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1 Abstract: Quantum chaos is presented as a paradigm of information processing by dynamical systems
= at the bottom of the range of phase-space scales. Starting with a brief review of classical chaos as
s entropy flow from micro- to macro-scales, I argue that quantum chaos came as an indispensable
«  rectification, removing inconsistencies related to entropy in classical chaos: Bottom-up information
s currents require an inexhaustible entropy production and a diverging information density in phase
s  space, reminiscent of Gibbs’ paradox in Statistical Mechanics. It is shown how a mere discretization of
»  the state space of classical models already entails phenomena similar to hallmarks of quantum
s chaos, and how the unitary time evolution in a closed system directly implies the “quantum
s death” of classical chaos. As complementary evidence, I discuss quantum chaos under continuous
1o measurement. Here, the two-way exchange of information with a macroscopic apparatus opens an
1 inexhaustible source of entropy and lifts the limitations implied by unitary quantum dynamics in
1z closed systems. The infiltration of fresh entropy restores permanent chaotic dynamics in observed
1= quantum systems. Could other instances of stochasticity in quantum mechanics be interpreted in
1« asimilar guise? Where observed quantum systems generate randomness, could it result from an
15 exchange of entropy with the macroscopic meter? This possibility is explored, presenting a model for
e  Spin measurement in a unitary setting and some analytical results based on it.

1z Keywords: quantum chaos; measurement; randomness; information; decoherence; dissipation; spin;
1z Bernoulli map; kicked rotor; standard map

s 1. Introduction

-

20 With the advent of the first publications proposing the concept of deterministic chaos and
xn  substantiating it with a novel tool, computer simulations, more was achieved than just a major
22 progress in fields such as weather and turbulence [1]. They suggested a radically new view of
2s  stochastic phenomena in physics. Instead of subsuming them under a gross global category such
22 as”chance” or “randomness”, the concept of chaos offered a detailed analysis on basis of deterministic
= evolution equations, thus indicating an identifiable source of stochasticity in macroscopic phenomena.
26 A seminal insight, to be expounded in Sect. 2, that arose as a spin-off of the study of deterministic
2z chaos, was that the entropy produced by chaotic systems emerges by amplifying structures, initially
2s contained in the smallest scales, to macroscopic visibility [2].

20 Inspired and intrigued by this idea, researchers such as Giulio Casati and Boris Chirikov saw its
0 potential as a promising approach also towards the microscopic foundations of statistical mechanics,
a1 thus accepting the challenge to extend chaos to quantum mechanics. In the same spirit as those
s2 pioneering works on deterministic chaos, they applied standard quantization to Hamiltonian models
ss  of classical chaos and solved the corresponding Schrédinger equation numerically [3], again utilizing
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s« the powerful computing equipment available at that time. What they obtained was a complete failure
ss on first sight. Yet it paved the way towards a deeper understanding not only of classical chaos, but also
ss  of the principles of quantum mechanics, concerning in particular the way information is processed
sz on atomic scales: In closed quantum systems, the entropy production characteristic of classical chaos
ss  ceases after a finite time and gives way to a behaviour that is not only deterministic but even repetitive,
3o at least in a statistical sense, hence does not generate novelty any longer. The “quantum death of
20 classical chaos” will be illustrated in Sect. 3.1.

a The present article recalls this development, drawing attention to a third decisive aspect that is
«2 able to reconcile that striking discrepancy found between quantum and classical dynamics in closed
a3 chaotic systems. To be sure, the gap separating quantum from classical physics can be bridged to
s a certain extent by semiclassical approximations, which interpolate between the two descriptions,
a5 albeit at the expense of conceptual consistency and transparency [4,5]. Also in the case of quantum
s chaos they provide valuable insight into the fingerprints classical chaos leaves in quantum systems. A
«z more fundamental cause contributing to that discrepancy, however, lies in the closure of the models
«s employed to study quantum chaos. It excludes an aspect of classicality that is essential for the
4 phenomena we observe on the macroscopic level: No quantum system is perfectly isolated, or else we
so could not even know of its existence.

51 The role of an interaction with a macroscopic environment first came into sight in other
s2 areas where quantum mechanics appears incompatible with basic classical phenomena, such as in
ss particular dissipation [6-8]. Here, even classically, irreversible behaviour can only be reconciled with
s« time-reversal invariant microscopic equations of motion if a coupling to a reservoir with a macroscopic
ss number of degrees of freedom (or a quasi-continuous spectrum) is assumed. Quantum mechanically,
ss this coupling not only explains an irreversible loss of energy, it leads to a second consequence, at least
sz as fundamental as dissipation: a loss of information, which becomes manifest as decoherence [9,10].
58 In the context of quantum dissipation, decoherence could appear as secondary to the energy
ss loss, yet it is the central issue in another context where quantum behaviour resisted a satisfactory
e interpretation for a long time: quantum measurement. The “collapse of the wavepacket” remained an
e Open problem even within the framework of unitary quantum mechanics, till it could be traced back
ez as well to the presence of a macroscopic environment, incorporated in the measurement apparatus
es [11-16]. As such, the collapse is not an annoying side effect but plainly indispensable, to make sure
e« that the measurement leaves a lasting record in the apparatus, thus becoming a fact in the sense of
es classical physics. Since there is no dissipation involved in this case, quantum measurement became a
es paradigm of decoherence induced by interaction and entanglement with an environment.

o7 The same idea, that decoherence and the increase in entropy accompanying it is a constituent
es aspect of classicality, proves fruitful in the context of quantum chaos as well [17,18]. It complements
es semiclassical approximations, in that it lifts the “splendid isolation” which inhibits a sustained increase
7 of entropy in closed quantum systems. Section 3.2 elucidates how the coupling to an environment
= restores the entropy production, constituent for deterministic chaos, at least partially in classically
72 chaotic quantum systems. Combining decoherence with dissipation, other important facets of quantum
73 chaos come into focus: It opens the possibility to study quantum effects also in phenomena related to
7a dissipative chaos, notably strange attractors, which, as fractals, are incompatible with uncertainty.

75 The insight guiding this article is that in the context of quantum chaos, the interaction with an
76 environment has a double-sided effect: It induces decoherence, as a loss of information, e.g., on phases
7z of the central quantum system, but also returns entropy from the environment to the chaotic system
7e  [17,19], which then fuels its macroscopic entropy production. If indeed there is a two-way traffic, an
7o interchange of entropy between system and environment, this principle, applied in turn to quantum
s0 Mmeasurement, has a tantalizing consequence: It suggests that besides decoherence, besides the collapse
a1 of the wavepacket, also the randomness apparent in the outcomes of quantum measurements could
sz be traced back to the environment, could be interpreted as a manifestation of entropy interchanged
es  with the macroscopic apparatus as a consequence of their entanglement during the measurement. This
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s« hypothesis is illustrated in Sect. 4 for the emblematic case of spin measurement. While Sections 2 to 3
es largely have the character of reviews, complementing the work of various authors with some original
e Mmaterial, Sect. 4 is a perspective, it presents a project in progress at the time of writing this report.

sz 2. Classical chaos and information flows between micro- and macroscales

ss  2.1. Overview

80 The relationship between dynamics and information flows has been pointed out by mathematical

%o physicists, such as Andrey Kolmogorov, much before deterministic chaos was (re)discovered in applied

o1 science, as is evident for example in the notion of Kolmogorov-Sinai entropy [20]. It measures the

2 information production by a system with at least one positive Lyapunov exponent and represents a

s central result of research on dynamical disorder in microscopic systems, relevant primarily for statistical

o mechanics. For models of macroscopic chaos, typically including dissipation, an interpretation as a

os phenomenon that has to do with a directed information flow between scales came only much later. A

o6 seminal work in that direction is the 1980 article by Robert Shaw [2], where, in a detailed discussion in

oz information theoretic terms, the bottom-up information flow related to chaos is contrasted with the

os top-down flow underlying dissipation.

