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1. Introduction

The zero-magnetic-field metal-insulator transition (MIT) was discovered in a strongly-interacting
two-dimensional (2D) electron system in silicon metal-oxide-semiconductor field-effect transistors
(MOSFETs) [1–3] and subsequently reported in a wide variety of 2D electron and hole systems:
p-type SiGe heterostructures, GaAs/AlGaAs heterostructures, AlAs heterostructures, ZnO-related
heterostructures, etc. (for reviews, see Refs. [4–7]). The strongest drop of the resistance on the metallic
side of the transition (up to a factor of 12) at sub-Kelvin temperatures was reported in 2D systems in
SiGe/Si/SiGe quantum wells [8]; in spite of lower disorder, the drop of the resistance in GaAs-based
structures never exceeded a factor of about 3. This discrepancy has been attributed particularly to
the fact that electrons in silicon-based structures have two almost degenerate valleys, which further
enhances the correlation effects [9,10].

Here we briefly review the experimental data obtained in different strongly correlated 2D electron
and hole systems in zero and non-zero magnetic fields on both sides of the metal-insulator transition;
the term strongly correlated means that the interaction parameter given by the ratio of the Coulomb
and Fermi energies, rs = gv/(πns)1/2aB, exceeds rs ∼ 10 (here gv = 2 is the valley degeneracy, ns

is the areal density of carriers, and aB is the effective Bohr radius in semiconductor). Then we will
discuss the behavior of the effective electron mass and the Landé g-factor on the metallic side of the
transition. Finally, transport evidence for the formation of a quantum electron solid on the insulating
side of the transition will be reviewed.

2. Metal-insulator transition in zero magnetic field

The existence of a metallic state at zero magnetic field in 2D was first predicted by Finkelstein
[11,12] and Castellani et al. [13]. The combined effects of interactions and disorder were studied by
perturbative renormalization group methods. The possibility of metallic behavior was confirmed later
in Refs. [9,10,14].

Typical experimental data showing the resistivity ρ as a function of temperature T for different
electron densities in various systems are presented in Fig. 1 [8,15,16]. At lowest temperatures, the
resistivity exhibits a strong metallic temperature dependence (dρ/dT > 0) for electron densities above
a well defined critical value, nc, and insulating behavior (dρ/dT < 0) for ns < nc. One refers to regime
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Figure 1. Resistivity as a function of temperature in a Si MOSFET (a), p-type GaAs/AlGaAs
heterostructure (b), and SiGe/Si/SiGe quantum well (c). Figures adapted from [15], [16], and [8],
respectively.
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Figure 2. (a) Resistivity vs. parallel magnetic field measured at T = 0.29 K in a Si MOSFET. Densities
are indicated in units of 1011 cm−2; from Ref. [20]. (b) Resistivity as a function of B‖ in a 10 nm wide
p-type GaAs quantum well at 20 mK; from Ref. [21].

at ns > nc as metallic and to that at ns < nc as insulating [17]. The two regimes are separated by a
separatrix, indicated in Fig. 1 (a) by a dotted red line. This curve is often tilted in agreement with
Ref. [10] but becomes flat in the low-temperature limit or over an extended temperature range in the
most uniform samples [18]. The ρ(T) dependences on the metallic side of the transition at ns just above
nc are non-monotonic: while at temperatures exceeding a density-dependent value Tm, the derivative
dρ/dT is negative, it changes sign at temperatures below Tm.

However, for the determination of the critical density for the MIT, one cannot rely on the derivative
criterion alone. In Ref. [17], additional method was used based on vanishing activation energy and
vanishing nonlinearity of the current-voltage characteristics (looking from the insulating side of the
transition). It was shown that in Si MOSFETs in zero magnetic field, the critical density n∗c , determined
by such a method, coincides with the critical density nc determined by the derivative criterion.

