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Abstract: This paper aims at tackling with the task of fusion feature from images and its 
corresponding point clouds for 3D object detection in autonomous driving scenarios basing on 
AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse 
features targeted from Bird’s Eye View (BEV) LIDAR point clouds and its corresponding RGB 
images. Differs in existing fusion methods, which are simply the adoptions of concatenation 
module, element-wise sum module or element-wise mean module, our proposed fusion algorithms 
enhance the interaction between BEV feature maps and its corresponding images feature maps by 
designing a novel structure, where single level feature maps and another utilizes multilevel feature 
maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP 
and AHS with less speed loss comparing to existing fusion method used on the KITTI 3D object 
detection benchmark. 
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1. Introduction 

It is the fact that deep neural networks rely on a large number of data to guarantee the training 
effectiveness [17]. In general, the more data is fed, the better performance will be obtained, 
particularly when feeding abundant sensor data to the network model. In field of self-driving cars or 
3D object detection, camera and lidar are dominant sensors. RGB images from cameras contain rich 
texture information of the ambience, whereas the depth are lost. Point clouds from lidar can provide 
accurate depth and reflection intensity descriptions, but the resolution is comparatively low. 
Naturally, the effective fusion [19] of these sensors expects to deal with the drawbacks of single 
sensor in complicated driving scenarios. 

There are three major fusion algorithms to solve multi-sensor fusion problem including early 
fusion [1][2][3][10][11]; late fusion [4][5][6] and deep fusion [7]. In the early fusion architecture, 
firstly, features from single sensor concatenate or element-wise sum (mean) the features from other 
sensors; secondly, the outputs of fused feature maps would send to classification or segmentation. 
An advantage of early fusion is that the joint feature space between the modalities is potentially 
more expressive. However, the learning problem becomes more difficult due to that the classifier 
must learn a mapping from a higher-dimensional feature space. Late fusion usually has 
multi-net-branch and each network branch is first run on its network structure in corresponding 
sensing modality separately, then feature maps from each branch would fuse by concatenation or 
element-wise sum (mean) as final input to classification or segmentation. Compared to the early 
fusion, late fusion is easier to learn, but less expressive and sometimes the former could utilize more 
data than the later one. Especially when training data is not sufficient, the late fusion performs more 
effective. The recent deep fusion inspired by [8][9] uses element-wise mean for the join operation. 
Besides, three branches, using fused feature as unify input, would be trained dependently then 
combined with element-wise mean and iteration. Deep fusion makes features from different views 
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interact frequently, but in each interaction, it is also linear model which is the same as early fusion 
and late fusion. Linear model is flexible and simple accomplishment, however, it is much less 
expressive than the nonlinear model, which may suffer from more time and memory cost. 

Our proposal fusion algorithm aims at combining the linear model and the nonlinear model, 
and enhancing the interactions between image features and its corresponding point clouds features, 
and the independence of multi-view features is kept at the same time. The proposal fusion algorithm 
is elaborated in the following part. 

2. Related Work and Proposed Method  

There are a few works that exploit multi-sensor of data including the combination of RGB images 
and depth images and the fusion of RGB images and point clouds[17]. [11] utilizes RGB images and 
depth images with the early fusion strategy and trains pose-based classifiers for 2D detection[18]. [2][3] 
apply early fusion strategy by projecting point cloud to the plane and augmenting the image channels 
after upsampling. [6] fuses images and point clouds by late fusion strategy for urban segmentation and 
compute size, shape, position, color features, a high-dimension Bag-of-words (BoW) descriptor in 
images and point clouds. [7] fuse lidar bird view, lidar front view and image for 3D object detection 
with deep fusion. Besides, it project point cloud to the bird’s eye view instead of image plane and get 
nice results in KITTI [16]; however, it perform poor in the test of average heading similarity (AHS) . 

