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Abstract: In recent years, CPU cache memories have revealed themselves as one of the most powerful sources
of information leakage. This information leakage affects any implementation whose memory accesses, to data
or instructions, depend on sensitive information such as private keys. In most cases, side-channel cache attacks
do not require any specific permission and just need access to a shared cache. This fact, combined with the
spread of cloud computing, where the infrastructure is shared between different customers, have made these
attacks quite popular. Traditionally, cache attacks against AES use the information about the victim accesses to
an address. In contrast, we show that using non-access provides much more information. This novel approach is
applicable to existing attacks: Prime+Probe, Flush+Reload, Flush+Flush and Prime+Abort. In all cases, using
cache misses we are able to retrieve the 128-bit AES key with a reduction in the number of samples between
the 93% and the 98%. Further, this attack is adapted and extended in what we call the encryption-by-decryption
cache attack or EBD, to obtain a 256-bit AES key. In the best scenario, our approach obtains the 256 bits
of the key of the OpenSSL AES T-table-based implementation using less than 10000 samples; that is, 135
milliseconds, proving that AES-256 is only about 3 times more complex to attack than AES-128 via cache
attacks. The proposed approach is also successfully tested in a cross-VM scenario.

Keywords: side-channel cache attacks; cache misses; AES; cloud computing

1. Introduction

Cloud computing aims to provide its users with compute resources as they are required, eliminating the need
of acquiring and maintaining expensive computing infrastructures. Its low cost, ease of use and on demand access
to computing resources have made both, government and industry, to increasingly adopt these technologies.
Major companies such as Amazon, Google and Microsoft have become Cloud Service Providers. Cloud providers
offer computing capabilities at low prices because of economies of scale: by achieving high utilization of their
servers they can divide costs between more customers. This means that multiple virtual machines (VMs) are
co-hosted on a single physical host relying on a virtual machine manager (VMM) to provide logical isolation
between them.

However, physical isolation between tenants does not exist, and as a consequence, shared hardware can
create covert channels between different VMs. CPU caches are one of these shared resources which can be
exploited to recover fine grain information from co-resident tenants. Well known attack techniques such as
Evict+Time, Prime+Probe [1], Flush+reload [2], Flush+Flush [3] or the recently introduced Prime+Abort [4]
allow to infer instructions or data accessed by a victim program. Thus, when these memory accesses depend on
sensitive information, this information is leaked.

The most impressive demonstrations of the ability of such attacks to extract private information from their
victims target both symmetric [1,5,6] and asymmetric [7-9] cryptographic implementations. Intel CPU caches
have traditionally been victims of cache attacks, due to their inclusive architecture and replacement policies.
However, several researchers [10—12] have also proven that AMD or ARM processors, which have different
architectures and replacement policies, are also vulnerable to cache attacks.

Cache attacks require the victim and the attacker to share the cache. In cloud environments this means
that, prior to the attack, the attacker must achieve co-residency with the victim. As first shown by Ristenpart et
al. [13], co-residency is achievable and detectable in well-known cloud platforms (Amazon EC2). After this work
was published, cloud providers obfuscated the techniques they employed. However, recent works [9,14] have
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shown that it is still possible to determine if two VMs are allocated in the same physical machine. Once a VM is
allocated in the same host as a target victim, its owner is ready to gain information about what the neighbors are
doing.

Researchers have also become concerned that these attacks represent a serious threat. For this reason,
many approaches have been proposed that try to avoid the leakage [15—17] or to detect attacks [18-21]. To
the best of our knowledge, no hardware countermeasure is implemented in real cloud environments and no
hardware manufacturer has changed the cache architecture. We believe that the main reason for this absence
of countermeasures is the performance penalty they introduce. As a result, an attacker wishing to exploit
side-channel cache attacks will only have to take into the account the countermeasures based on detection that
can be implemented by users.

In this work we consider the T-table-based implementation of AES. This implementation is known to
be vulnerable to cache attacks. However, it is commonly used for comparison, and to demonstrate different
attack techniques. In this work, it serves to our purpose of showing the accuracy of the information gained from
the non-accesses to memory and to quantify the improvement that this approach represents compared to the
traditionally used approach based on accesses.

We are able to improve the results of previously published side channel attacks decreasing the number
of samples required to retrieve the whole key by multiple orders of magnitude. Every known technique
(Flush+Reload, Flush+Flush Prime+Probe and Prime+Abort) can benefit from this approach. Moreover, the
presented approach is less prone to consider false positives memory accesses. Regarding non-access, a false
positive is considered if the data has been loaded into the cache and removed from the cache in a short period of
time, which is unlikely to happen. Whereas a false positive in the traditional approach is considered whenever the
data is loaded into the cache in any other round of the AES encryption, rather than the target round, or whenever
this data is predicted to be used, so it is speculatively loaded into the cache, being both frequent options.

In summary, the main contributions of this work are the following

e We present a non-access attack, a novel approach to exploit information gained from the cache misses.

e We show that our approach improves the performance of previous cache attacks and demonstrate its
effectiveness for Flush+Reload, Flush+Flush Prime+Probe and Prime+Abort. We are able to reduce
the amount of encryptions required to derive the key between a 93% and a 98%. That is if an access
attack requires 100000 samples, our approach requires less than 3000, performed in a similar and real
experimental setup.

e We extend the non-access attack to gain information from more rounds of the algorithm, introducing
EBD, a practical attack implementation that provides the full 256-bit AES encryption key using cache side
channel attacks.

e We show that the complexity of the attack doesn’t depend on the size of the key but on the number of
rounds of each encryption. Passing from 10 rounds (AES-128) to 14 rounds (AES-256) increases the
complexity by a factor around 3.

The remaining of this paper is organized as follows. In Section 2, we provide information on the relevant
concepts to understand the attacks. Section 3 describes AES implementations and the attacks we perform to
extract the keys. In Section 4, we provide a discussion of our results. Finally, in Section 5 we draw some
conclusions.

2. Background and Related Work

In order to achieve a better understanding of side channel cache-attacks, we are going to give a basic
introduction to some required architectural concepts followed by a description of existing cache attacks and their
principles.

2.1. Architectural concepts

We explain the fundamental ideas of three features that have been key to existing cache attacks: CPU cache
memories, shared memory and transactional memory.
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2.1.1. CPU caches

CPU caches are small and fast memories located between the CPU and main memory, specially designed
to hide main memory access latencies. As the cost of memory is related to the speed, the cache memory is
structured in a hierarchy of typically 3 levels. Level 1 is the smallest, fastest cache memory and similarly to level
2 is usually core private. Level 3 the biggest and slowest cache memory, commonly shared among processing
cores. They hold a copy of recently used data which will be probably requested by the processor in a short
period of time. If the data requested by the processor is not present in any level of the cache, this data is loaded
from main memory and stored in the cache. If a cache level is completely filled at that point, some of the data
currently contained in it will be replaced (evicted) to store the loaded data instead. The selection of the evicted
data depends on the processor architecture. Processors including AMD, Intel and some ARM high-performance
processors, typically use a policy related to least recently used (LRU). However, the replacement policy of most
ARM processors is based in random replacement or round-robin replacement.