99 Shaw argues that the contraction of phase-space area in a dissipative system results in an
100 increasing loss of information on its initial state, if its current state is observed with a given resolution.
11 Conversely, later states can be determined to higher and higher accuracy from measurements of the
102 initial state. Chaotic systems show the opposite tendency: Phase-space expansion, as consequence of
103 exponentially diverging trajectories, allows to retrodict the initial from the present state with increasing
10a  precision, while forecasting the final state requires more and more precise measurements of the initial
105 state as their separation in time increases.

106 Chaotic systems therefore produce entropy, at a rate given by their Lyapunov exponents, as is also
w7 reflected in the spreading of any initial distribution of finite width. The divergence of trajectories also
s indicates the origin of this information: The chaotic flow amplifies details of the initial distribution with
100 an exponentially increasing magnification factor. If the state of the system is observed with constant
1o resolution, so that the total information on the present state is bounded, the gain of information on
1: small details is accompanied by a loss of information on the largest scale, which impedes inverting the
12 dynamics: Chaotic systems are globally irreversible, while the irreversibility of dissipative systems is a
us  consequence of their loosing local information into ever smaller scales.

114 We achieve a more complete picture already by going to Hamiltonian systems. Their phase-space
us  flow is symplectic, it conserves phase-space area or volume, so that every expansion in some direction
us  Of phase space must be compensated by contraction in another direction. In terms of information
ur flows, this means that an information current from small to large scales (bottom-up), corresponding to
us chaotic phase-space expansion [2], will be accompanied by an opposite current of the same magnitude,
ue returning information to small scales (top-down) [2]. In the framework of Hamiltonian dynamics,
120 however, the top-down current is not related to dissipation, it is not irreversible but to the contrary,
121 complements chaotic expansion in such a way that all in all, information is conserved and the time
122 evolution remains reversible.

123 A direct consequence of volume conservation by Hamiltonian flows is that Hamiltonian dynamics
124 also conserves entropy, see Appendix A. As is true for the underlying conservation of volume, this
125 invariance proves to be even more general than energy conservation and applies, e.g., also to systems
126 With a time-dependent external force where the total energy is not conserved. It indicates how to
12z integrate dissipative systems in this more comprehensive frame: Dissipation and other irreversible
126 macroscopic phenomena can be described within a Hamiltonian setting by going to models that
120 include microscopic degrees of freedom, typically as heat baths comprising an infinite number of
130 freedoms, on an equal footing in the equations of motion. In this way, entropy conservation applies to
131 the entire system.
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132 The conservation of the total entropy in systems comprising two or more degrees of freedom
133 Or subsystems cannot be reduced, however, to a global sum rule implying a simple exchange of
13s  information through currents among subsystems. The reason is that in the presence of correlations,
135 there exists a positive amount of mutual information which prevents subdividing the total information
136 content uniquely into contributions associated to subsystems. Notwithstanding, if the partition is not
137 too complex, as is the case for a central system coupled to a heat bath, it is still possible to keep track of
13¢  internal information flows between these two sectors. For the particular instance of dissipative chaos,
130 a picture emerges that comprises three components:

10 ® a“vertical” current from large to small scales in certain dimensions within the central system,

141 representing the entropy loss that accompanies the dissipative loss of energy,

142 ®  anopposite vertical current, from small to large scales, induced by the chaotic dynamics in other
143 dimensions of the central system,

14s  ®  a“horizontal” exchange of information between the central system and the heat bath, including a
145 redistribution of entropy within the reservoir, induced by its internal dynamics.

146 On balance, more entropy must be dumped by dissipation into the heat bath than is lifted by

1z chaos into the central system, thus maintaining consistency with the Second Law. In phenomenological
14s  terms, this tendency is reflected in the overall contraction of a dissipative chaotic system onto a strange
10 attractor. After transients have faded out, the chaotic dynamics then develops on a sub-manifold of
10 reduced dimension of the phase space of the central system, the attractor. For the global information
11 flow it is clear that in a macroscopic chaotic system, the entropy that surfaces at large scales by chaotic
12 phase-space expansion has partially been injected into the small scales from microscopic degrees of
13 freedom of the environment.

154 Processes converting macroscopic structure into microscopic entropy, such as dissipation, are
155 the generic case. This report, though, is dedicated to the exceptional cases, notably chaotic systems,
1ss  which turn microscopic noise into macroscopic randomness. The final section is intended to show that
157 processes even belong to this category where this is less evident, in particular quantum measurements.

e 2.2. Example 1: Bernoulli map and baker map

150 Arguably the simplest known model for classical deterministic chaos is the Bernoulli map [21,22],
160 a mapping of the unit interval onto itself that deviates from linearity only by a single discontinuity,

x+— x' =2x(mod1) = {Zx 0<x<05 1)
2x -1 05<x<1,
161 and can be interpreted as a mathematical model of a popular card-shuffling technique (Fig. 1). The
162 Way it generates information by lifting it from scales too small to be resolved to macroscopic visibility
1es  becomes immediately apparent if the argument x is represented as a binary sequence, x =Y > ;2,27 ",
1 a, € {0,1}, so that map operates as

x'=2 (Z an2”> (mod 1) Z 1,27 (mod 1) Z ap 127" )
n=1 n=1
s thatis, the image x’ has the binary expansion
=Y @27", witha), =a,41. 3)
166 The action of the map consists in shifting the sequence of binary coefficients rigidly by one position

1z to the left (the “Bernoulli shift”) and discarding the most significant digit 2;. In terms of information,
1ee  this operation creates exactly one bit per time step, entering from the smallest resolvable scales, and at
1es  the same time looses one bit at the largest scale (Fig. 3a), which renders the map non-invertible.
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Figure 1. The Bernoulli map can be understood as modelling a popular card shuffling technique (a).
It consists of three steps, (1) dividing the card deck into two halves of equal size, (2) fanning the two
half decks out to twice the original thickness, and (3) intercalating one into the other as by the zipper
method. (b) Replacing the discrete card position in the deck by a continuous spatial coordinate, it
reduces to a map with a simple piecewise linear graph, cf. Eq. (1).