We evaluate our fusion algorithm in KITTI by 3D object detection with images and point clouds 
basing on AVOD [12]. Different from existing fusion algorithms, our fusion algorithms combine linear 
model and nonlinear model and enhance the interaction and independence. We can find detail visual 
structure for one of our proposal fusion algorithms in Figure 1. It could be observed that from two 
types or one group input feature maps to fusion output feature maps, our proposal fusion algorithms 
contain linear model element-wise mean, and concatenation and nonlinear model convolution with 
Relu [13] activation function. Besides, it reinforces the interaction and independence by adding one 
type feature maps into the other type and considering the mixing ratio, then two types of fused feature 
maps are through convolution layers separately. Finally, the two branches fuse again by element-wise 
mean. We name this framework as single level feature maps fusion algorithm. In addition, multilevel 
feature maps fusion algorithm is illustrated in Figure 2, where four type or two group input feature 
maps are adopted to fusion output feature maps. The proposed multilevel fusion algorithm contains 
linear model element-wise mean, as well as concatenation and nonlinear model convolution with Relu 
[13] activation function. Moreover, it reinforces interaction and independence by adding one type 
feature maps into the other type and consider the mixing ratio, then four type fused feature maps are 
input through convolution layers separately, finally, the four branches fuse again by element-wise 
mean. 

We exam our proposed fusion algorithm by replacing the two fusion parts of AVOD [12] with our 
fusion algorithm. To be specific, single level feature maps fusion algorithm uses Figure 1 structure is to 
displace the second fusion part of AVOD [12], and multilevel feature maps fusion algorithm uses 
Figure 2 structure to displace the first fusion part of AVOD. 
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Figure 1. Visual structure of fusion algorithm with single level feature maps: firstly, images feature 
maps and point clouds feature maps fuse by element-wise mean. Then, the fused part concatenates 
with preceding two layer feature maps. Next, each of two branches is fed through convolution layer 
to reorganize feature maps, finally the two branches fuse again by element-wise mean to region 
proposal. 

 

Figure 2. Visual structure of fusion algorithm with multilevel feature maps: firstly, images feature 
maps and point clouds feature maps in each group are fused by element-wise mean separately (im1 
and pc1 are of one group, and im2 and pc2 are of another group). Then, the fused part concatenate 
with another corresponding level feature maps. Next, each of four branches is fed through 
convolution layer to reorganize feature maps. Finally, the four branches fuse again by element-wise 
mean to region proposal. 

3. Experiments 

We elevate our fusion algorithm on published AVOD [12] where the metrics are 3D AP 
(average precision) and AHS (average heading similarity). To test our proposed fusion algorithms, 
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we replace AVOD[12] data fusion parts by our  proposed fusion algorithms and use default 
hyper-parameter, training set and validation set the same with AVOD to eliminate other influences 
and the performance on KITTI val set are shown in Table I, Table II , Figure 3 and Figure 4. 

 

Figure 3. multilevel fusion algorithm AP vs. Step, and print the 5 highest performing checkpoints for 
each evaluation metric. 

 

 

 

 

 

 

 

 

Figure 4_1 
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Figure 4_2 

 

 

 

 

 

 

 

 

 

 

 

Figure 4_3 

 

 

 

 

 

 

 

 

Figure 4_4 
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Figure 4_5 

 

 

 

 

 

 

 

 

 

Figure 4_6 

 

 

 

 

 

 

 

 

Figure 4_7 
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Figure 4. Visualization of multilevel fusion algorithm results on KITTI val set. Including 2D 
localization, category classification, 3D localization, orientation estimation, and category 
classification. 

3.1. Kernel Design 

Our proposed single level fusion algorithm, which is depicted by Figure 1, uses uniform 
convolution layers that are designed with kernel size 1*1, stride size 1, output feature map size is 16 
and its input feature map comes from the last feature extraction layer whose feature map resolution is 
the same as original network input. Multilevel fusion algorithm, which is depicted by Figure 2, uses 
uniform convolution layers that are designed with kernel size 1*1, stride size 1, output feature map 
size 8 and its input feature maps come from the last feature extraction layer in which feature map 
resolution is the same as original network input and the last but one feature extraction layer of which 
feature map resolution is only the half of original network input. 