In Intel processors, as the one used for our experiments, caches are inclusive memories. This means that
high level caches, as level 3 (L3) cache, have a copy of the data of lower level caches. In addition, what is
more important and relevant to most attacks, L3 cache is shared among all cores. Consequently, a process being
executed in a core, related to L3 cache data, may produce side effects in other core processes. Other processors
use exclusive caches, where a memory block is present in only one level of the cache hierarchy.

Caches are usually set associative: they are organized as S sets of W lines (also called ways) each holding B
bytes. It is common to name them as W-way set associative cache. Given a memory address, the less significant
log B bits locate the byte on the line, the previous log,S bits do the same for the set and the remaining high-order
bits are used as a tag for each line. The tag will be used to discern whether a line is already loaded or not in the
cache. In modern processors, the last level cache (LLC) is divided into slices. Thus, it will be necessary to know
the slice, and the set in which a data will be placed. The slice is computed as a hash function of the remaining
bits of the address. If the number of cores is a power of two, the hash will be a function of the tag bits. Otherwise
it will use all the bits of the address [22,23] Note that, as main memory is much larger than CPU caches, multiple
memory lines map to the same cache set.

2.1.2. Shared memory

Memory is a limited resource whose lack negatively affects performance. It is natural that operating systems
employ mechanisms such as memory sharing to reduce memory utilization. Whenever there are two different
processes using the same library, instead of loading it twice into physical memory, sharing memory capabilities
allow to map the same physical memory page into the address spaces of each process.

Deduplication is a concrete method of shared memory, which was originally introduced to improve the
memory utilization of VMMs and was later applied to non-virtualized environments. The hypervisor or the
operating system scans the physical memory and recognizes processes that place the same data in memory; that
is, pages with identical content. When several pages happen to include the same content, all the mappings to
these identical pages are redirected to one of them, and the other pages are released. However, if any change is
performed by any process in the merged pages, memory is duplicated again.

The Linux memory deduplication feature implementation is called KSM (Kernel Same-page Merging)
and appeared for the first time in Linux kernel version 2.6.32. KSM is used as a page sharing technique by
the Kernel-based Virtual Machine (KVM) which we will be using as hypervisor within our experiments. KSM
scans the user memory for potential pages to be shared, scanning only potential candidates instead of the whole
memory continuously [24].

The deduplication optimization saves memory allowing more virtual machines to run on the host machine.
To exemplify this statement, we refer to [25] where they state that it is possible to run over 50 Windows XP VMx
with 1GB of RAM each on a machine with just 16 GB of RAM. In terms of performance, deduplication is an
attractive feature for cloud providers. However, after several demonstrations of side-channel attacks exploiting
page sharing, they are advised to disable this feature and no cloud provider is ignoring this advice.
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2.1.3. Transactional memory

When multiple threads are running in parallel and try to access a shared resource, a synchronization
mechanism is required to avoid conflicts. Transactional memory is an attempt to simplify concurrent programming,
avoiding common problems with mutual exclusion and improving the performance of other locking techniques.
Transactional memory enables optimistic execution of the transactional code regions specified by the programmer.
The processor executes the specified sections assuming that it is going to be possible to complete them without
any interference. The programmer is no longer responsible for identifying the locks and the order in which they
are acquired; he only needs to identify the regions which are going to be defined as part of the “transaction”.

During the execution of a transaction, the variables and the results of the operations are only visible for
that thread; that is, any update performed in these regions is not visible to other threads. If the execution ends
successfully, the processor commits all the changes as if they had occurred instantaneously, making them visible
to any process. If, on the other hand, there is a conflict with another process, the transaction is unsuccessful and
the processor aborts its execution. Consequently, the processor requires a mechanism to undo all the updates,
discard all the changes and restore the architectural state to pretend that the execution never happened.

Intel Transactional Synchronization Extensions (TSX) are the Intel's implementation of hardware
transactional memory. TSX provides two software interfaces: Hardware Lock Elision (HLE) and Restricted
Transactional Memory (RTM).

2.2. Cache attacks

Cache memories create covert channels that can be exploited to extract sensitive information. When a
process tries to access some data, if it is already loaded into the cache (namely a cache hit), the time required to
recover this data is significantly lower than the access time in case the data has to be retrieved from main memory
(cache miss). Therefore, if the execution time of a cryptographic process depends on the previous presence (or
not) of the accessed data on the cache memory, this time information can be exploited to gain private information
(such as secret keys) from cryptographic processes. Traditionally, cache attacks have been classified as:

e time driven attacks: the information is learned by observing the timing profile for multiple executions of a
target cipher.

e trace driven attacks: the information is gained by monitoring the cache directly, considering that the
attacker has access to the cache profile when running the target process.

e access driven attacks: the information is retrieved from the sets of the cache accessed during the execution
of the target process

The cache memory was first mentioned as a covert channel to extract sensitive information by Hu [26] in
1992. Later on, in 1996, Kocher [27] introduced the first theoretical attacks, as did Kelsey [28] in 1998 describing
the possibility of performing attacks based on cache hit ratios. Years later, in 2002, Page [29] studied a theoretical
example of cache attacks for DES, which was also used by Tsunoo [30] to study timing side-channels created due
to table lookups. In 2004, Bernstein [5] proposed the first time-driven attack after observing non-constant times
when executing cryptographic algorithms. Although the attack he presented was not practical, his correlation
attack has been investigated extensively and even retried between VMs recently [31]. Soon, another attack
was proposed by Percival [32], who suggested that an attacker could determine cache ways occupied by other
processes, measuring access times to all ways of a cache set. He found out that these times are correlated with
the number of occupied ways.

In 2006, Osvik et al.[1] proposed two techniques, which have been widely used since then, named
Evict+Time and Prime+Probe. These techniques are intended to allow an attacker to determine the cache
sets accessed by a victim process. A significantly more powerful attack that exploits shared memory and the
completely fair scheduler (CFS) was proposed by Gullasch [33] . The same principles of the attack were later
exploited by Yarom and Falkner [2], who named the attack Flush+Reload. The target of this attack was the L3
cache as it is inclusive and shared between cores. From those, the Flush+Reload and the Prime+Probe attacks
(and their variants) out-stand over the rest due to their higher resolution.
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2.2.1. Evict+Time

This technique consists of three steps: first, an encryption is triggered and its execution time measured;
second, an attacker evicts some lines; third, the encryption time is measured again. By comparing the second
time with the first measure, an attacker can decide whether the cache line was or not accessed, as higher times
will be related to the use of the mentioned line.

