

1 Article, Communication.

2 Insight into the Role and Regulation of Gap Junction 3 Genes in Lung Cancer and Identification of Nuclear 4 Cx43 as a Putative Biomarker of Poor Prognosis

5 Trond Aasen ^{1,2,*}, Irene Sansano ³, María Ángeles Montero ³, Cleofé Romagosa ³, Jordi Temprana-
6 Salvador ³, Alexandre Martínez-Martí ⁴, Teresa Moliné ^{2,3}, Javier Hernández-Losa ^{2,3} and Santiago
7 Ramón y Cajal ^{1,2,3}

8 ¹ Translational Molecular Pathology, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain;
9 trond.aasen@vhir.org (T.A.)

10 ² CIBERONC, Barcelona, Spain;

11 ³ Pathology Department, Vall d'Hebron University Hospital, Barcelona, Spain; isansava@gmail.com (I.S.);
12 angeles.montero@mft.nhs.uk (M.A.M.); cleoferoma@gmail.com (C.F.); jordi.temprana@gmail.com (J.T.S.);
13 teresa.moline@vhir.org (T.M.); jahernan@vhebron.net (J.H.L.); sramon@vhebron.net (S.R.C.).

14 ⁴ Medical Oncology Department, Vall d'Hebron University Hospital, Barcelona, Spain;
15 alexmartinezmarti.oncologia@gmail.com (A.M.M.);

16 * Correspondence: trond.aasen@vhir.org; Tel.: +34-93489-4168

17

18 **Abstract:** Direct intercellular communication, mediated by gap junctions formed by the connexin
19 transmembrane protein family, is frequently dysregulated in cancer. Connexins have been
20 described as tumour suppressors, but emerging evidence suggests that they can also act as tumour
21 promoters. This feature is connexin- and tissue-specific and may be mediated by complex signalling
22 pathways through gap junctions or hemichannels or by completely junction-independent events.
23 Lung cancer is the number one cancer in terms of mortality worldwide, and novel biomarkers and
24 therapeutic targets are urgently needed. Our objective was to gain a better understanding of
25 connexins in this setting. We used several in silico tools to analyse TCGA data in order to compare
26 connexin mRNA expression between healthy lung tissue and lung tumours and correlated these
27 results with gene methylation patterns. Using Kaplan-Meier plotter tools, we analysed a microarray
28 dataset and an RNA-seq dataset of non-small cell lung tumours in order to correlate connexin
29 expression with patient prognosis. We found that connexin mRNA expression is frequently either
30 upregulated or downregulated in lung tumours. This correlated with both good and poor prognosis
31 (overall survival) in a clear connexin isoform-dependent manner. These associations were strongly
32 influenced by the histological subtype (adenocarcinoma versus squamous cell carcinoma). We
33 present an overview of all connexins but particularly focus on four isoforms implicated in lung
34 cancer: Cx26, Cx30.3, Cx32 and Cx43. We further analysed the protein expression and localization
35 of Cx43 in a series of 72 human lung tumours. We identified a subset of tumours that exhibited a
36 unique strong nuclear Cx43 expression pattern that predicted worse overall survival ($p=0.014$).
37 Upon sub-stratification, the prognostic value remained highly significant in the adenocarcinoma
38 subtype ($p=0.002$) but not in the squamous carcinoma subtype ($p=0.578$). This finding highlights the
39 importance of analysis of connexin expression at the protein level, particularly the subcellular
40 localization. Elucidation of the underlying pathways regulating Cx43 localization may provide for
41 novel therapeutic opportunities.

42 **Keywords:** connexins; Cx43; gap junctions; lung cancer; immunohistochemistry; prognosis; nuclear
43

44

45 **1. Introduction**

46 The World Health Organization (WHO) currently estimates that 1.69 million deaths per year
47 worldwide are due to lung cancer, far more than any other cancer type. Non-small cell lung cancer
48 (NSCLC), which includes the two major subtypes of lung adenocarcinoma (LUAD) and lung
49 squamous cell carcinoma (LUSC), accounts for about 85% of lung cancers. In terms of the biology of
50 lung cancer, significant advances have been made [1]. The delineation of specific oncogenic
51 pathways has allowed stratification of tumours and incorporation of patient-specific targeted
52 therapy based on, for example, the activation status of receptor tyrosine kinases such as epidermal
53 growth factor receptor (EGFR) [1]. Nevertheless, lung cancer is a highly heterogeneous disease at
54 both the histological and molecular levels, and metastasis is frequently present at diagnosis, which
55 together result in a poor overall survival (OS) rate [1]. Thus, identification of additional biomarkers,
56 elucidation of the full oncogenic circuit defining these tumours and novel treatment approaches
57 are some of the steps needed for the future management of this disease.

58 Lung tissue homeostasis is thought to be tightly controlled through multiple mechanisms,
59 including direct gap junction-mediated intercellular communication (GJIC). Gap junctions are
60 formed by transmembrane proteins named connexins that assemble into hexameric structures
61 called connexons, which act as hemichannels that can dock with hemichannels in adjacent cells
62 forming an intercellular channel. The 21-member family of human connexin proteins ranges in size
63 between 23 and 62 kDa (Cx23-Cx62) [2]. It is also thought that hemichannels may additionally
64 communicate with the extracellular matrix under specific pathological conditions such as cancer
65 [3]. Moreover, several connexins (most notably Cx43) have been shown to possess functions
66 unrelated to the formation of junctional complexes [4,5]. *GJA1*, which encodes Cx43, has been
67 shown to synthesize several truncated protein forms through a process of internal translation
68 initiation regulated by key cancer signalling pathways such as mTOR and Mnk1/2 [6-8]. The role
69 of these protein forms is currently being explored but includes an interaction with the cytoskeleton
70 and mitochondria [9-11] and the regulation of epithelial to mesenchymal transition (EMT) [12,13].

71 A variety of connexins are expressed in lung tissue and are thought to be critical for lung
72 physiology, function and host defences under normal and pathological conditions [14]. Cx26 and
73 Cx43 have been detected in human epithelial cells of the respiratory airways, whereas a variety of
74 additional connexins has been detected in murine models, including Cx32, Cx37 and Cx46 [14].
75 Targeting of connexins has been proposed as a viable approach in terms of the management of lung
76 diseases such as cancer [15]. The importance of connexins in cancer in general has been widely
77 studied in vitro and in vivo for more than 50 years, with the work revealing extensive tissue- and
78 connexin-dependent variations [16].

79 Several studies have shown that connexins may play an important role in lung cancer. Some in
80 vitro studies have suggested a tumour suppressor role for connexins in the lung. Notably, Cx43 gene
81 transfection can inhibit the migration of the human lung squamous carcinoma cell line NCI-H226
82 [17]. Other work showed that Cx43 may recruit E-cadherin to inhibit the malignant behaviour of lung
83 cancer cells [18]. Cx43 also suppresses lung cancer cell invasion and metastasis, possibly by acting as
84 a "histone deacetylase inhibitor" affecting the gene expression of several genes, such as by increasing
85 the expression and secretion of FSTL1 (follistatin-like 1) [19]. A recent study demonstrated that
86 overexpression of Cx43 in lung cancer cell lines represses cancer stem cells and associated malignant
87 features [20]. Downregulation of Cx26 expression has been shown to occur in several human lung
88 cancer cell lines due to gene promoter methylation [21]. Cx31.1 is also downregulated in NSCLC cell
89 lines, and Cx31.1 re-expression inhibits cell proliferation and metastasis [22]. Degradation of Cx31.1
90 in lung cancer may also involve clathrin-mediated autophagy [23].

91 Connexins can also influence the effect of chemotherapy. In A549 LUAD cells, Cx32 increases
92 vinorelbine-induced cytotoxicity by reducing the expression of the multidrug resistance-1 (MDR-1)
93 gene [24]. Other major pathways regulated by Cx32 in lung cancer cells include inhibition of Src
94 activity [25].

95 Murine models support the link between connexins and lung cancer [16]. Notably, Cx32
96 knockout mice exhibit a significantly increased incidence of chemical and radiation-induced lung

97 tumours [26,27], likely in part due to activation of the MAPK pathway. Surprisingly, these mice do
98 not show obvious pulmonary alterations but are susceptible to benzene-induced lung toxicity [28].
99 Cx32-deficient mice seem to display increased proliferation of non-tumoural alveolar epithelial type
100 II (ATII), from which lung tumours originate [26-28]. Cx43 heterozygote knockout mice also display
101 increased cell proliferation of ATII cells [29]. A higher incidence of LUADs induced by DMBA is seen
102 in this model [30]. Paradoxically, however, despite higher susceptibility of spontaneous and NNK-
103 induced lung neoplasms, Cx43 mRNA is significantly increased during tumour progression and
104 correlates with increased tumour aggressiveness [31].

105 In addition, a number of reports have shown altered connexin expression in human tumours.
106 Decreased expression of Cx43 at the mRNA and protein levels due to promoter methylation has been
107 shown to occur during NSCLC tumour progression [32]. Hypermethylation of the *GJA1* (Cx43)
108 promoter has been significantly associated with heavy smoking, poorly differentiated NSCLC and
109 low expression of Cx43 [33]. There is also strong evidence that promoter methylation can cause
110 decreased Cx26 expression in lung tumours [21]. Cx32 has been positively correlated with the degree
111 of tumour differentiation and survival rates of NSCLC patients [34]. However, Cx26 was not
112 correlated with smoking, tumour size, histological type, the degree of differentiation, lymph node
113 metastasis and the postoperative survival time [34]. More recently, expression of Cx43 at the time of
114 diagnosis was shown to predict survival in advanced NSCLC patients treated with cisplatin-based
115 chemotherapy [35].

116 However, although connexins have typically been classified as tumour suppressors,
117 accumulating data suggest that connexins can also promote tumour progression in certain tissues
118 and at certain cancer stages [16,36,37]. This dichotomy is also observed in lung cancer, both *in vitro*
119 and *in vivo*, which again depends on the connexin isoform. For example, Cx43 reverses cisplatin
120 resistance in A549 LUAD cells by inhibiting EMT [38]. In contrast, Cx26 (in a GJIC-independent
121 manner) induces EMT via the PI3K-AKT signalling pathway and confers resistance to the EGFR
122 inhibitor gefitinib in HCC827 and PC9 LUAD cells [39]. Indeed, increased expression of Cx26 at the
123 invasive front of LUSC was shown to be significantly correlated with poor prognosis [40]. Other
124 studies have implicated Cx43 in this process through enhanced attachment of lung tumour cells to
125 the endothelium that facilitates extravasation, a critical feature for efficient metastasis [41]. Recently,
126 a clear pro-tumorigenic role for Cx43 in lung cancer and metastasis to the brain was demonstrated.
127 In a series of elegant experiments, Massagué and colleagues [42] showed that lung (and breast)
128 carcinoma cells upregulate Cx43 expression and establish heterocellular GJIC with astrocytes in the
129 brain, creating a cell signalling feedback loop that fosters tumour growth and chemoresistance. FDA-
130 approved compounds that block GJIC significantly inhibit metastasis growth. Others have shown
131 that GJIC-mediated transfer of small RNAs from lung cancer cells to astrocytes can alter cancer cell
132 resistance to chemotherapy [43]. More recently, Cx30.3 was shown to be overexpressed in lung
133 tumours and to be associated with poor prognosis and recurrence [44]. Functionally, Cx30.3 appears
134 to activate the c-Src proto-oncogene to induce a number of cellular traits associated with malignancy.