3. Influence of the magnetic field parallel to the 2D plane

The magnetoresistance ρ(B‖) in magnetic fields B‖ parallel to the 2D plane is strong and positive
[19–21] (examples are shown in Fig. 2), but eventually saturates above some density-dependent
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Figure 3. Temperature dependence of the resistivity of a Si MOSFET at different electron densities
near the MIT in zero magnetic field (a) and in a parallel magnetic field of 4 tesla (b). The electron
densities are indicated in units of 1011 cm−2. Dashed curves correspond to ns = n∗c which is equal to
0.795× 1011 cm−2 in zero field and to 1.155× 1011 cm−2 in B = 4 tesla. Adapted from Ref. [17].

magnetic field B‖ > B∗. In sufficiently thin quantum wells, B‖ has little effect on the orbital motion of
the electrons and couples only to the electron spin; therefore, it is reasonable to attribute the saturation
of the magnetoresistance to the complete spin polarization of the electron system [22]. Indeed, from
the analysis of the positions of Shubnikov-de Haas oscillations in tilted magnetic fields [23,24] it was
concluded that the magnetic field B∗ is equal to that required to fully polarize the electrons’ spins.

Another effect of the parallel magnetic field is that it wipes out the strong metallic temperature
dependence of the resistance at electron densities just above nc and suppresses the metallic regime
[7,17,19,25–27]. In Fig. 3, the temperature dependences of the resistivity in zero magnetic field (Fig. 3 (a))
are compared with those measured in a parallel magnetic field, B‖ = 4 tesla, high enough to cause
full spin polarization (Fig. 3 (b)). The dashed (middle) curves on both panels correspond to the
critical electron densities, n∗c , determined by the method of vanishing activation energy and vanishing
nonlinearity of the current-voltage characteristics outlined above. The middle curve in Fig. 3 (a),
corresponding to n∗c = nc, is flat below 1 K. In sharp contrast with the B = 0 situation, at B‖ > B∗

not only are the ρ(T) curves non-symmetric about the middle curve corresponding to n∗c , but all
of them have negative “insulating-like” derivatives dρ/dT < 0 in the entire temperature range,
although the values of the resistivity are comparable to those in the B = 0 case. Moreover, in a
strong parallel magnetic field, there is no temperature-independent ρ(T) curve at any electron density
[17]. Concerning the suppression of the metallic regime, it has been shown that the parallel magnetic
field-induced increase in the critical electron density n∗c by the factor of about 1.4, observed in a strongly
interacting two-dimensional electron system, is caused by the effects of exchange and correlations [26].

4. Spin susceptibility; g-factor; the effective mass

In Ref. [28] the Shubnikov-de Haas oscillations in a 2D electron system in silicon were studied at
low electron densities, and it was shown that near the metal-insulator transition, only “spin” minima
of the resistance at Landau-level filling factors ν = 2, 6, 10, and 14 are seen, while the “cyclotron”
minima at ν = 4, 8, and 12 disappear. A simple explanation of the observed behavior requires a giant
enhancement of the ratio between the spin and cyclotron splittings near the metal-insulator transition.
Indeed, it turned out that with decreasing electron density (increasing interaction strength), the Pauli
spin susceptibility, χ, measured by several independent methods [29,30], grows by as much as a factor
of 7 compared to its non-interacting value, χ0, with a tendency to diverge at a disorder-independent
density nχ (see Fig. 4 (a)). A similar increase of the spin susceptibility near the metal-insulator transition
has been observed in single-crystalline ZnO-based heterostructures [31].
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obtained by three independent methods: thermodynamic measurements of the magnetization (dashed
line) and the magnetic field of the full spin polarization (circles), and magnetocapacitance (squares).
The dotted line is a guide to the eye. Also shown by a solid line are the transport data of Ref. [29].
Inset: polarization field as a function of the electron density determined from the magnetization
(circles) and magnetocapacitance (squares) data. The symbol size for the magnetization data reflects
the experimental uncertainty. The dependence extrapolates linearly to zero field at a density nχ

just below nc. Adapted from Ref. [30]. (b) The effective electron mass m (circles) and g-factor
(squares) in a silicon MOSFET, determined from the analysis of the parallel field magnetoresistance
and temperature-dependent conductivity, versus electron density. m0 and g0 are the electron mass and
g-factor for non-interacting electrons in silicon. The dashed lines are guides to the eye. Adapted from
Ref. [32].