2.2.2. Flush+Reload

This technique relies on the existence of shared memory: thus, when an attacker flushes the desired lines
from the cache, he can be sure that, if the victim process needs to retrieve the flushed line, it will have to load it
from main memory. Flush+Reload also works in three stages: first, the desired lines from the cache are flushed
(reverse engineering may be required to determine the addresses which can leak information). Second, the victim
runs its process or a fragment of it. Finally, the flushed line is accessed by the attacker, measuring the time
required to do it. Depending on the reload time, the attacker decides whether the line was, or not, accessed.

This attack uses the c1flush instruction to remove the target lines from the cache in the initialization stage.
It is easy to implement and quite resistant to micro-architectural noise, for this reasons it has become really
popular. However, its main drawback is that it requires memory deduplication to be enabled. Deduplication is
an optimization technique designed to improve memory utilization by merging duplicate memory pages. As a
consequence, it can only recover information coming from statically allocated data. Shared memory also implies
that the attacker and the victim have to be using the same cryptographic library. To eliminate the need of knowing
the version of the algorithm attacked, Gruss et al. presented the Cache template attack [34], where they enforced
the existence of shared memory between the attacking and the attacked processes.

The attack was first introduced in [33], and was later extended to target the LLC to retrieve cryptographic
keys, TLS protocol session messages or keyboard keystrokes across VMs [2,34,35]. It has also demonstrated
its power against AES T-table based implementations [36], RSA implementations [2], or ECDSA [37] among
others, and also detecting cryptographic libraries [38]. Further, Zhang et al. [39] showed that it is applicable in
several commercial PaaS clouds, where it is possible to achieve co-residency with a victim [13].

Relying on the c1flush instruction and with the same requirements as Flush+Reload, Gruss et al. [3]
proposed the Flush+Flush attack. It was intended to be stealthy and bypass attack monitoring systems [19,20].
The main difference with Flush+Reload is that this variant recovers the information by measuring the execution
time of the c1flush instruction instead of the reload time, thus avoiding direct cache accesses. This was the key
fact to avoid detection. However, recent works have demonstrated that it is detectable [21,40].

2.2.3. Prime+Probe

Shared memory is not always available through deduplication in virtual environments as most cloud
providers turned off this feature after several attack demonstrations. However, Prime+Probe [9,41] still works,
and targeting the L3 cache an attacker is still able to extract sensitive information. Since Prime+Probe is agnostic
to special OS features in the system, it can be applied in virtually every system.

Prime+Probe consist of three steps: first, the attacker fills a cache set with known data, second the attacker
triggers (or waits for) the victim to perform an encryption. Finally, after the encryption has finished, the attacker
tries to access the known data place during the first step and measures the time it takes in order to determine if
the previously loaded data has been evicted by the victim process. If so, the attacker discovers which lines the
victim process has used.

This attack was first proposed for the L1 data cache in [1] and later was expanded to the L1 instruction
cache [42]. These approaches required both victim and attacker to share the same core, which diminishes
practicality. However, it has been recently shown to be applicable to LLC. Researchers have bypassed several
difficulties to target the LLC as retrieving its complex address mapping [22,23,43], and recovered cryptographic
keys or keyboard typed keystrokes [11,41,44]. Even further, the Prime+Probe attack was used to retrieve a RSA
key in the Amazon EC2 cloud [45].
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These attacks highly rely on precise timers to retrieve the desired information about the victim memory
accesses. In case a defense system tries to either restrict access to the timers or to generate noise that could
hide timing information, the attack is less likely to succeed. Once again, attackers have been able to overcome
this difficulty. The Prime+Abort attack [4] exploits Intel’s implementation of Hardware Transactional Memory
(TSX) so it does not require timers to retrieve the information. It first starts a transaction to prime the targeted set,
waits and finally it may or may not receive and abort depending on whether the victim has or has not accessed
this set. That is, no need for timers.

To summarize, the presented attacks target the cache, selecting one memory location that is expected to be
accessed by the victim process. They consist of three stages: initialization (the attacker prepares the cache
somehow), waiting (the attacker waits while the victim executes) and recovering (the attacker checks the
state of the cache to retrieve information about the victim). They differ in the implementation, requirements and
achievable resolution.

3. Attacks on AES

In this Section we describe the fundamentals of AES encryption and decryption algorithms. We explain the
insides of the attacked T-table-based OpenSSL AES implementation. We present the non-access cache attack
against AES-128, which outperforms previously published cache attacks. Later we explain how the approach
followed in this non-access attack can be extended to perform a practical attack on AES-256. We name it
Encryption-by-Decryption Cache Attack, as we use the information from the encryption to obtain a decryption
round key, which can be transformed into an encryption round key. This way, we are able to obtain information
from two different and consecutive encryption rounds.

3.1. AES fundamentals

The AES algorithm is explained in [46]. It is a symmetric block cipher, that operates with data in blocks of
16-bytes. Both encryption and decryption behave similarly. They repeatedly apply a round transformation on the
state, denoted S. The number of iteration rounds, N, depends on the size of the key: 10 rounds for 128-bits, 12
rounds for 192-bits and 14 rounds for 256-bits.

We denote S”,0 < r < N, the input state to round r. S” is a 4x4 matrix of byte elements S l’ 7 0<i<4,0<
Jj < 4. iindicates the row of the state and j the columns. We use only one subindex j to refer to a column of
the state S ;. Considering a plaintext block popip>...p1s, the elements of the initial state S0 of the algorithm are
S ?,j = pis4;j. This data is then transformed and rearranged and finally xored with the corresponding round key to
obtain the elements of the state S !. The process is repeated again and again till the last round which is slightly
different. In each round, the algorithm uses a different round key K", which is also a 4x4 matrix of byte elements
K; j. The N, + 1 round keys are expanded from the algorithm key using a known and fixed scheme. Once a round
key is known, there is a straight forward algorithm to recover the same amount of bits of the encryption key. In
order to obtain a 256-bit AES key, we need to obtain at least 2 round keys.

We follow the terms used in [46] to describe the transformations performed on the state. The normal round
transformation in the encryption process consists of four steps denoted: SubBytes, ShiftRows, MixColumns
and AddRoundKey, being SubBytes the only non-linear transformation. SubBytes is an S-box S gp applied to
the elements of the state. ShiftRows is an element transposition that rotates the rows of the state i positions to
the left. MixColumns operates on the state column by column. The operation is a matrix multiplication of a 4x4
known matrix and each of 4 the original columns. AddRoundKey is the addition (bitwise XOR in GF(2)) of the
elements of the state with the corresponding element of the round key.

All these steps have an inverse step, which are used in the decryption process: InvSubBytes (using
S-box § 1;11)), InvShiftRows (rotating to the right), InvMixColumns (multiplying by the inverse matrix) and
AddRoundKey. The normal round transformation is applied in all but the first and last rounds. The first round
applies only the AddRoundKey step. The last round is a normal round without the MixColumns step.

