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Abstract: Quantum chaos is presented as a paradigm of information processing by dynamical systems1

at the bottom of the range of phase-space scales. Starting with a brief review of classical chaos as2

entropy flow from micro- to macro-scales, I argue that quantum chaos came as an indispensable3

rectification, removing inconsistencies related to entropy in classical chaos: Bottom-up information4

currents require an inexhaustible entropy production and a diverging information density in phase5

space, reminiscent of Gibbs’ paradox in Statistical Mechanics. It is shown how a mere discretization of6

the state space of classical models already entails phenomena similar to hallmarks of quantum7

chaos, and how the unitary time evolution in a closed system directly implies the “quantum8

death” of classical chaos. As complementary evidence, I discuss quantum chaos under continuous9

measurement. Here, the two-way exchange of information with a macroscopic apparatus opens an10

inexhaustible source of entropy and lifts the limitations implied by unitary quantum dynamics in11

closed systems. The infiltration of fresh entropy restores permanent chaotic dynamics in observed12

quantum systems. Could other instances of stochasticity in quantum mechanics be interpreted in13

a similar guise? Where observed quantum systems generate randomness, could it result from an14

exchange of entropy with the macroscopic meter? This possibility is explored, presenting a model for15

spin measurement in a unitary setting and some analytical results based on it.16

Keywords: quantum chaos; measurement; randomness; information; decoherence; dissipation; spin;17

Bernoulli map; kicked rotor; standard map18

1. Introduction19

With the advent of the first publications proposing the concept of deterministic chaos and20

substantiating it with a novel tool, computer simulations, more was achieved than just a major21

progress in fields such as weather and turbulence [1]. They suggested a radically new view of22

stochastic phenomena in physics. Instead of subsuming them under a gross global category such23

as“chance” or “randomness”, the concept of chaos offered a detailed analysis on basis of deterministic24

evolution equations, thus indicating an identifiable source of stochasticity in macroscopic phenomena.25

A seminal insight, to be expounded in Sect. 2, that arose as a spin-off of the study of deterministic26

chaos, was that the entropy produced by chaotic systems emerges by amplifying structures, initially27

contained in the smallest scales, to macroscopic visibility [2].28

Inspired and intrigued by this idea, researchers such as Giulio Casati and Boris Chirikov saw its29

potential as a promising approach also towards the microscopic foundations of statistical mechanics,30

thus accepting the challenge to extend chaos to quantum mechanics. In the same spirit as those31

pioneering works on deterministic chaos, they applied standard quantization to Hamiltonian models32

of classical chaos and solved the corresponding Schrödinger equation numerically [3], again utilizing33
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the powerful computing equipment available at that time. What they obtained was a complete failure34

on first sight. Yet it paved the way towards a deeper understanding not only of classical chaos, but also35

of the principles of quantum mechanics, concerning in particular the way information is processed36

on atomic scales: In closed quantum systems, the entropy production characteristic of classical chaos37

ceases after a finite time and gives way to a behaviour that is not only deterministic but even repetitive,38

at least in a statistical sense, hence does not generate novelty any longer. The “quantum death of39

classical chaos” will be illustrated in Sect. 3.1.40

The present article recalls this development, drawing attention to a third decisive aspect that is41

able to reconcile that striking discrepancy found between quantum and classical dynamics in closed42

chaotic systems. To be sure, the gap separating quantum from classical physics can be bridged to43

a certain extent by semiclassical approximations, which interpolate between the two descriptions,44

albeit at the expense of conceptual consistency and transparency [4,5]. Also in the case of quantum45

chaos they provide valuable insight into the fingerprints classical chaos leaves in quantum systems. A46

more fundamental cause contributing to that discrepancy, however, lies in the closure of the models47

employed to study quantum chaos. It excludes an aspect of classicality that is essential for the48

phenomena we observe on the macroscopic level: No quantum system is perfectly isolated, or else we49

could not even know of its existence.50

The rôle of an interaction with a macroscopic environment first came into sight in other51

areas where quantum mechanics appears incompatible with basic classical phenomena, such as in52

particular dissipation [6–8]. Here, even classically, irreversible behaviour can only be reconciled with53

time-reversal invariant microscopic equations of motion if a coupling to a reservoir with a macroscopic54

number of degrees of freedom (or a quasi-continuous spectrum) is assumed. Quantum mechanically,55

this coupling not only explains an irreversible loss of energy, it leads to a second consequence, at least56

as fundamental as dissipation: a loss of information, which becomes manifest as decoherence [9,10].57

In the context of quantum dissipation, decoherence could appear as secondary to the energy58

loss, yet it is the central issue in another context where quantum behaviour resisted a satisfactory59

interpretation for a long time: quantum measurement. The “collapse of the wavepacket” remained an60

open problem even within the framework of unitary quantum mechanics, till it could be traced back61

as well to the presence of a macroscopic environment, incorporated in the measurement apparatus62

[11–16]. As such, the collapse is not an annoying side effect but plainly indispensable, to make sure63

that the measurement leaves a lasting record in the apparatus, thus becoming a fact in the sense of64

classical physics. Since there is no dissipation involved in this case, quantum measurement became a65

paradigm of decoherence induced by interaction and entanglement with an environment.66

The same idea, that decoherence and the increase in entropy accompanying it is a constituent67

aspect of classicality, proves fruitful in the context of quantum chaos as well [17,18]. It complements68

semiclassical approximations, in that it lifts the “splendid isolation” which inhibits a sustained increase69

of entropy in closed quantum systems. Section 3.2 elucidates how the coupling to an environment70

restores the entropy production, constituent for deterministic chaos, at least partially in classically71

chaotic quantum systems. Combining decoherence with dissipation, other important facets of quantum72

chaos come into focus: It opens the possibility to study quantum effects also in phenomena related to73

dissipative chaos, notably strange attractors, which, as fractals, are incompatible with uncertainty.74

The insight guiding this article is that in the context of quantum chaos, the interaction with an75

environment has a double-sided effect: It induces decoherence, as a loss of information, e.g., on phases76

of the central quantum system, but also returns entropy from the environment to the chaotic system77

[17,19], which then fuels its macroscopic entropy production. If indeed there is a two-way traffic, an78

interchange of entropy between system and environment, this principle, applied in turn to quantum79

measurement, has a tantalizing consequence: It suggests that besides decoherence, besides the collapse80

of the wavepacket, also the randomness apparent in the outcomes of quantum measurements could81

be traced back to the environment, could be interpreted as a manifestation of entropy interchanged82

with the macroscopic apparatus as a consequence of their entanglement during the measurement. This83
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hypothesis is illustrated in Sect. 4 for the emblematic case of spin measurement. While Sections 2 to 384

largely have the character of reviews, complementing the work of various authors with some original85

material, Sect. 4 is a perspective, it presents a project in progress at the time of writing this report.86

2. Classical chaos and information flows between micro- and macroscales87

2.1. Overview88

The relationship between dynamics and information flows has been pointed out by mathematical89

physicists, such as Andrey Kolmogorov, much before deterministic chaos was (re)discovered in applied90

science, as is evident for example in the notion of Kolmogorov-Sinai entropy [20]. It measures the91

information production by a system with at least one positive Lyapunov exponent and represents a92

central result of research on dynamical disorder in microscopic systems, relevant primarily for statistical93

mechanics. For models of macroscopic chaos, typically including dissipation, an interpretation as a94

phenomenon that has to do with a directed information flow between scales came only much later. A95

seminal work in that direction is the 1980 article by Robert Shaw [2], where, in a detailed discussion in96

information theoretic terms, the bottom-up information flow related to chaos is contrasted with the97

top-down flow underlying dissipation.98

Shaw argues that the contraction of phase-space area in a dissipative system results in an99

increasing loss of information on its initial state, if its current state is observed with a given resolution.100

Conversely, later states can be determined to higher and higher accuracy from measurements of the101

initial state. Chaotic systems show the opposite tendency: Phase-space expansion, as consequence of102

exponentially diverging trajectories, allows to retrodict the initial from the present state with increasing103

precision, while forecasting the final state requires more and more precise measurements of the initial104

state as their separation in time increases.105

Chaotic systems therefore produce entropy, at a rate given by their Lyapunov exponents, as is also106

reflected in the spreading of any initial distribution of finite width. The divergence of trajectories also107

indicates the origin of this information: The chaotic flow amplifies details of the initial distribution with108

an exponentially increasing magnification factor. If the state of the system is observed with constant109

resolution, so that the total information on the present state is bounded, the gain of information on110

small details is accompanied by a loss of information on the largest scale, which impedes inverting the111

dynamics: Chaotic systems are globally irreversible, while the irreversibility of dissipative systems is a112

consequence of their loosing local information into ever smaller scales.113

We achieve a more complete picture already by going to Hamiltonian systems. Their phase-space114

flow is symplectic, it conserves phase-space area or volume, so that every expansion in some direction115

of phase space must be compensated by contraction in another direction. In terms of information116

flows, this means that an information current from small to large scales (bottom-up), corresponding to117

chaotic phase-space expansion [2], will be accompanied by an opposite current of the same magnitude,118

returning information to small scales (top-down) [2]. In the framework of Hamiltonian dynamics,119

however, the top-down current is not related to dissipation, it is not irreversible but to the contrary,120

complements chaotic expansion in such a way that all in all, information is conserved and the time121

evolution remains reversible.122

A direct consequence of volume conservation by Hamiltonian flows is that Hamiltonian dynamics123

also conserves entropy, see Appendix A. As is true for the underlying conservation of volume, this124

invariance proves to be even more general than energy conservation and applies, e.g., also to systems125

with a time-dependent external force where the total energy is not conserved. It indicates how to126

integrate dissipative systems in this more comprehensive frame: Dissipation and other irreversible127

macroscopic phenomena can be described within a Hamiltonian setting by going to models that128

include microscopic degrees of freedom, typically as heat baths comprising an infinite number of129

freedoms, on an equal footing in the equations of motion. In this way, entropy conservation applies to130

the entire system.131
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The conservation of the total entropy in systems comprising two or more degrees of freedom132

or subsystems cannot be reduced, however, to a global sum rule implying a simple exchange of133

information through currents among subsystems. The reason is that in the presence of correlations,134

there exists a positive amount of mutual information which prevents subdividing the total information135

content uniquely into contributions associated to subsystems. Notwithstanding, if the partition is not136

too complex, as is the case for a central system coupled to a heat bath, it is still possible to keep track of137

internal information flows between these two sectors. For the particular instance of dissipative chaos,138

a picture emerges that comprises three components:139

• a “vertical” current from large to small scales in certain dimensions within the central system,140

representing the entropy loss that accompanies the dissipative loss of energy,141

• an opposite vertical current, from small to large scales, induced by the chaotic dynamics in other142

dimensions of the central system,143

• a “horizontal” exchange of information between the central system and the heat bath, including a144

redistribution of entropy within the reservoir, induced by its internal dynamics.145

On balance, more entropy must be dumped by dissipation into the heat bath than is lifted by146

chaos into the central system, thus maintaining consistency with the Second Law. In phenomenological147

terms, this tendency is reflected in the overall contraction of a dissipative chaotic system onto a strange148

attractor. After transients have faded out, the chaotic dynamics then develops on a sub-manifold of149

reduced dimension of the phase space of the central system, the attractor. For the global information150

flow it is clear that in a macroscopic chaotic system, the entropy that surfaces at large scales by chaotic151

phase-space expansion has partially been injected into the small scales from microscopic degrees of152

freedom of the environment.153

Processes converting macroscopic structure into microscopic entropy, such as dissipation, are154

the generic case. This report, though, is dedicated to the exceptional cases, notably chaotic systems,155

which turn microscopic noise into macroscopic randomness. The final section is intended to show that156

processes even belong to this category where this is less evident, in particular quantum measurements.157

2.2. Example 1: Bernoulli map and baker map158

Arguably the simplest known model for classical deterministic chaos is the Bernoulli map [21,22],159

a mapping of the unit interval onto itself that deviates from linearity only by a single discontinuity,160

x 7→ x′ = 2x (mod 1) =

{
2x 0 ≤ x < 0.5,

2x− 1 0.5 ≤ x < 1,
(1)

and can be interpreted as a mathematical model of a popular card-shuffling technique (Fig. 1). The161

way it generates information by lifting it from scales too small to be resolved to macroscopic visibility162

becomes immediately apparent if the argument x is represented as a binary sequence, x = ∑∞
n=1 an2−n,163

an ∈ {0, 1}, so that map operates as164

x′ = 2

(
∞

∑
n=1

an2−n

)
(mod 1) =

∞

∑
n=1

an2−n+1(mod 1) =
∞

∑
n=1

an+12−n, (2)

that is, the image x′ has the binary expansion165

x′ =
∞

∑
n=1

a′n2−n, with a′n = an+1. (3)

The action of the map consists in shifting the sequence of binary coefficients rigidly by one position166

to the left (the “Bernoulli shift”) and discarding the most significant digit a1. In terms of information,167

this operation creates exactly one bit per time step, entering from the smallest resolvable scales, and at168

the same time looses one bit at the largest scale (Fig. 3a), which renders the map non-invertible.169
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Figure 1. The Bernoulli map can be understood as modelling a popular card shuffling technique (a).
It consists of three steps, (1) dividing the card deck into two halves of equal size, (2) fanning the two
half decks out to twice the original thickness, and (3) intercalating one into the other as by the zipper
method. (b) Replacing the discrete card position in the deck by a continuous spatial coordinate, it
reduces to a map with a simple piecewise linear graph, cf. Eq. (1).

By adding another dimension, the Bernoulli map is readily complemented so as to become170

compatible with symplectic geometry. As the action of the map on the second coordinate, say p, has to171

compensate for the expansion by a factor 2 in x, this suggests modelling it as a map of the unit square172

onto itself, contracting p by the same factor,173 (
x
p

)
7→
(

x′

p′

)
,

(
x′

p′

)
=

(
2x (mod 1)

1
2
(

p + int(2x)
)) , (4)

known as the baker map [20,22]. Geometrically, it can be interpreted as a combination of stretching174

(by the expanding action of the Bernoulli map) and folding (corresponding to the discontinuity of the175

Bernoulli map) (Fig. 2). Being volume conserving, the baker map is invertible. The inverse map reads176 (
x′

p′

)
7→
(

x
p

)
,

(
x
p

)
=

(
1
2
(
x′ + int(2p′)

)
2p (mod 1)

)
. (5)

It interchanges the operations on x and p of the forward baker map.177

00
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1 x0

1
p
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10 11
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Figure 2. The baker map complements the Bernoulli map, Fig. 1, by a coordinate p, canonically
conjugate to the position x, so as to become consistent with symplectic phase-space geometry. Defining
the map for p as the inverse of the Bernoulli map, a map of the unit square onto itself results, see Eq. (4),
that is equivalent to a combination of stretching and folding steps. The figure shows two subsequent
applications of the baker map and its effect on the binary code associated to a set of four phase-space
cells.