170 By adding another dimension, the Bernoulli map is readily complemented so as to become
i1 compatible with symplectic geometry. As the action of the map on the second coordinate, say p, has to
12 compensate for the expansion by a factor 2 in x, this suggests modelling it as a map of the unit square
173 onto itself, contracting p by the same factor,

X X' ¥\ [ 2x(modl)
<P> ~ <P')' <P’> B (%(pﬂnt(zx)))' (4)

17a  known as the baker map [20,22]. Geometrically, it can be interpreted as a combination of stretching
175 (by the expanding action of the Bernoulli map) and folding (corresponding to the discontinuity of the
e Bernoulli map) (Fig. 2). Being volume conserving, the baker map is invertible. The inverse map reads

x x x\ _ (z(*¥ +int(2p")
(P') ~ <p> ’ (P) B <2 2p (modl@ ) ®)

w7z It interchanges the operations on x and p of the forward baker map.

10 1

’ 00 01

Figure 2. The baker map complements the Bernoulli map, Fig. 1, by a coordinate p, canonically
conjugate to the position x, so as to become consistent with symplectic phase-space geometry. Defining
the map for p as the inverse of the Bernoulli map, a map of the unit square onto itself results, see Eq. (4),
that is equivalent to a combination of stretching and folding steps. The figure shows two subsequent
applications of the baker map and its effect on the binary code associated to a set of four phase-space
cells.

178 The information flows underlying the baker map are revealed by encoding also p as a binary
7o sequence, p = ) o2 4 by,27". The action of the map again translates to a rigid shift,
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ay n=1,

6
bn—l n>2. ( )

oo
p=1Y 027", withb, := {
n=1

10 It now moves the sequence by one step fo the right, that is, from large to small scales. The most
11 significant digit b}, which is not contained in the original sequence for p, is transferred from the binary
12 code for x, it recovers the coefficient a; that is discarded due to the expansion in x. This “pasternoster
123 mechanism” reflects the invertibility of the map. The upward information current in x is turned around
18 to become a downward current in p (Fig. 3b). A full circle cannot be closed, however, as long as the
s “depth” from where and to which the information current reaches, remains unrestricted by any finite
resolution, indicated in Fig. 3, as is manifest in the infinite upper limit of the sums in Egs. (2,3,6).

=
@
-3

Bernoulli: Baker:
X = O.ia1 a, a; a, asi X = O.i a, a az a, asi
v
Ny e Y
x =0.la, a; a, as ag| X =0.1a, a5 8, as a,|
| |

Ny,

p =0.ib, b, by b, bsi
e e
' N=5 | 'ON=5 |

Figure 3. Representing the Bernoulli map, Eq. (1), in terms of its action on a symbol string, the position
encoded as a binary sequence, see Eq. (2), reveals that it corresponds to a rigid shift by one digit of
the string towards the most significant digit (left panel). Encoding the baker map, Eq. (4), in the same
way, Eq. (6), shows that the upward symbol shift in x is complemented by a downward shift in p
(right panel). The loss of the most significant digit in the Bernoulli map or its transfer from position to
momentum in the baker map are compensated by an equivalent gain or loss at the least significant
digits, if a finite resolution is taken into account, here limiting the binary code to N = 5 digits.

187 Generalizing the baker map so as to incorporate dissipation is straightforward [21,22]: Just insert
1es  a step that contracts phase space towards the origin in the momentum direction, for example preceding
10 the stretching and folding operations of Eq. (4),

x ¥y [« x! ¥\ [ 2x(mod1)
()-0)-6) 0)-()-Gmi) o

10 A contraction by a factor 4, 0 < a < 1, models a dissipative reduction of the momentum by the
11 same factor. Figure 4 illustrates for the first three steps how the generalized baker map operates,
102 starting from a homogeneous distribution over the unit square. For each step, the volume per strip
103 reduces by a/2 while the number of strips doubles, so that the overall volume reduction is given by
s 4. Asymptotically, a strange attractor emerges (rightmost panel in Fig. 4) with a fractal dimension,
105 calculated as box-counting dimension [23],

Do — log(volume contraction)  In(1/2) In(2)
0~ log(scale factor) "~ In(a/2)  In(2) +In(1/a)

®)

s For example, for a = 0.5, as in Fig. 4, a dimension Dy = 0.5 results for the vertical cross section of the
107 strange attractor, hence D = 1.5 for the entire two-dimensionalmanifold.
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_
m=0 m=1 m=2 m=3 m—

Figure 4. A dissipative version of the baker map is created by preceding each iteration of the map,
as in Fig. 2, with a contraction by a factor a in p (vertical axis), not compensated by a corresponding
expansion in x (horizontal axis), see Eq. (7). The figure illustrates this process for a homogeneous
initial density distribution (m = 0) and a contraction factor 2 = 0.5 over the first three steps, m =
1, 2, 3. Asymptotically for m — co, under the alternation of contraction and splitting, the distribution
condenses onto a strange attractor (rightmost panel) with a fractal dimension D = 1.5.

198 This model of dissipative chaos is simple enough to allow for a complete balance of all information
10 currents involved. Adopting the same binary coding as in Eq. (6), a single dissipative step of the
200 Mmapping, with a = 0.5, (7) has the effect

100 B (e ) o
p/:gZEZb,’qz":Zb;Z"l. €)
n=1 n=1

20 Thatis, if p is represented as 0.b; by b3 by ..., p' as 0.0} b by ), ..., the new binary coefficients are given
202 by a rigid shift by one unit to the right, but with the leftmost digit replaced by 0,

N=5

0 n=1
b, = ' (10)
bn—l n>2.
a b
| |
| | large __
X=—0: mm scales dissipation
| |
p=0. : 0 =G 0 =& 0 : chaotic symplectic
| | expansion contraction
[ 1
| |

small
scales

central degree of freedom environment

Figure 5. (a) In terms of binary strings that encode position x and momentum p, resp., including
dissipative contraction by a factor a = 0.5 in the baker map (see Fig. 4) results in an additional digit 0
fitted in between every two binary digits, are transferred from the upward Bernoulli shift in x to the
downward shift in p. (b) For bottom-up (green) and top-down (pink) information currents, this means
that half of the microscopic information arriving at large scales by chaotic expansion is diverted by
dissipation (blue) to the environment, thus returning to small scales in adjacent degrees of freedom.

203 Combined with the original baker map (6), this additional step fits in one digit 0 each between
20a every two binary digits transferred from position to momentum (Fig. 4). In terms of information
20s currents, this means that only half of the information lifted up by chaotic expansion in x returns to
20 small scales by the compensating contraction in p, the other half is diverted by dissipation (Fig. 5). This
20z particularly simple picture owes itself of course to the special choice a = 0.5. Still, for other values of a,
208 different from 1/2 or an integer power thereof, the situation will be qualitatively the same. The fact
200 that the dissipative information loss occurs here at the largest scales, along with the volume conserving
20 chaotic contraction in p, not at the smallest as would be expected on physical grounds, is an artefact of
2 the utterly simplified model.
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z2 2.3. Example 2: Kicked rotor and standard map

213 A model that comes much closer to a physical interpretation than the Bernoulli and baker maps is
za  the kicked rotor [20,22,24]. It can be motivated as an example, reduced to a minimum of details, of a
x5 circle map, a discrete dynamical system conceived to describe the phase-space flow in Hamiltonian
26 systems close to integrability. The kicked rotor, the version in continuous time of this model, can even
z7 be defined by a Hamiltonian, but allowing for a time-dependent external force,

2

H(p,6,t) = % +V(6) i 5(t—n), V(0) =Kcos(6). (11)

n=-—oo

zne It can be interpreted as a plane rotor with angle 8 and angular momentum p and with unit inertia,
210 driven by impulses that depend on the angle as a nonlinear function, a pendulum potential, and on
220 time as a periodic chain of delta kicks of strength K with period 1.