135 Thus, there are highly conflicting reports with regards to the pro-tumorigenic and anti-
136 tumorigenic functions of connexins in lung cancer. In addition to GJIC-mediated mechanisms, non-
137 junctional connexin functions must also be carefully considered in lung cancer. Notably, the role of
138 nuclear Cx43 remains to be explored. Nuclear Cx43 has been described in some human tumours
139 including glioma [45] and colon tumours [46]. Nuclear Cx43 was described in lung cancer cell lines
140 more than 20 years ago [47]. Indeed, overexpression of oncogenes such as c-Src and Her2 (frequently
141 observed in the lung) was shown to correlate with nuclear Cx43 localization in rat liver epithelial cells
142 [48]. More recently, Cx43 was shown to be translocated to the nucleus in late G1 of the cell cycle via
143 binding to A-kinase anchoring protein 95 in lung A549 adenocarcinoma cells [49]. Nuclear
144 localization of a truncated form of Cx43 has also been described in a glioma cell line [50]. This is of
145 interest in relation to the recent discovery of the active translation of truncated Cx43 isoforms (notably
146 the GJA1-20k form) [6-8,51], which we showed also occur in human lung tumour cell lines under
147 regulation of oncogenic pathways frequently activated in lung cancer such as mTOR and MAPK-

148 Mnk1/2 kinases [7]. Very recently, the major truncated form of Cx43 (GJA1-20k) was shown to
 149 regulate EMT by acting as a direct nuclear transcriptional activator of N-cadherin [13].

150 To answer some of the discrepancies and outstanding questions discussed above, we have
 151 analysed the gene expression profile of the entire connexin family in order to identify the overall
 152 correlation tendency between connexin mRNA expression and tumour prognosis. In addition, we
 153 analysed the protein expression of Cx43, with particular emphasis on potential non-junctional
 154 functions due to, for example, nuclear localization. Our results highlight the fact that connexins show
 155 both pro- and anti-tumour propensities in lung cancer. This depends significantly on the connexin
 156 isoform and the lung cancer subtype. Moreover, protein expression and connexin localization are
 157 important from a biomarker perspective. Indeed, we show that Cx43 is localized to the nucleus in a
 158 subset of lung tumours, particularly in adenocarcinomas, and that this is associated with poor
 159 prognosis. Elucidation of the complex role of connexins in lung cancer is critical for the development
 160 of therapeutic approaches.

161

162

163 2. Results

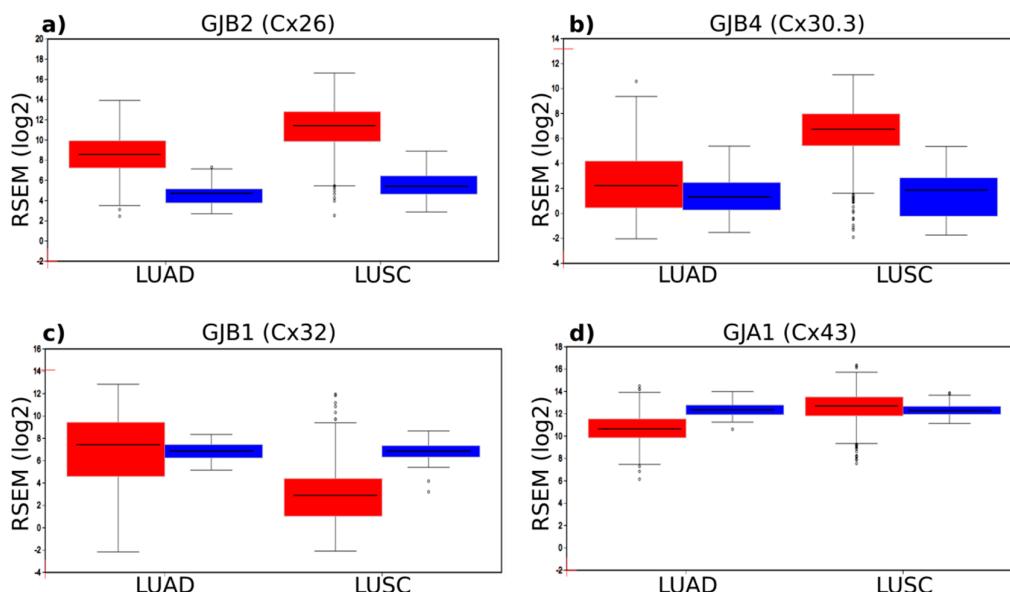
164

165 2.1. Connexin mRNA expression in human lung tumours and normal healthy tissue

166 We compared the mRNA expression levels of different connexins between healthy lung tissue
 167 and lung tumours with the online in silico analysis tool FireBrowseR (<http://firebrowse.org/>) using
 168 publicly available The Cancer Genome Atlas (TCGA) data [52]. We observed significant changes in
 169 mRNA gene expression in a number of connexins (Table 1, and associated graphics in Supplementary
 170 File 1 that include expression variability and the presence of outliers). Our overall conclusions from
 171 these observations were verified using the TCGA Wanderer tool
 172 (<http://maplab.imppc.org/wanderer/>) based on Illumina HiSeq RNA-seq analysis [53].

173

174 **Table 1.** Summary of fold-changes in connexin mRNA expression in lung adenocarcinoma (LUAD)
 175 and lung squamous cell carcinoma (LUSC) compared with normal healthy tissue.


Regulation	Cx	Gene	LUAD	LUSC
Up	Cx46	<i>GJA3</i>	1.74	35.6
	Cx59	<i>GJA9</i>	3.01	1.82
	Cx26	<i>GJB2</i>	14.4	63.5
	Cx31	<i>GJB3</i>	3.27	34.4
	Cx30.3	<i>GJB4</i>	1.88	29.4
	Cx31.1	<i>GJB5</i>	1.66	59.9
	Cx30	<i>GJB6</i>	7.47	289
Down	Cx37	<i>GJA4</i>	0.36	0.18
	Cx40	<i>GJA5</i>	0.32	0.17
	Cx50	<i>GJA8</i>	0.83	0.97
	Cx45	<i>GJC1</i>	0.67	0.76
	Cx47	<i>GJC2</i>	0.325	0.234
	Cx30.2	<i>GJC3</i>	0.817	0.61
	Cx31.9	<i>GJD3</i>	0.52	0.43
Mixed	Cx40.1	<i>GJD4</i>	0.89	0.96
	Cx43	<i>GJA1</i>	0.31	1.33
	Cx32	<i>GJB1</i>	1.49	0.064

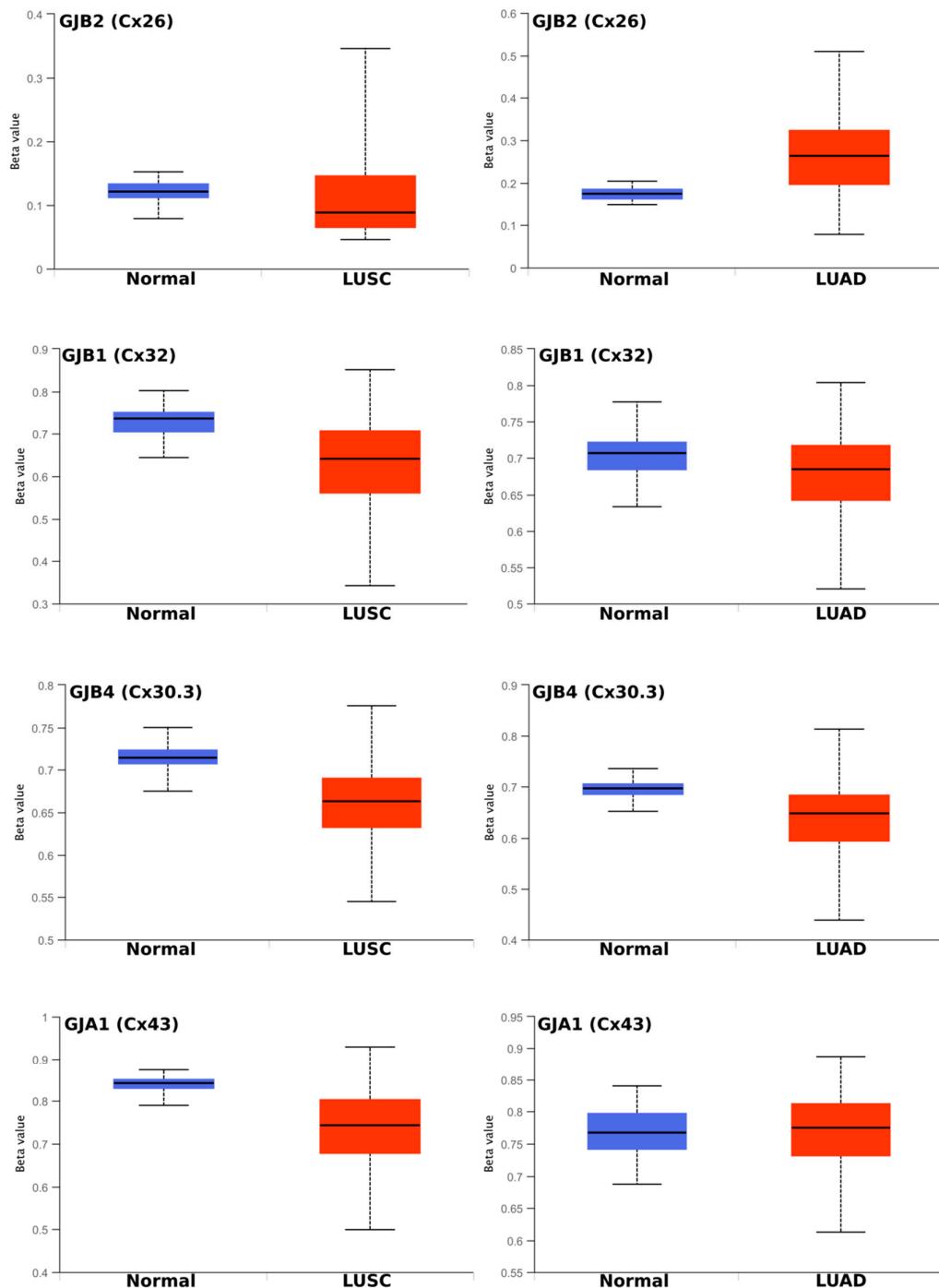
Cx25	<i>GJB7</i>	0.41	7.18
Cx36	<i>GJD2</i>	0.56	2.9

176

177 Compared with healthy tissue, a significant number of connexin genes were highly upregulated
 178 in the tumours, particularly in the LUSC subtype. A number of connexins displayed moderate
 179 downregulation, whereas other isoforms showed a mixed response dependent on the tumour
 180 subtype analysed. We focused on four connexin genes—Cx26, Cx30.3, Cx32 and Cx43—thought to
 181 play a role in lung cancer based on previous research (including mouse models). This group of four
 182 genes behaved very differently and clearly illustrated the varied changes in gene expression that can
 183 occur in connexin genes in lung cancer (Figure 1). Notably, compared with healthy tissue, there was
 184 a significant 14.4-fold and 63.5-fold upregulation of Cx26 mRNA expression in LUAD and LUSC,
 185 respectively (Figure 1a). *GJB4* encoding Cx30.3 also displayed a significant 29.4-fold upregulation in
 186 LUSC (Figure 1b). This seemed to occur in several other beta-connexins (e.g., *GJB6* encoding Cx30;
 187 see Table 1) that are typically expressed in differentiated squamous epithelial cells (e.g., skin
 188 keratinocytes). Cx26 and Cx30.3 have been suggested to be pro-tumorigenic in the lung, and the in
 189 silico data supported this notion based on the idea that overexpression may drive tumour
 190 progression. However, for *GJB1* encoding Cx32, whose knockout mice are more susceptible to lung
 191 tumour formation, only a slight upregulation (1.45-fold) was seen in LUAD, whereas it was
 192 significantly downregulated in LUSC (0.064-fold) (Figure 1c). This further points to important
 193 connexin isoform and cancer subtype-specific differences. The role of *GJA1* encoding Cx43 is
 194 controversial in lung cancer and, although this gene is highly expressed, there are only modest
 195 changes to its gene expression in the tumours (Figure 1d), with a slight downregulation in LUAD
 196 (0.31-fold) and slight upregulation in LUSC (1.33-fold). The overall changes in gene expression in all
 197 connexins is clearly diverse (Table 1), and it is likely that complex mechanisms, including epigenetic
 198 regulation, control the abundance of connexin mRNAs.