In principle, this behavior can be due to either the increase of the effective electron mass or that
of the Landé g-factor (or both). In Ref. [32], these two values have been measured separately and it
has been shown that the dramatic increase of the spin susceptibility is due to the strongly enhanced
effective mass while the g-factor remains almost constant and close to its value in bulk silicon (see
Fig. 4 (b)). The strong increase of the effective mass has been later independently confirmed by the
analysis of the temperature dependence of Shubnikov-de Haas oscillations [33] and magnetization
measurements in perpendicular magnetic fields [34].

In measurements of the thermopower in Si MOSFETs, data obtained for electron densities that
are much closer to the critical point than the earlier measurements confirm that the critical density
nm lies close to, but is consistently below the critical density nc for the MIT [35]. The results indicate
the occurrence of an interaction-induced transition to a new phase at low density which may be a
precursor phase or a direct transition to the Wigner solid.

It has been found recently that in contrast to previous experiments on lower-mobility samples, in
ultra-high mobility SiGe/Si/SiGe quantum wells the critical electron density nc of the MIT becomes
smaller than the density nm, where the effective mass at the Fermi level tends to diverge [8].

5. Band flattening; possible condensation of fermions

The creation and investigation of flat-band materials is a forefront area of modern physics [36–39].
The interest is ignited, in particular, by the fact that, due to the anomalous density of states, the
flattening of the band may be important for the construction of room temperature superconductivity.
The appearance of a flat band is theoretically predicted [40–42] in a number of systems including heavy
fermions, high-temperature superconducting materials, 3He, and 2D electron systems. As the strength
of fermion-fermion interaction is increased, the single-particle spectrum becomes progressively flatter
in the vicinity of the Fermi energy eventually forming a plateau. The flattening of the spectrum is
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related to the increase of the effective fermion mass mF at the Fermi level and the corresponding peak
in the density of states.

Raw experimental data obtained in strongly correlated 2D electron systems can be divided into
two groups: (i) data describing the electron system as a whole, like the magnetic field required to fully
polarize electron spins, thermodynamic density of states, or magnetization of the electron system, and
(ii) data related solely to the electrons at the Fermi level, like the amplitude of the Shubnikov-de Haas
oscillations yielding the effective mass mF and Landé g-factor gF at the Fermi level. As a rule, the
data in the first group are interpreted using the quasiparticle language in which the energy-averaged
values of effective mass, m, and Landé g-factor, g, are used. To determine the values, the formulas that
hold for the case of non-interacting electrons are employed. Although this approach is ideologically
incorrect, the results for m and g often turn out to be the same as the results for mF and gF. Particularly,
simultaneous increase of the energy-averaged effective mass and that at the Fermi level in Si MOSFETs
was reported in publications described in the previous section.

Figure 5. Product of the Landé factor and effective mass as a function of electron density in a
SiGe/Si/SiGe quantum well determined by measurements of the field of full spin polarization B∗

(squares) and Shubnikov-de Haas oscillations (circles) at T ≈ 30 mK. The empty and filled symbols
correspond to two samples. The experimental uncertainty corresponds to the data dispersion and
is about 2% for the squares and about 4% for the circles. (g0 = 2 and m0 = 0.19 me are the values
for non-interacting electrons, me is the free electron mass, and gF ≈ g0 is the g-factor at the Fermi
level). The top inset shows schematically the single-particle spectrum of the electron system in a state
preceding the band flattening at the Fermi level (solid black line). The dashed violet line corresponds to
an ordinary parabolic spectrum. The occupied electron states at T = 0 are indicated by the shaded area.
Bottom inset: the effective mass mF versus electron density determined by analysis of the temperature
dependence of the amplitude of Shubnikov-de Haas oscillations, similar to Ref. [45]. The dashed line is
a guide to the eye. From Ref. [43].