221 Reducing the continuous-time Hamiltonian (11) to a corresponding discrete-time version in
222 the form of a map is not a unique operation but depends, for example, on the way stroboscopic
223 time sections are inserted relative to the kicks. If they follow immediately after each delta kick,
220ty = limg o+ (1 +€), n € Z, the map from t, to £, 1 reads

p P p'\ _ (p+Ksin(¢)
()= () () -0

225 It is often referred to as the standard or Chirikov map [20,22,24].

226 The dynamical scenario of this model is by far richer than that of the Bernoulli and baker maps
22z and constitutes a prototypical example of the Kolmogorov-Arnol’d-Moser (KAM) theorem [20]. The
22¢ parameter K controls the deviation of the system from integrability. While for K = 0, the kicked rotor is
220 integrable, equivalent to an unperturbed circle map, increasing K leads through a complex sequence of
230 mixed dynamics, with regular and chaotic phase-space regions interweaving each other in an intricate
2 fractal structure. For large values of K, roughly given by K 2> 1, almost all regular structures in phase
232 space disappear and the dynamics becomes purely chaotic. For the cylindrical phase space of the kicked
2z rotor, (p,0) € R® [0,27[, this means that the angle approaches a homogeneous distribution over
23a  the circle, while the angular momentum spreads diffusively over the cylinder, a case of deterministic
235 diffusion, here induced by the randomizing action of the kicks.

236 For finite values of K, the spreading of the angular momentum does not yet follow a simple
27 diffusion law, owing to small regular islands in phase space [25]. Asymptotically for K — oo, however,
28 the angular momentum spreads diffusively,

((pn—(p))*) = D(K)n (13)

230 with a diffusion constant [20]

D(K) = K?*/2 (14)

2a0 This regime is of particular interest in the present context, as it allows for a simple estimate of the
2a1  entropy production. In the kicked rotor, information currents cannot be separated as neatly as in
22 the baker map into a macro-micro flow in one coordinate and a micro-macro flow in the other. The
2a3  complex fractal phase-space structures imply that these currents are organized differently in each
=2as  point in phase space. Nevertheless, some global features, relevant for the total entropy balance, can be
25 extracted without going to such detail.

246 Define a probability density in phase space carrying the full information on the state of the system,

) 27
0: R®[0,21]— R, R®[0,271[3 (p,6) — p(p,0) € R, / dp/o d0o(p,0)=1.  (15)
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This density evolves deterministically according to Liouville’s theorem [20,26]

d 9
3P, 60:8) = {p(p,6,), H(p,0,)} + =20(p,6,1), (16)

involving the Poisson bracket with the Hamiltonian (11). In order to obtain the overall entropy
production from the detailed density p(p,0,t), some coarse graining is required. In the case of
the kicked rotor, it offers itself to integrate p(p,0,t) over 6, since the angular distribution rapidly
approaches homogeneity, concealing microscopic information in fine details, while the diffusive
spreading in p contains the most relevant large-scale structure. A time-dependent probability density
for the angular momentum alone is defined projecting by the full distribution along 6,

27 [eS)
pp(pt) ::/O dop(p,0,t), KmdPPP(Prt) =1 (17)

Its time evolution is no longer given by Eq. (A2) but follows a Fokker-Planck equation,

d &
aifr(prt) = DK) 35 0p(pt)- (18)

For a localized initial condition, p(p,0) = d(p — po), Eq. (18) it is solved for t > 0 by a Gaussian with a
width that increases linearly with time

_ v =m0 _
pp(nf)—\/z—m(t)ep< z(a(t))2>' o(t) = D(K)t. (19)

Define the total information content of the density p,(p, t) as

I(t) = —C/jo dpoy(p,t)In(dpoy(p,t)), (20)

where ¢ is a constant fixing the units of information (e.g., ¢ = log,(e) for bits and ¢ = kg, the
Boltzmann constant, for thermodynamic entropy) and d,, denotes the resolution of angular momentum
measurements. The diffusive spreading given by Eq. (19) corresponds to a total entropy growing as

I(t) = % [m (2"%1(”) +1] , (21)

hence to an entropy production rate dI/dt = c¢/2t. This positive rate decays with time, but only
algebraically, that is, without a definite time scale.

The angular-momentum diffusion (13), manifest in the entropy production (21), also referred to as
deterministic diffusion, is an irreversible process, yet based on a deterministic reversible evolution law.
It can be reconciled with entropy conservation in Hamiltonian dynamics (App. A) only by assuming a
simultaneous contraction in another phase space direction that compensates for the diffusive expansion.
In the case of the kicked rotor, it occurs in the angle variable 8, which stores the information lost in
p in fine details of the density distribution, similar to the opposed information currents in the baker
map (Fig. 3). Indeed, this fine structure has to be erased to derive the diffusion law (13), typically by
projecting along 6 and neglecting autocorrelations in this variable [20].

Even if dissipation is not the central issue here, including it to illustrate a few relevant aspects in
the present context is in fact straightforward. On the level of the discrete-time map, Eq. (12), a linear
reduction of the angular momentum leads to the dissipative standard map or Zaslavsky map [27,28],

p p' p'\ _ (e *p+Ksin()
() (0) (0)= (i),

The factor exp(—A) results from integrating the equations of motion

d0i:10.20944/preprints201902.0058.v1
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p=—Ap+ Ksin(h) i S(t—n), b6=p. (23)

n=—oo

2o The Fokker-Planck equation (18) has to be complemented accordingly by a drift term ~ dp,(p, t)/dp,

G000, = (=N 3pp,0) + 5 (DI + (1= 10p)%) el 24

arn In the chaotic regime K 2 1 of the conservative standard map, the dissipative map (22) approaches a
22 stationary state characterized by a strange attractor, see, e.g., Refs. [27,28].

a3 2.4. Anticipating quantum chaos: classical chaos on discrete spaces

278 Classical chaos can be understood as the manifestation of information currents that lift microscopic
275 details to macroscopic visibility [2]. Do they draw from an inexhaustible information supply on ever
27e  smaller scales? The question bears on the existence of an upper bound of the information density
2z in phase space or other physically relevant state spaces, or equivalently, on a fundamental limit of
ze  distinguishability, an issue raised, e.g., by Gibbs’ paradox [29]. Down to which difference between their
270 states will two physical systems remain distinct? The question has already been answered implicitly
20 above by keeping the number of binary digits in Egs. (2,3,6) indefinite, in agreement with the general
ze1  attitude of classical mechanics not to introduce any absolute limit of distinguishability.

202 A similar situation arises if chaotic maps are simulated on digital machines with finite precision
2e3  and/or finite memory capacity [30-33]. In order to assess the consequences of discretizing the state
2es  space of a chaotic system, impose a finite resolution in Egs. (2,3,6), say dx = 1/], ] = 2N with N € N,
25 50 that the sums over binary digits only run up to N. This step is motivated, for example, by returning
206 to the card-shuffling technique quoted as inspiration for the Bernoulli map (Fig. 1). A finite number of
2e7  cards, say J, in the card deck, corresponding to a discretization of the coordinate x into steps of size
2s  dy > 0, will substantially alter the dynamics of the model.