The information flows underlying the baker map are revealed by encoding also p as a binary178

sequence, p = ∑∞
n=1 bn2−n. The action of the map again translates to a rigid shift,179
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p′ =
∞

∑
n=1

b′n2−n, with b′n :=

{
a1 n = 1,

bn−1 n ≥ 2.
(6)

It now moves the sequence by one step to the right, that is, from large to small scales. The most180

significant digit b′1, which is not contained in the original sequence for p, is transferred from the binary181

code for x, it recovers the coefficient a1 that is discarded due to the expansion in x. This “pasternoster182

mechanism” reflects the invertibility of the map. The upward information current in x is turned around183

to become a downward current in p (Fig. 3b). A full circle cannot be closed, however, as long as the184

“depth” from where and to which the information current reaches, remains unrestricted by any finite185

resolution, indicated in Fig. 3, as is manifest in the infinite upper limit of the sums in Eqs. (2,3,6).186

x  = 0. a1 a2 a3 a4 a5 a6 . . .

x ’ = 0. a2 a3 a4 a5 a6 a7 . . . 

p ’ = 0. a1 b1 b2 b3 b4 b5 . . . 

p   = 0. b1 b2 b3 b4 b5 b6 . . .
N = 5N = 5

x  = 0. a1 a2 a3 a4 a5 a6 . . .

x ’ = 0. a2 a3 a4 a5 a6 a7 . . . 

Bernoulli: Baker:

Figure 3. Representing the Bernoulli map, Eq. (1), in terms of its action on a symbol string, the position
encoded as a binary sequence, see Eq. (2), reveals that it corresponds to a rigid shift by one digit of
the string towards the most significant digit (left panel). Encoding the baker map, Eq. (4), in the same
way, Eq. (6), shows that the upward symbol shift in x is complemented by a downward shift in p
(right panel). The loss of the most significant digit in the Bernoulli map or its transfer from position to
momentum in the baker map are compensated by an equivalent gain or loss at the least significant
digits, if a finite resolution is taken into account, here limiting the binary code to N = 5 digits.

Generalizing the baker map so as to incorporate dissipation is straightforward [21,22]: Just insert187

a step that contracts phase space towards the origin in the momentum direction, for example preceding188

the stretching and folding operations of Eq. (4),189 (
x
p

)
7→
(

x′

p′

)
=

(
x

ap

)
,

(
x′

p′

)
7→
(

x′′

p′′

)
=

(
2x (mod 1)

1
2
(

p + int(2x)
)) . (7)

A contraction by a factor a, 0 < a ≤ 1, models a dissipative reduction of the momentum by the190

same factor. Figure 4 illustrates for the first three steps how the generalized baker map operates,191

starting from a homogeneous distribution over the unit square. For each step, the volume per strip192

reduces by a/2 while the number of strips doubles, so that the overall volume reduction is given by193

a. Asymptotically, a strange attractor emerges (rightmost panel in Fig. 4) with a fractal dimension,194

calculated as box-counting dimension [23],195

D0 =
log(volume contraction)

log(scale factor)
=

ln(1/2)
ln(a/2)

=
ln(2)

ln(2) + ln(1/a)
. (8)

For example, for a = 0.5, as in Fig. 4, a dimension D0 = 0.5 results for the vertical cross section of the196

strange attractor, hence D = 1.5 for the entire two-dimensionalmanifold.197
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m = 0 m = 1 m = 2 m = 3 m → ∞

Figure 4. A dissipative version of the baker map is created by preceding each iteration of the map,
as in Fig. 2, with a contraction by a factor a in p (vertical axis), not compensated by a corresponding
expansion in x (horizontal axis), see Eq. (7). The figure illustrates this process for a homogeneous
initial density distribution (m = 0) and a contraction factor a = 0.5 over the first three steps, m =

1, 2, 3. Asymptotically for m→ ∞, under the alternation of contraction and splitting, the distribution
condenses onto a strange attractor (rightmost panel) with a fractal dimension D = 1.5.

This model of dissipative chaos is simple enough to allow for a complete balance of all information198

currents involved. Adopting the same binary coding as in Eq. (6), a single dissipative step of the199

mapping, with a = 0.5, (7) has the effect200

p′ =
p
2
=

1
2

∞

∑
n=1

b′n2−n =
∞

∑
n=1

b′n2−n−1. (9)

That is, if p is represented as 0. b1 b2 b3 b4 . . ., p′ as 0. b′1 b′2 b′3 b′4 . . ., the new binary coefficients are given201

by a rigid shift by one unit to the right, but with the leftmost digit replaced by 0,202

b′n =

{
0 n = 1,

bn−1 n ≥ 2.
(10)

N = 5

x = 0. an an+1 an+2 an+3 an+4 an+5 …

p = 0. 0 an−1 0 an−2 0 an−3 …

10
0 

%

50
 %

50 %

central degree of freedom environment

chaotic
expansion

symplectic
contraction

large
scales

small
scales

dissipation

a b

Figure 5. (a) In terms of binary strings that encode position x and momentum p, resp., including
dissipative contraction by a factor a = 0.5 in the baker map (see Fig. 4) results in an additional digit 0
fitted in between every two binary digits, are transferred from the upward Bernoulli shift in x to the
downward shift in p. (b) For bottom-up (green) and top-down (pink) information currents, this means
that half of the microscopic information arriving at large scales by chaotic expansion is diverted by
dissipation (blue) to the environment, thus returning to small scales in adjacent degrees of freedom.

Combined with the original baker map (6), this additional step fits in one digit 0 each between203

every two binary digits transferred from position to momentum (Fig. 4). In terms of information204

currents, this means that only half of the information lifted up by chaotic expansion in x returns to205

small scales by the compensating contraction in p, the other half is diverted by dissipation (Fig. 5). This206

particularly simple picture owes itself of course to the special choice a = 0.5. Still, for other values of a,207

different from 1/2 or an integer power thereof, the situation will be qualitatively the same. The fact208

that the dissipative information loss occurs here at the largest scales, along with the volume conserving209

chaotic contraction in p, not at the smallest as would be expected on physical grounds, is an artefact of210

the utterly simplified model.211
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2.3. Example 2: Kicked rotor and standard map212

A model that comes much closer to a physical interpretation than the Bernoulli and baker maps is213

the kicked rotor [20,22,24]. It can be motivated as an example, reduced to a minimum of details, of a214

circle map, a discrete dynamical system conceived to describe the phase-space flow in Hamiltonian215

systems close to integrability. The kicked rotor, the version in continuous time of this model, can even216

be defined by a Hamiltonian, but allowing for a time-dependent external force,217

H(p, θ, t) =
p2

2
+ V(θ)

∞

∑
n=−∞

δ(t− n), V(θ) = K cos(θ). (11)

It can be interpreted as a plane rotor with angle θ and angular momentum p and with unit inertia,218

driven by impulses that depend on the angle as a nonlinear function, a pendulum potential, and on219

time as a periodic chain of delta kicks of strength K with period 1.220

Reducing the continuous-time Hamiltonian (11) to a corresponding discrete-time version in221

the form of a map is not a unique operation but depends, for example, on the way stroboscopic222

time sections are inserted relative to the kicks. If they follow immediately after each delta kick,223

tn = limε↘0+(n + ε), n ∈ Z, the map from tn to tn+1 reads224 (
p
θ

)
7→
(

p′

θ′

)
,

(
p′

θ′

)
=

(
p + K sin(θ′)

θ + p

)
. (12)

It is often referred to as the standard or Chirikov map [20,22,24].225

The dynamical scenario of this model is by far richer than that of the Bernoulli and baker maps226

and constitutes a prototypical example of the Kolmogorov-Arnol’d-Moser (KAM) theorem [20]. The227

parameter K controls the deviation of the system from integrability. While for K = 0, the kicked rotor is228

integrable, equivalent to an unperturbed circle map, increasing K leads through a complex sequence of229

mixed dynamics, with regular and chaotic phase-space regions interweaving each other in an intricate230

fractal structure. For large values of K, roughly given by K & 1, almost all regular structures in phase231

space disappear and the dynamics becomes purely chaotic. For the cylindrical phase space of the kicked232

rotor, (p, θ) ∈ R⊗ [0, 2π[, this means that the angle approaches a homogeneous distribution over233

the circle, while the angular momentum spreads diffusively over the cylinder, a case of deterministic234

diffusion, here induced by the randomizing action of the kicks.235

For finite values of K, the spreading of the angular momentum does not yet follow a simple236

diffusion law, owing to small regular islands in phase space [25]. Asymptotically for K → ∞, however,237

the angular momentum spreads diffusively,238

〈(pn − 〈p〉)2〉 = D(K)n (13)

with a diffusion constant [20]239

D(K) = K2/2 (14)

This regime is of particular interest in the present context, as it allows for a simple estimate of the240

entropy production. In the kicked rotor, information currents cannot be separated as neatly as in241

the baker map into a macro-micro flow in one coordinate and a micro-macro flow in the other. The242

complex fractal phase-space structures imply that these currents are organized differently in each243

point in phase space. Nevertheless, some global features, relevant for the total entropy balance, can be244

extracted without going to such detail.245

Define a probability density in phase space carrying the full information on the state of the system,246

ρ : R⊗ [0, 2π[→ R+, R⊗ [0, 2π[3 (p, θ) 7→ ρ(p, θ) ∈ R+,
∫ ∞

−∞
dp
∫ 2π

0
dθ ρ(p, θ) = 1. (15)
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This density evolves deterministically according to Liouville’s theorem [20,26]247

d
dt

ρ(p, θ, t) =
{

ρ(p, θ, t), H(p, θ, t)
}
+

∂

∂t
ρ(p, θ, t), (16)

involving the Poisson bracket with the Hamiltonian (11). In order to obtain the overall entropy248

production from the detailed density ρ(p, θ, t), some coarse graining is required. In the case of249

the kicked rotor, it offers itself to integrate ρ(p, θ, t) over θ, since the angular distribution rapidly250

approaches homogeneity, concealing microscopic information in fine details, while the diffusive251

spreading in p contains the most relevant large-scale structure. A time-dependent probability density252

for the angular momentum alone is defined projecting by the full distribution along θ,253

ρp(p, t) :=
∫ 2π

0
dθ ρ(p, θ, t),

∫ ∞

−∞
dp ρp(p, t) = 1. (17)

Its time evolution is no longer given by Eq. (A2) but follows a Fokker-Planck equation,254

∂

∂t
ρp(p, t) = D(K)

∂2

∂p2 ρp(p, t). (18)

For a localized initial condition, ρ(p, 0) = δ(p− p0), Eq. (18) it is solved for t > 0 by a Gaussian with a
width that increases linearly with time

ρp(p, t) =
1√

2πσ(t)
exp

(
− (p− p0)

2

2
(
σ(t)

)2

)
, σ(t) = D(K)t. (19)

Define the total information content of the density ρp(p, t) as255

I(t) = −c
∫ ∞

−∞
dp ρp(p, t) ln

(
dpρp(p, t)

)
, (20)

where c is a constant fixing the units of information (e.g., c = log2(e) for bits and c = kB, the
Boltzmann constant, for thermodynamic entropy) and dp denotes the resolution of angular momentum
measurements. The diffusive spreading given by Eq. (19) corresponds to a total entropy growing as

I(t) =
c
2

[
ln

(
2πD(K)t

d2
p

)
+ 1

]
, (21)

hence to an entropy production rate dI/dt = c/2t. This positive rate decays with time, but only256

algebraically, that is, without a definite time scale.257

The angular-momentum diffusion (13), manifest in the entropy production (21), also referred to as258

deterministic diffusion, is an irreversible process, yet based on a deterministic reversible evolution law.259

It can be reconciled with entropy conservation in Hamiltonian dynamics (App. A) only by assuming a260

simultaneous contraction in another phase space direction that compensates for the diffusive expansion.261

In the case of the kicked rotor, it occurs in the angle variable θ, which stores the information lost in262

p in fine details of the density distribution, similar to the opposed information currents in the baker263

map (Fig. 3). Indeed, this fine structure has to be erased to derive the diffusion law (13), typically by264

projecting along θ and neglecting autocorrelations in this variable [20].265

Even if dissipation is not the central issue here, including it to illustrate a few relevant aspects in266

the present context is in fact straightforward. On the level of the discrete-time map, Eq. (12), a linear267

reduction of the angular momentum leads to the dissipative standard map or Zaslavsky map [27,28],268 (
p
θ

)
7→
(

p′

θ′

)
,

(
p′

θ′

)
=

(
e−λ p + K sin(θ′)

θ + e−λ p

)
. (22)

The factor exp(−λ) results from integrating the equations of motion269
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ṗ = −λp + K sin(θ)
∞

∑
n=−∞

δ(t− n), θ̇ = p. (23)

The Fokker-Planck equation (18) has to be complemented accordingly by a drift term ∼ ∂ρp(p, t)/∂p,270

∂

∂t
ρp(p, t) = (1− λ)

∂

∂p
ρp(p, t) +

∂

∂p

(
D(K) +

(
(1− λ)p

)2
) ∂

∂p
ρp(p, t). (24)

In the chaotic regime K & 1 of the conservative standard map, the dissipative map (22) approaches a271

stationary state characterized by a strange attractor, see, e.g., Refs. [27,28].272

2.4. Anticipating quantum chaos: classical chaos on discrete spaces273

Classical chaos can be understood as the manifestation of information currents that lift microscopic274

details to macroscopic visibility [2]. Do they draw from an inexhaustible information supply on ever275

smaller scales? The question bears on the existence of an upper bound of the information density276

in phase space or other physically relevant state spaces, or equivalently, on a fundamental limit of277

distinguishability, an issue raised, e.g., by Gibbs’ paradox [29]. Down to which difference between their278

states will two physical systems remain distinct? The question has already been answered implicitly279

above by keeping the number of binary digits in Eqs. (2,3,6) indefinite, in agreement with the general280

attitude of classical mechanics not to introduce any absolute limit of distinguishability.281