The decryption algorithm can be implemented by applying the inverses of the steps in a reverse order, being
InvSubBytes the last step of each round excepting the last one. It is preferable to perform the non-linear step
first in typical implementations. In [46] they present the Equivalent Decryption Algorithm, with a sequence of
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steps equal to the encryption, by switching the order of application of InvSubBytes and InvShiftRows (the
order is indifferent) and InvMixColumns and AddRoundKey. The round key of all but the first and last rounds
needs to be adapted for this purpose, by appliyng the InvMixColumns step to it.

The key fact to understand the attack against AES-256 is that the state S” can be reached in the r round of
the plaintext encryption process or in the N, + 1 — r round of the ciphertext decryption process.

3.2. AES T-table implementation

The steps of the round transformation include a non-linear S-box substitution and a matrix multiplication.
In order to reduce the number of operations performed during each round and to improve performance, AES
software implementations without special assembly instructions use tables (T-tables) with precalculated values for
each of the possible 256 values of an input element. In this work, we evaluate the T-table-based implementation
available in OpenSSL version 1.0.1f or newer versions when compiled with the no-asm flag.

In the aforementioned implementation, the state is represented by four 32-bit variables starting with s or ¢,
one for each column of the state. The name of the variable starts with s for odd rounds and with ¢ for even rounds,
considering the first round to be 0. The Most Significant Byte (MSB) of the variable represents the element
in row 0, while the Least Significant Byte (LSB) represents the element in row 3. Encryption and decryption
algorithms use 4 tables, each containing the result of S-box substitution and part of the matrix multiplication.
The tables start with Te for encryption and with Td for decryption. Generically, we denote each of the 4 tables T;
(Te; and Td;), where i is the column of the multiplication matrix considered in the table. Table T; contains the
contribution of the element in row i to each row of the resulting column state. That is, each of the 256 positions
of the table (2%) contains a 32-bit value, where each byte is the contribution to each row, aligned to perform
the addition of the different contributions. The size of each table is 1024 bytes. The column state is calculated
by adding (bitwise XOR in GF(2)) the contributions from the different rows and the round key. Therefore, the
four tables are accessed for each output column state. An appropriate selection of the input variable s for the
different rows is used to perform the ShiftRows step; for the destination variable t j, variable s;, ; is used for
row i (index of table T;). In this example, and for the entire work, the addition in subindexes i and j is done
modulus 4. For example, in round 1 we can obtain tg as follows:

to = Teg[sg>24] & Te [(s1>16)&0xft] & Te,[(s2>>8)&0xfT] & Tes[s3&0xff] & rk[4];

The last round does not include the matrix multiplication. A table for S ID (only InvSubBytes step) is
required for decryption algorithm (table Td4). As there are coefficients with value 1 in the multiplication matrix
of step MixColumns, the table is not needed for the encryption algorithm. It is implicitly available in the Te
tables. In this case Te(;+2ymoq4 is used for row i, because it has coefficient 1 for that row.

3.3. Attacking AES

As it can be inferred from the previous description of the T-table implementation, the accesses to each Te;
depend on the key. Thus, cache hits and misses depend on the key. In the following section 3.3.1 we explain how
to retrieve the 128 bits key using information about cache misses and the ciphertext.

We show that using cache misses we are not only able to recover an AES 128 bit key using significantly less
samples than previous approaches, but also we can recover the 256 bits of an AES key. To this end, we need to
recover information about two consecutive rounds. As we explain later, we perform this attack in two steps. The
first one targets the last round and the second one the penultimate round. A direct cache attack to the penultimate
round key is not feasible, so we use the equivalences between encryption and decryption to transform our data
and to be able to use cache misses to retrieve the key.

When describing the attacks, we use a nomenclature which is consistent with the terms used when describing
AES. The iteration variables, subindexes and superindexes follow this rules:

i is used to refer to the rows of the state or round key. As a subindex, it indicates the row of the element. As
an iteration value, it is used for accesing elements related to a row (the T-tables).

J is used to iterate the columns of the state or round key. As a subindex, it indicates the column of an
element.

t is the iteration variable for traversing the different encryptions of the experiment.
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[ is the iteration variable for traversing the values of a Cache line.
r is used as superindex to indicate the round of a variable (state, round key).

The elements used in the algorithm are represented by capital letters.

S represents the state of an AES encryption algorithm before round r. The 16 bytes of the state can be
accessed using i and j subindexes. The state is different for each encryption performed, and the array S”
represents the whole set.

D" is the equivalent to S for the decryption algorithm.

K" represents the encryption round key for round r. Each of the 16 bytes can be accessed using i and j
subindexes.

Kd" represents the decryption round key for round r. It can be calculated from the corresponding encryption
key K¥*1=" by applying the InvMixColumns step.

X; is information on access (1) or non-access (0) to a subset of table Te;. The subset contains 16 values (64
bytes), which is the cache line length. X; represents the array containing the access information for each
encryption performed in the experiment.

CK" is a set of arrays with 256 positions (the possible values), one for each round key byte. Each position
represents the amount of discarding votes received by the candidate for that concrete key byte. The position
with the minimum value after the analysis (we call the function argmin) is the correct key byte value. Its
elements can be accessed using i and j subindexes.

CKd" is the equivalent to CK" for a decryption round key.

3.3.1. Attack on AES-128

We assume that the attacker shares the cache with the victim, which means he can monitor accesses to the
cache with line granularity. We also assume that the attacker has access to the ciphertext. The attacker needs to
recover information from each of the four T-tables. To do so, he can monitor one line of one table, one line of
each T-table or even try to monitor the 16 lines of each of the 4 tables at a time (64 lines). The number of samples
required to retrieve all the bits of the key will vary in each case as will do the effect of the attack observed by the
victim [18]. The more lines monitored at a time, the more noticeable the attack will be. While a slight increase in
the encryption time can be assumed to have been caused by other programs or virtual machines running on the
same CPU, a higher increase in the encryption time would be quite suspicious.

For each of the evaluated techniques, i.e. Prime+Probe, Prime+Abort, Flush+Reload and Flush+Flush, we
use a similar process to retrieve the desired information. The process followed during the attack involves three
steps and is the same in all cases:

1. Setup: Prior to the attack, the attacker has to retrieve the necessary information about where the T-tables
are located in memory; that is, their virtual addresses or the cache set in which they are going to be loaded.
This way he ensures that the cache is in a known state, ready to perform the attack.

2. Measurement collection: In this step the attacker monitors the desired tables, applying each technique
between the requested encryptions and stores the gathered information together with the ciphertext. As
explained in section 2.2, this step can be subdivided into three stages: initialization, waiting and
recovering.

3. Information processing: Finally, the attacker uses the information recovered in the previous steps and
the information about the T-tables (the contents of the monitored line) to retrieve the secret key.

