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Abstract: This paper aims at tackling with the task of fusion feature from images and its
corresponding point clouds for 3D object detection in autonomous driving scenarios basing on
AVOD, an Aggregate View Object Detection network. The proposed fusion algorithms fuse
features targeted from Bird’s Eye View (BEV) LIDAR point clouds and its corresponding RGB
images. Differs in existing fusion methods, which are simply the adoptions of concatenation
module, element-wise sum module or element-wise mean module, our proposed fusion algorithms
enhance the interaction between BEV feature maps and its corresponding images feature maps by
designing a novel structure, where single level feature maps and another utilizes multilevel feature
maps. Experiments show that our proposed fusion algorithm produces better results on 3D mAP
and AHS with less speed loss comparing to existing fusion method used on the KITTI 3D object
detection benchmark.
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1. Introduction

It is the fact that deep neural networks rely on a large number of data to guarantee the training
effectiveness [17]. In general, the more data is fed, the better performance will be obtained,
particularly when feeding abundant sensor data to the network model. In field of self-driving cars or
3D object detection, camera and lidar are dominant sensors. RGB images from cameras contain rich
texture information of the ambience, whereas the depth are lost. Point clouds from lidar can provide
accurate depth and reflection intensity descriptions, but the resolution is comparatively low.
Naturally, the effective fusion [19] of these sensors expects to deal with the drawbacks of single
sensor in complicated driving scenarios.

There are three major fusion algorithms to solve multi-sensor fusion problem including early
fusion [1][2][3][10][11]; late fusion [4][5][6] and deep fusion [7]. In the early fusion architecture,
firstly, features from single sensor concatenate or element-wise sum (mean) the features from other
sensors; secondly, the outputs of fused feature maps would send to classification or segmentation.
An advantage of early fusion is that the joint feature space between the modalities is potentially
more expressive. However, the learning problem becomes more difficult due to that the classifier
must learn a mapping from a higher-dimensional feature space. Late fusion usually has
multi-net-branch and each network branch is first run on its network structure in corresponding
sensing modality separately, then feature maps from each branch would fuse by concatenation or
element-wise sum (mean) as final input to classification or segmentation. Compared to the early
fusion, late fusion is easier to learn, but less expressive and sometimes the former could utilize more
data than the later one. Especially when training data is not sufficient, the late fusion performs more
effective. The recent deep fusion inspired by [8][9] uses element-wise mean for the join operation.
Besides, three branches, using fused feature as unify input, would be trained dependently then
combined with element-wise mean and iteration. Deep fusion makes features from different views

© 2019 by the author(s). Distributed under a Creative Commons CC BY license.


http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.20944/preprints201902.0105.v1
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.3390/app9061065

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 February 2019 d0i:10.20944/preprints201902.0105.v1

2 of 9

interact frequently, but in each interaction, it is also linear model which is the same as early fusion
and late fusion. Linear model is flexible and simple accomplishment, however, it is much less
expressive than the nonlinear model, which may suffer from more time and memory cost.

Our proposal fusion algorithm aims at combining the linear model and the nonlinear model,
and enhancing the interactions between image features and its corresponding point clouds features,
and the independence of multi-view features is kept at the same time. The proposal fusion algorithm
is elaborated in the following part.

2. Related Work and Proposed Method

There are a few works that exploit multi-sensor of data including the combination of RGB images
and depth images and the fusion of RGB images and point clouds[17]. [11] utilizes RGB images and
depth images with the early fusion strategy and trains pose-based classifiers for 2D detection[18]. [2][3]
apply early fusion strategy by projecting point cloud to the plane and augmenting the image channels
after upsampling. [6] fuses images and point clouds by late fusion strategy for urban segmentation and
compute size, shape, position, color features, a high-dimension Bag-of-words (BoW) descriptor in
images and point clouds. [7] fuse lidar bird view, lidar front view and image for 3D object detection
with deep fusion. Besides, it project point cloud to the bird’s eye view instead of image plane and get
nice results in KITTI [16]; however, it perform poor in the test of average heading similarity (AHS) .