A similar situation arises if chaotic maps are simulated on digital machines with finite precision282

and/or finite memory capacity [30–33]. In order to assess the consequences of discretizing the state283

space of a chaotic system, impose a finite resolution in Eqs. (2,3,6), say dx = 1/J, J = 2N with N ∈ N,284

so that the sums over binary digits only run up to N. This step is motivated, for example, by returning285

to the card-shuffling technique quoted as inspiration for the Bernoulli map (Fig. 1). A finite number of286

cards, say J, in the card deck, corresponding to a discretization of the coordinate x into steps of size287

dx > 0, will substantially alter the dynamics of the model.288

More precisely, specify the discrete coordinate as289

xj =
j− 1

J
, j = 1, 2, 3, . . . , J, J = 2N , N ∈ N, (25)

with a binary code x = ∑N
n=1 an2−n. A density distribution over the discrete space (x1, x2, . . . , xJ) can290

now be written as a J-dimensional vector291

ρ = (ρ1, ρ2, ρ3, . . . , ρJ), ρj ∈ R+,
N

∑
j=1

ρj = 1, (26)

so that the Bernoulli map takes the form of a (J × J)-permutation matrix BJ , ρ 7→ ρ′ = BJρ. These292

matrices reproduce the graph of the Bernoulli map, Fig. 1, but discretized on a (J × J) square grid.293

Moreover, they incorporate a deterministic version of the step of interlacing two partial card decks in294

the shuffling procedure, in an alternating sequence resembling a zipper. For example, for J = 8, N = 3,295

the matrix reads296

B8 =



1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1


. (27)
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The two sets of entries = 1 along slanted vertical lines represent the two branches of the graph in Fig.297

1, as shown in Fig. 6b.298

a b c

Figure 6. Three versions of the Bernoulli map exhibit a common underlying structure. The graph of
the classical continuous map, Eq. (1), panel (a), recurs in the structure of the matrix generating the
discretized Bernoulli map (b), Eq. (27), here for cell number J = 16, and becomes visible as well as
marked “ridges” in the unitary transformation generating (c) the quantum baker map, here depicted
as the absolute value of the transformation matrix in the position representation, for a Hilbert space
dimension DH = J = 16. Grey-level code in (b) and (c) ranges from light grey (0) through black (1).

A deterministic dynamics on a discrete state space comprising a finite number of states must299

repeat after a finite number M of steps, not larger than the total number of states. In the case of the300

Bernoulli map, the recursion time is easy to calculate: In binary digits, the position discretized to301

2N bins is specified by a sequence of N binary coefficients an. The Bernoulli shift moves this entire302

sequence in M = N = lb(J) steps, which is the period of the map. Exactly how the reshuffling of303

the cards leads to the full recovery of the initial state after M steps is illustrated in Fig. 7. That is, the304

shuffling undoes itself after M repetitions!305
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Figure 7. Accounting for the discreteness of the cards in the card-shuffling model, see Fig. 1a, reduces
the Bernoulli map to a discrete permutation matrix, Eq. (27). The figure shows how it leads to a
complete unshuffling of the cards after a finite number M = lb(J) of steps, here for M = 3. Moreover,
a binary coding of the cell index reveals that subsequent positions of a card are given by permutations
of its three-digit binary code.

A similar, but even more striking situation occurs for the baker map, discretized in the same306

fashion. While the x-component is identical to the discrete Bernoulli map, the p-component is construed307

as inverse of the x-component, cf. Eq. (5). Defining a matrix of probabilities on the discrete (J × J)308

square grid that replaces the continuous phase space of the baker map,309

ρ : {1, . . . , J} ⊗ {1, . . . , J} → R+, (n, m) 7→ ρn,m,
J

∑
n,m=1

ρn,m = 1, (28)

the discrete map takes the form of a similarity transformation,310

ρ 7→ ρ′ = B−1
J ρBt

J = Bt
JρBt

J . (29)
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The inverse matrix B−1
J is readily obtained as the transpose of BJ . For example, for N = 3, it reads311

B−1
8 = Bt

8 =



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1


. (30)

As for the forward discrete map, it resembles the corresponding continuous graph (Fig. 6a), with312

entries 1 now aligned along two slanted horizontal lines (Fig. 6b) .313

m = 0 m = 1 m = 2 m = 3 m = 4 = M

Figure 8. The recurrence in the discrete Bernoulli map, see Fig. 7, occurs likewise in the discrete baker
map, Eq. (29). The figure shows how the simultaneous expansion in x (horizontal axis) and contraction
in p (vertical axis), in the pixelated two-dimensional state space entail an exact reconstruction of the
initial state, here after M = lb(16) = 4 iterations of the map.

Both the upward shift of binary digits of the x-component and the downward shift of binary314

digits encoding p now become periodic with period M = N, as for the discrete baker map. The two315

opposing information currents thus close to a circle, resembling a paternoster lift with a lower turning316

point at the least significant and an upper turning point at the most significant digit (Fig. 8). It is to be317

emphasized that the map (4), being deterministic and reversible, conserves entropy, which implies a318

zero entropy production rate. The fact that the discrete baker map is no longer chaotic but periodic319

therefore does not depend on the vanishing entropy production but reflects the finite total information320

content of its discrete state space.321

The fate of deterministic classical chaos in systems comprising only a finite number of discrete322

states (of a “granular phase space”) has been studied in various systems [30–33], with the same general323

conclusion that chaotic entropy production gives way to periodic behaviour with a period determined324

by the size of the discrete state space, that is, by the finite precision underlying its discretization. To a325

certain extent, this classical phenomenon anticipates the effects of quantization on chaotic dynamics,326

but it provides at most a caricature of quantum chaos. It takes only a single, if crucial, tenet of327

quantum mechanics into account, the fundamental bound uncertainty imposes on the storage density328

of information in phase space, leaving all other principles of quantum mechanics aside. Yet it shares a329

central feature with quantum chaos, the repetitive character it attains in closed systems, and it suggests330

how to interpret this phenomenon in terms of information flows.331

3. Quantum death and incoherent resurrection of classical chaos332

While the “poor man’s quantization” discussed in the previous section indicates qualitatively333

what to expect if chaos is discretized, reconstructing classically chaotic systems systematically in the334

framework of quantum mechanics allows for a much more profound analysis how these systems335

process information. (For comprehensive bibliographies on quantum chaos in general, readers are336

kindly asked to consult monographs such as Refs. [4,34–36]). Quantum mechanics directs our view337

more specifically to the aspect of closure of dynamical systems. Chaotic systems provide a particularly338
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sensitive probe, more so than systems with a regular classical mechanics, of the effects of a complete339

blocking of external sources of entropy, since they react even to a weak coupling to the environment by340

a radical change of their dynamical behaviour.341

3.1. Quantum chaos in closed systems342

In this section, prototypical examples of the quantum suppression of chaos will be contrasted343

with open systems where classical behaviour reemerges at least partially. A straightforward strategy344

to study the effect first principles of quantum mechanics have on chaotic dynamics is quantizing345

models of classical chaos. This requires these models, however, to be furnished with a minimum of346

mathematical structure, required for a quantum mechanical description. In essence, systems with a347

volume conserving flow, generated by a classical Hamiltonian on an even-dimensional state space348

can be readily quantized. In the following, the principal consequences of quantizing chaos will be349

exemplified applying this strategy to the baker map and the kicked rotor.350

3.1.1. The quantized baker map351

The baker map introduced in subsection 2.2 is an ideal model to consider quantum chaos352

in a minimalist setting. It already comprises a coordinate together with its canonically conjugate353

momentum and can be quantized in an elegant fashion [37–39]. Starting from the operators x̂ and354

p̂, p̂ = −ih̄d/dx in the position representation, with commutator [x̂, p̂] = ih̄, their eigenspaces are355

constructed as356

x̂|x〉 = x|x〉, p̂|p〉 = p|p〉, 〈x|p〉 = eipx/h̄
√

2πh̄
. (31)

The finite classical phase space [0, 1[⊗[0, 1[⊂R2 of the baker map can be implemented with this pair357

of quantum operators by assuming periodicity, say with period 1, both in x and in p. Periodicity in x358

entails quantization of p and vice versa, so that together, a Hilbert space of finite dimension J results,359

and the pair of eigenspaces (31) is replaced by360

x̂|j〉 = j
J
|j〉, p̂|l〉 = h̄l|l〉, j, l = 0, . . . , J − 1, 〈j|l〉 = 1√

J
e2πi jl/J = (FJ)j,l , (32)

that is, the transformation between the two spaces coincides with the discrete Fourier transform, given361

by the (J × J)-matrix FJ .362

This construction suggests a straightforward quantization of the baker map. If we phrase the363

classical map as the sequence of actions364

1. expand the unit square [0, 1[⊗[0, 1[ by a factor 2 in x,365

2. divide the expanded x-interval into two equal sections, [0, 1[ and [1, 2[,366

3. shift the right one of the two rectangles (Fig. 2), (x, p) ∈ [1, 2[⊗ [0, 1[ , by 1 to the left in x and by367

1 up in p, [1, 2[⊗ [0, 1[ 7→ [0, 1[⊗ [1, 2[,368

4. contract by 2 in p,369

it translates to the following operations on the Hilbert space defined in Eq. (32), assuming the370

Hilbert-space dimension J to be even,371

1. in the x-representation, divide the vector of coefficients (a0, . . . , aJ−1), |x〉 = ∑J−1
j=0 aj|j〉, into two372

halves, (a0, . . . , aJ/2−1) and (aJ/2, . . . , aJ−1),373

2. transform both partial vectors separately to the p-representation, applying a ( J
2 ×

J
2 )-Fourier374

transform to each of them,375

3. stack the Fourier transformed right half column vector on top of the Fourier transformed left376

half, so as to represent the upper half of the spectrum of spatial frequencies,377

4. transform the combined state vector from the J-dimensional p-representation back to the x378

representation, applying an inverse (J × J)-Fourier transform.379

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2019                   doi:10.20944/preprints201902.0058.v1

Peer-reviewed version available at Entropy 2019, 21, 286; doi:10.3390/e21030286

http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286


14 of 40

All in all, this sequence of operations combines to a single unitary transformation matrix. In the380

position representation, it reads381

B(x)
J = F−1

J

(
FJ/2 0

0 FJ/2

)
. (33)

Like this, it already represents a compact quantum version of the Baker map [37,38]. It still382

bears one weakness, however: The origin (j, l) = (0, 0) of the quantum position-momentum index383

space, coinciding with the classical origin (x, p) = (0, 0) of phase space, creates an asymmetry, as384

the diagonally opposite corner 1
J (j, l) = 1

J (J − 1, J − 1) = (1 − 1
J , 1 − 1

J ) does not coincide with385

(x, p) = (1, 1). In particular, it breaks the symmetry x → 1− x, p→ 1− p of the classical map. This386

symmetry can be recovered on the quantum side by a slight modification [39] of the discrete Fourier387

transform mediating between position and momentum representation, a shift by 1
2 of the two discrete388

grids. It replaces FJ by389

〈j|l〉 = 1√
J

exp
(

2πi
(

j +
1
2

)(
l +

1
2

))
=: (GJ)j,l , (34)

and likewise for FJ/2. The quantum baker map in position representation becomes accordingly390

B(x)
J = G−1

J

(
GJ/2 0

0 GJ/2

)
. (35)

In momentum representation, it reads B(p)
J = GJ B(x)

J G−1
J . The matrix B(x)

J exhibits the same basic391

structure as its classical counterpart, the x-component of the discrete baker map (27), but replaces the392

sharp “crests” along the graph of the original mapping by smooth maxima (Fig. 6c). Moreover, its393

entries are now complex. In momentum representation, the matrix B(p)
J correspondingly resembles the394

p-component of the discrete baker map.395

While the discretized classical baker map (29) merely permutes the elements of the classical396

phase-space distribution, the quantum baker map rotates complex state vectors in a Hilbert space of397

finite dimension J. We cannot expect periodic exact revivals as for the classical discretization. Instead,398

the quantum map is quasi-periodic, owing to phases εn of its unimodular eigenvalues eiεn , which in399

general are not commensurate. With a spectrum comprising a finite number of discrete frequencies,400

the quantum baker map therefore exhibits an irregular sequence of approximate revivals. They can be401

visualized by recording the return probability,402

Pret(n) =
∣∣Tr[Ûn]

∣∣2 (36)

with the one-step unitary evolution operator 〈j|Û|j′〉 = (B(x)
J )j,j′ . Figure 9a shows the return probability403

of the (8× 8) quantum baker map for the first 500 time steps. Several near-revivals are visible; the404

figure also shows the unitary transformation matrix (B(x)
J )n for n = 490 where it comes close to the405

(8× 8) unit matrix (Fig. 9b). The quantum baker map therefore does not exhibit as exact and periodic406

recurrences as does the discretized classical map (Fig. 8), but it is evident that its dynamics deviates407

dramatically from the exponential decay of the return probability, constituent for mixing, hence for408

strongly chaotic systems [20–22].409

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2019                   doi:10.20944/preprints201902.0058.v1

Peer-reviewed version available at Entropy 2019, 21, 286; doi:10.3390/e21030286

http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286


15 of 40

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

n

Pret(n)

n = 490

a b

n = 490

Figure 9. Recurrences in the quantum baker map are neither periodic nor precise, as in the discretized
classical version, see Fig. 8, but occur as approximate evivals. They can be identified as marked peaks
(a) of the return probability, Eq. (36). For the strong peak at time n = 490 (arrow in panel (a)), the
transformation matrix in the position representation Bn

x,J (b), cf. Eq. (35), here with J = 8, indeed comes
close to a unit matrix. Grey-level code in (b) ranges from light grey (0) through black (1).