These main steps are equivalent to previous proposals [36,44]. Other proposals are also applicable to
our non-access attack, as the one suggested by Giilmezoglu et al. [47] which aims to detect the bounds of the
encryptions instead of triggering them. However, this approach also depends on the accuracy of the detection,
which introduces a new variable to be considered when comparing the effectiveness of the attack approaches.
In contrast, the aforementioned setup can be generalized for all the considered techniques, allowing a fair
comparison.

In the following we describe each of the steps for each of the considered algorithms and their particularities
in our experimental setup. We consider two scenarios. In the first one, the attack is performed from a spy process
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running in the same OS as the victim. In the second one, the attacker runs in a VM and the victim runs in a
different VM and they are both allocated in the same host. Table 1 includes the details of the machine in which
the experiments are performed. The steps are equal in the two considered scenarios.

Table 1. Experimental platform details.

Processor Cores | Frequency 0S LLC slices | LLC size | LLC ways | VMM Guest OS
Intel core i5-7600K 4 3.8 GHz CentOS 7.6 8 6 MB 12 ways KVM | CentOS 7.6 minimal
Setup

The tasks required to perform Flush+Reload and Flush+Flush are different than the required ones for
Prime+Probe and Prime+Abort. Since Flush+Something attacks rely on shared memory, an attacker wishing to
exploit this feature needs to do some reverse engineering on the library used by the victim to retrieve the target
virtual addresses. Note that the offset between the addresses of the beginning of the library and the target symbol
(the table) is constant. Thus, once this offset is known, the attacker can easily get the target address by adding
this offset to the virtual address where the library is loaded.

In contrast, Prime+Something attacks require the physical address of the target; more accurately, it is
necessary to know the set and the slice in which the data will be loaded. This information can be extracted
from the physical address. Part of the physical address can be directly inferred from the virtual address. Indeed,
the bits of the address that points to the elements withing a cache page are part of their physical address. For
example, if the size of a cache page is 4 KB, the 12 lowest significant bits of the address will keep the same when
translating the it from virtual to physical. However both virtual and physical addresses of the data that the victim
is processing are unknown to the attacker. To overcome this difficulty, an attacker needs to create its own eviction
set (a group of W elements that map exactly to one set) and profile the whole cache looking for accesses being
carried out by the victim.

Instead of recovering the complex address function of our processor, we create the eviction sets dynamically
using the technique summarized in the Algorithm 1 of the work of Liu et al. [4]1]. We have also enabled
hugepages of 2MB in our system to work with 21 known bits. Since the number of cores of our processor is a
power of two, we only need to obtain the mapping of one of the sets for each slice (the function that determines
the slice in which the data is going to be placed only uses the tag bits). The remaining sets that will be used
during the profiling phase and the attack itself can be constructed using this retrieved mapping.

Measurement collection

The measurement collection process is somehow similar for all the considered techniques. Algorithm 1
summarizes the general method employed to acquire the necessary information about the victim accesses to the
tables. This information will be later used to obtain the full key.

In the initialization, the attacker has to remove the data of one line of each Te; table from the cache. That is,
the attacker ensures he knows the state of the cache before the victim uses it. Since each cache line holds 64
bytes, and each entry of the table has 4 bytes, it holds 16 of the 256 possible values of the table. Then, in the
waiting stage, he triggers an encryption. Once it has finished, in the recovering stage, the attacker checks the state
of the cache. If the cache state has changed, this means that it is likely that the victim had used the data of that
T-Table. The different approaches considered in this work differ in the way they remove the data from the cache
during the initialization and in the way they recover the information about utilization of the removed table line.

In the initialization stage of Flush+Something, the target lines are removed from the cache using the clflush
instruction available in Intel processors. In Prime+Something, the attacker removes the target lines by accessing
the data of the created eviction sets that map to the same region as the target lines. Intel implements a pseudo
LRU eviction policy. As a result, accessing W elements that map to a set implies that any older data in the cache
will be replaced with the attacker's data. In Prime+Abort, this operation is performed inside a transactional region
defined using the Intel TSX extension.

In the recovering stage of Flush+Reload, the attacker accesses each of the removed lines measuring the
access times. If the time is below a threshold, it means the line was in the cache, so the algorithm must have
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Algorithm 1 Generic attack algorithm for cache attacks against T-Table AES implementations
Input: Address(Tej),Address(Te;),Address(Te;),Address(Tes3) > Addresses of the T-Tables
QOutput: Xo, Y] s )_(2, Yg, §Nr+l > Information about the accesses and ciphertext
1: for ¢ = 0 to number_of_encryptions do
2: for m = 0 to 4 do > INITIALIZATION
3 Remove from cache (Te,,); > The attacker prepares the cache for the attack
4 end for
5 > WAITING
6: g [{]=encrypt(random plaintext); > The victim performs one encryption
7 for m = 0 to 4 do
8 Infer victim accesses to((Te,,;) > RECOVERING
9 if hasAccessed((Te,,) then > The attacker Reloads, Flushes, Probes the target or gets the Abort
10: Xnlf] = 1; > The attacker decides if the victim has used the data.
11: else
12: X [f] = 0;
13: end if
14: end for
15: end for

= 5 5 = =N+l
16: return Xo, X1, X2, X3,5 ' ;

accessed it in any of the rounds. Flush+Flush decides if the data has been used by measuring the time it takes to
flush the line again. The flushing time depends on the presence of the line on the cache; it takes longer to flush
data that is located in the cache. The Prime+Probe recovers information on access by accessing the data from the
eviction set and measuring the access time. As recommended in previous works [41], we access the data within
the eviction set in reverse order in the Probe step. That is, the eviction set is read following a zig-zag pattern. If
the data of the table is used by the encryption process, part of the attacker's data will be evicted; thus, the time it
takes to “Probe” the set will be higher. In the Prime+Abort, as the eviction set was accessed inside a transaction,
any eviction of the attacker's data from the cache causes an abort. The attacker defines a handler for this abort that
evaluates its cause. There are different abort causes which are identified with an abort code [48]. This abort code
is loaded into the eax register and it is read in the handler function to check if the abort was due to an eviction.

Figure | shows the distribution of the measured times during the Reload step (1a) and during the Probe
step (1b). Note that it is easy to establish a threshold to distinguish between accesses and not-accesses to the
monitored Te table.
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Figure 1. Timing information obtained when attacking AES in the Reload and Probe steps in our test machine.
The threshold is shown in red
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Information processing

This final step is common for all the attacks. In this stage our approach differs from previous attack
strategies. Traditional approaches for the considered attacks take into account if the data stored in the monitored
cache line has been used by the victim. In contrast, we consider the opposite situation, i.e. the victim has not
used that data. Our approach is based on the following observations:

— Whenever the retrieved information shows that the victim has used the considered data, it could have been
used during the last round or during any of the remaining ones. Thus, whenever the data is used in a
different round, this approach introduces “noise”. On the other hand, if a monitored cache line has not
been accessed during the encryption, neither has it been accessed in the last round nor in any other round.