In Ref. [43], the magnetic field of the complete polarization of the electron spins in the ultra-high
mobility 2D electron system in SiGe/Si/SiGe quantum wells of unprecedented quality [44] has been
investigated. The product gFm that characterizes the whole 2D electron system can be determined in
the clean limit from the equality of the Zeeman splitting and the Fermi energy of the spin-polarized
electron system

gFµBB∗ =
2πh̄2ns

mgv
, (1)

where µB is the Bohr magneton. Simultaneously, Shubnikov-de Haas oscillations, yielding the product
gFmF at the Fermi level, have been studied. It turned out (see Fig. 5) that with decreasing electron
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Figure 6. V − I curves are shown for different electron densities in the insulating state of a silicon
MOSFET at a temperature of 60 mK. The dashed lines are fits to the data using Eq. (6). The top inset
shows the V − I curve for ns = 5.20× 1010 cm−2 on an expanded scale; also shown are the threshold
voltages Vth1 and Vth2, the static threshold Vs = Vth2, and the dynamic threshold Vd that is obtained by
the extrapolation of the linear region of the V − I curve to zero current. Bottom inset: activation energy
Uc vs. electron density. Vertical error bars represent standard deviations in the determination of Uc

from the fits to the data using Eq. (6). The dashed line is a linear fit. From Ref. [67].

density (or increasing interaction strength), the product gFmF at the Fermi level monotonically increases
in the entire range of electron densities, while the energy-averaged product gFm saturates at low
densities. Taking into account the negligibility of the exchange effects in the 2D electron system in
silicon, this difference can only be attributed to the different behaviors of the two effective masses.
Their qualitatively different behavior reveals a precursor to the interaction-induced single-particle
spectrum flattening at the Fermi level in this electron system.

These experimental results are naturally interpreted within the concept of the fermion
condensation [46–48] that occurs at the Fermi level in a range of momenta, unlike the condensation of
bosons. With increasing strength of electron-electron interactions, the single-particle spectrum flattens
in a region ∆p near the Fermi momentum pF (top inset to Fig. 5). At relatively high electron densities
ns > 0.7× 1015 m−2, this effect is not important since the single-particle spectrum does not change
noticeably in the interval ∆p and the behaviors of the energy-averaged effective mass and that at the
Fermi level are practically the same. Decreasing the electron density in the range ns < 0.7× 1015 m−2

gives rise to the flattening of the spectrum so that the effective mass at the Fermi level, mF = pF/VF,
continues to increase (here VF is the Fermi velocity). In contrast, the energy-averaged effective mass
does not, being not particularly sensitive to this flattening.

6. Transport evidence for a sliding quantum electron solid

Although the insulating side of the metal-insulator transition has been extensively studied (see,
e.g., Refs. [49–53], no definitive conclusion has been reached concerning the origin of the low-density
state. Nonlinear current-voltage (I −V) curves were observed and interpreted as either manifestation
of the depinning of an electron solid [50–52,54,55] or the breakdown of the insulating phase within
traditional scenarios such as strong electric field Efros-Shklovskii variable range hopping [56] or
percolation (see, e.g., Refs. [6,57] and references therein). The observation of broad-band voltage
noise at the threshold I − V curves [50–52] as well as the attempt to probe the low-density state in
perpendicular magnetic fields [53,58–61] also have not provided information that allows a choice
between the depinning of the electron solid or traditional mechanisms [6,57]. It is worth noting that
much confusion was introduced by the fact that many authors chose to interpret their data in terms of
Wigner crystal [62–66], ignoring mundane interpretations.
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In Ref. [67], a significant breakthrough in the understanding of the origin of the low-density
state has been reported. The authors observed two-threshold V − I characteristics with a dramatic
increase in noise between the two threshold voltages at the breakdown of the insulating state. In the
form of fluctuations with time, the noise in current increases dramatically above Vth1 and essentially
disappears above Vth2. The double threshold behavior is very similar to that observed for the collective
depinning of the vortex lattice in Type-II superconductors (see, e.g., Ref. [68]) provided the voltage and
current axes are interchanged. This strongly favors the sliding 2D quantum electron solid whereas
the double threshold behavior cannot be described within alternative scenarios such as percolation or
overheating. Rather than being an ideal Wigner crystal, however, the 2D electron system under study
is likely to be closer to an amorphous solid, which is similar to the case of the vortex lattice in Type-II
superconductors where the collective pinning was observed.