199

200
 201
 202
 203
 204
 205

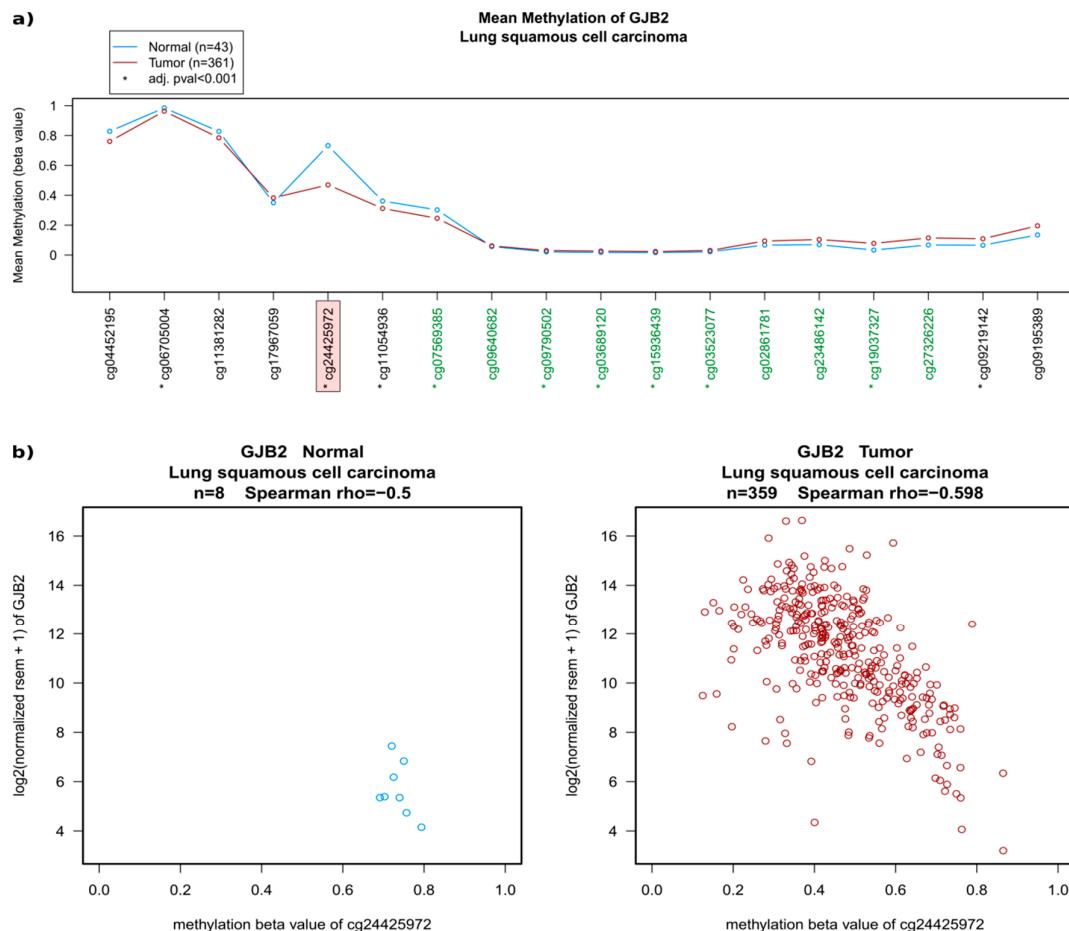

Figure 1. Connexin mRNA gene expression in normal tissue (blue) and in LUAD and LUSC tumours (red). (a) Expression of *GJB2* (encoding Cx26). Significant upregulation is seen in both tumour subtypes, particularly LUSC. (b) Expression of *GJB4* (encoding Cx30.3) is mainly upregulated in LUSC. (c) Expression of *GJB1* (encoding Cx32) is specifically downregulated in LUSC. (d) Expression of *GJA1* (encoding Cx43) is high in normal tissue but shows only a slight upregulation in LUAD and a slight downregulation in LUSC. The figure also highlights the occurrence of some outliers in

206 tumours, such as very low expression of Cx26 and Cx30.3 in some LUSCs despite a general
207 upregulation and very high expression of Cx32 in some LUSCs despite a general downregulation.

208

209 *2.2. Regulation of connexins at the DNA and mRNA levels in relation to lung cancer*

210 We performed further in silico-based analysis of the four key lung cancer-associated connexins
211 that we described in section 2.1 and that showed significant changes in gene expression in healthy
212 versus tumour tissues. One of the key regulators of gene transcription is gene methylation. We used
213 an online (<http://ualcan.path.uab.edu/>) analysis tool [54] to gain insight into the correlation between
214 the changes in connexin mRNA expression in lung tumours and changes in gene methylation. As
215 seen in Figure 2, methylation-specific changes were connexin and tumour subtype-specific.
216 Moreover, no strict correlation could be inferred between methylation status and the observed gene
217 expression or changes in gene expression (Figure 1). For example, *GJB2* (encoding Cx26) was
218 dramatically upregulated in LUAD and especially in LUSC (Figure 1a). This partially correlated with
219 a slight demethylation in LUSC (suggesting increased transcription). However, increased
220 methylation (silencing) is seen in LUAD. Overall, however, *GJB2* seemed to be hypomethylated (a
221 state considered [55,56] to occur with a Beta value in the range around or below 0.25–0.30), which
222 favours transcription. *GJB1* (Cx32) appeared to be generally hypermethylated (a state considered
223 [55,56] to occur with a Beta value in the range around or above 0.5–0.7). Some demethylation seemed
224 to occur in LUSC (Figure 2b), but this actually contrasted with the loss of gene expression observed
225 in this tumour subtype (Figure 1c). Better correlation was seen for *GJB4* (Cx30.3; Figure 2c) where
226 some demethylation occurred (although the gene is still considered highly methylated), which
227 corresponds to increased mRNA levels (Figure 1) in both tumour subtypes. *GJA1* (Cx43) is thought
228 to be the most highly expressed connexin in lung tissue and tumours (Figure 1) yet it is highly
229 methylated (Figure 2d).


230
 231 **Figure 2.** Methylation statuses of Cx26 (*GJB2*), Cx32 (*GJB1*), Cx30.3 (*GJB4*) and Cx43 (*GJA1*) in LUSC
 232 and LUAD compared with normal healthy lung tissue. The Beta value indicates the level of DNA
 233 methylation and ranges from 0 (unmethylated) to 1 (fully methylated). Different beta value cutoff
 234 values have been considered [55,56] to indicate hyper-methylation [Beta value: 0.5–0.7] or hypo-
 methylation [Beta value: 0.25–0.3].

236 We also used the TCGA Wanderer tool (<http://maplab.imppc.org/wanderer/>) [53] to analyse the
237 methylation status of select connexins using individual probes. We confirmed our previous
238 observation that the gene methylation status did not correlate well with the dramatic changes
239 observed in gene expression (Supplementary File 2). For example, significant loss of Cx32 gene
240 expression was observed in LUSC (see Table 1 and Figure 1c). However, all methylation probes—
241 many of them with statistical significance, including those at the CpG island (green)—showed an
242 overall reduced degree of methylation (more so in LUSC than in LUAD) (Supplementary File 2). This
243 typically indicated increased rather than decreased transcription. Another example is Cx30, which
244 showed a massive 289-fold upregulation in LUSC yet only minor changes in methylation status, and
245 the most notable changes occurred in LUAD rather than LUSC (Supplementary File 2). Other genes
246 showed a better correlation. Notably, demethylation of *GJB5* (particularly in LUSC) correlated with
247 the observation that the mRNA expression of this gene was significantly upregulated in tumours
248 (Supplementary File 2).

249 Small individual regions can be sufficient to significantly influence transcription. Indeed,
250 although there were no major overall changes in the methylation status of *GJB2* (encoding Cx26;
251 Figure 2a), a noticeable demethylation was seen in probe cg24425972 in LUSC (Figure 2a and 2b)
252 compared with normal tissues, which correlates well with the observed significant upregulation of
253 the mRNA expression-based Illumina HiSeq RNA-seq (Figure 2b, see also Figure 1a). A similar
254 pattern was seen in LUAD where there was slightly less demethylation, which corresponds to the
255 less significant upregulation of mRNA in this tumour type (Supplementary File 2).

256 We also screened whether any connexin gene has been identified to show any correlation
257 between methylation and clinical features using FirebrowseR (<http://firebrowse.org/>) [52]. Indeed,
258 among only 30 genes identified, methylation of *GJB2* (encoding Cx26) was associated with tumour
259 stage in LUAD (Kruskal-Wallis p-value = 0.0001923, Q value = 0.119). Thus, although there was a
260 poor direct correlation between mRNA expression and methylation status in many connexin genes,
261 specific correlations could be identified and may be biologically and clinically significant.

262

263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

Figure 3. Example of the methylation status of Cx26 (GJB2) in LUSC. (a) A 450k Methylation Array displaying individual probes along the gene region is shown (equally distributed). Probes in green are part of the CpG cluster of this gene. Significant differences are highlighted with an asterisk on individual probes. Probe cg24425972 (highlighted by the pink box) shows the most significant demethylation in LUSC compared with healthy tissue. (b) The methylation status of probe cg24425972 is clearly reduced in most tumour samples (red, right side) compared with healthy tissue (blue, on the left) and this correlates well with the observed increased gene expression in the samples that have reduced methylation (RSEM from Illumina HiSeq RNA-seq).

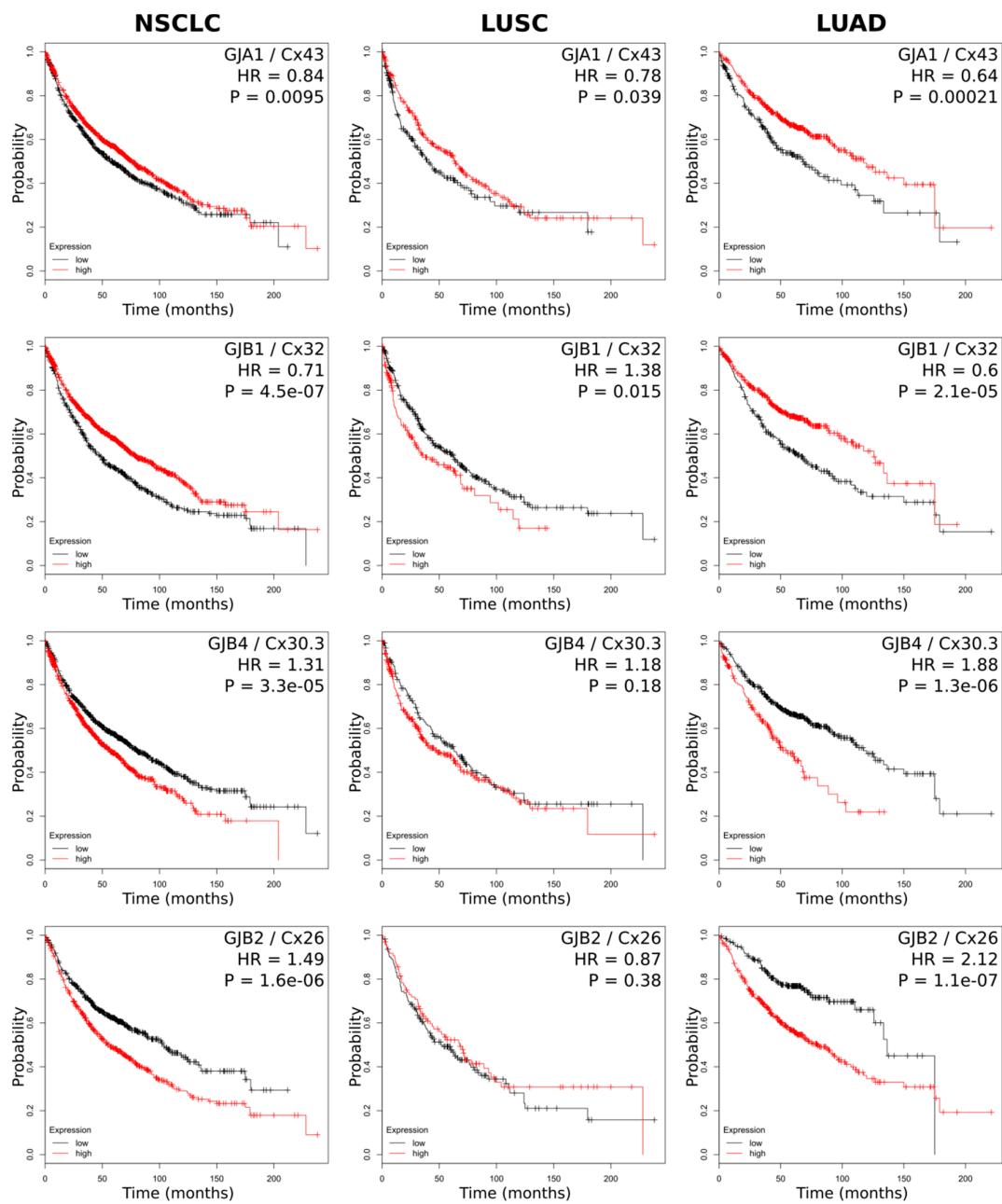
2.2. Connexin mRNA expression is associated with both poor and good prognosis, which depends on both lung cancer subtype and connexin isoform