— Speculative execution of pieces of code, or prefetching of the data that the processor believes it is going be
used in the near future, may involve that the attacker sees in the cache data that has not been used by the
victim (false positive). Nonetheless, in order to obtain a false positive in the non-access approach, the data
has to be used during the last round of the encryption and then flushed away by other process during the
short period of time after the end of the encryption and before the recovering step.

— Each non-access sample reduces the key search space discarding up to n* key values (n equals to 16 Table
entries stored in the cache line which are used to obtain 4 output bytes). Thus, we obtain information from
each of the samples. In contrast, when considering accesses, only when one candidate value towers over

the rest, the retrieved information is useful to retrieve the secret key.
— The information obtained this way is more likely to be applicable to all the rounds of an encryption, or

at least to the penultimate round, as it refers to the whole encryption, so we can use this information to
retrieve longer keys (192 or 256 bits).

We have seen in section 3.2 that each table Te is accessed 4 times during each round. Therefore, the
probability of not accessing a concrete cache line within an encryption is provided by equation 1, where n
represents the number of table entries a cache line can hold, and N, the number of rounds of the algorithm.
Particularly in our case, where the size of a cache line is 64 bytes, n is 16 (each entry of Te has 32-bits) and the
number of rounds (N,) for AES-128 is 10. Consequently, the probability of not accessing the cache line is 7, 5%.
This means that one of each fourteen encryptions performed gives us useful information.

)]

1 n N4
Pr Teil=(1-—
[no access Te;] = ( 256)

As stated before, we focus on the last round of the encryption process. This round includes SubBytes,

ShiftRows and AddRoundKey operations. Referred to the last round input state and the T-tables, we can express
N+ Ny

an output element by Sl.’/ =K; @Te,+2 [ IJH]

we can discard all the key Values Wthh given an output byte, would have had to access any of the Te-table

When a cache line has not been used during the encryption,

entries hold in the mentioned cache line. For example, given a ciphertext byte ’'OF’ and a cache line holding
01’ AF’ ’B4’° and *29’, if this line remains unused after performing the encryption we discard the key byte
values OF®01, OF®AF, 0F®B4 and OF®29. As we have seen in Section 3.2, the same table is used to obtain all
the elements of the row of the output state. This means each Te; table also discards the K; ; values with the same
i value independently of the j index.

A general description of the key recovery algorithm for the last round key is provided in algorithm 2. Key

—N,+1 . . .
bytes of the last round, KINJ’ , are recovered from the output state S (ciphertext) and the information about the

accesses to each table Te;, which is stored in X; and was recovered using the algorithm 1. The output state (§N'+1)
is obtained by arranging the known ciphertext vector as a matrix as indicated in Section 3.1. The algorithm first
initializes an array of 256 elements for each of the 16 bytes of the key (K; ;). This array (CKZ., J’ ) will contain the
discarding votes for each key byte candidate. The candidate with less negative votes is the value of the secret key.

Figure 2 shows the values of one of the 16 CK | array, which contains the discarding votes each possible
key value has received during the attack for a concrete byte of the key. The x-axis represents each possible key
value, and the y-axis the number of times each option has been discarded. The minimum is well distinguishable
from the rest of possible key values and is highlighted in red. The index with the minimum score represents the
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Algorithm 2 Recovery algorithm for key byte Kl]\;’
Input: Xo, X1, Xs, Y3, ENrH > Information about the accesses and ciphertext collected in the previous step.
Output: KN]’ > Secret key values
1: for [ =0to 256 do
2 CKfVJ’ [] =0, > Initialization of the candidates array
3: end for
4: for t = 0 to number_of _encryptions do
5. if Xj42 [t] == O then
6 for/=0tondo > n stands for the number of entries that a cache line holds
7 CKN ' [S gt (] @ Teis [I]|++; > Vote for discard key candidate
8 end for
9: end if
10: end for
11: return argmin(CKQ’j’.‘ ); > The candidate with the fewest votes for discard is the secret key.

secret key. This approach allows to recover the 128 bits of the key with less than 3000 encryptions on average in
the best case. We present further results and provide further details in section 4.
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Figure 2. Key byte possible values with their associated discarding scores

3.3.2. Attack on AES-256

The attack against AES-256 comes as an extension of the previously explained attack on the last round of
an encryption. There are no further assumptions than in the previous case. The setup and measurement collection
steps are exactly the same for both attacks, and only the information processing phase is different since it includes
an extra step. We retrieve 128 bits of the key using the algorithm 2 and use the guessed 128 bits of the key and the
same information that has already been used (non-accesses and ciphertext) to derive the remaining 128 unknown
bits of the key. We will similarly use information about the non-used cache lines to discard key values till we
obtain the key. This is possible because this information refers to the whole encryption and, as previously stated,
if a cache line has not been accessed within an encryption, it has not been accessed in any of its rounds.

Note that the probability of non-accessing one line when performing an AES-256 encryption, which is a
function of the number of rounds, and is given by equation 1, is 2.69% (14 rounds). As a consequence the attack
on AES-256 will require more samples in order to successfully guess the whole key. In this case about 1 sample
of each 37 carries useful information. This means we will need to collect at least the same number of useful
samples than in the previous case.

The key to understand the attack, is to understand the equivalence between encryption and decryption.
Using the decryption algorithm, we transform the data referring to the encryption process in a way that it is
possible to easily derive the round key discarding its possible values. For this reason we call this approach
encryption-by-decryption attack or EBD.
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If we analyze the AES encryption process, we see that the output of each round is used as an index to
access the T-tables in the next round after a ShiftRows operation. Taking into account the valuable information
of the unused cache lines it is possible to figure out which are the state values that are not possible before the
penultimate round, SNr=1 That is, if a cache line has not been accessed, all the state values that would have
forced an access to this line can be discarded.

Once we know the last round key, it is straightforward to obtain the input to that round (SV"~!) only taking
into the account the encryption function. However, because of the MixColumns operation which is performed
in all the previous rounds (except for the initial one), the certainty about the non-usage of a cache line of one
table and the knowledge of the encryption function are not enough to obtain information about the key of these
rounds. But, if we use the decryption function and take into the account the equivalence between encryption and
decryption, we can transform our data so we can derive information about an state of the decryption function
which is equivalent to the SV"~! state in the encryption function.

ENC Straight Equivalent
DEC DEC
sS4 ¥ F-===== "
SubBytes InvSubBytes ImvShiftRows
¥ A A
ShiftRows InvShiftRows InvSubBytes
¥ ==--=f ===~ == fp—D?
MixColumns IneMixColumns AddRoundKey
P = = == = = I TR |'|url
AddRoundKey AddRoundkey InwbdixColumns.
St ¥ F==--=-%
SubBytes InwSubBytes ImvShiftRows
$---===4 )
ShiftRows InvShiftRows InvSubBytes
¥==--——h==--==h Dt
AddRoundKey AddRoundEey AddRoundKey
"
sta Ciphertext | Do

— State (S or D)
————— Same value

Figure 3. Relation between encryption, straight decryption and Equivalent decryption.