We evaluate our fusion algorithm in KITTI by 3D object detection with images and point clouds
basing on AVOD [12]. Different from existing fusion algorithms, our fusion algorithms combine linear
model and nonlinear model and enhance the interaction and independence. We can find detail visual
structure for one of our proposal fusion algorithms in Figure 1. It could be observed that from two
types or one group input feature maps to fusion output feature maps, our proposal fusion algorithms
contain linear model element-wise mean, and concatenation and nonlinear model convolution with
Relu [13] activation function. Besides, it reinforces the interaction and independence by adding one
type feature maps into the other type and considering the mixing ratio, then two types of fused feature
maps are through convolution layers separately. Finally, the two branches fuse again by element-wise
mean. We name this framework as single level feature maps fusion algorithm. In addition, multilevel
feature maps fusion algorithm is illustrated in Figure 2, where four type or two group input feature
maps are adopted to fusion output feature maps. The proposed multilevel fusion algorithm contains
linear model element-wise mean, as well as concatenation and nonlinear model convolution with Relu
[13] activation function. Moreover, it reinforces interaction and independence by adding one type
feature maps into the other type and consider the mixing ratio, then four type fused feature maps are
input through convolution layers separately, finally, the four branches fuse again by element-wise
mean.

We exam our proposed fusion algorithm by replacing the two fusion parts of AVOD [12] with our
fusion algorithm. To be specific, single level feature maps fusion algorithm uses Figure 1 structure is to
displace the second fusion part of AVOD [12], and multilevel feature maps fusion algorithm uses
Figure 2 structure to displace the first fusion part of AVOD.
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Figure 1. Visual structure of fusion algorithm with single level feature maps: firstly, images feature
maps and point clouds feature maps fuse by element-wise mean. Then, the fused part concatenates
with preceding two layer feature maps. Next, each of two branches is fed through convolution layer
to reorganize feature maps, finally the two branches fuse again by element-wise mean to region

proposal.
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Figure 2. Visual structure of fusion algorithm with multilevel feature maps: firstly, images feature
maps and point clouds feature maps in each group are fused by element-wise mean separately (im1
and pcl are of one group, and im2 and pc2 are of another group). Then, the fused part concatenate
with another corresponding level feature maps. Next, each of four branches is fed through
convolution layer to reorganize feature maps. Finally, the four branches fuse again by element-wise

mean to region proposal.

3. Experiments

We elevate our fusion algorithm on published AVOD [12] where the metrics are 3D AP
(average precision) and AHS (average heading similarity). To test our proposed fusion algorithms,
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we replace AVODJ[12] data fusion parts by our proposed fusion algorithms and use default
hyper-parameter, training set and validation set the same with AVOD to eliminate other influences
and the performance on KITTI val set are shown in Table I, Table II, Figure 3 and Figure 4.
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Figure 3. multilevel fusion algorithm AP vs. Step, and print the 5 highest performing checkpoints for
each evaluation metric.

Figure 4_1
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Figure 4. Visualization of multilevel fusion algorithm results on KITTI val set. Including 2D
localization, category classification, 3D localization, orientation estimation, and category
classification.

3.1. Kernel Design

Our proposed single level fusion algorithm, which is depicted by Figure 1, uses uniform
convolution layers that are designed with kernel size 1*1, stride size 1, output feature map size is 16
and its input feature map comes from the last feature extraction layer whose feature map resolution is
the same as original network input. Multilevel fusion algorithm, which is depicted by Figure 2, uses
uniform convolution layers that are designed with kernel size 1*1, stride size 1, output feature map
size 8 and its input feature maps come from the last feature extraction layer in which feature map
resolution is the same as original network input and the last but one feature extraction layer of which
feature map resolution is only the half of original network input.