We used a dedicated lung cancer-specific Kaplan-Meier survival analysis tool [57] to correlate connexin mRNA expression (from arrays, n=2435) with the OS of patients. We analysed all gap junction genes with valid probes available (n=18). The overall results for lung cancer as a whole are summarised in Table 2. A substantial amount of insightful information can be drawn from this summary. First, there are major differences between different connexin isoforms. Some connexins are associated with better prognosis, whereas others are associated with poor prognosis. Critically, this seems highly dependent on the tumour subtype.

Table 2. Summary of the overall survival (OS) of patient cohorts grouped into cohorts expressing either high or low levels of connexin mRNA in non-small cell lung cancer (NSCLC) in general, lung adenocarcinoma (LUAD) or lung squamous cell carcinoma (LUSC) compared with normal healthy tissue.

Gene	Connexin	HR NSCLC	OS change (months)		OS change (months)		OS change (months)	
			high Cx	high Cx	LUSC	high Cx	LUAD	high Cx
GJA1	Cx43	0.84*	+19		0.78	+24	0.64*	+49
GJA3	Cx46	1.42*	-41		0.77	+27	1.48*	-42
GJA4	Cx37	0.67*	+43		0.83	+22	0.67*	+45
GJA5	Cx40	1.30*	-23		1.20	-4	1.86*	-69
GJA8	Cx50	1.18	-11		1.16	-17	0.60*	+59
GJA10	Cx62	1.20	-28		0.77	+24	1.62*	-52
GJB1	Cx32	0.71*	+31		1.38	-24	0.60*	+59
GJB3	Cx31	1.56*	-37		1.27	-21	2.39*	-114
GJB4	Cx30.3	1.31*	-23		1.18	-15	1.88*	-62
GJB5	Cx31.1	1.52*	-36		1.12	-12	1.63*	-57
GJB6	Cx30	1.40*	-38		0.75	+29	0.82	+11
GJB2	Cx26	1.49*	-47		0.87	+16	2.12*	-56
GJC1	Cx45	0.73*	+36		1.22	-15	0.66*	+37
GJC2	Cx47	1.13	-6		0.81	+27	1.45*	-41
GJC3	Cx30.2	1.26*	-27		0.78	+8	1.76*	-53
GJD2	Cx36	1.25*	-18		1.14	-11	2.13*	-68
GJD3	Cx31.9	0.68*	+39		0.66*	+24	1.26	-44
GJD4	Cx40.1	1.25*	-22		0.83	+27	1.49*	-33

¹ Abbreviations: HR, hazard ratio; OS, overall survival; NSCLC, non-small cell lung cancer; LUSC, squamous cell lung cancer; LUAD, adenocarcinoma lung cancer; Cx, connexin.


² The table depicts the patient hazard ratio, where the cohort expressing high levels of connexin mRNA is either associated with better survival (depicted in green, HR less than 1, i.e., less chance of death) or with worse survival (red, HR greater than 1, i.e., higher chance of death). The average change in survival (months) is the difference between the patient cohorts grouped as having high and low levels of connexins. Those associations with a significant statistical difference ($p < 0.01$) are in bold and marked with an asterisk. Further detail and individual Kaplan-Meier curves can be seen in Supplemental File 3.

We paid particular attention to connexin genes known to play a role in lung cancer, namely, Cx26, Cx30.3, Cx32 and Cx43. Of these, only Cx43 was associated with better prognosis in both the LUSC and LUAD subtypes (Figure 3a). However, the relatively small change in the hazard ratio (HR, chance of death) suggests that this association has quite a low impact (although it is highly significant statistically). This correlates with the rather minimal change in gene expression between healthy and tumour tissue (Figure 1d). On the other hand, high Cx32 expression predicted better survival in overall NSCLC and LUAD patients, whereas LUSC patients had a tendency to perform worse if grouped in the cohort with high Cx32 expression (Figure 3b). The recent findings that Cx30.3 is linked to tumour progression [44] are strongly supported by our in silico analysis, which predicted significantly worse survival in the NSCLC group and the LUAD subtype (Figure 3c). Notably, other

309 connexins (such as Cx31, known to be expressed in lung cancer) seemed to follow a similar pattern
310 (Table 2). Cx26 predicts a poor outcome for NSCLC in general, and a significantly worse prognosis
311 in the LUAD subgroup (HR=2.12), where patients with high Cx26 expression are predicted to live an
312 average of 56 months less than those with low Cx26 expression (80 months vs 136 months). Of note,
313 similar to Cx30.3, Cx26 seemed to be significantly overexpressed in tumour tissue versus healthy
314 tissue (Figure 1). Cx26 was significantly more upregulated in LUSC versus healthy tissue (63.5-fold),
315 yet this was not associated with a statistically significant effect on the HR (if anything, the high Cx26-
316 expressing cohort showed a tendency for increased survival). All other connexins analysed are
317 represented in Supplementary File 3. These observations were supported by data from The Pathology
318 Atlas of the Human Protein Atlas database (<https://www.proteinatlas.org/pathology>). This open-
319 access database (retrieved from TCGA) contains correlation analyses based on mRNA expression
320 levels with respect to clinical outcome for 17 major cancer types and almost 8000 cancer patients [58].
321 The database identifies *GJB2* as significantly associated with poor prognosis in lung cancer ($p=6.25E-04$). This remained statistically significant in LUAD ($p=1.45E-05$) but not LUSC after subclassification.
322 Of interest, of all the other connexin genes, this database also identified *GJB3* (Cx31) to be significantly
323 associated with poor prognosis in lung cancer ($p=4.56E-04$) and in LUAD ($p=3.54E-08$) but not in
324 LUSC. This corresponds well with our own analysis (Table 2). Overall, these results clearly suggest
325 that connexins that are upregulated in the tumours may affect (or at least associate with) the clinical
326 outcome very differently in distinct tumour subtypes. Additionally, it is clear that the association
327 between connexin expression and prognosis was much more clear-cut in LUAD than in LUSC (Figure
328 3, Table 2 and Supplementary File 3).

330 Finally, in order to further corroborate the array-based analysis, we analysed RNA-seq data from
331 a Pan-cancer data collection available online (<http://kmplot.com>). We specifically focused on lung
332 cancer (LUSC, $n=501$; LUAD, $n=513$). For some genes, we observed significant discordance between
333 the gene expression and the HR in the two datasets, including for genes that had a high HR with a
334 highly significant p-value in the array (Supplementary File 4). Notably, for Cx43, the array analysis
335 indicated an association with better prognosis in LUAD (HR=0.64, highly significant) yet, in the RNA-
336 seq analysis, this showed a tendency for poor prognosis (HR=1.34), although this was not deemed
337 significant ($p=0.07$). However, for the three other connexin genes we have focused on (*GJB1*, *GJB2*
338 and *GJB4*) showed clear concordance.