Figure 6 shows a set of low-temperature voltage-current curves at different electron densities
in the insulating regime ns < nc; the corresponding interaction parameter exceeds rs ∼ 20. Two
threshold voltages are observed at electron densities below ≈ 6× 1010 cm−2: with increasing applied
voltage, the current is near zero up to a voltage threshold Vth1, then increases sharply until a second
threshold voltage Vth2 is reached, above which the slope of the V − I curve is significantly reduced
and the behavior is linear although not ohmic (see also the top inset to Fig. 6). As the electron density
is increased, the value of Vth1 decreases while the second threshold becomes less pronounced and
eventually disappears. No hysteresis was observed for the range of electron densities studied. The
authors point out that the observed behavior is quite distinct from that reported in the insulating state
in amorphous InO films, where the current was found to jump at the threshold voltage by as much as
five orders of magnitude and the V− I curves exhibit hysteresis consistent with bistability and electron
overheating [69,70]. Note also that the occurrence of the double threshold cannot be explained within
the percolation picture in which case a single threshold is expected [6]. Thus, the double threshold
behavior cannot be described within existing traditional models.

Two remarks are due here. First, at electron density ns ≈ 6 × 1010 cm−2, below which the
double-threshold behavior is evident, the interaction parameter is equal to ≈ 22. This is below the
critical value rs = 37± 5 at which the quantum Wigner crystallization in a disorder-free 2D system is
expected to happen in zero magnetic field, according to the numerical simulations [64]. However, in
subsequent simulations it was shown that the crystallization should occur at lower values of rs when
disorder is present [71]. Second, the disorder-independent divergence of the effective mass and the
disorder-dependent formation of the quantum electron solid immediately imply the existence of an
intermediate phase preceding the electron solidification. Indeed, the existence of such a phase was
predicted in Refs. [46,65,72].

Figure 7 (a) shows the V − I characteristics for ns = 5.36× 1010 cm−2 at different temperatures.
As the temperature, T, is increased, the second threshold Vth2 becomes less pronounced and the
threshold behavior of the V − I curves eventually smears out due to the shrinkage of the zero-current
interval. The measured broad-band noise is shown as a function of voltage in Fig. 7 (b) for different
temperatures at electron density ns = 5.36× 1010 cm−2. A large increase in the noise is observed
between the thresholds Vth1 and Vth2 at the lowest temperature. This large noise decreases rapidly with
increasing temperature in agreement with the two-threshold behavior of the V − I curves of Fig. 7 (a).
The frequency dependence of the noise amplitude is 1/ f α law with α = 0.6± 0.1, which is close to
unity.

The authors analyze their results in light of a phenomenological theory based on pinned elastic
structures. There is a striking similarity between the double-threshold V − I dependences in the
low-density state of Si MOSFETs and those (with the voltage and current axes interchanged) known
for the collective depinning of the vortex lattice in Type-II superconductors (see, e.g., Ref. [68]). The
physics of the vortex lattice in Type-II superconductors, in which the existence of two thresholds is
well known, can be adapted for the case of an electron solid. Current flows for zero voltage in a
superconductor; the depinning of the vortex lattice occurs when a non-zero voltage appears. In the

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 February 2019                   doi:10.20944/preprints201902.0085.v1

