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253 Table 3. Applied vegetation indices
Index Formula Reference
NIR
Ratio Vegetation Index RVI = = [50]
Normalized Diff Vegetation Ind npvi = VIR=R 17,51
ormalized Difference Vegetation Index = NIRTR [17, 51]
NIR — G
Green Normalized Difference Vegetation Index GNDVI = NIRTG [52]
NIR
Green Ratio Vegetation Index GRVI = —— [53]
. . . NIR — B
Blue Normalized Difference Vegetation Index BNDVI = NIR+B [54]
] ] , NIR —RE
Red Edge Normalized Difference Vegetation Index NDRE = W [17, 55]
Infrared Percentage Vegetation Index IPVI = x } g n g [56]
Structure Insensitive Pigment Index SIPI = NIR : R [17, 57]
Optimized Soil-Adjusted Vegetation Index OSAVI = (NIR-R)/(NIR+R+0.16) [9]
NIR
Chlorophyll Index Cl = - 1 [58, 59]
Difference Vegetation Index DVI =NIR-R [60]
Greenness Index Gl = g [61]
254
255  2.2.7. Classification
256 After feature space generation, the final step towards health map generation is the classification of images

257 based on selected training data. For this purpose, a random forest classifier, developed by Breiman [62], is used
258 due to its simplicity and high performance [63, 64]. Random forests non-parametric classifier is an ensemble-
259 based machine-learning algorithm that engages the multiple decision tree classifiers in a voting strategy to
260 provide the final prediction. It consists of several decision tree classifiers that build using a bootstrap sample of
261 the data with a random variable set at each node to split on.

262 Implementation of random forest classifiers requires a few parameters, including the number of trees and
263 the number of randomly selected predictor variables [65]. So random forest offer less complex computations
264 and running time, as well as high performances in computer vision domain especially [66]. In this study, we
265 used a random forest classifier consisting of 100 decision trees.

266 The final accuracy in detection of the diseased and healthy trees is tested by calculating error
267  matrices of the test data (references). The error matrix presents the error of omission, error of
268  commission, overall accuracy and kappa (k) values (references).

269

270 3. Experiments and Results

271  In this study, we evaluated the impact of radiometric calibration on UAV based multispectral plant
272 disease detection using the two datasets with different disease and environmental conditions. For
273 this, 557 images from the Fasa test area and 683 images from the Neka test area were captured based
274 on the flight plan.

275  3.1. Band-to-band Registration

276  The first processing step is spectral bands registration of images. Due to the multilenses structure of
277  multispectral camera, a considerable geometric displacement between images captured by lenses
278  appeared. To remove the displacements, the red band was selected as the master and the rest were
279  considered as slaves which should be registered to the master. The band registration of all the images
280  were conducted based on the proposed strategy and the RMSE value of 0.4 pixels was available based
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281  on the target measurement. Figure 5 shows two false color images of the same scene: original image
282  and band registered image as a sample.

283

284

285 Figure 5. Spectral bands registration of Micasense RedEdge camera images; Right: uncorrected, Left:
286 Corrected.

287  3.2. Image Alignment and Seamless Orthomosaic Generation

288 After band registration step, a seamless orthomosaic of the whole area covering in the imagery
289  step should be generated with five spectral bands. For this purpose, multispectral images must be
290  aligned. In this step, geometric tie points were extracted, and image interior and exterior parameters
291  were estimated. Table 4 presents the summary of the block adjustment parameters.

292 Table 4. Summary of the block adjustment parameters
Fasa Site Neka Site
Number of images 1470 3800
Tie points 2,529,731 2,534,329
RMS reprojection error (0.66246 pix) (0.85034 pix)
Max reprojection error (31.9115 pix) (27.3773 pix)
293
294 Based on the aligned band registered images, a dense point cloud was produced and used in

295  orthomosaics generation. The specification of the dense point cloud and orthomosaics are presented
296  inTable5.

297 Table 5. Specification of dense point clouds and orthomosaics
Fasa Site Neka Site
Resolution(cm/pix) 1.27 0.643
Orthomosaic
Size (pixel) 12713x15413 7485x15283
Dense Point Cloud Size (point) 26909315 25386097
298

299  The generated orthomosaics are depicted in Figure 6.
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300
301 Figure 6: Left up: Fasa study site orthomosaic without radiometric normalization, Right Up: Fasa
302 study site orthomosaic with radiometric normalization. Left down: Neka study site orthomosaic
303 without radiometric normalization, Right down: Neka study site orthomosaic with radiometric
304 normalization.
305 As is depicted in Figure 6, a seamless orthomosaics was generated after radiometric

306  normalization which was prepared for the feature extraction and classification processing step.