Figure 3 shows with dotted lines the instants where equivalent decryption and encryption algorithms have
the same values. According to the figure, we establish a bidirectional relation between an encryption state S”
and a decryption state DV-*1~" using SubBytes and ShiftRows steps. The relations are defined in Equations
2a and 2b. These relations and the knowledge of the values which are not possible in the state V"1 give us
the values which are not possible in the state D?. Since the value of what we call intermediate value IV' can be
easily obtained from the decryption function, our scenario is similar to the previous one (Dl.z, i= 1 V}, i® C Kdl.‘,j).

DN+ = Shi ftRows(S gp(S”)) @

S" = S gp(InvShiftRows(DV+!7")) (2b)

Algorithm 3 shows how to obtain the correct candidates for the round key of decryption algorithm round 1
(the second round). The key of the first decryption round is exactly the same as the key used in the last round of
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the encryption which was previously obtained using the non-access cache attack and targeting the last round
(algorithm 2). As we know both input data (ciphertext) and round key, we can perform the first round of the
decryption algorithm and obtain the state of round 1, D!. Applying the Td-tables on the state we calculate an
intermediate value of round 1, IV!. At this point if we perform the AddRoundKey, the next step of the decryption
algorithm, the result would be D?, which can be transformed into the encryption S ' state as has just been
explained using Equation 2b.

In the T-table implementation, the state (including SV~! or § 13 for AES256) is used as index to access the
Te tables. Note that not accessing a cache line holding one entry of the table also indicates which indexes of
the table are not being used, which is similar to indicating which values of the state can be discarded. Then, we
apply Equation 2a to transform the discarded values for state SV~~! to discarded values for state D?. After this
transformation, we have information on both sides of the AddRoundKey in round 1 of the decryption sequence.
We can vote to discard possible values of the decryption round key. We vote to those values which, once
transformed the decryption state into the encryption state, would lead to a memory access on the unused lines.

The least voted value for each byte is the decryption round key. Both the encryption and decryption keys
are related and one can be obtained from the other applying the InvMixColumns operation, or an equivalent
operation depending on the direction of the conversion. As a result of this information processing, we know two
consecutive round keys; that is, the full AES-256 key. This algorithm could be applied recursively for the whole
encryption/decryption process, as the cache information is applicable to the whole encryption.

Using this encryption-by-decryption cache attack on AES-256 we obtain the key with less than 10000
samples in the best scenario. We provide further details in section 4.

Algorithm 3 Recovery algorithm for key byte Kdl.lj

Input: Xo, X1, X5, X3,5 1 and KM > Information about the accesses, ciphertext and last round key.
Output: Kd} . > Secret decryption key values
I Kd® = KM
2: for [ =0 to 256 do
3 CKdl.lj []] =0; > Initialization of the candidates array
4: end for
5: for t = 0 to number_of _encryptions do
6:  if X; [t] == 0 then
7 D° =5V [1;
8 D! =D% Kd";
9: for j =0to 4 do
10: IV;:Tdo [D(l)’j] oTd, [D%,j_l] oTd, [Dij_z] oTd; [D;j_3] > Obtain intermediate value
11: end for
12: for /=0tondo > n stands for the number of entries that a cache line holds
13: CKdij = [IVilj ®SrD [l]] ++; > Vote for discard key candidate
14: end for
15: end if
16: end for
17: return argmin(CKdl.lj); > The candidate with the fewest votes for discard is the secret key.

4. Discussion of the results

Our experimental setup includes an Intel Core 15-7600K processor (3.80GHz) with 4 CPUs and two core
exclusive L1 caches of 32 KB (one for data and other for instructions), a L2 cache of 256 KB and, finally, a L3
cache of 6 MB shared among all cores whose line size is 64 bytes. It has CentOS 7.6 installed while the Virtual
Machines in our experiments have CentOS 7.6 minimal and both have one virtual core. The hypervisor is KVM.
This information is summarized in Table 1 The target of our experiments is the 1.0.1f OpenSSL release which
includes the T-Table implementation of AES.
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Table 2. Mean number of samples required to retrieve the whole key in non virtualized environments

Flush+Reload | Flush+Flush | Prime+Probe | Prime+Abort
AES 128 3000 15000 14000 3500
AES 256 8000 35000 38000 8000

Table 3. Mean number of samples required to retrieve the whole key in virtualized environments (cross-VM)

Flush+Reload | Flush+Flush | Prime+Probe
AES 128 10000 40000 45000
AES 256 28000 100000 110000

In the previous section, we have presented attacks that work for different lengths of AES keys (128 or 256
bits). These attacks assume the knowledge of unused cache lines to discard possible key values and that the
ciphertexts are known by the attacker. We have performed the experiments in two different scenarios (virtualized
and non virtualized environments) considering different techniques to retrieve information about the cache
utilization (Prime+Probe, Prime+Abort, Flush+Reload and Flush+Flush) and different key lengths. Table
2 shows the mean number of encryptions that have to be monitored to obtain the full key in non virtualized
environments (the victim and the attacker processes run in the same OS). Similarly, table 3 shows the results for
virtualized environments (the victim runs in one VM and the attacker in a different one sharing the same host).

When applying the Prime+Abort technique, we want to monitor 4 different lines. We need to define 4
transactional regions to distinguish between them, which also means we use more resources. Note that we
do not include the results for the Prime+Abort technique in virtualized environments. The TSX instructions
are virtualized, so it should be possible to perform Prime+Abort in a cross-VM scenario. However, with our
experimental setup consisting on an attacker preparing the cache, triggering an encryption and waiting for the
result, we get too many aborts. Since all of them have similar causes, distinguishing between the aborts which
are due to the encryption and the ones which are just noise is harder. For this reason, and since we consider that
our point has already been proved, we have not evaluated the data collected with the Prime+Abort technique in
the cross-VM scenario.

For a fair comparison between the access and our non-access approach, we have also retrieved the key
for the access approach considering the key of 128 bits. Table 4 shows the results for both approaches and the
percentage of improvement regarding the number of traces required to successfully retrieve the secret key. In all
cases the number of samples is reduced significantly.