In AVOD [12], feature map size cropped for proposal region is 3*3 and feature map size cropped 
for final prediction is 7*7. During training, we investigate how kernel with different size affects the 
performance and how does the kernel group inspiring by GoogLeNet [14] perform. The baseline 1 
diverse kernel size multilevel fusion algorithm has 1*1, 3*3 kernel in first fusion part and 1*1, 3*3, 5*5 
and 7*7 kernel in second fusion part. The baseline 2 diverse kernel size multilevel fusion algorithm has 
1*1, 3*3 kernel in first fusion part and 1*1, 7*7 kernel in second fusion part. The results are show in 
Table 3. It could be seen that our approach has obtained the best in the ratio of feature maps size and 
zero padding. The higher ratio, which means that the number of zero by zero padding is equal or 
greater than the number of elements in feature maps, and the more disturbance to feature maps caused 
by zero is predominant so that the original distribution of feature maps is deviation to a large extent. 

3.2. No BatchNorm 

Batch normalization aims to eliminate the covariate shift in its input data which can improve the 
speed of learning and independence of each individual layer. However, we found that batch 
normalization regresses the 3D bounding box estimation performance. Therefore, our proposed fusion 
algorithms have no batch normalization layers.  

3.3.Architecture Design Analysis 

Our fusion algorithms aim to reinforces interaction and independence of different type of feature 
maps and utilize linear models and nonlinear models to enhance expression. The single level fusion 
algorithm can approximate a general function： 
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where f[L+1]im is image feature maps of (L+1)th layer; f[L+1]pc denotes the point cloud feature maps 
of  (L+1)th layer; means concatenate or element-wise mean and the multilevel fusion algorithm can 
also approximate a general function:  
 

 

 

 

 

where f[L+1] is the feature map of (L+1)th layer and subscript means different source of feature maps; 
 means concatenate or element-wise mean; K is an integer and less than L. 
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Table 1. Our proposed single level fusion algorithm evaluation on the car class in the validation set. 

For evaluation, we show the AP and AHS (in %) at 0.7 3D IoU . 

 Easy Moderate Hard 

 AP AHS AP AHS AP AHS 
MV3D[15] 83.87 52.74 72.35 43.75 64.56 39.86 
AVOD[12] 83.08 82.96 73.62 73.37 67.55 67.24 

ours 84.16 84.05 74.45 74.13 67.80 67.40 
 

Table 2. Our proposed multilevel fusion algorithm evaluation on the car class in the validation set. 
For evaluation, we show the AP and AHS (in %) at 0.7 3D IoU . 

 Easy Moderate Hard 

 AP AHS AP AHS AP AHS 
MV3D[15] 83.87 52.74 72.35 43.75 64.56 39.86 
AVOD[12] 83.08 82.96 73.62 73.37 67.55 67.24 

ours 84.62 84.41 74.88 74.45 68.30 67.79 
 

Table 3. Our proposed multilevel fusion algorithm evaluated on the car class in the validation set 
compared with baseline. 

 Easy Moderate Hard 

 AP AHS AP AHS AP AHS 
baseline 83.02 82.84 73.71 73.13 67.79 67.15 
baseline 84.02 83.84 74.42 74.03 68.16 67.74 

ours 84.62 84.41 74.88 74.45 68.30 67.79 

4. Conclusions 

In this paper, we propose two fusion algorithms. One is single level feature maps fusion 
algorithm, and the other is multilevel feature maps fusion algorithm. Both of the two fusion 
algorithms do enhance interaction and independence between BEV feature maps and its 
corresponding images feature maps by designing a novel structure differentiated from existing 
fusion methods. Our proposed fusion algorithms define a nonlinear framework to improve potential 
expression. The nonlinear frameworks also take advantage of linear models, being similar to the 
existing fusion method, to flexible interaction and reducing cost of learning. Besides, the nonlinear 
frameworks can be easily embedded CNN network to make it utilized frequently. Experiments on 
the KITTI dataset show the effectiveness of our nonlinear fusion algorithms compared with existing 
fusion.  
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