339

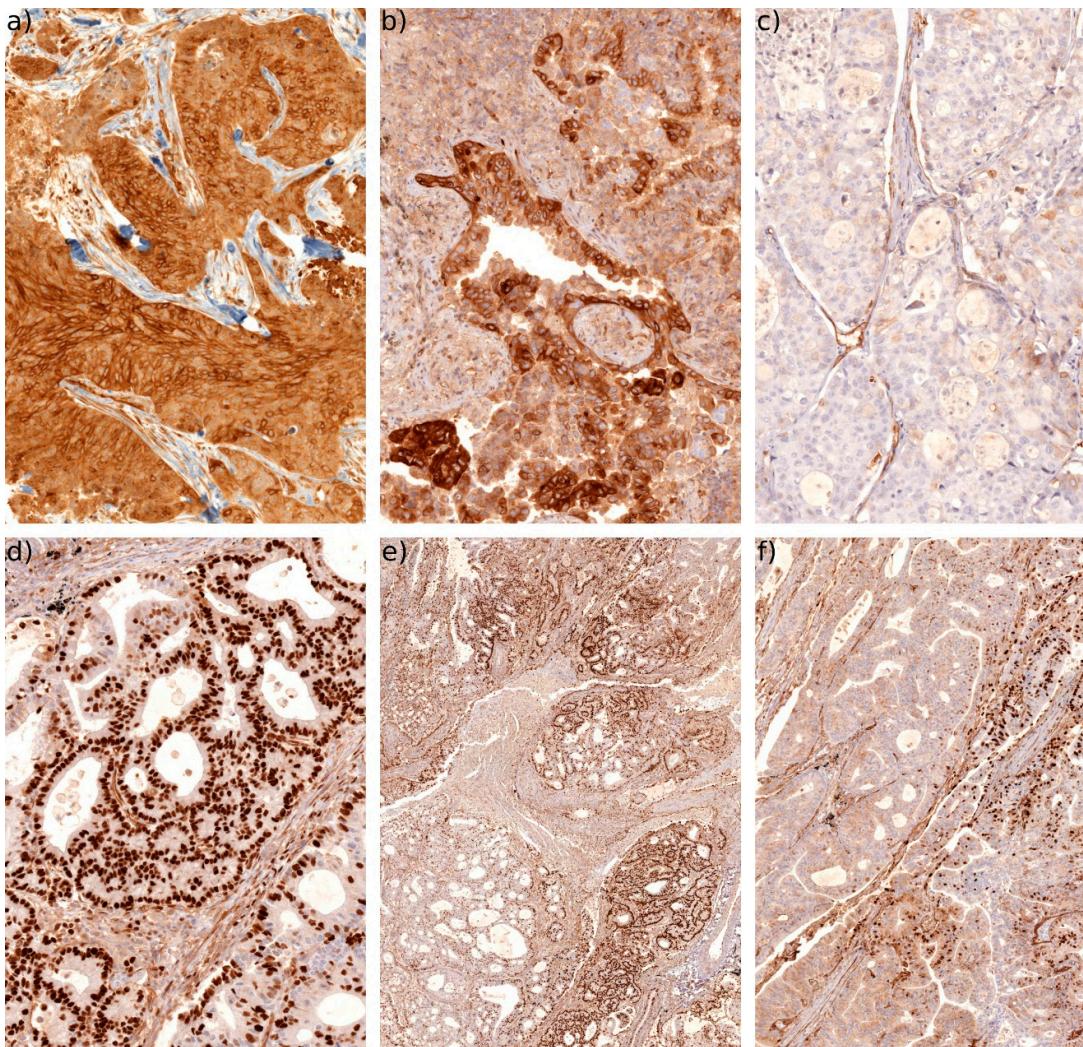
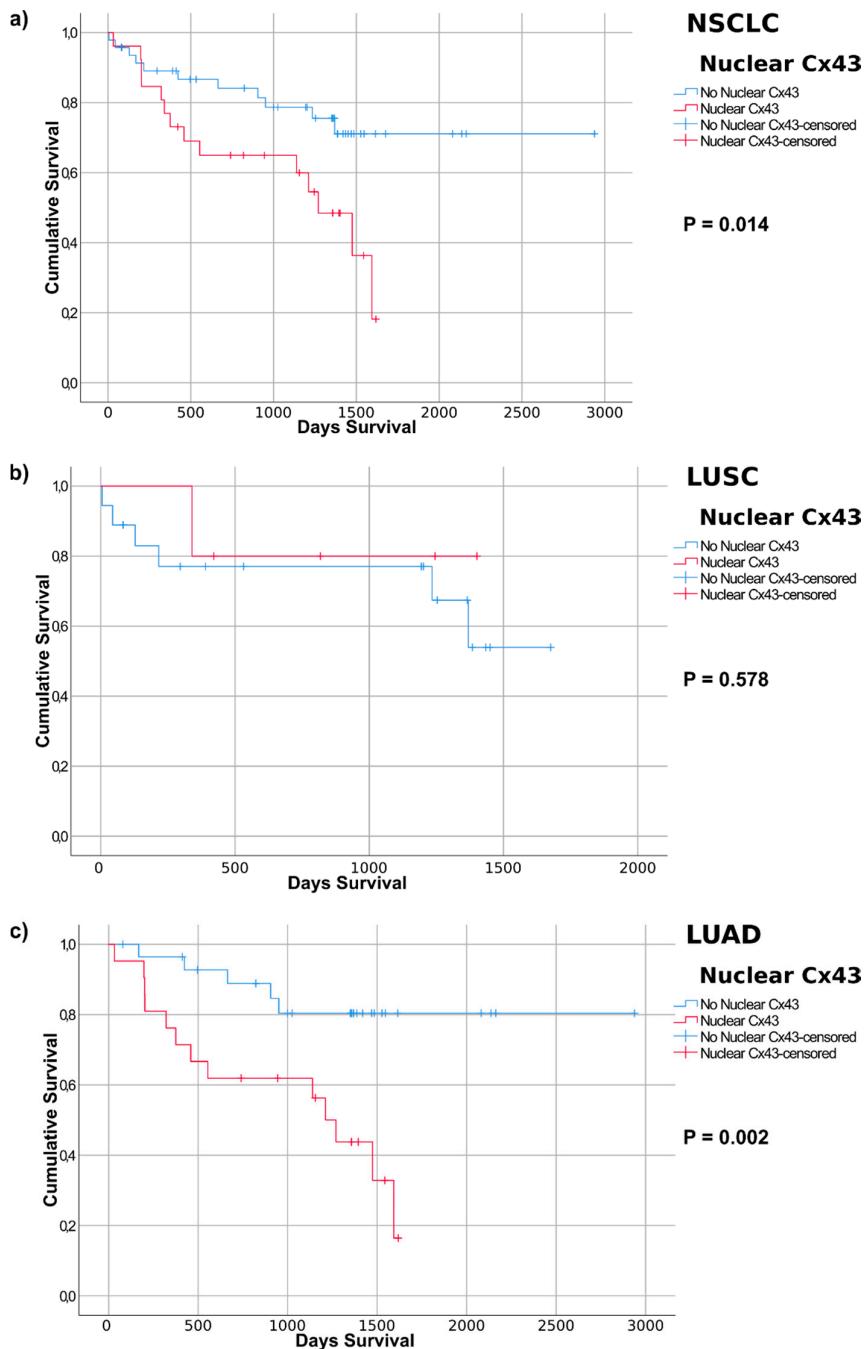

340
341
342
343
344
345

Figure 4. Kaplan-Meier curves of connexins known to drive lung tumorigenesis. The cohort expressing high levels of connexin mRNA is depicted in red, and the cohort with low connexin levels is in black. Probability refers to the likelihood of being alive at any time point. A hazard ratio (HR) below 1 suggests an association with better prognosis, whereas a HR above 1 suggests better prognosis (in the cohort expressing high levels of connexins). (a) Cx43; (b) Cx32; (c) Cx30.3; and (d) Cx26.

346
347
348
349
350

351 2.4. Connexin protein expression and subcellular localization

352 Cx43 is implicated in lung cancer but substantial evidence also indicates that Cx43, in a highly
353 context-dependent manner, can act as both a tumour suppressor and tumour promoter [16]. Our
354 mRNA array analysis suggested that Cx43 is weakly associated with better prognosis, especially in
355 LUAD (Figure 4a). However, our RNA-seq analysis did not support these findings and suggested a
356 potential association with poor prognosis in LUAD (Supplementary Table 4). Ultimately, analysis of
357 the protein expression of Cx43 is needed to provide better insight into the role of Cx43 and its
358 correlation with cancer. Cx43 is the most widely expressed connexin in lung epithelia, and several
359 studies indicate dysregulation at multiple levels: transcription (including methylation), translation
360 (including internal translation of truncated isoforms) and post-translational modifications (notably
361 phosphorylation) [4]. These alterations may affect Cx43 expression levels, function and subcellular
362 localization. In order to gain further insight into the underlying features of Cx43 in cancer, which
363 may explain the rather weak association at the mRNA level, we also performed an in depth analysis
364 of Cx43 at the protein level. We performed an immunohistochemistry (IHC) study of Cx43 on a tissue
365 microarray consisting of 73 tumours (50 LUADs and 23 LUSCs). We used a validated Cx43 antibody
366 that was absent in paraffin-embedded cells negative for Cx43. This antibody targets the last 20 amino
367 acids of human Cx43, has been extensively used in other IHC studies (e.g., [46,59,60]) and was found
368 in the Protein Atlas (<https://www.proteinatlas.org/>) to show an excellent correlation between mRNA
369 expression and protein expression [58]. The array consisted of triplicate punch biopsies of each
370 tumour covering the core of the tumour. The Cx43 expression intensity varied widely (and was
371 scored as 0: absent, 1: weak, 2: medium, and 3: intense staining). Some tumours expressed significant
372 levels of Cx43 with a typical pattern in the membrane and cytoplasm (Figure 5a). Some tumours
373 showed areas of very high expression (Figure 5b) typically concentrated in the cytoplasm. Other
374 tumours expressed very low or absent levels of Cx43 (Figure 5c). Stromal cells (e.g., immune cells,
375 muscle cells and endothelial cells) were also frequently shown to express Cx43, as expected (Figure
376 5c). This is consistent with previous reports in the lung [32,35]. Our analysis suggested that the
377 expression levels per se did not significantly correlate with the tumour grade or OS. This may be due
378 to the low number of cases. However, we noted a significant number of tumours (5 of the 23 LUSCs
379 and 21 of the 50 LUADs) with a highly pronounced pattern of nuclear Cx43 expression (Figure 5d).
380 This protein could be expressed throughout most of the tumour (Figure 5e) or in more isolated areas
381 (quantified as positive if more than 5% of the tumour expressed nuclear Cx43). Some tumours
382 displayed areas of nuclear Cx43, areas of cytoplasmic Cx43 and areas negative for Cx43 (Figure 5f).
383 Moreover, other stromal cells (e.g., immune cells, endothelial cells and chondrocytes) also
384 occasionally expressed nuclear Cx43 (Figure 5), suggesting that this nuclear translocation is driven
385 by microenvironmental cues.



386
 387
 388
 389
 390
 391
 392
 393
 394

Figure 5. IHC of Cx43. (a) Typical example in LUSC demonstrating intense Cx43 staining with a predominantly membranous and cytoplasmic pattern (20×). (b) Typical example in LUAD of a patchy high Cx43 expression with a predominantly cytoplasmic expression pattern (20×). (c) Example of a LUAD with very low or negative Cx43 expression (20×). Note that stromal cells such as endothelial cells are still positively stained. (d) Typical example of high levels of nuclear Cx43 expression in LUAD (20×). Note that some non-tumour cells are also sometimes positive for nuclear Cx43. (e) Low magnification overview (4×) of a LUAD with significant areas of nuclear Cx43 expression. (f) Area of the same tumour (10×) where nuclear Cx43 can be observed together with areas either negative for Cx43 or with low cytoplasmic levels.

395 We performed bivariate correlation analysis comparing basic tumour and patient features and
 396 using different Cx43 staining parameters (Supplementary File 5). Notably the expression of Cx43 (in
 397 the cytoplasm/membrane (CM) alone, or in combination with nuclear Cx43) is statistically higher in
 398 LUSC compared to LUAD. The presence of CM Cx43 immunoreactivity also correlates with a higher
 399 Ki67 score (suggesting Cx43 is expressed at higher levels in highly proliferating tumours). This is not
 400 significant for nuclear Cx43 alone or in combination with CM Cx43 staining. Our overall aim was to
 401 compare IHC with OS, compared to OS obtained from the in silico analysis. For this we used Kaplan
 402 Meier survival curves to look for associations between the Cx43 staining pattern and OS.

403 We identified a strong association between nuclear Cx43 and OS. Our Kaplan-Meier survival
 404 curve analysis (Figure 6a) indicated that nuclear Cx43 was significantly associated with poor OS in
 405 NSCLC ($p=0.014$).

Figure 6. Kaplan-Meier curves based on nuclear Cx43 expression detected by immunohistochemistry of lung cancer samples. Tumours with significant nuclear Cx43 expression (over 5% of total tumours) are depicted in red and compared with the rest of the tumour samples (in blue). P-values refer to the log-rank test (Mantel-Cox analysis). Average survival times of the patient cohorts are listed. (a) NSCLC (non-small cell lung cancer, refers to the merged LUAD and LUSC groups); (b) LUSC (lung squamous cell carcinoma); (c) LUAD (lung adenocarcinoma).

406 We then analysed OS after stratification into LUAD and LUSC tumour subtypes. No association was
407 found between nuclear Cx43 and poor OS in LUSC ($p=0.578$). In LUAD, however, nuclear Cx43 was
408 significantly associated with poor survival ($p=0.002$). There was no significant correlation between
409 CM Cx43 intensity and OS in NSCLC, LUSC or LUAD (based on using either moderate and high, or
410 mild, moderate and high, Cx43 intensity, Supplementary File 6a-f), although the trend suggested
411 Cx43 was associated with poor survival. When including patients that scored positive for either CM
412 Cx43 IHC or nuclear Cx43, no significance was observed in NSCLC, LUSC or LUAD (Supplementary
413 File 6j-i). However, patients classified into a single group positive for either nuclear Cx43 staining or
414 moderate to strong CM staining, showed significant association for poor prognosis in NSCLC
415 ($p=0.008$) and LUAD ($p=0.005$) (Supplementary File 6g-i). Again LUSC was not significant, which
416 may be due to the few patients in this cohort. This suggests Cx43 intensity may also be a factor related
417 to outcome.