307  3.3. Radiometric Calibration

308  For theradiometric calibration process, reference images of a white panel were captured immediately
309  before and after each flight. A sample image acquired from the calibrated reflectance panel is
310  presented in Figure 7.

311

312 Figure 7. Left: reflectance panel image acquisition, right: Red edge band captured from reflectance
313 panel.
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314 Maximum DNs in the images captured from the white panel, before and after the flight (BF and
315  AF, respectively), are listed in Table 6 for the both study data sets.
316
317 Table 6. The maximum DN of the white panel in the five spectral bands
Fasa Site Neka Site
Spectral Band  BF AF BF AF
Blue 57488 55424 52000 32320
Green 59152 58304 47744 34480
Red 54480 53248 42816 28128
NIR 58048 55280 44208 29696
RedEdge 59472 53696 44624 26784
318
319 DN values are related with at-sensor radiance directly; Thus, Table 6 shows the decrease in at-

320  sensor radiance during the both flights. The rate of this reduction was much higher at the Neka site, which
321 indicated a significant change in illumination conditions during that flight. The mean DN values of BF
322  and AF were used in Equation (3) to calculate the reflectance-based values and new orthomosaics
323 were generated based on these new values for each study data.

324 3.4. Spectral Feature Analysis

325 Feature space in our study includes five spectral bands (Blue, Green, Red, RE and NIR) and 12
326  vegetation indices (RVI, NDVI, GNDVI, GRVI, BNDVI, NDRE, IPV], SIPI, OSAV]I, CI, DVI and GI).
327 In order to investigate the necessity of sensor calibration for vegetation disease detection,

328  separability between healthy and un-healthy tree classes, related features were investigated using T-
329  testand entropy criteria using ground truth data collected from the calibrated and un-calibrated data
330  for the both study areas. The experimental results are presented in Figure 8.
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331
332 Figure 8: The distance between healthy and un-healthy classes based on T-test and entropy criteria
333 in ground truth data collected from calibrated and un-calibrated based orthomosaics
334 Considering the achieved values presented in Figure 8, it can be concluded that the camera

335  calibration did not have any effects on the result based on T-test and entropy distances. However,
336  comparing the extracted feature values in ground truth data measured in calibrated and un-
337  calibrated orthomosaics states partly different values in the both study areas (Figure 9).
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339 Figure 9: The feature values in ground truth data collected from calibrated and un-calibrated based
340 orthomosaics

341  3.5. Classification

342  Three main classes were determined as un-healthy trees, healthy trees and non-trees at the study
343 sites. Using the red and near infra-red spectral bands, the non-tree class was easily separated exactly
344 from the trees classes. However, the detection of healthy and un-healthy trees classes remained as
345  the main challenge.

346 Five spectral bands, as well as some VI that have high discrimination between healthy and un-
347  healthy classes based on T-test and entropy criteria (Figure 8) and low correlation together (Table 7)
348  were used in a random forest classifier consisting of 100 decision trees.

349
350 Table 7. Vegetation indices correlations at the Fasa study site
RVI NDVI GNDVI GRVI BNDVI NDRE IPVI SIPI OSAVI (I DVI GI

RVI 1.0000 09747 0.6263 0.2655 05205 05056 09747 0.7575 09450 1.0000 0.3300 0.6213
NDVI 1.0000 0.6410 0.2651 05340 05147 1.0000 0.7743 009653 09747 03277 06133
GNDVI 1.0000 -0.5672 0.6327 0.7706 0.6410 0.7139 05748 0.6263 0.0137 0.9757
GRVI 1.0000 -0.2257 -04167 02651 -0.0685 0.3106 0.2655 03321 -0.5760
BNDVI 1.0000 04172 05340 09468 05358 0.5205 0.2240 0.6276
NDRE 1.0000 05147 05069 03437 05056 -04210 0.7549
IPVI 1.0000 0.7743 09653 09747 03277 0.6133
SIPI 1.0000 0.7622 0.7575 0.2892 0.6999
OSAVI 1.0000 09450 0.5552 0.5536
CI 1.0000 03300 06213
DVI 1.0000 0.0227

351 GI 1.0000

352

353 From Table 7, it is obvious that there were higher correlations between RVI, NDVI, IPVI, OSAVI,

354 and CI, between BNDVI and SIPI, and between GNDVI and GI; similar results were obtained for the
355  other study site.