In AVOD [12], feature map size cropped for proposal region is 3*3 and feature map size cropped
for final prediction is 7*7. During training, we investigate how kernel with different size affects the
performance and how does the kernel group inspiring by GoogLeNet [14] perform. The baseline 1
diverse kernel size multilevel fusion algorithm has 1*1, 3*3 kernel in first fusion part and 1*1, 3*3, 5*5
and 7*7 kernel in second fusion part. The baseline 2 diverse kernel size multilevel fusion algorithm has
1*1, 3*3 kernel in first fusion part and 1*1, 7*7 kernel in second fusion part. The results are show in
Table 3. It could be seen that our approach has obtained the best in the ratio of feature maps size and
zero padding. The higher ratio, which means that the number of zero by zero padding is equal or
greater than the number of elements in feature maps, and the more disturbance to feature maps caused
by zero is predominant so that the original distribution of feature maps is deviation to a large extent.

3.2. No BatchNorm

Batch normalization aims to eliminate the covariate shift in its input data which can improve the
speed of learning and independence of each individual layer. However, we found that batch
normalization regresses the 3D bounding box estimation performance. Therefore, our proposed fusion
algorithms have no batch normalization layers.

3.3.Architecture Design Analysis

Our fusion algorithms aim to reinforces interaction and independence of different type of feature
maps and utilize linear models and nonlinear models to enhance expression. The single level fusion
algorithm can approximate a general function:

f[LH](f‘[Lil]@f;[L]®(f[L]® f[L]))
e fHe (e 1)

where f[L+1]im is image feature maps of (L+1)th layer; f[L+1]pc denotes the point cloud feature maps

of (L+1)th layer; ® means concatenate or element-wise mean and the multilevel fusion algorithm can
also approximate a general function:

LH (( tml p[cl )® fth)

f[“l]((fl“ Te e sl
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where f[L+1] is the feature map of (L+1)th layer and subscript means different source of feature maps;

® means concatenate or element-wise mean; K is an integer and less than L.
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Table 1. Our proposed single level fusion algorithm evaluation on the car class in the validation set.
For evaluation, we show the AP and AHS (in %) at 0.7 3D IoU .

Easy Moderate Hard
AP AHS AP AHS AP AHS
MV3D[15] 83.87 5274 7235 4375 6456  39.86
AVOD[12] 83.08 8296 73.62 7337 6755 67.24
ours 8416  84.05 7445 7413 67.80 67.40

Table 2. Our proposed multilevel fusion algorithm evaluation on the car class in the validation set.
For evaluation, we show the AP and AHS (in %) at 0.7 3D IoU .

Easy Moderate Hard
AP AHS AP AHS AP AHS
MV3D[15] 83.87 5274 7235 4375 6456  39.86
AVOD[12] 83.08 8296 73.62 7337 6755 67.24
ours 84.62 84.41 7488 7445 6830 67.79

Table 3. Our proposed multilevel fusion algorithm evaluated on the car class in the validation set
compared with baseline.

Easy Moderate Hard
AP AHS AP AHS AP AHS
baseline 83.02 8284 7371 7313 6779 67.15
baseline 84.02 8384 7442 74.03 68.16  67.74
ours 84.62 84.41 7488 7445 6830 67.79

4. Conclusions

In this paper, we propose two fusion algorithms. One is single level feature maps fusion
algorithm, and the other is multilevel feature maps fusion algorithm. Both of the two fusion
algorithms do enhance interaction and independence between BEV feature maps and its
corresponding images feature maps by designing a novel structure differentiated from existing
fusion methods. Our proposed fusion algorithms define a nonlinear framework to improve potential
expression. The nonlinear frameworks also take advantage of linear models, being similar to the
existing fusion method, to flexible interaction and reducing cost of learning. Besides, the nonlinear
frameworks can be easily embedded CNN network to make it utilized frequently. Experiments on
the KITTI dataset show the effectiveness of our nonlinear fusion algorithms compared with existing
fusion.
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