418

419 3. Discussion

420 This study analysed connexins to identify specific changes in relation to lung cancer at the DNA
421 (methylation), RNA (expression) and protein (expression and subcellular localization) levels. Several
422 important observations have been made. It seems clear that the mRNA expression of a number of
423 connexins are dramatically changed in tumours (up to 289-fold in the case of *GJB6/Cx30* in LUAD).
424 These changes vary significantly according to tumour subtype (LUAD versus LUSC). Considering
425 the important role of connexins in tissue homeostasis and cancer, these observations merit further
426 investigation, including functional studies. It will be important to determine whether this is a mere
427 association or whether causation is implicated. Regardless, these changes suggest that a number of
428 connexins, particularly those showing a significant upregulation in tumours compared with healthy
429 tissue, may serve as potentially useful prognostic or diagnostic biomarkers.

430 Mechanistically, the regulation of the changes in connexin mRNA expression in tumour versus
431 healthy tissue, or indeed between tumour subtypes, remains poorly understood. We investigated the
432 role of connexin promoter methylation due to its well-known and important role as a regulator of
433 gene expression. Surprisingly, the correlation between connexin gene expression and connexin gene
434 methylation was poor. For instance, highly expressed connexin genes were found to be
435 hypermethylated while genes with low expression were hypomethylated. This is the opposite of
436 what would be expected. Moreover, the changes in methylation between healthy and cancer tissues
437 did not correlate with the corresponding changes in gene expression. For instance, significant
438 upregulation of a connexin did not tend to correlate with demethylation. A certain correlation could
439 be seen in some genes (e.g., *GJB2* encoding Cx26), particularly when looking at specific probes.
440 However, functional studies are required to validate the significance of these observations. The direct
441 correlation between methylation status and transcription in cancer seems to be restricted to a subset
442 of genes in a tissue-specific manner, and the exact underlying mechanism remains elusive [61]. This
443 seems to be true for connexins as well, and further connexin gene-specific studies are required to
444 determine any clinical value.

445 Functionally, little is known regarding the role of most connexins in relation to lung cancer. We
446 addressed their role from an association standpoint only. However, the clear associations observed
447 in many cases suggest that connexins may be causally implicated in lung cancer. Indeed, this is
448 supported by some functional studies. Notably, results from lung cancer mouse models correlate well
449 with the prognostic prediction for Cx32 and Cx43 made at the mRNA level [16,26,27,29-31,62].
450 However, some connexins significantly upregulate their mRNA expression in lung tumours and are
451 associated with poor prognosis. The pathophysiological correlation of this association is unclear. By
452 correlating connexin mRNA expression with prognosis, we highlight connexins (e.g., Cx31) that may
453 need to be studied further, including at the protein level by IHC. However, it is important to keep in
454 mind that the correlations currently described are mere associations that do not imply causation.
455 Moreover, mRNA expression is typically derived from all cells present in the tumour sample (e.g., in

456 the lung, there would be a mix of pneumocytes, bronchial epithelium, endothelial cells, macrophages
457 and other cell types). Indeed, a recent study showed that cancer-associated fibroblasts can form Cx43-
458 mediated gap junctions with NSCLC cells to support their malignant progression [63]. The ratios of
459 these cell types in a tumour change. Going forward, protein expression (IHC) and specific functional
460 studies (in vitro and in vivo models) are critical elements that need to be addressed.

461 Our proof-of-principle study, looking at Cx43 protein expression in lung tumours, made a highly
462 surprising and important discovery: a statistically significant association between nuclear Cx43
463 expression and reduced OS. The very distinct and clear nuclear Cx43 expression profile, present only
464 in some patients, makes it an excellent putative biomarker for the disease. However, more extensive
465 studies are needed to verify its use in lung cancer (and potentially other cancer types). Notably, the
466 sample size needs to be increased, and further sub-characterization of tumour histology and other
467 clinicopathologic parameters needs to be correlated with Cx43 expression. It is also noteworthy that
468 we observed nuclear Cx43 in non-tumoural cells (e.g., endothelial cells, chondrocytes and immune
469 cells) in those tumours displaying nuclear Cx43. This suggests that there may be microenvironmental
470 conditions that regulate the nuclear translocation of Cx43. Indeed, in glioma tumours, nuclear Cx43
471 was observed in areas where leukocytes were present [45].

472 Our IHC study also showed the importance of not relying on only the mRNA expression profile.
473 Indeed, the array analysis suggested (with high statistical significance) that high levels of Cx43 are
474 associated with better prognosis. Clearly, this does not take into consideration protein localization
475 and subpopulation of patients, with Cx43 protein localized to the nucleus seemingly associated with
476 poor prognosis. Moreover, and unlike IHC studies that specifically score the tumour cells, most
477 studies at the RNA level tend to average the entire tissue section, leading to significant cross-
478 contamination by other cells (e.g., endothelial and immune cells, known to express Cx43 and to be
479 altered in a tumour environment). The reliability of array probes also needs to be carefully
480 considered. Indeed, our Kaplan-Meier survival analysis using RNA-seq data suggested that Cx43
481 may be associated with poor prognosis in LUAD (in contrast to the array analysis, but in concordance
482 with our nuclear Cx43 association study). The reason for this discrepancy for Cx43 in LUAD is not
483 clear. As seen here, both approaches can give insightful information, but both will require substantial
484 follow-up before any clinical use.

485 A number of studies have described nuclear Cx43 in cell lines [48], including lung cancer cells
486 [49]. Nuclear Cx43 has additionally been detected in some tumours, notably in glioma [45] and colon
487 cancers [46]. Truncated forms of Cx43 have also been detected in the nucleus of cancer cells [50]. This
488 is particularly interesting in light of recent reports demonstrating that the *GJA1* transcript that
489 encodes for Cx43 also independently encodes for truncated isoforms [6-8]. We showed that this also
490 occurred in lung cancer cells and could be regulated by modulating specific cancer signalling
491 pathways such as mTOR and MAPK-MNK1/2 [7]. Moreover, the major truncated Cx43 isoform,
492 *GJA1-20k*, was recently experimentally shown to translocate to the nucleus and act as a direct
493 transcriptional activator of N-cadherin *in vivo* [13]. N-cadherin is associated with EMT in cancer [64],
494 predicts poor prognosis in lung cancer [65] and may be a therapeutic target in chemoresistant NSCLC
495 [66]. Indeed, our Kaplan-Meier analysis of TCGA array data associated N-cadherin with poor
496 prognosis in lung cancer (data not shown). It will be of considerable interest to test whether nuclear
497 Cx43 is correlated with N-cadherin expression in lung tumours. Because the antibody used for IHC
498 detects the C-terminus of Cx43, we cannot directly determine whether the nuclear signal is due to the
499 presence of full-length Cx43 or any truncated form such as *GJA1-20k*. Further studies are needed to
500 address this question. Nevertheless, the link between nuclear Cx43 expression and prognosis opens
501 up putative therapeutic options aimed at restoring Cx43 trafficking to the membrane. This approach
502 is particularly tantalizing because it may serve both to disrupt the nuclear signalling cascade
503 associated with poor prognosis and to restore GJIC and tissue homeostasis. We have identified
504 several FDA-approved drugs that affect the translation of truncated Cx43 isoforms (unpublished),
505 and future studies will address whether they can modify nuclear Cx43 localization or the tumour
506 phenotype.

507

508

509 **4. Materials and Methods**510 *4.1. Immunohistochemistry*

511 IHC was performed using the avidin-biotin-peroxidase technique. Five-micron-thick sections
512 were cut from formalin-fixed, paraffin-embedded cell pellets and mounted on poly-L-lysine-coated
513 glass slides. Sections were deparaffinized in xylene and rehydrated in graded alcohol. Endogenous
514 peroxidase was blocked by immersing the sections in 0.1% hydrogen peroxidase in absolute methanol
515 for 20 min. For antigen retrieval, the tissue sections were heated in a pressure cooker in 10 mM citric
516 acid monohydrate, pH 6.0, for 5 min and then incubated with primary antibodies for 60 min at room
517 temperature. IHC was performed with the Benchmark XT slide stainer (Ventana Medical Systems,
518 Inc., Tucson, AZ, USA). The primary antibody used was anti-Cx43 (Sigma C6219) at 1:1000 dilution.
519 All slides were haematoxylin-counterstained, dehydrated and mounted. Negative controls were
520 performed by omitting the primary antibody and showed minimal non-specific signal. The
521 immunostaining intensity was scored as follows: negative, 0; weak, 1; moderate, 2; and intense, 3.
522 Nuclear Cx43 expression was considered to be significant when more than 5% of the tumour samples
523 showed nuclear staining.

524

525 *4.2. Statistics*

526 Statistical studies were performed with the Statistical Package for the Social Sciences (SPSS 25.0;
527 SPSS, Chicago, IL, USA). Statistical significance for the Kaplan-Meier curves were considered at
528 $p < 0.05$ using log-rank (Mantel-Cox) analysis. Bivariate correlations were analysed using two-tailed
529 Pearson's correlation coefficient with significance set at $p < 0.05$.

530

531 *4.3. Human tissue specimens and tissue microarray*

532 Tissue microarrays containing 72 cases of primary lung cancer were obtained from the pathology
533 department. Triplicates of each tumour were used in the tissue microarray. All of the tissue specimens
534 for this study were obtained with informed patient consent from the Hospital Vall d'Hebron Biobank,
535 and the use of these specimens for this study was approved by the ethics committee of Hospital Vall
536 d'Hebron (PR(AG)327/2014).

537

538 *4.4. Bioinformatic analysis*

539 *Gene expression analysis:* Connexin mRNA expression in lung tumours and in corresponding
540 normal tissues was analysed by using data from The Cancer Genome Atlas (TCGA) using
541 FireBrowseR (<http://firebrowse.org/>) following the standard input and output values defined by the
542 software [52]. Our observations were verified using the TCGA Wanderer tool
543 (<http://maplab.imppc.org/wanderer/>) based on Illumina HiSeq RNA-seq analysis [53].

544

545 *Kaplan-Meier survival curves (mRNA expression):* Overall survival (OS) was derived both from
546 TCGA array data of lung cancer and from pan-cancer RNA-seq data. All analyses were performed
547 online (<http://kmplot.com/>) using the standard setting as defined by the software [57], with the
548 following exception: Patients were split using "Auto select best cutoff". Survival refers to OS. The
549 cutoff for significance was set to a strict $p < 0.001$. Additional verifications and analyses were
550 performed using the Pathology Atlas of the Human Protein Atlas database
551 (<https://www.proteinatlas.org/pathology>) using a standard setting and a strict cutoff value for
552 significance set to $p < 0.001$. This open-access database (retrieved from The Cancer Genome Atlas
553 [TCGA]) contains correlation analyses based on mRNA expression levels with respect to clinical
554 outcome for 17 major cancer types and almost 8000 cancer patients [58].

555

556 *Methylation analysis:* We used an online (<http://ualcan.path.uab.edu/>) analysis tool [54] to gain
557 insight into the correlation between changes in connexin mRNA expression in lung tumours and
558 changes in gene methylation. Standard pre-determined settings were used. We used the TCGA

557 Wanderer tool (<http://maplab.imppc.org/wanderer/>) [53] to analyse the methylation status of
558 individual probes and the correlation to gene expression in the tumours.

559

560 **Supplementary Materials:** The following are available online at www.mdpi.com/xxx/s1,

561 Figure S1: title, Table S1: title, Video S1: title.

562

563 **Author Contributions:** Conceptualization, T.A.; methodology, T.A., C.R. and T.M.; software analysis, T.A.;
564 validation, T.A., I.S., J.T.S. and S.R.C.; formal analysis, T.A.; investigation, T.A., I.S., M.A.M., C.R., J.T.S., T.M. and
565 S.R.C.; resources, M.A.M., A.M.M., S.R.C. and J.L.H.; data curation, T.A. and S.I.; writing—original draft
566 preparation, T.A.; writing—review and editing, T.A.; visualization, T.A.; supervision, T.A.; project
567 administration, T.A.; funding acquisition, T.A.