This example suggests to conclude that the decisive condition to suppress chaos is the finiteness410

of the state space, exemplified by a discrete classical phase space or a finite-dimensional Hilbert space.411

Could we therefore hope chaotic behaviour to be more faithfully reproduced in quantum systems412

with an infinite-dimensional Hilbert space? The following example frustrates this expectation, but the413

coherence effects preventing chaos also here require a more sophisticated analysis.414

3.1.2. The quantum kicked rotor415

By contrast to mathematical toy models such as the baker map, the kicked rotor allows to include416

most of the features of a fully-fledged Hamiltonian dynamical system, also in its quantization. With417

the Hamiltonian (11), a unitary time-evolution operator over a single period of the driving is readily418

construed [3,40]. Placing, as for the classical map, time sections immediately after each kick, the419

time-evolution operator reads420

ÛQKR = ÛkickÛrot, Ûkick = exp
(
−ik cos(θ̂)

)
, Ûrot = exp

(
−ip̂2/2h̄

)
. (37)

The parameter k relates to the classical kick strength as k = K/h̄. Angular momentum p̂ and angle θ̂421

are now operators canonically conjugate to one another, with commutator [ p̂, θ̂] = −ih̄. The Hilbert422

space pertaining to this model is now of infinite dimension, spanned for example by the eigenstates of423

p̂,424

p̂|l〉 = h̄l|l〉, l ∈ Z, 〈θ|l〉 = 1√
2πh̄

exp(ilθ). (38)

Operating on an infinite dimensional Hilbert space, the arguments explaining quasi-periodicity425

of the time evolution generated by the quantum baker map do not carry over immediately to the426

kicked rotor. On the contrary, in the quantum kicked rotor with its external driving, energy is not427

conserved, the system should explore the entire angular-momentum space as in the classical case, and428

in the regime of strong kicking one expects to see a similar unbounded growth of the kinetic energy as429

symptom of chaotic diffusion as in the classical standard map. It was all the more surprising for Casati430

et al. [3,40] that their numerical experiments proved the opposite: The linear increase of the kinetic431

energy ceases after a finite number of kicks and gives way to an approximately steady state, with the432

kinetic energy fluctuating in a quasi-periodic manner around a constant mean value (Fig. 10).433
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Figure 10. Suppression of deterministic angular momentum diffusion in the quantum kicked rotor.
Time evolution of the mean kinetic energy, E(n) = 〈p2

n/2〉, over the first 1000 time steps, for the
classical kicked rotor, Eq. (11), (dotted) and its quantized version, Eq. (47) (solid line). The parameter
values are K = 10 and 2πh̄ = 0.15/G (G := (

√
5− 1)/2).

It turns out that despite the infinite Hilbert space dimension, the effective Hilbert space accessed434

from a localized initial condition is always of only finite dimension, at least for all generic parameter435

values. An explanation was found by analyzing the quasienergy eigenstates of the system [41–44].436

The kicked rotor does not conserve energy, but if the driving is invariant under discrete translations437

of time, t→ t + 1, another conservation law applies: Floquet theory [45,46] guarantees the existence438

of quasienergy states, eigenstates of ÛQKR with unimodular eigenvalues exp(iε) and eigenphases439

ε. Quasienergy eigenstates can be calculated by numerical diagonalization of ÛQKR. For generic440

parameter values, eigenstates |φ(ε)〉 are not extended in angular-momentum space, let alone periodic.441

On average and superposed with strong fluctuations, they decay exponentially from a centre lc(ε),442

different for each eigenstate,443

|〈l|φ(ε)〉|2 ∼ exp
(
−|l − lc(ε)|

L

)
. (39)

The scale of this decay, the localization length L, is approximately given by L ≈ (K/2πh̄)2, hence grows444

linearly with the classical diffusion constant, cf. Eq. 14.445

This unexpected phenomenon, called dynamical localization, resembles Anderson localization,446

a coherence effect known from solid-state physics [47,48]: If a crystalline substance is disturbed by447

sufficiently strong “frozen disorder” (impurities, lattice dislocations, etc.), its energy eigenstates are448

not extended, as predicted by Bloch’s theorem [49] for a spatially periodic potential. Rather, the plane449

waves corresponding to Bloch states, scattered at aperiodic defects, superpose on average destructively,450

so that extended states compatible with the periodicity of the potential cannot build up. In the kicked451

rotor, the disorder required to prevent extended states, not in position but in angular-momentum452

space, does not arise by any static randomness of a potential, as in an imperfect crystal lattice, nor is it453

a consequence of the dynamical disorder of the chaotic classical map. It comes about by a dynamical454

coherence effect related to the nature of the sequence of phases φ(l) = h̄l2(mod 2π) of the factor455

Ûrot = exp(−ip̂2/2h̄) = exp(−ih̄l̂2/2) of the Floquet operator (37). If Planck’s constant (in the present456

context, h̄ enters as a dimensionless parameter in units of the inertia of the rotor and the period457

of the kicks) is not commensurable with 2π, these phases, as functions of the index l, constitute a458

pseudo-random sequence. In one dimension, this disorder of number-theoretical origin is strong459

enough to prevent extended eigenstates. Since the rationals form a dense subset of measure 0 of the460

real axis, an irrational value of h̄/2π is the generic case.461
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Even embedded in an infinite-dimensional Hilbert space, exponential localization reduces the462

effective Hilbert-space dimension to a finite number DH, determined by the number of quasienergy463

eigenstates that overlap appreciably with a given initial state. For an initial state sharply localized464

in l, say 〈l|ψ(0)〉 = δl−l0 , it is given on average by DH = 2L. This explains the crossover from465

chaotic diffusion to localization described above: In the basis of localized eigenstates, a sharp initial466

state overlaps with approximately 2L quasienergy states, resulting in the same number of complex467

expansion coefficients. The initial “conspiration” of their phases, required to construct the initial468

state |ψ(0)〉 = |l0〉, then disintegrates increasingly, with the envelope of the evolving state widening469

diffusively until all phases of the contributing eigenstates have lost their correlation with the initial470

state, at a time n∗ ≈ 2L, in number of kicks. The evolving state has then reached an exponential471

envelope, similar to the shape of the eigenstates, Eq. (39) (Fig. 12, dashed lines), and its width fluctuates472

in a pseudo-random fashion, as implied by the superposition of the 2L complex coefficients involved.473

This scenario might appear as an exceptional effect, arising by the coincidence of various special474

circumstances. Indeed, there exist a number of details and exceptions, omitted in the present discussion,475

that lead to different dynamical behaviour, such as accelerator modes in the classical model [25,50] and476

quantum resonances for rational values of h̄/2π [51]. Notwithstanding, similar studies of other models477

have accumulated overwhelming evidence that in quantum systems evolving as a unitary dynamics, a478

permanent entropy production as in classical chaos is excluded. In more abstract terms, this “quantum479

death of classical chaos” can be understood as the consequence of two fundamental principles: the480

conservation of information under unitary time evolution in closed systems, cf. App. B, a conservation481

law closely analogous to information conservation under classical canonical transformations (App.482

A), and the condition that the Hilbert space reachable from the initial state by a unitary dynamics has483

a finite dimension, i.e., amounts to a limited information content. Once the system has explored its484

entire accessible Hilbert space, it cannot but return, at least approximately, to states it had already485

assumed previously.486

This interpretation is corroborated by the global parameters characterizing the behaviour of the487

quantum kicked rotor. In the presence of localization, the dimension of the Hilbert space effectively488

accessible by an initial condition local in angular momentum is DH ≈ 2L. Starting from a pure initial489

state and evolving unitarily, the state of the system of course remains pure. The situation is therefore490

analogous to that of the classical kicked rotor, where despite entropy conservation, a positive entropy491

production can be extracted by focussing on the angular momentum distribution alone. Similarly, an492

entropy production can be attributed to the quantum system through this same observable dynamical493

quantity. The maximum information content it could achieve in this way is given by a homogeneous494

distribution over DH states, hence by Imax ≈ c ln(2L). Comparing this with the entropy production by495

chaotic diffusion, Eq. (21), allows to estimate the cross-over time n∗, in units of the kicking period, till496

this maximum is reached. By equating497

Imax = I(n∗) = c
[

ln
(√

2πD(K)n∗/dp

)
+

1
2

]
(40)

and setting dp = h̄, the angular momentum quantum, and D(K) = K2/2, (cf. Eq. (14)), it is found to be498

n∗ ≈ 4
πe

K2. (41)

This estimate, based on entropy production, coincides exactly, as to the dependence on K, with similar499

estimates based on the energy-time uncertainty relation, as well as with numerical data, which give500

n∗ ≈ 2L ≈ K2

2π2h̄2 , (42)

and it agrees in order of magnitude even with the prefactor.501
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3.2. Breaking the splendid isolation: quantum chaos and quantum measurement502

If the absence of permanent entropy production in closed quantum systems is interpreted as a503

manifestation of quantum coherence, it is natural to inquire how immune this effect is to incoherent504

processes. They occur in a huge variety of circumstances: in quantum systems embedded in a material505

environment, as in molecular and solid state physics, interacting with a radiation field, as in quantum506

optics, in dissipative quantum systems where decoherence accompanies an irreversible energy loss,507

and most notably in all instances of observation, be it by measurement in a laboratory or by leaving508

any kind of permanent record in the environment [52], even in the absence of a human observer.509

Dissipation is the more common context where in quantum systems, decoherence is unavoidable,510

but it is invariably accompanied by the main effect, energy loss. Quantum measurement, by contrast,511

allows to separate decoherence, as an exchange of entropy with the environment, from the loss of512

energy. It has been in the focus of quantum theory from the early pioneering years on, providing the513

indispensable interface with the macroscopic world. The crucial step from quantum superpositions to514

alternative classical facts remained an enigma for decades. The Copenhagen interpretation includes the515

“collapse of the wavepacket” as an essential element [53], but treats it as an unquestionable postulate.516

The first systematic analysis of quantum measurement by von Neumann [54] already provides a517

quantitative description in terms of the density operator, rendering the wavepacket collapse explicit518

as a reduction of the density matrix to its diagonal elements, but does not yet illuminate the physical519

nature of this step, manifestly incompatible with the Schrödinger equation. It was the contribution520

of Zurek and others [11–14,55] to interpret this process, in the spirit of quantum dissipation, as the521

consequence of the interaction with the macroscopic number of degrees of freedom the measurement522

apparatus (the “meter”) and its environment comprise, to be described in a microscopic model as a523

heat bath or reservoir. As one of the major implications of this picture, the collapse of the wavepacket524

no longer appears as an unstructured point-like event but as a continuous process that can be resolved525

in time [14].526

3.2.1. Modelling continuous measurements on the quantum kicked rotor527

In this subsection, basic elements of this scheme will be adopted and applied to the quantum528

kicked rotor in order to demonstrate how observation can thaw dynamical localization and thus restore,529

at least partially, an entropy production as in classical chaos. Reducing quantum measurement to the530

essential, a continuous observation of the kicked rotor will be assumed, which leads to an irreversible531

record of a suitable observable [56]. Following established models of quantum measurement [11–14,532

19,55], these features can be incorporated in a object-meter interaction Hamiltonian [57–59]533

HOM = g x̂M x̂O Θ(t), (43)

where g controls the coupling strength and the Heaviside function Θ(t) switches the measurement534

on at t = 0. The operator x̂M, acting on the Hilbert space of the meter, is the observable that indicates535

the measurement result (its “pointer operator” [11–14]), and x̂O is the measured observable. In accord536

with the objective to study the impact of observation on localization in angular momentum space, we537

shall focus on measurements of the angular momentum l̂. If the expectation 〈l〉 is observed as a global538

measure, this amounts to defining the measured operator as539

x̂O = l̂ =
∞

∑
l=−∞

l|l〉〈l|. (44)

Alternatively, a simultaneous observation of the full angular-momentum distribution P(l), so that the540

measurement affects homogeneously the entire angular momentum axis, requires assuming a separate541

meter component x̂M,l for every eigenvalue of the angular momentum,542
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HOM = g x̂M · x̂O Θ(t) = g
∞

∑
l=−∞

x̂M,l x̂S,l , x̂S,l = |l〉〈l|. (45)

Some models of quantum measurement distinguish explicitly between the meter proper, as a543

microscopic system interacting directly with the observed object, and a macroscopic apparatus that544

couples in turn to the meter [55], thus only indirectly to the object. Such a distinction is not necessary545

in the present context, it suffices to merge meter and environment into a single macroscopic system.546

Moreover, we do not conceive a detailed microscopic model of the meter as a heat bath (but see547

Sections 4.2, 4.3 below), starting instead directly from an evolution equation that takes the essential548

consequences of the meter’s macroscopic nature into account.549

From this basic setup, assuming standard properties of the heat bath such as an immediate550

response (Markovianity), evolution equations for the reduced density operator of the object, ρ̂O(t) =551

TrM
(
ρ̂(t)

)
, can be construed, see App. C. Integrated over one time step of the driven dynamics, they552

take the form of maps for the density operator. In the case of measurements of 〈l〉 with the pointer553

observable as in Eq. (44), the map for the density matrix in angular-momentum representation reads554

〈l|ρ̂S,n+1|m〉 =
∞

∑
l′ ,m′=−∞

bl′−l(k)b
∗
m′−m(k) exp

(
− ih̄

2
(l′2 −m′2)− γ(l′ −m′)2

)
〈l′|ρ̂S,n|l′〉, (46)

while for measurements of P(l), Eq. (45)555

〈l|ρ̂S,n+1|m〉 =
∞

∑
l′ ,m′=−∞

bl′−l(k)b
∗
m′−m(k)[

exp
(
− ih̄

2
(l′2 −m′2)

)
− e−γ(1− δm′−l′) + δm′−l′

]
〈l′|ρ̂S,n|m′〉. (47)
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Figure 11. Deterministic angular momentum diffusion is revived in the quantum kicked rotor with
continuous measurements. Time evolution of the mean kinetic energy, E(n) = 〈p2

n/2〉, over the first 512
time steps for the measured dynamics of the quantum kicked rotor, Eq. (47) (solid line), the stochastic
classical map, Eqs. (A25,A26) (dotted line), and the unobserved dynamics of the quantum kicked rotor,
Eq. (47) (dashed line), for (a) weak vs. (b) strong effective coupling. A continuous measurement of the
full action distribution was assumed. The parameter values are K = 5, 2πh̄ = 0.1/G (G := (

√
5− 1)/2),

and ν = 10−3 (a), ν = 0.5 (b).