Table 4. Mean number of samples required to retrieve the whole 128 bits key with the access approach (first
column), our approach (second column) and the improvement our approach means. (V) means virtualized

scenario.
Access | Non-access | Improvement
Flush+Reload 100000 3000 97%
Flush+Flush 250000 16000 94%
Prime+Probe 190000 14000 93%
Prime+Abort 110000 3500 97%
Flush+Reload(V) | 400000 10000 98%
Flush+Flush(V) | 1120000 40000 96%
Prime+Probe(V) | 1250000 45000 96%

We have noticed that, when monitoring more than one line at a time, each table provides different amount
of information. This fact can be observed in figure 4 where we represent a color map for each byte of the key
candidates array for that byte. Dark colors represent less discarded values (correct key values) while light colors
represent most discarded values. With a uniform distribution of the input plaintexts, the minimum score is more
remarkable as we increase the number of encryptions. If we look to the figure, we see that there is a pattern for
each byte associated with the same table. We retrieve a different number of useful samples for each table. This is
due to the prefetcher and our uniform access pattern that seems to trigger it. This means that more encryptions
are required to get the full key.


http://dx.doi.org/10.20944/preprints201902.0088.v1
http://dx.doi.org/10.3390/app9050944

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 11 February 2019 d0i:10.20944/preprints201902.0088.v1

16 of 20

I1|||| i I|'||1 ”H.|I|’Ir! '”'H F'|'|||'||Ib' II :IIEIIII |I”| “II! 'I'I': 1
|‘|||||||||||||||||| |||||II lll'l"l'"

"l' R |'| L e s 151

I Jt L‘ illlllllllllllllll :IllihII II lll*l | I III rIILI‘I IJI IIIIII‘IIIIII rl‘l:

.I.' :-IJI:-"'.,;,J I"'I' i .ml".'.'l .'.l' 0 ...11" I'.Iillu-llllI | ..|.F LRy

L IIIII ) 1 h |I [ ] II | N IIIIIII IIIlIIIIII

' [ ] ' | T
|l|I nan 'Illlhl H”. I I|'||I F 'm "lTlh |1 III'I:IIIIIJ|
,':',I '|1”| Ill:“illlll || ||||||| I! 1 Lo ||| || I| III| I‘l ql Ill
1 101 R TT W T T I
50 100 150 200
key byte possible values

Figure 4. Color map of discarding scores distribution for the 32 bytes of the key retrieved with the Flush+Reload
technique. Correct key values are the darkest ones.

We have been able to completely recover the full AES 256 key using the EBD attack. If we compare
the number of traces required to obtain the 128 bit key and the number of traces required to obtain the 256
bit key, AES-256 happens to be only 3 times harder to attack with our approach. The different probabilities
of non-accessing a line explain our results: 2.69% for AES-256 and 7.5% for AES-128, that is in theory 2,8x
more encryptions are needed to get the same information. These results allow us to discuss the results in [49].
They state that although larger key lengths translate into an exponential increase in the complexity of a brute
force approach this can not be applied to side-channel attacks. Also using the two last rounds of the encryption
algorithm (a version that uses a different table for computing the last round of the encryption), they arrive at the
conclusion that AES-256 only provides an increase in complexity of 6 to 7 compared to cache-based attacks on
AES-128.

In the case of the EBD attack, we have not found similar results or experimental setups to compare with.
All the studied attacks can be described as eminently theoretical. On the literature, Aciicmez et al [50] stated
that their attack can be applied to the second round of the encryption, but they do not provide experimental
results. In 2009, Biryukov et al [51] presented a distinguisher and related key attack on AES-256 with 213!
data complexity. Later on, they slightly improved their results in [52], achieving 2'1° data complexity. In [53]
they describe an attack using two related keys to recover the 256-bit key, but their target cipher was the 9-round
version of AES-256 and uses chosen-plaintexts. Another attack [54] runs in a related-subkey scenario with four
related keys targeting the 13-round AES-256, it has 276 time and data complexity. Bogdanov et al. [55] presented
a technique of cryptanalysis with bicliques, also leading to a non-practical complexity recovering the key. Kim
[56] explained also theoretically how to apply differential fault analysis to reduce the required number of faults
in AES-192 and AES-256.

As stated before, each retrieved sample which carries information about non-accesses to the T-Tables
reduces the key search space. This means that if the attack is interrupted for some reason before it finishes and the
attacker decides to apply brute force to retrieve the key, the number of keys he has to check is much smaller. In
figure figure 5 we represent the base 2 logarithm of the key search space vs the total number of samples retrieved,
that is the number of bits that remain unknown after each performed encryption. Note that in the case of the
encryption with the 256 bit key we also begin with 128 unknown bits, as explained before we get the full key
in two round using the same data and in each round we recover 128 bits. Thus, the figure represents the mean
number of unknown bits per round.
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Figure 5. Key bits that remain unknown after each encryption for the Flush+Reload technique

To put this data in context, we have also measured the time the two processes (victim and attacker) need to
interact until we are able to obtain the full key. This time is referred to the measurement collection step, since the
information processing is performed outline. Table 5 shows these mean times.

Table 5. Mean times required for gathering the data of figure 5

Attack duration
AES-128 43 ms
AES-128 (VM) 558 ms
AES-256 135 ms
AES-256 (VM) 1732 ms

Assuming the number of collected samples varies linearly with the time, these results show that if we want
to detect such attacks before they succeed it is necessary to act fast. Detection times have to be in the order of
milliseconds. And even with detection times of 10ms, around half of the key will be leaked.

5. Conclusions

The massive adoption of cloud computing has introduced numerous advantages, but also new challenging
security and privacy risks. One of these risks is the information leakage derived from resource sharing among
VMs and, specifically, from the shared cache memory. This risk is also present in non-virtualized environments
where all the running processes share the cache.

This work introduces a novel approach to exploit the information gained from the cache by means of
existing cache attacks: Flush+Reload, Flush+Flush, Prime+Probe and Prime+Abort. We focus on the cache
lines that have not been used and target the AES T-Table implementation to prove our point. Even when the
T-table version of the AES algorithm is known to be vulnerable to side-channel attacks, it is still available in
newer OpenSSL versions (compiling with the no-asm flag). Using the non-access attack we demonstrate a
reduction that varies from the 93% to the 98% in the amount of encryptions required to obtain an AES-128 key.
This improvement is crucial in order to develop a practical attack on real servers, where the AES key is usually a
session key; i.e. it is periodically renewed using key-exchange algorithms. Besides, we demonstrate that if there
is a detection system trying to detect cache attacks running, the amount of leaked information will depend on the
detection time, but our approach recovers information since the very beginning of the attack.

Moreover, we have presented a practical attack in both time and complexity against the 256-bit version of
AES: the encryption-by-decryption (EBD) cache attack. We have implemented the attack on a real experimental
setup and successfully obtained the encryption key in a matter of milliseconds, requiring only 10000 encryptions
in the best scenario. EBD retrieves the key by breaking the attack in two 128-bit stages: on the first stage,
non-accessed lines are used to obtain the last 128 bits of the key by discarding key values when the data has
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not been used. For the second stage, EBD takes the 128-bit subkey obtained in the first stage and uses it with
the decryption function (perform part of an AES decryption) to reach an state equivalent to an encryption state
from which the non-accessed lines can serve to obtain the remaining 128 bits of the key. Our results show that
AES-256 is only 3 times harder to attack than AES-128.
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