356 At the Fasa study site, five spectral bands as well as DVI, NDRE, NDVI, and GNDVI vegetation
357  indices were used in the classification process of un-calibrated and calibrated orthomosaics. Figure 10
358  shows the generated map of the healthy and Greening infected trees and non-trees. There was

359  insignificant difference in the classification maps (Figure 10). Small differences in results were observable,
360  although were not significant.
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361 Figure 10. The classification map of healthy trees (green), Greening infected trees (yellow) and non-

362 trees (red) based on the un-calibrated (Left) and calibrated (Right) orthomosaics at the Fasa study site

363

364 The overall accuracy and kappa values for both un-calibrated and calibrated based orthomosaic

365  classifications were 96.6% and 0.94, respectively. The confusion matrix and estimated user’s and
366  producer’s accuracy measures are also presented in Table 8 (un-calibrated orthomosaic) and Table 9
367  (calibrated orthomosaic).

368 Table 8. The confusion matrix and estimated user’s and producer’s accuracy of un-calibrated
369 orthomosaic at the Fasa site
Confusion Matrix
Classified Data
Disease Healthy Non-tree
Disease 93.1% 7.8% 0.1%
Test Data | Healthy 6.9% 92.2% 0%
Non-tree 0% 0% 99.9%
User’s and Producer ‘s Accuracy
Class/Accuracy User (%) Producer (%)
Un-healthy 93.1 96.6
Healthy 92.2 84.6
Non-tree 99.99 100
370 Table 9. The confusion matrix and estimated user’s and producer’s accuracy of calibrated
371 orthomosaics at the Fasa site
Confusion Matrix
Classified Data
Disease Healthy | Non-tree
Disease 92.8% 6.9% 0.1%
Test Data | Healthy 7.1% 93.1% 0%
Non-tree 0% 0% 99.9%
User’s and Producer ‘s Accuracy
Class/Accuracy User (%) | Producer (%)
Un-healthy 93.1 96.6
Healthy 92.2 84.6
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| Non-tree 99.99 100

372 At the Neka study site, classification of the un-calibrated and calibrated orthomosaics is
373  performed using five spectral bands as well as NDRE, BNDVI, GNDVI, DVI, and NDVI vegetation
374  indices.

Infected

Infected
Healthy '

f Healthy '

375 Figure 11 the classification result of healthy, Leaf Peach Curve infected and non-trees at the Neka
376  study site. As in the Fasa data set, no significant difference in the classification map is observable (

Infected

Infected
Healthy '

f Healthy '

377 Figure 11).
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378 Figure 11. The classification map of healthy trees (green), leaf peach curve infected trees (yellow) and non-trees
379 (red) or the un-calibrated (left) and calibrated (right) orthomosaics at the Neka study site
380 Achieved overall accuracy and kappa values for both the un-calibrated and calibrated

381  orthomosaic classifications were 96.1% and 0.92, respectively. The confusion matrix and estimated
382  user’s and producer’s accuracy measures are also computed and presented in Table 10 and

383
384
385 Table 11, respectively.
386 Table 10. The confusion matrix and estimated user’s and producer’s accuracy of un-calibrated
387 orthomosaic at the Neka site
Confusion Matrix
Classified Data
Disease Healthy Non-tree
Disease 87.6% 9.7% 0.1%
Test Data | Healthy 11.9% 90.3% 0.1%
Non-tree 0.5% 0% 99.8%
User’s and Producer ‘s Accuracy
Class/Accuracy User (%) Producer (%)
Disease 87.6 86.0
Healthy 90.3 91.2
Non-tree 99.8 99.9
388
389
390
391 Table 11. The confusion matrix and estimated user’s and producer’s accuracy of calibrated

392 orthomosaics at the Neka site
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Confusion Matrix
Classified Data
Disease Healthy Non-tree
Disease 86.7% 9.1% 0.1%
Test Data | Healthy 12.6% 90.8% 0.1%
Non-tree | 0.7% 0.1% 99.8%
User’s and Producer ‘s Accuracy
Class/Accuracy User (%) Producer (%)
Disease 86.7 86.8
Healthy 90.8 90.7
Non-tree 99.8 99.8
393
394 Inspecting results, it can be concluded that radiometric calibration of images has minor effect on

395  the classification accuracy. In the both statuses, almost the same precision was achieved and the
396  confusion matrix components were not significantly different.

397 4. Discussion

398  Radiometric calibration is mentioned as one of the main steps in UAV based plant disease detection,
399  and measurements of reference targets are implemented in empirical line based methods by default..
400 To study the necessity of this process, in this paper, two study data with different environmental conditions and
401 affected by different diseases were classified to generate a tree health state map. Therefore, different processing
402 steps were analyzed and the focus was on the necessity of radiometric calibration.