These maps alternate the unitary time evolution of the quantum kicked rotor with incoherent556

steps that lead to a gradual decay of the non-diagonal elements of the density matrix. In the limit of557

strong effective coupling to the meter, γ� 1, corresponding to a high-accuracy measurement of the558
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angular momentum, the density matrix is completely diagonalized anew at each time step, and the559

object system leaves the measurement in an incoherent superposition of angular-momentum states, as560

required by the principles of quantum measurement (Figs. 11b, 12b). For a weaker coupling, the loss561

of coherence per step is only partial, restricting the density matrix to a diagonal band with a Gaussian562

profile of width∼ γ−1, if 〈l〉 is measured, or reducing its off-diagonal elements homogeneously by e−γ,563

if the full distribution is recorded (Figs. 11a, 12a). In any case, decoherence in the angular momentum564

representation is equivalent to a diffusive spreading of the angle θ. It imitates the action of classical565

chaos in that it effectively destroys the autocorrelation of the angle variable.566
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Figure 12. Dynamical localization is destroyed in the quantum kicked rotor with continuous
measurements. Probability distribution P(l) of the angular momentum l (semilogarithmic plot),
after the first 512 time steps, for the measured dynamics of the quantum kicked rotor, Eq. (47) (solid
lines), compared to the unmeasured dynamics of the same system, Eq. (47) (dashed), for (a) weak vs.
(b) strong effective coupling. A continuous measurement of the full action distribution was assumed.
The parameter values are K = 5, 2πh̄ = 0.1/G (G := (

√
5− 1)/2), and ν = 10−4 (a), ν = 0.5 (b).

The framework set by Eq. (A19) is easily extended to include dissipation [60–62]. An additional567

term, proportional to the friction constant λ,568

˙̂ρO =− i
h̄
[ĤO, ρ̂O] + γ

[
x̂O, [ρ̂O, x̂O]

]
+

1
2

g2λ
([

x̂Oρ̂O, [ĤO, x̂O]
]
−
[
[HO, x̂O], ρ̂O x̂O

])
, (48)

induces incoherent transitions between angular momentum eigenstates towards lower values of l,569

modelling Ohmic friction with a damping constant λ, as in the classical standard map with dissipation,570

Eqs. (22,23,24) [27,28]. In terms of a classical stochastic dynamics, to be detailed in the following571

subsection, it corresponds to a drift of the probability density in phase space towards lower angular572

momentum.573

Describing the quantum dynamics in terms of a master equation for the reduced density operator574

only provides a global statistical account. However, in the semiclassical regime of small angular575

momentum quantum h̄, compared to the periodicity of the classical phase space in the same observable576

p, it can be replaced by an approximate description as a classical Langevin equation with a noise term577

of quantum origin that induces diffusion in θ [57–59]. Including again Ohmic friction with damping578

constant λ, it can be cast in the form of a classical map with noise term ξ, see App. C,579 (
pn+1

θn+1

)
=

(
pn + K sin(θn+1)

θn + e−λ pn + ξn

)
. (49)
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3.2.2. Numerical results580

Numerical experiments performed with both, the quantum map for the density matrix, Eqs.581

(46,47), and its semiclassical approximation, Eqs. (A25,49), give a detailed picture of the effect of582

continuous observation on quantum chaos [57–59]. Figure 11 compares the time dependence of the583

mean kinetic energy for the quantum kicked rotor, Eq. (37) (dashed lines), the same system under584

continuous measurement, Eq. (47) (solid lines), and the stochastic classical map, Eqs. (A25,A26) (dotted).585

Above all, the data shown provide clear evidence that incoherent processes induced by measurements586

destroy dynamical localization. Even for weak coupling to the apparatus, Figs. 11a, 12a, classical angular587

momentum diffusion is recovered, albeit on a time scale nc ≈ ν−1, much larger than the cross-over time588

n∗, cf. Eq. (42), if ν � 1/2L, and with a diffusion constant Dqm ≈ D(K)n∗/nc, reduced accordingly589

with respect to its classical value D(K). For stronger coupling, the measurement-induced diffusion590

approaches the classical strength D(K). Since it randomizes the angle variable indiscriminately, erasing591

all fine structure in classical phase space, it ignores deviations of D(K) from the gross estimate (14),592

caused, e.g., by accelerator modes of the classical standard map [25,50]. In fact, measurement-induced593

diffusion occurs already for kick strengths K < Kc, below the classical threshold to chaotic diffusion594

Kc ≈ 1, where in the exact classical map, diffusion is still blocked by regular tori extending across the595

full range θ ∈ [0, 2π[. Moreover, Fig. 13b, showing the angular momentum distribution after 512 time596

steps, demonstrates that at this stage, the typical exp(−|l|/L) shape indicating localization has given597

way to a Gaussian envelope, characteristic of diffusion.598

Figure 13 compares the angular momentum reached after 512 time steps for the measured599

quantum system in the description by the master equation (47) (dotted lines) with that obtained for the600

noisy map (A25) (solid lines). For sufficiently strong coupling, Fig. 13b, it is faithfully reproduced by601

the semiclassical Langevin equation (A25), as is the overall energy growth, see Fig. 11b (dotted line).602
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Figure 13. Same as Fig. 12, but comparing the measured dynamics of the quantum kicked rotor, Eq.
(47) (dashed lines), to the stochastic classical map, Eqs. (A25,A26) (solid lines), for (a) weak vs. (b)
strong effective coupling. A continuous measurement of the full action distribution was assumed. The
parameter values are K = 10, 2πh̄ = 0.1/G (G := (

√
5− 1)/2), and ν = 10−4 (a), ν = 0.5 (b).

The diffusion constant of the measurement-induced angular momentum diffusion also allows us603

to estimate directly the entropy produced by the measured quantum system: Replacing in Eq. (21) the604

classical diffusion constant D(K) by the reduced quantum mechanical value Dqm yields605

I(t) =
c
2

[
ln

(
2πDqmt

d2
p

)
+ 2 ln

(
n∗

nc

)
+ 1

]
, (50)

As the production rate for diffusive spreading is independent of the diffusion constant, it is here606

the same as for the classical standard map, İ(t) = c/2t. Such a positive entropy production is607

not compatible with entropy conservation in closed quantum systems, App. B. The only possible608

explanation therefore refers to the measured quantum system not being closed, so that the entropy609
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generated actually infiltrates from the macroscopic meter to which it is coupled. This interpretation610

becomes plausible also considering the fact that obviously, there must be an entropy flow from the611

object towards the meter—or else the measured data could not reach it: There is no reason why the612

information current from object to meter should not be accompanied by an opposite current, from613

meter to object.614

The three phases of the time evolution of, in particular, the weakly (i.e., with small coupling to615

the meter) measured quantum kicked rotor can now be interpreted from the point of view of entropy616

flows: During the initial phase, n . n∗, the quantum map follows closely the classical standard map,617

producing entropy from its own supply provided by the initial state. Once it is exhausted, at n ≈ n∗,618

entropy production stalls, the system localizes and crosses over to quasi-periodic fluctuations. Only619

on a much longer time scale n & nc � n∗, sufficient entropy infiltrates from the meter to become620

manifest again in the dynamics of the kicked rotor as diffusive angular-momentum spreading. Getting621

entangled by the measurement to the meter, the kicked rotor effectively attains an infinite Hilbert-space622

dimension, despite dynamical localization, which restores close-to-classical behaviour.623

While decoherence allowed substantiating the crucial rôle of the environment to induce chaotic624

dynamics in quantum systems, incorporating friction gives us the opportunity to take a look also625

at the modifications of dissipative classical chaos that are required by quantization. Here, it is a626

static phenomenon, the fractal geometry of strange attractors, that collides with quantum mechanics:627

The infinite structural depth implied by self-similarity is incompatible with uncertainty. In order628

to “quantize strange attractors”, the master equation (48) as well as the stochastic semiclassical629

approximation, Eq. (49), can be solved numerically and compared with the classical dissipative630

standard map (22) [60–62]. Fig. 14 compares the stationary states approached by these maps for631

n� 1/λ, the time scale of contraction onto the attractor. The classical strange attractor, Fig. 14a, here632

represented as its support in (p, θ) phase space, roughly follows a (− sin θ)-curve. The stationary state633

of the full quantum master equation, depicted as the Wigner function corresponding to the stationary634

density operator, Fig. 14c, shows a smoothed structure that eliminates the self-similarity of the classical635

fractal geometry. The wavy modulations visible in panel (c) are owed to the tendency of Wigner636

function to exhibit fringes where it takes negative values, if the support of the positive regions is637

strongly curved. They are absent in the stationary state of the semiclassical noisy map, panel (b).638

2ππ0

b

ϑ2ππ0
0

1

p

2ππ0

a c

Figure 14. Classical and quantum stationary-state distributions of the dissipative standard map for
n � 1/λ. (a) Support of the strange attractor of the classical map (22) in (p, θ) phase space. (b)
Stationary state of the semiclassical stochastic map (49), plotted at discrete angular momentum values
pl = h̄l, as in panel (c). (c) Long-time limit of the density operator for the master equation (48),
represented as the corresponding Wigner function, which has support along the quantized angular
momentum values lh̄, l ∈ Z. The parameter values are n = 10, K = 5, λ = 0.3, and 2πh̄ = 0.02 (b,c).
Only the upper (positive-momentum, p ≥ 0) part of phase space is shown, the lower (p ≤ 0) part is
related to it by parity, p→ −p, θ → −θ.
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4. Quantum measurement and quantum randomness in a unitary setting639

In the examples discussed in the preceding sections, the central issue was chaotic entropy640

production and its suppression by coherence effects in closed quantum systems. Measurement served641

as a particular case of interaction with a macroscopic environment, giving rise to a two-way exchange of642

information. A transfer of information on the state of the object is the essence of measurement. It does643

not even require a human observer, the physical environment can play the rôle of the “witness” [52].644

Conversely, entropy entering the measured object from the side of the apparatus imparts a stochastic645

component to the proper dynamics of the object [19]. Quantum chaos is specially sensitive to this effect,646

as even minuscule amounts of entropy penetrating from outside become manifest in the long-time647

behaviour. The reason for this sensitivity lies in the unbounded amplification of perturbations, a global648

instability chaotic systems show throughout their state space.649

The present section takes up this idea to explore its consequences in the context where its relevance650

is far less obvious. In quantum measurement, instabilities of the measurement process itself, instead of651

a sensitive dependence on initial conditions of a measured chaotic system, let us expect similar effects652

as in the case of quantum chaos. It is not obvious, though, where in the context of measurement such653

instabilities should exist, of a kind even remotely comparable to chaotic dynamics. To see this, a final654

step has to be added to the above outline of the quantum measurement process.655

4.1. Quantum randomness from quantum measurement656

The collapse of the wavepacket is not only incompatible with a unitary time evolution, it also657

violates the conservation of entropy (App. B). If the measured system is initiated in a pure state,658

|ψO,ini〉 = ∑
α

aα|α〉, (51)

(assuming a discrete basis of eigenstates of the measured operator, e.g., x̂|α〉 = xα|α〉, α ∈ Z) a complete659

collapse leads to a mixed state comprising the same components,660

ρ̂O,ini = |ψO,ini〉〈ψO,ini| → ρ̂O,clps = ∑
α

pα|α〉〈α|, pα = |aα|2. (52)

The increase in entropy from the pure initial state (Iini = 0) is thus661

Iclps = −c Tr
(

ρ̂O,clps ln(ρ̂O,clps)
)
= −c ∑

α

pα ln(pα). (53)

It is readily explained and can be modelled in microscopic detail as a consequence of the entanglement662

of the object with the macroscopic apparatus [11–14,19,55]. It means that during this phase of the663

measurement, both components share their entropy, so that it can no longer be uniquely partitioned664

into a meter part and an object part. In the reduced density operator of the object, but likewise in that665

for the meter, this correlation becomes manifest as information gain: Iclps > IO,ini + IM,ini. The reduced666

density operator of the object, “collapsed" to its diagonal, 〈α|ρ̂O,clps|α′〉 = pαδα′−α, is interpreted as a667

set of probabilities pα for the measurement resulting in the eigenvalue xα of the measured operator x̂.668

With this step, the measurement is not yet complete. From the Copenhagen interpretation669

onwards [53], all quantum measurement schemes add a crucial final transition, to the object exiting670

the process again in a pure state, one of the eigenstates |α〉,671

ρ̂O,clps = ∑
α

pα|α〉〈α| → ρ̂O,fin =


...

...

|α〉〈α| with probability pα

...
...