280 More precisely, specify the discrete coordinate as

xj:%, j=1,23,..,] J=2Y, NeN, (25)

200 with a binary code x = 221:1 a,27". A density distribution over the discrete space (x1, xp,...,xj) can
201 NOW be written as a [-dimensional vector

N
p=(p1,p2.03-...07), piER", Y pi=1, (26)
j=1

202 50 that the Bernoulli map takes the form of a (J x J)-permutation matrix Bj, p — p’ = Bjp. These
203 Matrices reproduce the graph of the Bernoulli map, Fig. 1, but discretized on a (] x J) square grid.
20s  Moreover, they incorporate a deterministic version of the step of interlacing two partial card decks in
205 the shuffling procedure, in an alternating sequence resembling a zipper. For example, for | = 8, N = 3,
206 the matrix reads

Bs = (27)

O O O O O O O
o O O O O = O O
O OO =k OO OO
SO R O O O O O O
O O O O O O - O
O OO O =, OO O
O O = O O O O O
—_ O O O O o O O
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The two sets of entries = 1 along slanted vertical lines represent the two branches of the graph in Fig.
1, as shown in Fig. 6b.

a

Figure 6. Three versions of the Bernoulli map exhibit a common underlying structure. The graph of
the classical continuous map, Eq. (1), panel (a), recurs in the structure of the matrix generating the
discretized Bernoulli map (b), Eq. (27), here for cell number | = 16, and becomes visible as well as
marked “ridges” in the unitary transformation generating (c) the quantum baker map, here depicted
as the absolute value of the transformation matrix in the position representation, for a Hilbert space
dimension Dy; = | = 16. Grey-level code in (b) and (c) ranges from light grey (0) through black (1).

A deterministic dynamics on a discrete state space comprising a finite number of states must
repeat after a finite number M of steps, not larger than the total number of states. In the case of the
Bernoulli map, the recursion time is easy to calculate: In binary digits, the position discretized to
2N bins is specified by a sequence of N binary coefficients a,,. The Bernoulli shift moves this entire
sequence in M = N = Ib(]) steps, which is the period of the map. Exactly how the reshuffling of
the cards leads to the full recovery of the initial state after M steps is illustrated in Fig. 7. That is, the
shuffling undoes itself after M repetitions!

000
. 001
010 .

011 011 - 011

100 100 100 100

101 - 101 101

110

m=1

001

010 010

o w0 —

m=20 m=2 m=3=M

©® N O 0o A~ W N =

Figure 7. Accounting for the discreteness of the cards in the card-shuffling model, see Fig. 1a, reduces
the Bernoulli map to a discrete permutation matrix, Eq. (27). The figure shows how it leads to a
complete unshuffling of the cards after a finite number M = 1b(]) of steps, here for M = 3. Moreover,
a binary coding of the cell index reveals that subsequent positions of a card are given by permutations
of its three-digit binary code.

A similar, but even more striking situation occurs for the baker map, discretized in the same
fashion. While the x-component is identical to the discrete Bernoulli map, the p-component is construed
as inverse of the x-component, cf. Eq. (5). Defining a matrix of probabilities on the discrete (J x J)
square grid that replaces the continuous phase space of the baker map,

]
p: AL ..., }e{lL ..., ]} =R, (n,m) = pum, Y, Pum=1,

nm=1

(28)
the discrete map takes the form of a similarity transformation,

p—p = Bflth = BjpBj. (29)

d0i:10.20944/preprints201902.0058.v1
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suu The inverse matrix Bfl is readily obtained as the transpose of B J- For example, for N = 3, it reads

10000000
00100000
00001000
1 ot 000O0O0O0OT1F0
BS_B_01000000 (30)
00010000
000O0O0T1T00
000O0O0O0OTO 01

sz As for the forward discrete map, it resembles the corresponding continuous graph (Fig. 6a), with
a3 entries 1 now aligned along two slanted horizontal lines (Fig. 6b) .

—) EEEEREEEREEEREEE —) —> -
EEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEE EEEEEEENEEEEEEEE EEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEE
m=0 m=1 m=2 m=3 m=4=M

Figure 8. The recurrence in the discrete Bernoulli map, see Fig. 7, occurs likewise in the discrete baker
map, Eq. (29). The figure shows how the simultaneous expansion in x (horizontal axis) and contraction
in p (vertical axis), in the pixelated two-dimensional state space entail an exact reconstruction of the
initial state, here after M = Ib(16) = 4 iterations of the map.

314 Both the upward shift of binary digits of the x-component and the downward shift of binary
a5 digits encoding p now become periodic with period M = N, as for the discrete baker map. The two
as  Opposing information currents thus close to a circle, resembling a paternoster lift with a lower turning
a1z point at the least significant and an upper turning point at the most significant digit (Fig. 8). It is to be
a1s  emphasized that the map (4), being deterministic and reversible, conserves entropy, which implies a
a9 Zero entropy production rate. The fact that the discrete baker map is no longer chaotic but periodic
s20 therefore does not depend on the vanishing entropy production but reflects the finite total information
sz content of its discrete state space.

322 The fate of deterministic classical chaos in systems comprising only a finite number of discrete
a3 states (of a “granular phase space”) has been studied in various systems [30-33], with the same general
s2 conclusion that chaotic entropy production gives way to periodic behaviour with a period determined
;s by the size of the discrete state space, that is, by the finite precision underlying its discretization. To a
226 certain extent, this classical phenomenon anticipates the effects of quantization on chaotic dynamics,
;27 but it provides at most a caricature of quantum chaos. It takes only a single, if crucial, tenet of
s22  quantum mechanics into account, the fundamental bound uncertainty imposes on the storage density
;20 of information in phase space, leaving all other principles of quantum mechanics aside. Yet it shares a
a0 central feature with quantum chaos, the repetitive character it attains in closed systems, and it suggests
s how to interpret this phenomenon in terms of information flows.

332 3. Quantum death and incoherent resurrection of classical chaos

333 While the “poor man’s quantization” discussed in the previous section indicates qualitatively
;3 what to expect if chaos is discretized, reconstructing classically chaotic systems systematically in the
a5 framework of quantum mechanics allows for a much more profound analysis how these systems
s  process information. (For comprehensive bibliographies on quantum chaos in general, readers are
sz kindly asked to consult monographs such as Refs. [4,34-36]). Quantum mechanics directs our view
;s more specifically to the aspect of closure of dynamical systems. Chaotic systems provide a particularly
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130 sensitive probe, more so than systems with a regular classical mechanics, of the effects of a complete
a0 blocking of external sources of entropy, since they react even to a weak coupling to the environment by
sa1  aradical change of their dynamical behaviour.

a2 3.1. Quantum chaos in closed systems

243 In this section, prototypical examples of the quantum suppression of chaos will be contrasted
sas  with open systems where classical behaviour reemerges at least partially. A straightforward strategy
a5 to study the effect first principles of quantum mechanics have on chaotic dynamics is quantizing
s models of classical chaos. This requires these models, however, to be furnished with a minimum of
sz mathematical structure, required for a quantum mechanical description. In essence, systems with a
s volume conserving flow, generated by a classical Hamiltonian on an even-dimensional state space
sa0  can be readily quantized. In the following, the principal consequences of quantizing chaos will be
0 exemplified applying this strategy to the baker map and the kicked rotor.