568 **Funding:** T.A. acknowledges funding from the *Instituto de Salud Carlos III*, grant numbers PI13/00763, PI16/00772
569 and CPII16/00042, co-financed by the European Regional Development Fund (ERDF).

570 **Conflicts of Interest:** The authors declare no conflict of interest. The funders had no role in the design of the
571 study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
572 publish the results.

573 **References**

- 574 1. Herbst, R.S.; Morgensztern, D.; Boshoff, C. The biology and management of non-
575 small cell lung cancer. *Nature* **2018**, *553*, 446-454 DOI: 10.1038/nature25183.
- 576 2. Aasen, T.; Johnstone, S.; Vidal-Brime, L.; Lynn, K.S.; Koval, M. Connexins:
577 Synthesis, post-translational modifications, and trafficking in health and disease.
International journal of molecular sciences **2018**, *19*, DOI: 10.3390/ijms19051296.
- 578 3. Schalper, K.A.; Carvajal-Hausdorf, D.; Oyarzo, M.P. Possible role of hemichannels
579 in cancer. *Frontiers in physiology* **2014**, *5*, 237 DOI: 10.3389/fphys.2014.00237.
- 580 4. Leithe, E.; Mesnil, M.; Aasen, T. The connexin 43 c-terminus: A tail of many tales.
Biochim Biophys Acta **2018**, *1860*, 48-64 DOI: 10.1016/j.bbamem.2017.05.008.
- 581 5. Aasen, T. Connexins: Junctional and non-junctional modulators of proliferation. *Cell*
582 and tissue research **2015**, *360*, 685-699 DOI: 10.1007/s00441-014-2078-3.
- 583 6. Smyth, J.W.; Shaw, R.M. Autoregulation of connexin43 gap junction formation by
584 internally translated isoforms. *Cell reports* **2013**, *5*, 611-618 DOI:
585 10.1016/j.celrep.2013.10.009.
- 586 7. Salat-Canela, C.; Sese, M.; Peula, C.; Ramon y Cajal, S.; Aasen, T. Internal
587 translation of the connexin 43 transcript. *Cell communication and signaling : CCS*
588 **2014**, *12*, 31 DOI: 10.1186/1478-811X-12-31.
- 589 8. Ul-Hussain, M.; Olk, S.; Schoenebeck, B.; Wasilewski, B.; Meier, C.; Prochnow,
590 N.; May, C.; Galozzi, S.; Marcus, K.; Zoidl, G., *et al.* Internal ribosomal entry site
591 (ires) activity generates endogenous carboxyl-terminal domains of cx43 and is
592 responsive to hypoxic conditions. *J Biol Chem* **2014**, *289*, 20979-20990 DOI:
593 10.1074/jbc.M113.540187.
- 594 9. Fu, Y.; Zhang, S.S.; Xiao, S.; Basheer, W.A.; Baum, R.; Epifantseva, I.; Hong, T.;
595 Shaw, R.M. Cx43 isoform gja1-20k promotes microtubule dependent mitochondrial
596 transport. *Frontiers in physiology* **2017**, *8*, 905 DOI: 10.3389/fphys.2017.00905.

599 10. Basheer, W.A.; Xiao, S.; Epifantseva, I.; Fu, Y.; Kleber, A.G.; Hong, T.; Shaw, R.M.
600 Gja1-20k arranges actin to guide cx43 delivery to cardiac intercalated discs. *Circ Res*
601 **2017**, *121*, 1069-1080 DOI: 10.1161/CIRCRESAHA.117.311955.

602 11. Basheer, W.; Shaw, R. The "tail" of connexin43: An unexpected journey from
603 alternative translation to trafficking. *Biochim Biophys Acta* **2016**, *1863*, 1848-1856
604 DOI: 10.1016/j.bbampcr.2015.10.015.

605 12. James, C.C.; Zeitz, M.J.; Calhoun, P.J.; Lamouille, S.; Smyth, J.W. Altered
606 translation initiation of gja1 limits gap junction formation during epithelial-
607 mesenchymal transition. *Molecular biology of the cell* **2018**, DOI:
608 10.1091/mbc.E17-06-0406.

609 13. Kotini, M.; Barriga, E.H.; Leslie, J.; Gentzel, M.; Rauschenberger, V.; Schambon, A.;
610 Mayor, R. Gap junction protein connexin-43 is a direct transcriptional regulator of n-
611 cadherin in vivo. *Nature communications* **2018**, *9*, 3846 DOI: 10.1038/s41467-018-
612 06368-x.

613 14. Losa, D.; Chanson, M. The lung communication network. *Cellular and molecular life
614 sciences : CMLS* **2015**, *72*, 2793-2808 DOI: 10.1007/s00018-015-1960-9.

615 15. Losa, D.; Chanson, M.; Crespin, S. Connexins as therapeutic targets in lung disease.
616 *Expert opinion on therapeutic targets* **2011**, *15*, 989-1002 DOI:
617 10.1517/14728222.2011.584875.

618 16. Aasen, T.; Mesnil, M.; Naus, C.C.; Lampe, P.D.; Laird, D.W. Gap junctions and
619 cancer: Communicating for 50 years. *Nature reviews. Cancer* **2016**, *16*, 775-788 DOI:
620 10.1038/nrc.2016.105.

621 17. Zang, J.P.; Wei, R. Effects of cx43 gene modification on the proliferation and
622 migration of the human lung squamous carcinoma cell line nci-h226. *Genetics and
623 molecular research : GMR* **2015**, *14*, 13110-13119 DOI: 10.4238/2015.October.26.7.

624 18. Xu, H.T.; Li, Q.C.; Zhang, Y.X.; Zhao, Y.; Liu, Y.; Yang, Z.Q.; Wang, E.H.
625 Connexin 43 recruits e-cadherin expression and inhibits the malignant behaviour of
626 lung cancer cells. *Folia Histochem Cytobiol* **2008**, *46*, 315-321 DOI:
627 E918123028P31L40 [pii]
628 10.2478/v10042-008-0057-9.

629 19. Zhao, W.; Han, H.B.; Zhang, Z.Q. Suppression of lung cancer cell invasion and
630 metastasis by connexin43 involves the secretion of follistatin-like 1 mediated via
631 histone acetylation. *Int J Biochem Cell Biol* **2011**, *43*, 1459-1468 DOI:
632 10.1016/j.biocel.2011.06.009.

633 20. Ruch, R.J. Connexin43 suppresses lung cancer stem cells. *Cancers* **2019**, *11*, DOI:
634 10.3390/cancers11020175.

635 21. Chen, Y.; Huhn, D.; Knosel, T.; Pacyna-Gengelbach, M.; Deutschmann, N.; Petersen,
636 I. Downregulation of connexin 26 in human lung cancer is related to promoter
637 methylation. *Int J Cancer* **2005**, *113*, 14-21 DOI: 10.1002/ijc.20498.

638 22. Zhang, D.; Chen, C.; Li, Y.; Fu, X.; Xie, Y.; Li, Y.; Huang, Y. Cx31.1 acts as a tumour
639 suppressor in non-small cell lung cancer (nsclc) cell lines through inhibition of cell
640 proliferation and metastasis. *Journal of cellular and molecular medicine* **2012**, *16*,
641 1047-1059 DOI: 10.1111/j.1582-4934.2011.01389.x.

642 23. Zhu, X.; Ruan, Z.; Yang, X.; Chu, K.; Wu, H.; Li, Y.; Huang, Y. Connexin 31.1
643 degradation requires the clathrin-mediated autophagy in nsclc cell h1299. *Journal of*
644 *cellular and molecular medicine* **2015**, *19*, 257-264 DOI: 10.1111/jcmm.12470.

645 24. Sato, H.; Fukumoto, K.; Hada, S.; Hagiwara, H.; Fujimoto, E.; Negishi, E.; Ueno, K.;
646 Yano, T. Enhancing effect of connexin 32 gene on vinorelbine-induced cytotoxicity
647 in a549 lung adenocarcinoma cells. *Cancer Chemother Pharmacol* **2007**, *60*, 449-457
648 DOI: 10.1007/s00280-006-0406-3.

649 25. Hada, S.; Sato, H.; Virgona, N.; Hagiwara, H.; Saito, T.; Suzuki, K.; Asano, R.; Yano,
650 T. Connexin 32 expression reduces malignant phenotype in human a549
651 adenocarcinoma cells: Implication of src involvement. *Oncology reports* **2006**, *16*,
652 1149-1154.

653 26. King, T.J.; Lampe, P.D. The gap junction protein connexin32 is a mouse lung tumor
654 suppressor. *Cancer research* **2004**, *64*, 7191-7196 DOI: 10.1158/0008-5472.CAN-
655 04-0624.

656 27. King, T.J.; Lampe, P.D. Mice deficient for the gap junction protein connexin32
657 exhibit increased radiation-induced tumorigenesis associated with elevated mitogen-
658 activated protein kinase (p44/erk1, p42/erk2) activation. *Carcinogenesis* **2004**, *25*,
659 669-680 DOI: 10.1093/carcin/bgh071.

660 28. Yoon, B.I.; Hirabayashi, Y.; Kawasaki, Y.; Tsuboi, I.; Ott, T.; Kodama, Y.; Kanno,
661 J.; Kim, D.Y.; Willecke, K.; Inoue, T. Exacerbation of benzene pneumotoxicity in
662 connexin 32 knockout mice: Enhanced proliferation of cyp2e1-immunoreactive
663 alveolar epithelial cells. *Toxicology* **2004**, *195*, 19-29.

664 29. Avanzo, J.L.; Mennecier, G.; Mesnil, M.; Hernandez-Blazquez, F.J.; Fukumasu, H.;
665 da Silva, T.C.; Rao, K.V.; Dagli, M.L. Deletion of a single allele of cx43 is associated
666 with a reduction in the gap junctional intercellular communication and increased cell
667 proliferation of mouse lung pneumocytes type ii. *Cell proliferation* **2007**, *40*, 411-
668 421 DOI: 10.1111/j.1365-2184.2007.00440.x.

669 30. de Oliveira, K.D.; Tedardi, M.V.; Cogliati, B.; Dagli, M.L. Higher incidence of lung
670 adenocarcinomas induced by dmbo in connexin 43 heterozygous knockout mice.
671 *BioMed research international* **2013**, *2013*, 618475 DOI: 10.1155/2013/618475.

672 31. Fukumasu, H.; Avanzo, J.L.; Sanches, D.S.; Mennecier, G.; Mori, C.M.; Dagli, M.L.
673 Higher susceptibility of spontaneous and nnk-induced lung neoplasms in connexin 43
674 deficient cd1 x aj fl mice: Paradoxical expression of connexin 43 during lung
675 carcinogenesis. *Mol Carcinog* **2013**, *52*, 497-506 DOI: 10.1002/mc.21884.

676 32. Chen, J.T.; Cheng, Y.W.; Chou, M.C.; Sen-Lin, T.; Lai, W.W.; Ho, W.L.; Lee, H.
677 The correlation between aberrant connexin 43 mrna expression induced by promoter
678 methylation and nodal micrometastasis in non-small cell lung cancer. *Clinical cancer*
679 *research : an official journal of the American Association for Cancer Research* **2003**,
680 9, 4200-4204.

681 33. Jinn, Y.; Inase, N. Connexin 43, e-cadherin, beta-catenin and zo-1 expression, and
682 aberrant methylation of the connexin 43 gene in nsclc. *Anticancer Res* **2010**, *30*, 2271-
683 2278.

684 34. Zhang, W.; Li, H.G.; Fan, M.J.; Lv, Z.Q.; Shen, X.M.; He, X.X. Expressions of
685 connexin 32 and 26 and their correlation to prognosis of non-small cell lung cancer.
686 *Ai Zheng* **2009**, *28*, 173-176 DOI: 8436 [pii].