(54)

returning the information content to its initial value, IO,fin = IO,ini = 0. This step is sometimes referred672

to as “second collapse of the wavepacket”. In contrast to the “first collapse”, though, it is usually673
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considered to be of little interest for the discussion of fundamentals of quantum mechanics, since it674

appears as a mere classical random process, analogous to drawing from an urn. There is, however,675

also a quantum mechanical side to it. With the second collapse, the object gets disentangled from676

the meter again, but there is absolutely no reason why the entropy previously shared between them677

should be segmented afterwards in the same way as it had been partitioned before the measurement.678

Information can have been interchanged among the two systems. On the side of the object, it becomes679

manifest as the random process behind the phrase “with probability pα”.680

This applies at least to all measurements of operators with a discrete spectrum, such as, for681

example, the angular momentum l̂ of the kicked rotor. It becomes particularly evident in the case of682

operators on finite-dimensional Hilbert spaces, notably and as the simplest possible instance, two-state683

systems (“qbits”), say H = span{|↓〉, |↑〉}, x̂|↓〉 = − h̄
2 |↓〉, x̂|↑〉 = h̄

2 |↑〉. Preparing it as a Schrödinger684

cat, neutral with respect to measurements of x̂,685

|ψO,ini〉 =
1√
2
(|↓〉 ± |↑〉〉), (55)

the results |↓〉〈↓| and |↑〉〈↑| are expected with equal probabilities p↓ = p↑ = 0.5. While each outcome686

is a pure state with definite eigenvalue, repeated measurements of an ensemble of systems in the687

same initial state result in a random binary sequence, distinguished as “quantum randomness” and688

considered unpredictable in a more fundamental sense than any classical stochastic process [63]. The689

von-Neumann entropy, as canonical measure of the information contained in a quantum system, is not690

able to capture the difference between a pure state resulting from a deterministic preparation and an691

element of a sequence of pure states which, as an ensemble, represent a prototypical random process.692

The mere existence of a set of privileged states, the eigenstates of the measured operator (forming693

the “pointer basis”, a term coined by Zurek [11–14]), of course does not imply any instability. To be694

sure, the conservation under unitary transformations of the overlap 〈φ|ψ〉 as a measure of distance695

between two states |ψ〉, |φ〉 ensures that there cannot be any attractors or repellers in Hilbert space [64].696

This situation changes, however, as soon as the non-unitary dynamics of incoherent processes in the697

projective Hilbert space is concerned. In quantum measurement, in particular, the quantum Zeno effect698

[65,66] plays a pivotal rôle [12]: If a measurement is made on a state vector that is about to rotate away699

from a pointer-basis state it has been prepared in, for example by a previous measurement of the same700

observable, this subsequent measurement will project the state back to the nearest pointer basis state701

as indicated by Eq. (54) [11–14], that is, the state it just departed from. The more frequently the same702

measurement is being repeated, the stronger will be its stabilizing effect towards the initial pointer703

state: it thus becomes an attractor in the projective Hilbert space of the measured object [11,12].704

If there is not just a single such state but a finite or even countably infinite number of attractors,705

it is clear that their basins of attraction in projective Hilbert space must be separated by boundaries,706

manifolds along which the system is unstable. For example, for a two-state system, the projective707

Hilbert space is the Bloch sphere, its poles representing the pointer states, hence the attractors for708

measurements of the vertical spin component (Fig. 16). Symmetry already implies that the boundary709

separating their basins of attraction, the two hemispheres, must be the equator, representing the710

manifold all Schrödinger-cat states as defined in Eq. (55). Of course, the attraction towards the poles is711

strongest in their immediate neighbourhood but vanishes for states orthogonal to the pointer states, as712

applies to all states along the equator.713

The description in terms of an evolution equation for the density operator, such as the master714

equation (A19), however does not allow to go beyond stating likelihoods, in this example equal715

probabilities for the two outcomes. Otherwise, it leaves the second collapse as a black box. A more716

profound analysis is possible, though, by going to a detailed microscopic account of the coupled717

object-meter system. Since this comprehensive system is closed as a whole, it not only permits a718

description in the framework of unitary time evolution. The conservation of entropy moreover opens719

the possibility to follow the information interchanged between the two subsystems.720
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4.2. Spin measurement in a unitary setting721

The setup sketched in Sect. 3.2.1 is a suitable starting point for a model of measurements on a722

two-state system. In order to include a microscopic account of the meter, it is broken down into a set723

of, say, harmonic oscillators with frequencies ωn. The measurement object now reduces to a spin- 1
2724

system. Modifying the object-meter coupling, Eqs. (45,44) accordingly, it now takes the form725

HOM = ∑
n

gnσ̂z(â†
n + ân)Θ(t), (56)

where the measured observable is specified as x̂O = σ̂z, the vertical spin component, coupled with a726

strength gn to meter operators x̂M,n = â†
n + ân (the position operators of the nth mode of the meter, up to727

a factor
√

2). Complemented by self-energies HO = 1
2 h̄ω0σ̂x of the object and HM = ∑n h̄ωn

(
â†

n ân +
1
2

)
728

of the meter, the total Hamiltonian for the measurement process is obtained as729

H = HO + HOM + HM

=
1
2

h̄ω0σ̂x + ∑
n

gnσ̂z(â†
n + ân)Θ(t) + ∑

n
h̄ωn

(
â†

n ân +
1
2

)
(57)

In terms of quantum optics, for instance, it can be interpreted as describing a two-level atom interacting730

with a microwave cavity supporting discrete modes n [67].731

The model is not complete without specifying the initial state of the total system. Supposing that732

it factorizes between object and meter [11,12,54,55],733

|Ψini〉 = |ψO,ini〉|ψM,ini〉, (58)

the initial states of the two components can be defined separately. For the object, assume a state that734

is neutral with respect to measurements of σ̂z, as in Eq. (55). The initial state of the meter should not735

introduce a spatial bias of position or momentum, either, so that 〈x̂M〉 = 0, 〈 p̂M〉 = 0. Otherwise it can736

be an arbitrary coherent superposition of harmonic oscillator states.737

A crucial issue concerning Hamiltonian and initial condition is their symmetry under spatial738

reflections z→ −z with respect to the direction of the vertical spin component. The total Hamiltonian739

as well as the initial state of the object should be invariant under this transformation, otherwise the740

measurement would be biased. This symmetry is equivalent to parity in the z-direction, effectuated by741

operators Π̂z,S = σ̂x for the two-state system and Π̂z,M = exp
(
iπ ∑n â†

n ân
)

for the meter [68], so that742

the total system must be invariant under the transformation743

Π̂z = Π̂z,SΠ̂z,M = σ̂x exp

(
iπ ∑

n
â†

n ân

)
. (59)

Indeed, it is readily verified that Π̂†
z,SĤOΠ̂z,S = ĤO, Π̂†

z,MĤMΠ̂z,M = ĤM, and744

Π̂†
z ĤOMΠ̂z = Π̂†

z,Sσ̂zΠ̂z,S ∑
n

gnΠ̂†
z,M(â†

n + ân)Π̂z,M Θ(t)

= (−σ̂z)

(
−∑

n
gn(â†

n + ân)

)
Θ(t) = ĤOM. (60)

Given this invariance, the Hilbert space of the total system decomposes into two eigensubspaces of Π̂z,745

H = H+ ⊗H−, (61)
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H+ comprising symmetric, H− antisymmetric states under Π̂z. As the object (two-state) as well as746

the meter (boson) sector of the total system can be decomposed individually into an even and an odd747

subspace, the parity subspaces decompose further into748

H+ = HS,+ ⊗HM,+ ⊕HS,− ⊗HM,−,

H− = HS,+ ⊗HM,− ⊕HS,− ⊗HM,+.
(62)

At the same time, both possible measurement outcomes, |↓〉 as well as |↑〉, manifestly break the749

invariance under z→ −z individually, even if on average, they are balanced. In the framework of a750

unitary time evolution, where the Hamiltonian as well as the initial state of the object are symmetric,751

the only possible explanation is that the asymmetry is introduced by the initial state of the meter.752

Reconstructing the measurement in a unitary account of the full object-meter system allows us to753

pursue the time evolution of the total state vector in continuous time. Yet it is desirable, in order to754

compare with the standard view of quantum measurement, to record diagnostics that enable assessing755

the progress towards a definite classical outcome. Two aspects are of particular significance for this756

purpose: The approach of the spin component towards a pure state is reflected in the time dependence757

of the von-Neumann entropy [54] of the reduced density operator758

IO(t) = −c TrO
[
ρ̂O(t) ln

(
ρ̂O(t)

)]
, ρ̂O(t) = TrM

[
ρ̂(t)

]
, (63)

and can be quantified as its purity, PO(t) = TrO
[
ρ̂2

O(t)
]
. Representing ρ̂O(t) as a Bloch vector a =759

(ax, ay, az), ax := 1
2 Tr(ρ̂Oσ̂x) etc., the purity is reflected in its length, PO(t) = 1

2 (1 + |a|2). The760

asymmetry of the spin state with respect to z-parity can be expressed as its polarization,761

az(t) =
1
2
(
ρ↑↑(t)− ρ↓↓(t)

)
=

1
2
(
〈↑|ρ̂(t)|↑〉 − 〈↓|ρ̂(t)|↓〉

)
, (64)

that is, as the vertical (z-) component of the Bloch vector.762

4.3. Simulating decoherence by finite heat baths763

An essential condition to achieve an irreversible loss of coherence in a system coupled to a764

macroscopic environment is that the spectrum of the environment, be it composed of harmonic765

oscillators, spins [69], or other suitable microscopic models, be continuous on the energy scales of766

the central system, or equivalently, that the number N of modes the environment comprises be large,767

N � 1. As a general rule, based on energy-time uncertainty, recurrences occur on a time scale 1/∆ω if768

the spectrum exhibits structures on the scale ∆ω. However, in the present context of a unitary model769

for quantum measurement, it is more appropriate to stop short of the limit N → ∞. Evidently, this can770

be achieved only if irreversibility as a hallmark of decoherence is sacrificed.771

This price appears acceptable, though, as long as a faithful description of the processes of interest772

is required only over a correspondingly large, but finite time scale, as is the case, for example,773

in computational molecular physics and in quantum optics. Numerical experiments simulating774

decoherence with heat baths of finite Hilbert space dimension [70–72] provide convincing evidence775

that even with a surprisingly low number of bath modes, N of the order of 10, most relevant features of776

decoherence can be satisfactorily reproduced, see Fig. 15. This suggests to restrict the dimension of the777

meter sector of the Hilbert space underlying the Hamiltonian (57) accordingly to a finite number N,778

H =
1
2

h̄ω0σ̂x +
N

∑
n=1

gnσ̂z(â†
n + ân)Θ(t) +

N

∑
n=1

h̄ωn

(
â†

n ân +
1
2

)
. (65)

Like this, the Hamiltonian can be considered as a model of, e.g., a two-level atom in a high-Q microwave779

cavity [67]. The mode number N thus assumes the rôle of a central parameter of the model.780

Experience with similar models comprising finite baths [70,72], suggests the following scenario:781
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• For small values N & 1, the time evolution comprises only a few, but typically incommensurate,782

frequencies and should appear quasi-periodic.783

• Already for moderate numbers, say N = O(10), the unitary model will exhibit a similar784

behaviour as has been observed for standard models of quantum optics and solid-state physics,785

known as “collapses and revivals” [67]. In particular, the Zeno effect implies that the object state786

approaches one of the pointer states and remains in its vicinity for a longer time, before it may787

jump to another (in the case of spin measurement, the opposite) pointer state.788

• For N � 1, the excursions of the object state away from pointer states will become smaller789

and the frequency of switching episodes—spin flips in the case of spin measurements—should790

reduce, that is, the times the object spends close to a pointer state should grow very large. In791

particular, as soon as the object state is sufficiently close to one of the pointer states, a behaviour792

reminiscent of the quantum Zeno effect should emerge [12].793

In fact, a similar scenario has been predicted for a model in the spirit of quantum optics, representing794

the object by a two-state atom and meter and environment, respectively, by two microwave cavities795

coupled through a waveguide [67].796

a b

c d

Figure 15. Decoherence-like behaviour can be simulated by coupling a harmonic oscillator to a
reservoir comprising only a finite number N of boson modes (harmonic oscillators as well). The figure
shows the time evolution of four diagnostics of decoherence for different values of N, ranging from
N = 0 (isolated central system) through 10, 20, 50, 100, through 500 (see legend). (a) Total energy
in the central system, showing a crossover from exponential to power-law decay for N ≥ 10. (b)
Purity P(t) = Tr[(ρO(t))2]. (c) Instantaneous dissipation rate, i.e., ratio of effective friction force to
time-dependent velocity (inset: total energy as in panel (a)), for N = 1, 10, 50, 100. (d) Degree of
memory, measured as the non-Markovianity NM(t) = 1

t
∫ t

0 dt′ |P(t′)|, P(t) denoting the purity as
depicted in panel (b). Reproduced from [72] with kind permission.

Of practical interest is the opposite extreme, N = 1, as it allows us to study some issues analytically797

that are no longer so readily accessible for higher values of N. The Hamiltonian798
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Hsb =
1
2

h̄ω0σ̂x + gσ̂z(â† + â)Θ(t) + h̄ω1

(
â† â +

1
2

)
. (66)

also referred to as spin-boson Hamiltonian or quantum Rabi model [73,74], is frequently employed as the799

standard model for two-level atoms interacting with a bosonic field. It is often considered in a slightly800

simplified version: If a rotating-wave approximation is applied that excludes double excitation or801

de-excitation processes (generated by σ̂+ â† or σ̂− â), the interaction term reduces to ĤOM = g(σ̂+ â +802

σ̂− â†), denoting σ̂± := 1
2 (σ̂x ∓ iσ̂y). With this modification, the spin-boson Hamiltonian is also known803

as Jaynes-Cummings model. The emblematic feature exhibited by spin-boson systems are Rabi oscillations,804

oscillations of the two-state system between its lower and its upper level with a frequency proportional805

to the coupling g. A further simplification of Eq. (66), often called semi-classical Rabi model, replaces the806

coupling to the boson mode with frequency ω1 by an external driving with the same frequency [75,76],807

Hscl =
1
2 h̄ω0σ̂x + gσ̂z cos(ω1t).808

With the Hamiltonian (66), it is straightforward to specify the parity eigensubspaces referred to in809

Eq. (62). The even eigenspace comprises states of the form810

∣∣Ψ++
〉
=

1√
2

(
|↓〉+ |↑〉

) ∞

∑
α=0

c2α|2α〉 or
∣∣Ψ−−〉 = 1√

2

(
|↓〉 − |↑〉

) ∞

∑
α=0

c2α+1|2α + 1〉, (67)

the odd subspace is spanned by states of the form811

∣∣Ψ+−
〉
=

1√
2

(
|↓〉+ |↑〉

) ∞

∑
α=0

c2α+1|2α + 1〉 or
∣∣Ψ−+〉 = 1√

2

(
|↓〉 − |↑〉

) ∞

∑
α=0

c2α|2α〉. (68)

Numerical results for the quantum dynamics, generated both by the Jaynes-Cummings model [77]812

and by the complete spin-boson Hamiltonian [73,74], in a parameter regime relevant for the present813

modelling, in particular for strong coupling, exist already and are consistent with the expectations814

pointed out here. For the present application to quantum measurement, there is no obvious justification815

for a rotating-wave approximation. With the full Hamiltonian (66), the von-Neumann equation for the816

density operator, ih̄ dρ̂/dt = [Hsb, ρ̂] is readily evaluated at t = 0 (App. D). Evaluating the evolution817

equation for the reduced two-state density operator at t = 0, for an initial state as in Eq. (58), which818

factorizes into a Schrödinger cat for the two-state system and an arbitrary superposition of boson819

excitations,820

|Ψ±(0)〉 =
1√
2

(
|↓〉 ± |↑〉

) ∞

∑
α=0

cα|α〉 (69)

this yields for the initial tendency of the polarization az =
1
2 〈σ̂z〉,821

d
dt

az(t)
∣∣∣
t=0

=
1
2
( ˙̂ρ↑↑(0)− ˙̂ρ↓↓(0)

)
= 0. (70)

That is, to leading order, the state vector starts rotating around the z-axis of the Bloch sphere, but does822

not leave the equator. However, going to the second time derivative, one finds823

d2

dt2 az(t)
∣∣∣
t=0

=
1
2
( ¨̂ρ↑↑(0)− ¨̂ρ↓↓(0)

)
= ±2gω0

∞

∑
α=0

√
α + 1 Re(cα+1c∗α). (71)
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Figure 16. Spin measurement on the Bloch sphere. The quantum dynamics of spin measurements
is dominated by two “pointer states”, eigenstates of the measured operator σ̂z, i.e., | ↑z〉 and | ↓z〉,
represented on the Bloch sphere as North (green dot) and South pole (red dot). Owing to the quantum
Zeno effect, they attract nearby states of the measured system. At the same time, the short-time
evolution of the measured spin for a meter comprising only a single boson mode, Eq. (71), suggests
that a state initiated on the equator of the Bloch sphere (black dot), besides rotating around the equator,
will tend towards one of the poles, depending on the initial state of the meter boson mode.