Peer-reviewed version available at Appl. Sci. 2019, 9, 1169; doi:10.3390/app9061169

http://dx.doi.org/10.20944/preprints201902.0085.v1
http://dx.doi.org/10.3390/app9061169


8 of 12

0

50

100

150

200

250

300

350

I 
(p

A
)

(a)

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6

N
o
is

e
 (

p
A

)

(b)

V (mV)

T (mK):

       300
       200
       140
         60

Figure 7. (a) V − I characteristics at ns = 5.36 × 1010 cm−2 in a silicon MOSFET for different
temperatures. The dashed lines are fits to the data using Eq. (6). (b) The broad-band noise as a
function of voltage for the same electron density and temperatures. The three upper curves are shifted
vertically for clarity. From Ref. [67].

authors’ case, the situation is reciprocal: a voltage is applied but at first the current is zero in the limit
of zero temperature; the depinning of the electron solid is signaled by the appearance of a non-zero
current. The transient region between the dynamic (Vd) and static (Vs) thresholds corresponds to the
collective pinning of the solid. In this region the pinning occurs at the centers with different energies
and the current is thermally activated:

I ∝ exp
[
−U(V)

kBT

]
, (2)

where U(V) is the activation energy. The static threshold Vs = Vth2 signals the onset of the regime of
solid motion with friction. This corresponds to the condition

eEL = Uc, (3)

where E is the electric field and L is the characteristic distance between the pinning centers with
maximal activation energy Uc. From the balance of the electric, pinning, and friction forces in the
regime of solid motion with friction, one expects a linear V − I characteristic that is offset by the
threshold Vd corresponding to the pinning force

I = σ0(V −Vd), (4)

where σ0 is a coefficient; note that near Vd, one can in general expect a power-law behavior of (V −Vd).
Assuming that the activation energy for the electron solid is equal to

U(V) = Uc − eEL = Uc(1−V/Vs), (5)

the authors obtain the expression for the current
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I =

{
σ0(V −Vd) if V > Vs

σ0(V −Vd) exp
[
−Uc(1−V/Vs)

kBT

]
if Vd < V ≤ Vs.

(6)

The fits to the data using Eq. (6) are shown by dashed lines in Figs. 6 and 7 (a). As seen from the
figures, the experimental two-threshold V − I characteristics are described well by Eq. (6). The value
of Uc decreases approximately linearly with electron density and tends to zero at ns ≈ 6× 1010 cm−2

(the bottom inset to Fig. 6). This is in contrast to the vanishing activation energy of electron-hole
pairs at nc obtained by measurements of the resistance in the limit of zero voltages/currents [17].
Presumably, the vanishing Uc is related to the minimum number of the strong pinning centers for
which the collective pinning is still possible. The fact that the coefficient σ0 is approximately constant
(σ0 ≈ 1.6× 10−7 Ohm−1) indicates that the solid motion with friction is controlled by weak pinning
centers [68]. The authors argue that the large noise in the regime of the collective pinning of the solid
between Vd and Vs should be suppressed in the regime of solid motion with friction at V > Vs. Indeed,
in the regime of the collective pinning of the solid between Vd and Vs, the solid deforms locally when
the depinning occurs at some center and then this process repeats at another center etc., which leads to
the generation of a large noise. In contrast, in the regime of solid motion with friction above the second
threshold Vs, the solid slides as a whole due to the over-barrier motion, resulting in the suppression of
noise. Thus, the physics of pinned periodic/elastic objects is relevant for the low-density state in a 2D
electron system in silicon MOSFETs. These experimental results are also consistent with numerical
simulations of the dynamics of a 2D electron system forming a Wigner solid in the presence of charged
impurities [73,74].

In summary, we have reviewed the exciting properties of strongly interacting fermions in 2D
electron and hole systems, in particular, transport and thermodynamic data on the metallic side of the
B = 0 metal-insulator transition and recent advances in our understanding of the low-density state on
the insulating side of the transition. A complementary review [61] of the low-density state is available
in the same volume.
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