351 3.1.1. The quantized baker map

352 The baker map introduced in subsection 2.2 is an ideal model to consider quantum chaos
3 in a minimalist setting. It already comprises a coordinate together with its canonically conjugate
;s momentum and can be quantized in an elegant fashion [37-39]. Starting from the operators £ and
s P, p = —ihd/dx in the position representation, with commutator [%, | = if, their eigenspaces are
36 constructed as

eipx/ h

2lx) = x[x), plp) = plp), (x[p) = Nt (31)

ss» The finite classical phase space [0, 1[®[0, 1] C R? of the baker map can be implemented with this pair
e of quantum operators by assuming periodicity, say with period 1, both in x and in p. Periodicity in x
0 entails quantization of p and vice versa, so that together, a Hilbert space of finite dimension | results,
0 and the pair of eigenspaces (31) is replaced by

. . N . . 1 7T
2lj) = §|]>, Py = Bl 1= 0o =1, ll) = 7 @ = (), (32)

se1  that is, the transformation between the two spaces coincides with the discrete Fourier transform, given
sz by the (J x J)-matrix Fj.

363 This construction suggests a straightforward quantization of the baker map. If we phrase the
ses  classical map as the sequence of actions

365 1. expand the unit square [0, 1[{®[0,1] by a factor 2 in x,

366 2. divide the expanded x-interval into two equal sections, [0, 1] and [1, 2],
367 3. shift the right one of the two rectangles (Fig. 2), (x, p) € [1,2[® [0,1[, by 1 to the left in x and by
lupinp, [1,2[®[0,1[— [0,1[® [1,2],

369 4. contract by 2in p,

s it translates to the following operations on the Hilbert space defined in Eq. (32), assuming the
sn  Hilbert-space dimension | to be even,

372 1. in the x-representation, divide the vector of coefficients (ag, ..., aj_1), |x) = Z]I-;Ol aj|j), into two
373 halves, (ag, ..., aj/2-1) and (aj/p, ..., aj-1),

374 2. transform both partial vectors separately to the p-representation, applying a (% X %)-Fourier
375 transform to each of them,

376 3. stack the Fourier transformed right half column vector on top of the Fourier transformed left
377 half, so as to represent the upper half of the spectrum of spatial frequencies,

378 4. transform the combined state vector from the [-dimensional p-representation back to the x

379 representation, applying an inverse (] x J)-Fourier transform.


http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2019 d0i:10.20944/preprints201902.0058.v1

14 of 40

0 All in all, this sequence of operations combines to a single unitary transformation matrix. In the
;a1 position representation, it reads

(x) _ p-1(F2 O
B = F < 0 B (33)

382 Like this, it already represents a compact quantum version of the Baker map [37,38]. It still
sss  bears one weakness, however: The origin (j,1) = (0,0) of the quantum position-momentum index
s space, coinciding with the classical origin (x, p) = (0,0) of phase space, creates an asymmetry, as
s the diagonally opposite corner %(],l) = %( J-1,]-1) = (1- %,1 — %) does not coincide with
sse (X, p) = (1,1). In particular, it breaks the symmetry x — 1 — x, p — 1 — p of the classical map. This
7 symmetry can be recovered on the quantum side by a slight modification [39] of the discrete Fourier
sss  transform mediating between position and momentum representation, a shift by 3 of the two discrete
se0  grids. It replaces Fj by

() = \%exp <27‘L’i <]—|— ;) (l + ;)) =: (G])j,l, (34)

soo and likewise for Fj/,. The quantum baker map in position representation becomes accordingly

) _ 1[Gz 0
By’ =G . 5
4 J ( 0 Gy (%)

301 In momentum representation, it reads B}p ) = G]ng)Gfl. The matrix B}x) exhibits the same basic
sz structure as its classical counterpart, the x-component of the discrete baker map (27), but replaces the

303 sharp “crests” along the graph of the original mapping by smooth maxima (Fig. 6¢c). Moreover, its

30s entries are now complex. In momentum representation, the matrix B}p) correspondingly resembles the

305 p-component of the discrete baker map.
396 While the discretized classical baker map (29) merely permutes the elements of the classical
307 phase-space distribution, the quantum baker map rotates complex state vectors in a Hilbert space of
20 finite dimension J. We cannot expect periodic exact revivals as for the classical discretization. Instead,
se0 the quantum map is quasi-periodic, owing to phases €, of its unimodular eigenvalues ¢i", which in
a0 general are not commensurate. With a spectrum comprising a finite number of discrete frequencies,
«01 the quantum baker map therefore exhibits an irregular sequence of approximate revivals. They can be
a2 visualized by recording the return probability,

|2

Pret(”) = |Tr[an] (36)

a3 with the one-step unitary evolution operator (j|U|j’) = (B}x) ); - Figure 9a shows the return probability
wa Of the (8 x 8) quantum baker map for the first 500 time steps. Several near-revivals are visible; the
05 figure also shows the unitary transformation matrix (B}x) )" for n = 490 where it comes close to the
a6 (8 x 8) unit matrix (Fig. 9b). The quantum baker map therefore does not exhibit as exact and periodic
a7 recurrences as does the discretized classical map (Fig. 8), but it is evident that its dynamics deviates
a8 dramatically from the exponential decay of the return probability, constituent for mixing, hence for
a0 strongly chaotic systems [20-22].


http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2019 d0i:10.20944/preprints201902.0058.v1

15 of 40

Fredn)

1.0
n=490
[

] o
0.4 . .. 1 .

0.2 % o]

0.0 [t Tn Tl ot

n=490

Figure 9. Recurrences in the quantum baker map are neither periodic nor precise, as in the discretized
classical version, see Fig. 8, but occur as approximate evivals. They can be identified as marked peaks
(a) of the return probability, Eq. (36). For the strong peak at time n = 490 (arrow in panel (a)), the
transformation matrix in the position representation BZ, J (b), cf. Eq. (35), here with | = 8, indeed comes
close to a unit matrix. Grey-level code in (b) ranges from light grey (0) through black (1).

a10 This example suggests to conclude that the decisive condition to suppress chaos is the finiteness
a1 of the state space, exemplified by a discrete classical phase space or a finite-dimensional Hilbert space.
a2 Could we therefore hope chaotic behaviour to be more faithfully reproduced in quantum systems
a3 with an infinite-dimensional Hilbert space? The following example frustrates this expectation, but the
a1s  coherence effects preventing chaos also here require a more sophisticated analysis.

as 3.1.2. The quantum kicked rotor

a16 By contrast to mathematical toy models such as the baker map, the kicked rotor allows to include
a1z most of the features of a fully-fledged Hamiltonian dynamical system, also in its quantization. With
a1s  the Hamiltonian (11), a unitary time-evolution operator over a single period of the driving is readily
a0 construed [3,40]. Placing, as for the classical map, time sections immediately after each kick, the
s20 time-evolution operator reads