This result indicates that to second order in time, a state prepared as a Schrödinger cat with824

respect to vertical spin will exhibit polarization if the initial state of the boson fulfills a specific825

condition. The terms in the sum over α in Eq. (71) only contribute if not all products cα+1c∗α of two826

subsequent expansion coefficients vanish. It has an obvious interpretation in terms of symmetry: The827

boson components in the eigensubspaces of the parity operator Π̂z, Eqs. (67,68), are characterized by828

encompassing exclusively even or exclusively odd components of each sector, spin and boson, of the829

total system. The condition cα+1c∗α 6= 0 for the boson sector therefore implies that the initial state of the830

meter must not belong to either one of the two eigensubspacesH+ andH−, hence must break z→ −z831

parity, while the initial state of the spin itself has to remain unbiased.832

Combining these analytic findings with the quantum Zeno effect (Sect. 4.1) allows to predict833

that initial states, unbiased as to spin polarization, will move away from the equator of the Bloch834

sphere, the attraction basin boundary between spin-up and spin-down, in a direction depending on835

an asymmetric initial state of the meter, to become attracted by that pole of the Bloch sphere they are836

already approaching, see Fig. 16.837

Following a similar research program as in quantum chaos, comparing quantum dynamics to838

its closest classical analogue, it would be tempting to study the unitary model for spin measurement839

in some appropriate classical limit. A model based on a symmetric double-well potential, closely840

analogous in many respects to a spin measurement, can be conceived that already provides relevant841

insights, as sketched in App. E. A similar model for a classical binary “random” process, a coin toss,842

has been analyzed in all detail in Ref. [78]. Diaconis et al. construct the basin boundaries separating843

initial conditions of the coin that lead to either one of the two outcomes “head” and “tail”. It shows844

a conspicuous structure of alternating fine fringes corresponding to these final conditions. While in845

the case of coin tosses, the sensitive dependence on the initial state of the coin itself serves as random846

generator, it is the initial state of the environment that generates randomness in the double-well model.847

4.4. Perspectives848

A unitary account of quantum measurements with random outcome, as outlined in this section,849

is presently being worked out. Starting from the analytical framework presented here, it requires850

massive numerical calculations. The quantum model with finite mode number N can be evaluated in851

numerical simulations following a similar strategy as in the cited work on finite heat baths in optics852

and quantum molecular dynamics. The classical model of a bistable measurement process gives rise to853

sets of coupled Hamiltonian equations of motion that can be integrated using symplectic solvers.854
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In both cases, the immediate objective is to increase the mode number as far as possible, in order855

to come close to an irreversible behaviour, at least on time scales larger than all characteristic times of856

the object. The scenario sketched above for sufficiently high values of N is a plausible expectation,857

based on arguments involving analogies and extrapolating known results. It would relegate it to a858

similar category of practically incalculable many-body phenomena such as, e.g., classical thermal859

fluctuations or Brownian motion.860

An unexpected but important consequence of this view is that it effectively merges the “first”861

and the “second” collapse of the wavepacket into a single unitary process. In this way, it avoids the862

conceptually inconvenient detour from a pure initial state (a Schrödinger cat) to a mixture, after the863

first collapse, and back to a pure state (a definite measurement result) and in particular complies with864

entropy conservation throughout the entire measurement.865

Besides this central message, a unitary account of quantum measurement has various additional866

testable implications:867

• The approach of the object state to one of the pointer states, as final result of the measurement, will868

never be complete. In the limit N → ∞, the discrepancy is expected to become arbitrarily small,869

but the postulate of pure states resulting from quantum measurement cannot be accomplished870

literally.871

• Owing to the unavoidable entanglement between object and meter, the initial state of the meter872

does not only affect the final state of the object, the state of the object upon leaving the apparatus873

in turn also leaves a trace in the meter, which can then be probed by the following measurement.874

This implies the possibility of correlations between subsequent spin measurements, otherwise875

incompatible with their randomness, if their separation in time is extremely short.876

• Spin measurements on systems prepared as Schrödinger cats with respect to the measured spin877

component are in the focus of this section. Notwithstanding, also “redundant” measurements,878

performed on systems that are prepared already with a definite polarization in the measured879

direction, are of interest in this context: The existence of a back-action of the meter on the object880

implies that even in the case of redundant measurements, albeit with very low probability, the881

measurement process could alter the spin polarization—trigger a spin flip—so that the result882

would not coincide with the state of the spin upon entering the apparatus.883

• The approach outlined herein emphasizes the relevance of the meter state for the measurement884

outcome. Besides its initial state proper, this includes also invariant properties of the meter, such885

as its eigenenergy spectrum and the way it couples to the object. If, for example, the “meter” is886

represented by a microwave cavity, as is often the case in quantum optics, particular structures887

in the cavity spectrum will have an observable effect on the measurement results.888

• In state-of-the-art laboratory experiments on quantum randomness [63], photons in889

counter-rotating polarization states replace the spins traditionally used as qbits in this context. It890

appears possible and tempting to work out the theory developed here so as to apply it to photon891

experiments.892

Random spin measurements are almost invariably discussed in a special context where indeed893

they play a crucial rôle: Einstein-Podolsky-Rosen (EPR) experiments [79–81]. This issue has deliberately894

been avoided here, as it is charged with misleading connotations. In particular, in EPR experiments,895

quantum randomness is not only inextricably connected to nonlocality, it is even discussed as896

depending on it as on a necessary condition [63]. The present approach, however, is unrelated897

to this question, and it is not intended to contribute in any sense to the long-standing debate around898

nonlocality and hidden-variable approaches. Yet it cannot be denied that it has implications also for899

the interpretation of EPR experiments. Should it be the case that the meter has an impact on individual900

spin measurements, how then can spontaneous correlations arise between simultaneous measurements901

on spin pairs with a space-like separation? This issue should be relegated to future research as a902

particularly intriguing subject, to be addressed once the basic questions raised in this section have903

been settled.904
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5. Conclusions905

The present report spans a wide arc, from minimalist models of chaos inspired by card shuffling,906

through pseudo-chaotic behaviour in pixelated spaces, through the quantum death of classical chaos,907

through spin measurement. These diverse subjects do have a common denominator. They allow to908

peek, from a macroscopic observation platform, into details of information processing on the smallest909

scales, directing attention to a few essential aspects: fundamental limits of total information supply910

and storage density on these scales, “vertical” information currents interchanging entropy with large911

scales, “horizontal" exchange of entropy with adjacent degrees of freedom of the environment.912

They are relevant in particular for an understanding of stochastic processes, collectively perceived913

as “randomness”, on the macroscopic level. The analysis presented here supports the view that they914

form exceptional points where information is not dumped into, but lifted up from small scales. in915

volcanic eruptions. While this idea may be little more than a helpful metaphor in the context of916

classical chaos, it suggests surprising consequences if applied to a seemingly unrelated field, quantum917

measurement. The randomness generated in quantum measurement can be seen in a similar spirit918

as resulting from an instability of the coupled object-meter system as it evolves towards alternative919

measurement results.920

An interpretation and extrapolation of quantum chaos in this sense is but a single example of921

the fruitfulness of studying quantum phenomena in terms of information currents. This approach,922

originating in and inspired by the success of quantum information science applied to computing, is923

developing into an active research area of its own right, with applications in quantum optics, quantum924

many-body physics, and other areas waiting to be explored.925

While entropy and information currents have proven invaluable tools to understand classical926

and quantum chaos, the discussion of randomness in quantum measurement reveals a significant927

shortcoming of quantum entropy as an analytical instrument: It is insensitive to the difference between928

ordered strings and random strings. Intuitively, a structural criterion for randomness should also929

be reflected in a suitable entropy measure for quantum processes, as it is indeed addressed on the930

classical level, notably in the context of algorithmic complexity [82–85].931
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Appendix A. Entropy conservation under classical canonical transformations941

For a classical mechanical system comprising f degrees of freedom, specify the state as a942

probability density function943

ρ : R2 f → R+, R2 f 3 r 7→ ρ(r) ∈ R+,
∫

d2 f r ρ(r) = 1. (A1)

In the absence of birth and death processes, dρ(r, t)/dt = 0, it evolves in time according to the Liouville944

equation [26]945

∂

∂t
ρ(r, t) = {H(r, t), ρ(r, t)}, (A2)

{H(r, t), ρ(r, t)} denoting the Poisson bracket with the Hamiltonian H(r, t). For the evolution over946

finite times, say from ρ(r′, t′) to ρ(r′′, t′′), that means that the density is conserved along a trajectory or947

flow line,948
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ρ(r′′, t′′) = ρ
(
r′(r′′), t′

)
= ρ

(
F̂−1(t′′, t′)r′′, t′

)
, (A3)

where the operator-valued vector function F̂(t′′, t′) maps phase-space points r′ at time t′ along their949

trajectory till t′′. Conversely, F̂−1(t′′, t′) traces phase-space vectors back along their trajectory from t′′950

to t′.951

For a state given by a continuous probability density at time t, the classical information can be952

defined as953

I(t) = −c
∫

d2 f r ρ(r, t) ln
(
d f

Aρ(r, t)
)
. (A4)

The constant c fixes the units of information, dA is the resolution in units of action in two-dimensional954

phase space, given for example by the accuracies dx of length and dp of momentum measurements,955

dA = dxdp. In order to relate the information at time t′′ to that at an earlier or later time t′, we can refer956

to the evolution of the density over a finite time interval, Eq. (A3),957

I(t′′) = −c
∫

d2 f r′′ ρ(r′′, t′′) ln
(
d f

Aρ(r′′, t′′)
)

= −c
∫

d2 f r′′ ρ(F̂−1(t′′, t′)r′′, t′) ln
(

d f
Aρ
(
F̂−1(t′′, t′)r′′, t′

))
. (A5)

It suggests itself to change the integration variable from the “new” phase-space coordinate r′′ to the958

“old” one r′, involving the Jacobian determinant det(∂r′′/∂r′). The (2 f × 2 f )-matrix M, also known as959

stability matrix, linearizes the transformation F̂,960

M =
∂r′′

∂r′
=

∂

∂r′
F̂(t′′, t′)r′. (A6)

In the framework of Hamiltonian mechanics, F̂ must be canonical, which requires that M complies961

with the symplectic condition Mt JM = J, J denoting the symplectic unit matrix [26]. For the Jacobian,962

it means that
(
det(M)

)2
= 1. This allows to rewrite the integration in Eq. (A5) as,963

I(t′′) = −c
∫

d2 f r′ |det(M)| ρ(r′, t′) ln
(
d f

Aρ(r′, t′)
)

= −c
∫

d2 f r′ ρ(r′, t′) ln
(
d f

Aρ(r′, t′)
)
= I(t′). (A7)

The conservation of information in classical Hamiltonian dynamics, manifest in Eq. (A7), evidently is964

a lemma of symplectic phase-space volume conservation under canonical transformations [26]. It is965

also as general: For example, it extends unconditionally also to systems driven by a time-dependent966

external potential force, such as the kicked rotor, Eq. (11), which typically do not conserve energy.967

Appendix B. Entropy conservation under quantum unitary time evolution968

As the most general measure of the information content of the state of a quantum system,
described by the density operator ρ̂(t), define the von-Neumann entropy,

I(t) = −c Tr[ρ̂(t) ln(ρ̂(t))]. (A8)

Based on the density operator, this definition readily covers time evolutions that include incoherent969

processes, such as dissipation or measurement. In the special case of a unitary time evolution, generated970

by a Hamiltonian Ĥ(t) (that may well depend on time), the density operator evolves according to the971

von-Neumann equation [86]972
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d
dt

ρ̂(t) =
−i
h̄
[
Ĥ(t), ρ̂(t)

]
. (A9)

The evolution over a finite time, from ρ̂(t′) to ρ̂(t′′), generated by Eq. (A9),973

ρ̂(t′′) = Û(t′′, t′) ρ̂(t′) Û†(t′′, t′), (A10)

is mediated by the unitary time evolution operator974

Û(t′′, t′) = T̂ exp
(
−i
h̄

∫ t′′

t′
dt Ĥ(t)

)
, (A11)

where the operator T̂ effectuates time ordering.975

Combining Eq. (A8) with (A11), the von-Neumann entropy [87] is found to evolve from t′ to t′′ as976

I(t′′) = −c Tr[ρ̂(t′′) ln(ρ̂(t′′))]

= −c Tr
[
Û(t′′, t′) ρ̂(t′) Û†(t′′, t′) ln

(
Û(t′′, t′) ρ̂(t′) Û†(t′′, t′)

)]
. (A12)

In order to evaluate the trace, expand the operator-valued log function in a Taylor series around the977

identity Î, ln( Î + x̂) = ∑∞
n=1 an x̂n, an = ln(n)(1)/n! = (−1)n−1/n,978

I(t′′) = −c Tr

[
Û(t′′, t′) ρ̂(t′) Û†(t′′, t′)

∞

∑
n=1

an
(
Û(t′′, t′) ρ̂(t′) Û†(t′′, t′)− Î

)n
]

. (A13)

Permuting factors under the trace and eliminating intermediate products Û†(t′′, t′)U(t′′, t′) = Î,979

I(t′′) = −c Tr

[
ρ̂(t′)

∞

∑
n=1

an Û†(t′′, t′)
(
Û(t′′, t′) (ρ̂(t′)− Î)Û†(t′′, t′)

)nÛ(t′′, t′)

]

= −c Tr

[
ρ̂(t′)

∞

∑
n=1

an(ρ̂(t′)− Î)n

]
, (A14)

the sum under the trace recomposes to

I(t′′) = −c Tr[ρ̂(t′) ln(ρ̂(t′))] = I(t′). (A15)