687 35. Du, G.; Yang, Y.; Zhang, Y.; Sun, T.; Liu, W.; Wang, Y.; Li, J.; Zhang, H.
688 Thrombocytosis and immunohistochemical expression of connexin 43 at diagnosis
689 predict survival in advanced non-small-cell lung cancer treated with cisplatin-based
690 chemotherapy. *Cancer Chemother Pharmacol* **2013**, *71*, 893-904 DOI:
691 10.1007/s00280-013-2080-6.

692 36. Mesnil, M.; Aasen, T.; Boucher, J.; Chepied, A.; Cronier, L.; Defamie, N.;
693 Kameritsch, P.; Laird, D.W.; Lampe, P.D.; Lathia, J.D., *et al.* An update on minding
694 the gap in cancer. *Biochimica et biophysica acta. Biomembranes* **2018**, *1860*, 237-
695 243 DOI: 10.1016/j.bbamem.2017.06.015.

696 37. Naus, C.C.; Laird, D.W. Implications and challenges of connexin connections to
697 cancer. *Nature reviews. Cancer* **2010**, *10*, 435-441 DOI: 10.1038/nrc2841.

698 38. Yu, M.; Zhang, C.; Li, L.; Dong, S.; Zhang, N.; Tong, X. Cx43 reverses the resistance
699 of a549 lung adenocarcinoma cells to cisplatin by inhibiting emt. *Oncology reports*
700 **2014**, *31*, 2751-2758 DOI: 10.3892/or.2014.3163.

701 39. Yang, J.; Qin, G.; Luo, M.; Chen, J.; Zhang, Q.; Li, L.; Pan, L.; Qin, S. Reciprocal
702 positive regulation between cx26 and pi3k/akt pathway confers acquired gefitinib
703 resistance in nsclc cells via gjic-independent induction of emt. *Cell death & disease*
704 **2015**, *6*, e1829 DOI: 10.1038/cddis.2015.197.

705 40. Ito, A.; Koma, Y.; Uchino, K.; Okada, T.; Ohbayashi, C.; Tsubota, N.; Okada, M.
706 Increased expression of connexin 26 in the invasive component of lung squamous cell
707 carcinoma: Significant correlation with poor prognosis. *Cancer letters* **2006**, *234*,
708 239-248 DOI: 10.1016/j.canlet.2005.03.049.

709 41. el-Sabban, M.E.; Pauli, B.U. Adhesion-mediated gap junctional communication
710 between lung-metastatic cancer cells and endothelium. *Invasion & metastasis* **1994**,
711 *14*, 164-176.

712 42. Chen, Q.; Boire, A.; Jin, X.; Valiente, M.; Er, E.E.; Lopez-Soto, A.; Jacob, L.; Patwa,
713 R.; Shah, H.; Xu, K., *et al.* Carcinoma-astrocyte gap junctions promote brain
714 metastasis by cgamp transfer. *Nature* **2016**, *533*, 493-498 DOI: 10.1038/nature18268.

715 43. Menachem, A.; Makovski, V.; Bodner, O.; Pasmanik-Chor, M.; Stein, R.; Shomron,
716 N.; Kloog, Y. Intercellular transfer of small rnas from astrocytes to lung tumor cells
717 induces resistance to chemotherapy. *Oncotarget* **2016**, *7*, 12489-12504 DOI:
718 10.18632/oncotarget.7273.

719 44. Lin, Y.P.; Wu, J.I.; Tseng, C.W.; Chen, H.J.; Wang, L.H. Gjb4 serves as a novel
720 biomarker for lung cancer and promotes metastasis and chemoresistance via src
721 activation. *Oncogene* **2018**, DOI: 10.1038/s41388-018-0471-1.

722 45. Crespin, S.; Fromont, G.; Wager, M.; Levillain, P.; Cronier, L.; Monvoisin, A.;
723 Defamie, N.; Mesnil, M. Expression of a gap junction protein, connexin43, in a large
724 panel of human gliomas: New insights. *Cancer medicine* **2016**, *5*, 1742-1752 DOI:
725 10.1002/cam4.730.

726 46. Sirnes, S.; Bruun, J.; Kolberg, M.; Kjenseth, A.; Lind, G.E.; Svindland, A.; Brech,
727 A.; Nesbakken, A.; Lothe, R.A.; Leithe, E., *et al.* Connexin43 acts as a colorectal
728 cancer tumor suppressor and predicts disease outcome. *Int J Cancer* **2012**, *131*, 570-
729 581 DOI: 10.1002/ijc.26392.

730 47. Cesen-Cummings, K.; Fernstrom, M.J.; Malkinson, A.M.; Ruch, R.J. Frequent
731 reduction of gap junctional intercellular communication and connexin43 expression
732 in human and mouse lung carcinoma cells. *Carcinogenesis* **1998**, *19*, 61-67.

733 48. de Feijter, A.W.; Matesic, D.F.; Ruch, R.J.; Guan, X.; Chang, C.C.; Trosko, J.E.
734 Localization and function of the connexin 43 gap-junction protein in normal and
735 various oncogene-expressing rat liver epithelial cells. *Mol Carcinog* **1996**, *16*, 203-
736 212 DOI: 10.1002/(SICI)1098-2744(199608)16:4<203::AID-MC4>3.0.CO;2-G.

737 49. Chen, X.; Kong, X.; Zhuang, W.; Teng, B.; Yu, X.; Hua, S.; Wang, S.; Liang, F.; Ma,
738 D.; Zhang, S., *et al.* Dynamic changes in protein interaction between akap95 and cx43
739 during cell cycle progression of a549 cells. *Scientific reports* **2016**, *6*, 21224 DOI:
740 10.1038/srep21224.

741 50. Mennecier, G.; Derangeon, M.; Coronas, V.; Herve, J.C.; Mesnil, M. Aberrant
742 expression and localization of connexin43 and connexin30 in a rat glioma cell line.
743 *Mol Carcinog* **2008**, *47*, 391-401 DOI: 10.1002/mc.20393.

744 51. Salat-Canela, C.; Munoz, M.J.; Sese, M.; Ramon y Cajal, S.; Aasen, T. Post-
745 transcriptional regulation of connexins. *Biochemical Society transactions* **2015**, *43*,
746 465-470 DOI: 10.1042/BST20150033.

747 52. Deng, M.; Bragelmann, J.; Kryukov, I.; Saraiva-Agostinho, N.; Perner, S.
748 Firebrowser: An r client to the broad institute's firehose pipeline. *Database : the
749 journal of biological databases and curation* **2017**, *2017*, DOI:
750 10.1093/database/baw160.

751 53. Diez-Villanueva, A.; Mallona, I.; Peinado, M.A. Wanderer, an interactive viewer to
752 explore DNA methylation and gene expression data in human cancer. *Epigenetics &*
753 *chromatin* **2015**, *8*, 22 DOI: 10.1186/s13072-015-0014-8.

754 54. Chandrashekhar, D.S.; Bashel, B.; Balasubramanya, S.A.H.; Creighton, C.J.; Ponce-
755 Rodriguez, I.; Chakravarthi, B.; Varambally, S. Ualcan: A portal for facilitating tumor
756 subgroup gene expression and survival analyses. *Neoplasia* **2017**, *19*, 649-658 DOI:
757 10.1016/j.neo.2017.05.002.

758 55. Men, C.; Chai, H.; Song, X.; Li, Y.; Du, H.; Ren, Q. Identification of DNA
759 methylation associated gene signatures in endometrial cancer via integrated analysis
760 of DNA methylation and gene expression systematically. *Journal of gynecologic
761 oncology* **2017**, *28*, e83 DOI: 10.3802/jgo.2017.28.e83.

762 56. Shinawi, T.; Hill, V.K.; Krex, D.; Schackert, G.; Gentle, D.; Morris, M.R.; Wei, W.;
763 Cruickshank, G.; Maher, E.R.; Latif, F. DNA methylation profiles of long- and short-
764 term glioblastoma survivors. *Epigenetics* **2013**, *8*, 149-156 DOI: 10.4161/epi.23398.

765 57. Gyorffy, B.; Surowiak, P.; Budczies, J.; Lanczky, A. Online survival analysis
766 software to assess the prognostic value of biomarkers using transcriptomic data in
767 non-small-cell lung cancer. *PloS one* **2013**, *8*, e82241 DOI:
768 10.1371/journal.pone.0082241.

769 58. Uhlen, M.; Zhang, C.; Lee, S.; Sjostedt, E.; Fagerberg, L.; Bidkhor, G.; Benfeitas,
770 R.; Arif, M.; Liu, Z.; Edfors, F., *et al.* A pathology atlas of the human cancer
771 transcriptome. *Science* **2017**, *357*, DOI: 10.1126/science.aan2507.

772 59. Tittarelli, A.; Guerrero, I.; Tempio, F.; Gleisner, M.A.; Avalos, I.; Sabanegh, S.;
773 Ortiz, C.; Michea, L.; Lopez, M.N.; Mendoza-Naranjo, A., *et al.* Overexpression of
774 connexin 43 reduces melanoma proliferative and metastatic capacity. *British journal*
775 *of cancer* **2015**, *113*, 259-267 DOI: 10.1038/bjc.2015.162.

776 60. Poyet, C.; Buser, L.; Roudnick, F.; Detmar, M.; Hermanns, T.; Mannhard, D.; Hohn,
777 A.; Ruschoff, J.; Zhong, Q.; Sulser, T., *et al.* Connexin 43 expression predicts poor
778 progression-free survival in patients with non-muscle invasive urothelial bladder
779 cancer. *Journal of clinical pathology* **2015**, *68*, 819-824 DOI: 10.1136/jclinpath-
780 2015-202898.

781 61. Moarii, M.; Boeva, V.; Vert, J.P.; Reyal, F. Changes in correlation between promoter
782 methylation and gene expression in cancer. *BMC genomics* **2015**, *16*, 873 DOI:
783 10.1186/s12864-015-1994-2.

784 62. King, T.J.; Gurley, K.E.; Prunty, J.; Shin, J.L.; Kemp, C.J.; Lampe, P.D. Deficiency
785 in the gap junction protein connexin32 alters p27kip1 tumor suppression and mapk
786 activation in a tissue-specific manner. *Oncogene* **2005**, *24*, 1718-1726 DOI: 1208355
787 [pii]

788 10.1038/sj.onc.1208355.

789 63. Luo, M.; Luo, Y.; Mao, N.; Huang, G.; Teng, C.; Wang, H.; Wu, J.; Liao, X.; Yang,
790 J. Cancer-associated fibroblasts accelerate malignant progression of non-small cell
791 lung cancer via connexin 43-formed unidirectional gap junctional intercellular
792 communication. *Cell Physiol Biochem* **2018**, *51*, 315-336 DOI: 10.1159/000495232.

793 64. Pal, M.; Bhattacharya, S.; Kalyan, G.; Hazra, S. Cadherin profiling for therapeutic
794 interventions in epithelial mesenchymal transition (emt) and tumorigenesis.
795 *Experimental cell research* **2018**, *368*, 137-146 DOI: 10.1016/j.yexcr.2018.04.014.

796 65. Hui, L.; Zhang, S.; Dong, X.; Tian, D.; Cui, Z.; Qiu, X. Prognostic significance of
797 twist and n-cadherin expression in nsclc. *PloS one* **2013**, *8*, e62171 DOI:
798 10.1371/journal.pone.0062171.

799 66. Yamauchi, M.; Yoshino, I.; Yamaguchi, R.; Shimamura, T.; Nagasaki, M.; Imoto, S.;
800 Niida, A.; Koizumi, F.; Kohno, T.; Yokota, J., *et al.* N-cadherin expression is a
801 potential survival mechanism of gefitinib-resistant lung cancer cells. *American*
802 *journal of cancer research* **2011**, *1*, 823-833.

803

804