HQKR = l:[kickarot/ Ukick = exp (_ik COS(é)) ’ arot = exp (—iﬁz/Zh) . (37)

w2 The parameter k relates to the classical kick strength as k = K/#. Angular momentum p and angle 8
22 are now operators canonically conjugate to one another, with commutator [, 8] = —if. The Hilbert
«23  space pertaining to this model is now of infinite dimension, spanned for example by the eigenstates of

~
424 P,

Pl =nll), 1 €Z, (B)1) = exp(ilf). (38)

1
Vanh
azs Operating on an infinite dimensional Hilbert space, the arguments explaining quasi-periodicity
a2s  Of the time evolution generated by the quantum baker map do not carry over immediately to the
a2z kicked rotor. On the contrary, in the quantum kicked rotor with its external driving, energy is not
a2s conserved, the system should explore the entire angular-momentum space as in the classical case, and
a2 in the regime of strong kicking one expects to see a similar unbounded growth of the kinetic energy as
a0 symptom of chaotic diffusion as in the classical standard map. It was all the more surprising for Casati
a1 et al. [3,40] that their numerical experiments proved the opposite: The linear increase of the kinetic
a2 energy ceases after a finite number of kicks and gives way to an approximately steady state, with the
a3 kinetic energy fluctuating in a quasi-periodic manner around a constant mean value (Fig. 10).
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Figure 10. Suppression of deterministic angular momentum diffusion in the quantum kicked rotor.
Time evolution of the mean kinetic energy, E(n) = (p%/2), over the first 1000 time steps, for the
classical kicked rotor, Eq. (11), (dotted) and its quantized version, Eq. (47) (solid line). The parameter
values are K = 10 and 2717t = 0.15/G (G := (v/5 —1)/2).

434 It turns out that despite the infinite Hilbert space dimension, the effective Hilbert space accessed
a5 from a localized initial condition is always of only finite dimension, at least for all generic parameter
as  values. An explanation was found by analyzing the quasienergy eigenstates of the system [41-44].
a7 The kicked rotor does not conserve energy, but if the driving is invariant under discrete translations
as  of time, t — f+ 1, another conservation law applies: Floquet theory [45,46] guarantees the existence
as  of quasienergy states, eigenstates of Uggr with unimodular eigenvalues exp(i€) and eigenphases
a0 €. Quasienergy eigenstates can be calculated by numerical diagonalization of Ugkg. For generic
.1 parameter values, eigenstates |¢(€)) are not extended in angular-momentum space, let alone periodic.
a2 On average and superposed with strong fluctuations, they decay exponentially from a centre I.(¢),
a3 different for each eigenstate,

gtenf? ~exp (=), )

aas  The scale of this decay, the localization length L, is approximately given by L ~ (K/27t%)?, hence grows
s linearly with the classical diffusion constant, cf. Eq. 14.

446 This unexpected phenomenon, called dynamical localization, resembles Anderson localization,
a7 a coherence effect known from solid-state physics [47,48]: If a crystalline substance is disturbed by
ws sufficiently strong “frozen disorder” (impurities, lattice dislocations, etc.), its energy eigenstates are
a0 not extended, as predicted by Bloch’s theorem [49] for a spatially periodic potential. Rather, the plane
a0 waves corresponding to Bloch states, scattered at aperiodic defects, superpose on average destructively,
451 so that extended states compatible with the periodicity of the potential cannot build up. In the kicked
sz rotor, the disorder required to prevent extended states, not in position but in angular-momentum
a3 space, does not arise by any static randomness of a potential, as in an imperfect crystal lattice, nor is it
4sa  a consequence of the dynamical disorder of the chaotic classical map. It comes about by a dynamical
s coherence effect related to the nature of the sequence of phases ¢(I) = 71?(mod 27) of the factor
we Ut = exp(—ip?/2h) = exp(—ihl?/2) of the Floquet operator (37). If Planck’s constant (in the present
sz context, fi enters as a dimensionless parameter in units of the inertia of the rotor and the period
ass  Of the kicks) is not commensurable with 27, these phases, as functions of the index I, constitute a
a0 pseudo-random sequence. In one dimension, this disorder of number-theoretical origin is strong
a0 enough to prevent extended eigenstates. Since the rationals form a dense subset of measure 0 of the
s real axis, an irrational value of fi /27t is the generic case.
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a62 Even embedded in an infinite-dimensional Hilbert space, exponential localization reduces the
se3 effective Hilbert-space dimension to a finite number Dy, determined by the number of quasienergy
sss  eigenstates that overlap appreciably with a given initial state. For an initial state sharply localized
aes in I, say (I|(0)) = &)y, it is given on average by Dy = 2L. This explains the crossover from
ass chaotic diffusion to localization described above: In the basis of localized eigenstates, a sharp initial
sz state overlaps with approximately 2L quasienergy states, resulting in the same number of complex
«s expansion coefficients. The initial “conspiration” of their phases, required to construct the initial
aso  state [p(0)) = |Ip), then disintegrates increasingly, with the envelope of the evolving state widening
a0 diffusively until all phases of the contributing eigenstates have lost their correlation with the initial
a1 state, at a time n* ~ 2L, in number of kicks. The evolving state has then reached an exponential
a2 envelope, similar to the shape of the eigenstates, Eq. (39) (Fig. 12, dashed lines), and its width fluctuates
ars  in a pseudo-random fashion, as implied by the superposition of the 2L complex coefficients involved.
a7a This scenario might appear as an exceptional effect, arising by the coincidence of various special
a7 circumstances. Indeed, there exist a number of details and exceptions, omitted in the present discussion,
are  that lead to different dynamical behaviour, such as accelerator modes in the classical model [25,50] and
a7z quantum resonances for rational values of 71/27 [51]. Notwithstanding, similar studies of other models
a7zs  have accumulated overwhelming evidence that in quantum systems evolving as a unitary dynamics, a
a7s  permanent entropy production as in classical chaos is excluded. In more abstract terms, this “quantum
ss0 death of classical chaos” can be understood as the consequence of two fundamental principles: the
a1 conservation of information under unitary time evolution in closed systems, cf. App. B, a conservation
sz law closely analogous to information conservation under classical canonical transformations (App.
a3 A), and the condition that the Hilbert space reachable from the initial state by a unitary dynamics has
sss a finite dimension, i.e., amounts to a limited information content. Once the system has explored its
s entire accessible Hilbert space, it cannot but return, at least approximately, to states it had already
sss assumed previously.

as7 This interpretation is corroborated by the global parameters characterizing the behaviour of the
aes quantum kicked rotor. In the presence of localization, the dimension of the Hilbert space effectively
a0 accessible by an initial condition local in angular momentum is Dy, ~ 2L. Starting from a pure initial
a0 state and evolving unitarily, the state of the system of course remains pure. The situation is therefore
s01 analogous to that of the classical kicked rotor, where despite entropy conservation, a positive entropy
42 production can be extracted by focussing on the angular momentum distribution alone. Similarly, an
203 entropy production can be attributed to the quantum system through this same observable dynamical
s0s quantity. The maximum information content it could achieve in this way is given by a homogeneous
s0s  distribution over D, states, hence by Imax ~ ¢In(2L). Comparing this with the entropy production by
ws chaotic diffusion, Eq. (21), allows to estimate the cross-over time n*, in units of the kicking period, till
ao7  this maximum is reached. By equating