The decisive argument in this derivation is evidently that unitary transformations leave the trace of980

transformed operators invariant, in direct analogy to the conservation of phase-space volume under981

canonical transformations that guarantees entropy conservation in classical Hamiltonian dynamics, cf.982

App. A.983

Appendix C. Quantum and semiclassical time evolution of the kicked rotor under continuous984

measurement985

In order to avoid technicalities not related to the question of the effects of decoherence on quantum986

chaos, the response of the meter is assumed to be Markovian, that is, to be immediate on the time scales987

of the measured system, which requires the spectrum of the underlying heat bath to be sufficiently988

smooth. That means, in terms the autocorrelation function of the meter operator x̂M [58],989

〈x̂M(t)x̂M(t′)〉 = 2TM
〈

x̂2
M
〉

0δ(t′ − t), (A16)

denoting the autocorrelation time of x̂M as TM and the variance of its fluctuations in the uncoupled990

meter as
〈

x̂2
M
〉

0. For the object, coupled to the meter via Eqs. (45) or (44), this already entails991
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an irreversible dynamics. It can be represented as the time evolution of the reduced density992

operator ρ̂O(t) = TrM
(
ρ̂(t)

)
. In the interaction picture, ρ̂O,I(t) = exp(iHOt/h̄)ρ̂O(t) exp(−iHOt/h̄)993

(transforming to a reference frame that follows the proper dynamics generated by HO, the Hamiltonian994

of the object), Eq. (A16) implies a master equation of Lindblad type [57–59]995

˙̂ρO,I = γ
[
x̂O,I, [ρ̂O,I, x̂O,I]

]
. (A17)

The parameter γ = g2TM〈x̂2
M〉0 has the meaning of a diffusion constant, as becomes evident by996

rewriting Eq. (A17) in the representation of the operator canonically conjugate to x̂O = l̂O, that is, of θ̂,997

ρ̇O,I(θ, t) =
∂

∂t
〈θ|ρ̂O(t)|θ〉 = γ

∂2

∂θ2 ρO,I(θ, t). (A18)

The full master equation for the object density operator is then [57–59]998

˙̂ρO = − i
h̄
[ĤO, ρ̂O] + γ

[
x̂O, [ρ̂O, x̂O]

]
, (A19)

now including the unitary time evolution induced by ĤO through the term (−i/h̄)[ĤO, ρ̂O]. A quantum999

map for the reduced density operator ρ̂O is obtained by integrating the master equation over a single1000

period of the driving. For the rotation phase of the time evolution, between two subsequent kicks, Eq.1001

(A19) yields in the angular-momentum representation, for the case of a global angular-momentum1002

measurement, Eq. (44),1003

〈l′|ρ̂′O|m′〉 = exp
(
− ih̄

2
(l′2 −m′2)− γ(l′ −m′)2

)
〈l′|ρ̂O|m′〉 (A20)

that is, off-diagonal matrix elements (often referred to as “quantum coherences”) decay with a1004

rate determined by their distance l − m from the diagonal and the effective coupling γ. If the full1005

distribution is measured, see Eq. (45), this step takes the form1006

〈l′|ρ̂′O|m′〉 =

exp
(
− ih̄

2 (l
′2 −m′2)− γ

)
〈l′|ρ̂O|m′〉 l′ 6= m′,

〈l′|ρ̂O|l′〉 l′ = m′.
(A21)

The kicks are too short to be affected by decoherence, their effect on the evolution of the density1007

matrix results from the unitary term in Eq. (A19) alone. The integration over the θ-dependent kicks is1008

conveniently performed by switching from the l- to the θ-representation and back again, resulting in1009

〈l′′|ρ̂′′O|m′′〉 =
∞

∑
l′ ,m′=−∞

bl′′−l′(k)b
∗
m′′−m′(k)〈l

′|ρ̂′O|m′〉. (A22)

The Bessel functions bn(x) = in Jn(x) result from the integration over θ. The full quantum map is1010

obtained concatenating Eqs. (A20) or (A21) with (A22). For measurements of 〈l〉, Eq. (44), it reads1011

〈l|ρ̂S,n+1|m〉 =
∞

∑
l′ ,m′=−∞

bl′−l(k)b
∗
m′−m(k) exp

(
− ih̄

2
(l′2 −m′2)− γ(l′ −m′)2

)
〈l′|ρ̂S,n|l′〉, (A23)

while for measurements of P(l), Eq. (45),1012

〈l|ρ̂S,n+1|m〉 =
∞

∑
l′ ,m′=−∞

bl′−l(k)b
∗
m′−m(k)[

exp
(
− ih̄

2
(l′2 −m′2)

)
− e−γ(1− δm′−l′) + δm′−l′

]
〈l′|ρ̂S,n|m′〉. (A24)
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The semiclassical limit is approached letting the quantum scale h̄, of the angular momentum1013

become small as compared to the periodicity with period 2π of the classical standard map. In this1014

limit, the Wigner function, which represents the density operator in a quantum equivalent of classical1015

phase space (with quantized momentum, though), evolves as a phase-space flow following classical1016

trajectories, as does the corresponding classical phase-space density, but superposed with a random1017

quivering. These trajectories are adequately described by a noisy standard map similar to Eq. (12)1018

[57–59],1019 (
pn+1

θn+1

)
=

(
pn + K sin(θn+1)

θn + pn + ξn

)
, (A25)

now including a random process ξn with mean 〈ξn〉 = 0, distributed as a Gaussian with variance1020

〈ξnξ ′n〉 = h̄2γδn′−n for measurements of 〈p〉, or1021

ξn =

{
0 with probability ν,

equidistributed in [0, 1[ with probability 1− ν,
(A26)

with ν = 1− e−γ, if P(l) is measured. If Ohmic friction is taken into account, as in the master equation1022

(48), the noisy map (A25) acquires a damping of the angular momentum per time step by a factor1023

exp(−λ),1024 (
pn+1

θn+1

)
=

(
pn + K sin(θn+1)

θn + e−λ pn + ξn

)
. (A27)

Appendix D. Initial time evolution for the spin-boson Hamiltonian with a single boson mode1025

For the spin-boson Hamiltonian with a “heat bath” comprising only a single harmonic oscillator,1026

cf. Eq. (66),1027

Hsb =
1
2

h̄ω0σ̂x + gσ̂z(â† + â)Θ(t) + h̄ω1

(
â† â +

1
2

)
, (A28)

a few key quantities, such as the reduced density operator of the spin sector and its polarization, are1028

analytically accessible at the initial time t = 0.1029

Prepare the boson mode in an arbitrary superposition of eigenstates,1030

|ψM(0)〉 =
∞

∑
α=0

cα|α〉,
∞

∑
α=0
|cα|2 = 1 (A29)

and the spin in a Schrödinger cat state1031

|ψO,ini〉 =
1√
2

(
|↓〉 ± |↑〉

)
. (A30)

This amounts to an initial condition of the reduced density operator1032

ρ̂O(0) = TrM
(
ρ̂(0)

)
=

1
2
(

I0 ± σ̂x
)
, (A31)

i.e., in the representation of the eigenstates of σ̂z,1033

ρO(0) =
1
2

(
1 ±1
±1 1

)
. (A32)

Evidently, it represents a pure state,
(
ρ̂O(0)

)2
= ρ̂O(0).1034

Its first time derivative is obtained immediately from the von-Neumann equation,1035
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d
dt

ρ̂O(t)
∣∣∣
t=0

= TrO

(
−i
h̄
[Hsb, ρ̂(0)]

)
= ±gσ̂y

∞

∑
α=0

√
α + 1

(
cα+1c∗α + c∗α+1cα

)
= ±2gσ̂y

∞

∑
α=0

√
α + 1 Re(cα+1c∗α). (A33)

It implies, in particular, for the purity that1036

d
dt

Tr
[
(ρ̂O(t)

]2∣∣∣
t=0

= TrO
[ ˙̂ρO(0)ρ̂O(0) + ρ̂O(0) ˙̂ρO(0)

]
= ±g

∞

∑
α=0

√
α + 1 Re(cα+1c∗α TrO

[(
I0 ± σ̂x

)
σ̂y + σ̂y

(
I0 ± σ̂x

)]
= ±g

∞

∑
α=0

√
α + 1 Re(cα+1c∗α TrO

[
σ̂y + iσz + σ̂y − iσz

]
= 0. (A34)

Defining the polarization as the vertical component of the Bloch vector,1037

az(t) = 〈σ̂z〉 = TrO
[
σ̂zρ̂O(t)

]
=

1
2
(
ρ̇↑↑(t)− ρ̇↓↓(t)

)
(A35)

its first time derivative at t = 0 is obtained as1038

ȧz(t) = ±2g
∞

∑
α=0

√
α + 1 Re(cα+1c∗α)TrO

[
σ̂zσ̂y

]
= 0. (A36)

Along the same lines as in Eq. (A33), the initial second time derivative of the reduced density operator1039

is found to be1040

d2

dt2 ρ̂O(t)
∣∣∣
t=0

=TrO

(
−i
h̄
[Hsb, ˙̂ρ(0)]

)
=± 2g

∞

∑
α=0

√
α + 1

(
ω0σ̂zRe(cα+1c∗α) + ω1σ̂yIm(cα+1c∗α)

)
∓ 2g2σ̂x

∞

∑
α=0

(
|cα|2(2α + 1) +

√
(α + 1)(α + 1)Re(cα+2c∗α)

)
, (A37)

The second time derivative of the purity reads1041

d2

dt2 Tr
[
(ρ̂O(t)

]2∣∣∣
t=0

= 4g2

[(
∞

∑
α=0

√
α + 1 Re(cα+1c∗α)

)2

−
∞

∑
α=0

(
(2α + 1)|cα|2 + 2

√
(α + 1)(α + 2)Re(cα+2c∗α)

)]
, (A38)

and the second time derivative of the polarization is1042

äz(t) =
1
2
( ¨̂ρ↑↑(t)− ¨̂ρ↓↓(t)

)
= ±2gω0

∞

∑
α=0

√
α + 1 Re(cα+1c∗α). (A39)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 7 February 2019                   doi:10.20944/preprints201902.0058.v1

Peer-reviewed version available at Entropy 2019, 21, 286; doi:10.3390/e21030286

http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286


37 of 40

Appendix E. A classical analogue of spin measurement1043

In order to construct a classical model that resembles quantum spin measurement as closely as1044

possible, the two components of the quantum model, object and meter, require different strategies.1045

For the boson sector, no classical approximations are even necessary, as the heat bath composed of1046

harmonic oscillators is its own classical limit. By contrast, the two-state system representing the1047

measurement object is located in the opposite, the extreme quantum regime. A classical limit in the1048

formal sense does not exist.1049

x

p

x0−x0 0

x

V (x)

0
50%50%

x0−x0

a b

Figure A1. Damped motion in a symmetric double-well potential. In a quartic potential with a
symmetric parabolic barrier (a), Eq. (A40), from an initial state with zero momentum in the unstable
equilibrium position on top of the barrier, random impacts from an environment will send the system
with equal probability towards one of the potential minima at ±x0 = ±

√
a/b. In the presence of

friction, Eq. (A44), it will come to rest, once transient oscillations are damped out, in that well which it
approached initially, giving rise to (b) basins of attraction associated to either one of the wells. The
parameter values of Eq. (A44) are a = 0.25, b = 0.01, λ = 0.04.

The fact that, in the limit of a quasi-continuous heat bath, the two opposite pointer states act as1050

attractors in Hilbert space suggests to compare them with a bistable classical system, say a symmetric1051

quartic double-well with a parabolic barrier (Fig. A1a), given by the Hamiltonian1052

HO(pO, xO) =
p2

O
2mO

+ VO(xO), VO(xO) = −
a
2

x2
O +

b
4

x4
O (A40)

If the heat bath takes the same form as in Eq. (65),1053

HM(p, x) =
N

∑
n=1

(
p2

n
2mn

+
mnω2

n
2

x2
n

)
, (A41)

with p = (p1, . . . , pN), x = (x1, . . . , xN), and the interaction is modelled, as in the quantum case, as a1054

linear position-position coupling,1055

HOM(xO, x) = gxO

N

∑
n=1

xn, (A42)

the total Hamiltonian takes the form1056

H(pO, xO, p, x) = HO(pO, xO) + HOM(pO, xO, p, x) + HM(p, x). (A43)

It is evidently symmetric under the parity operation PxO,x: (pO, xO)→ (−pO,−xO), (p, x)→ (−p,−x).1057

An initial condition that comes as close as possible to Eq. (58), in particular to the Schrödinger cat1058

state for the spin, would combine the double-well system prepared at rest in the unstable equilibrium1059

position on top of the barrier (call it a “Buridan’s ass state”), pO(0) = 0, xO(0) = 0, with an arbitrary1060

initial condition of the heat bath oscillators, p(0) = p0, x(0) = x0. The model can be interpreted as an1061

inverted pendulum or a pencil, initially balanced vertically, tip down on a horizontal surface, exposed1062

to the impinging molecules of the surrounding medium.1063
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As in the quantum model, the number of degrees of freedom N of the heat bath is a decisive1064

parameter. Already for N = 1, chaotic behaviour is expected for the coupled system. In the limit N →1065

∞, it should approach an irreversible dynamics, characterized by dissipation. With a position-position1066

coupling as in Eq. (A42) and under similar conditions for the spectrum of the heat bath, it will take the1067

form of Ohmic friction (proportional to the velocity of the damped degree of freedom). For the object,1068

this would imply an equation of motion such as1069

mO ẍO = −λẋO + axO − bx3
O, (A44)

with a friction coefficient λ that depends on the microscopic coupling g and the spectrum of the heat1070

bath. For moderate values of λ, the system will fall from the top of the barrier into one of the wells1071

and, after oscillations within that well have faded out, remain at rest in that well. As the Hamiltonian1072

as well as the initial state of the object are parity symmetric, it is the initial conditions of the heat bath1073

oscillators which determine into which one of the two wells the object will fall. While the boundary1074

between the basins of attraction of the two wells (Fig. A1b) passes exactly through the initial state1075

pO(0) = 0, xO(0) = 0, it becomes fuzzy in the presence of the environment and is displaced slightly1076

towards one of the two wells, depending on the initial condition of the environment.1077
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