403 The multi-lenses structure of the multispectral camera in low flight altitude missions created a
404  considerable geometric displacement between the spectral bands (Figure 5) which is up to 25 pixels
405  for our data. Here, the maximum height difference is about 10 meters. Ignoring this displacement
406  will result in different spectral features for the same objects and will lead to unsuitable training data.
407  Therefore, the band-to-band registration step is important in the application; here, even leaf size is
408  important and will reduce the registration error up to an average RMSE of 0.4 Pixel. It has to be
409  mentioned that in images with extremely small relief variances with respect to flight height or with
410  not much small focusing elements, the registration process can be neglected. In this situation, the
411  ortho generation process can reduce the displacement to an acceptable level.

412 Orthomusaic is generated based on aligned images with the accuracy of 0.85 pixel and generated
413  dense point cloud. However, different illumination conditions in each capturing station
414  heterogeneous final orthomosaics (Figure 6-Left) and corrupts training data like the previous step.
415 The next step to prepare the training data is radiometric calibration which is performed based on
416  empirical lines and changes pixel values linearly in each band. Therefore, outputs of this step can
417  change the spectral features values. As shown in Figure 9, variation in most of the VIs is small due to
418  their relative nature.

419 The detection of the healthy and un-healthy tree classes was performed using a random forest
420  classifier. For this purpose, feature space was produced, including five spectral bands and 12
421  vegetation indices. The best features were selected based on the separation criteria of the tree classes
422  and the correlation between the features. The correlation ranges from 94.5% to 100% between RV],
423  NDVI, IPVI, OSAV], and CI, is 94.7% between BNDVI and SIP], and is 97.6% between GNDVI and
424 GI (Table 7); thus, six features can be eliminated. Moreover, at the Fasa study site, the spectral bands
425  DVI and NDRE made the highest separation whereas the spectral band BNDVI made the lowest
426  separation between the healthy and un-healthy tree classes. On the other hand, at the Neka study
427  site, NDRE and BNDVI made the highest separation while GRVI made the lowest separation between
428  classes. Classification was carried out using the selected features, and results are presented in Table
429  8to

430

431
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432 Table 11. At the Fasa study site, citrus orchard with the greening disease, the overall accuracy
433 and kappa values for both the un-calibrated and calibrated orthomosaic classifications were 96.6%
434 and 0.94, respectively. Similarly, the experimental results at the Neka study site with PLC yielded the
435  same conclusions. The overall accuracy and kappa values for both the un-calibrated and calibrated
436  orthomosaic classifications were 96.1% and 0.92, respectively. However, because of the linear
437  structure of radiometric calibration, separation of the healthy and un-healthy tree classes based on t-
438  test and entropy criteria did not change using the most spectral features (Figure 8); consequently,
439  there were insignificant differences in the classification results after radiometric calibration.

440

441 5. Conclusions

442 This study investigated the necessity of radiometric calibration in UAV based multispectral imagery
443 for plant tree disease detection and classification applications. For this purpose, two study sites with
444  different conditions of climate, date, tree species and disease types were selected and multispectral
445  images were captured using a RedEdge camera mounted on a multirotor UAV.

446 Due to the multi-lens structure of the camera and the low flying altitude, the band-to-band miss-
447  registration error was not negligible; therefore, in the first step, they were registered. Then, to
448  generate seamless orthomosaics, the registered images were aligned and radiometric normalization
449  was implemented.

450 Radiometric calibration effects on plant classification and disease detection were evaluated in
451  two scenarios. First, discrimination of the healthy and un-healthy classes was compared using T-test
452  and entropy distances considering ground truth data collected from calibrated and un-calibrated
453  orthomosaics. The experimental results showed that the effects of radiometric calibration on
454  separability criteria using most spectral features were insignificant . In the other scenario, the
455  radiometric calibration effects on the accuracy of classification were investigated. For this purpose,
456  the best features were selected based on the separation criteria of the tree classes and the correlation
457  between the features. The random forest classifier was applied to detect diseased trees. Experimental
458  results showed insignificant differences in the classification results after radiometric calibration. At
459  the Fasa study site, the overall accuracy and kappa values for both un-calibrated and calibrated
460  orthomosaic classifications were 96.6% and 0.94, respectively. On the other study site, the overall
461  accuracy and kappa values for both un-calibrated and calibrated orthomosaic classifications were
462  96.1% and 0.92.

463 It should also be noted that the classifier was trained based on the training data collected from
464  the original data; therefore, due to the small change in the vegetation indices values, future studies
465  will focus on the efficiency of radiometric calibration on the classification based on spectral library
466  training data.
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