Imax = I(n*) = ¢ [ln( ZnD(K)n*/dp) + ﬂ (40)

ws and setting d, = f, the angular momentum quantum, and D(K) = K?/2, (cf. Eq. (14)), it is found to be
g adp & q q

4
n* ~ — K2 (41)
e

a0 This estimate, based on entropy production, coincides exactly, as to the dependence on K, with similar
soo estimates based on the energy-time uncertainty relation, as well as with numerical data, which give

n* x~2L ~ —— (42)

so1 and it agrees in order of magnitude even with the prefactor.
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so2  3.2. Breaking the splendid isolation: quantum chaos and quantum measurement

503 If the absence of permanent entropy production in closed quantum systems is interpreted as a
sos manifestation of quantum coherence, it is natural to inquire how immune this effect is to incoherent
sos processes. They occur in a huge variety of circumstances: in quantum systems embedded in a material
sos environment, as in molecular and solid state physics, interacting with a radiation field, as in quantum
so7  optics, in dissipative quantum systems where decoherence accompanies an irreversible energy loss,
sos and most notably in all instances of observation, be it by measurement in a laboratory or by leaving
soo any kind of permanent record in the environment [52], even in the absence of a human observer.

510 Dissipation is the more common context where in quantum systems, decoherence is unavoidable,
su but it is invariably accompanied by the main effect, energy loss. Quantum measurement, by contrast,
si2 allows to separate decoherence, as an exchange of entropy with the environment, from the loss of
sis  energy. It has been in the focus of quantum theory from the early pioneering years on, providing the
s1s  indispensable interface with the macroscopic world. The crucial step from quantum superpositions to
sis  alternative classical facts remained an enigma for decades. The Copenhagen interpretation includes the
sie  “collapse of the wavepacket” as an essential element [53], but treats it as an unquestionable postulate.
siz The first systematic analysis of quantum measurement by von Neumann [54] already provides a
sie  quantitative description in terms of the density operator, rendering the wavepacket collapse explicit
s10  as a reduction of the density matrix to its diagonal elements, but does not yet illuminate the physical
s20 nature of this step, manifestly incompatible with the Schrédinger equation. It was the contribution
sz of Zurek and others [11-14,55] to interpret this process, in the spirit of quantum dissipation, as the
s consequence of the interaction with the macroscopic number of degrees of freedom the measurement
s apparatus (the “meter”) and its environment comprise, to be described in a microscopic model as a
s2« heat bath or reservoir. As one of the major implications of this picture, the collapse of the wavepacket
s Nno longer appears as an unstructured point-like event but as a continuous process that can be resolved
s26 1IN time [14].

sz 3.2.1. Modelling continuous measurements on the quantum kicked rotor

520 In this subsection, basic elements of this scheme will be adopted and applied to the quantum
s20  kicked rotor in order to demonstrate how observation can thaw dynamical localization and thus restore,
ss0  at least partially, an entropy production as in classical chaos. Reducing quantum measurement to the
sa1 essential, a continuous observation of the kicked rotor will be assumed, which leads to an irreversible
sz record of a suitable observable [56]. Following established models of quantum measurement [11-14,
sas 19,55], these features can be incorporated in a object-meter interaction Hamiltonian [57-59]

Hom = g #m %0 O(1), (43)

s where g controls the coupling strength and the Heaviside function ©(t) switches the measurement
sss. onatt = 0. The operator £y, acting on the Hilbert space of the meter, is the observable that indicates
s3.s  the measurement result (its “pointer operator” [11-14]), and £o is the measured observable. In accord
ss7  with the objective to study the impact of observation on localization in angular momentum space, we
s3s  shall focus on measurements of the angular momentum /. If the expectation ([) is observed as a global
s39 measure, this amounts to defining the measured operator as

fo=I0= Y 11l (44)
|=—c0

sso  Alternatively, a simultaneous observation of the full angular-momentum distribution P(I), so that the
saa measurement affects homogeneously the entire angular momentum axis, requires assuming a separate
sa=  meter component £, for every eigenvalue of the angular momentum,
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Hom = g%m-%00(t) =g Y &mifss, %g; = |)(I]. (45)

I=—o0

Some models of quantum measurement distinguish explicitly between the meter proper, as a
microscopic system interacting directly with the observed object, and a macroscopic apparatus that
couples in turn to the meter [55], thus only indirectly to the object. Such a distinction is not necessary
in the present context, it suffices to merge meter and environment into a single macroscopic system.
Moreover, we do not conceive a detailed microscopic model of the meter as a heat bath (but see
Sections 4.2, 4.3 below), starting instead directly from an evolution equation that takes the essential
consequences of the meter’s macroscopic nature into account.

From this basic setup, assuming standard properties of the heat bath such as an immediate
response (Markovianity), evolution equations for the reduced density operator of the object, po(t) =
Trm (p(t)), can be construed, see App. C. Integrated over one time step of the driven dynamics, they
take the form of maps for the density operator. In the case of measurements of (/) with the pointer
observable as in Eq. (44), the map for the density matrix in angular-momentum representation reads

e}

D

I',m'=—o0

) ) i A
Wpsaalm) = 3 broa0bly @ exp (=507 = n®) = =0 ) Ulpslt), d6)

while for measurements of P(I), Eq. (45)

(Upsnirlm) =}

I m'=—

by (k)b (k)

in _ A
[exp (—2(1’2 - m'z)) — e (L= 8p—p) + Sy | ('lpgulm’). (47

[
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Figure 11. Deterministic angular momentum diffusion is revived in the quantum kicked rotor with
continuous measurements. Time evolution of the mean kinetic energy, E(1n) = (p2/2), over the first 512
time steps for the measured dynamics of the quantum kicked rotor, Eq. (47) (solid line), the stochastic
classical map, Egs. (A25,A26) (dotted line), and the unobserved dynamics of the quantum kicked rotor,
Eq. (47) (dashed line), for (a) weak vs. (b) strong effective coupling. A continuous measurement of the
full action distribution was assumed. The parameter values are K = 5,27/t = 0.1/G (G := (v/5—1)/2),
and v = 1073 (a), v = 0.5 (b).

These maps alternate the unitary time evolution of the quantum kicked rotor with incoherent
steps that lead to a gradual decay of the non-diagonal elements of the density matrix. In the limit of
strong effective coupling to the meter, 7 > 1, corresponding to a high-accuracy measurement of the

d0i:10.20944/preprints201902.0058.v1
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sso  angular momentum, the density matrix is completely diagonalized anew at each time step, and the
seo  Object system leaves the measurement in an incoherent superposition of angular-momentum states, as
se1  required by the principles of quantum measurement (Figs. 11b, 12b). For a weaker coupling, the loss
se2  Of coherence per step is only partial, restricting the density matrix to a diagonal band with a Gaussian
ses profile of width ~ y~1, if (I) is measured, or reducing its off-diagonal elements homogeneously by e~ 7,
ses if the full distribution is recorded (Figs. 11a, 12a). In any case, decoherence in the angular momentum
ses Trepresentation is equivalent to a diffusive spreading of the angle 6. It imitates the action of classical
ses Cchaos in that it effectively destroys the autocorrelation of the angle variable.

a 10° ] “ b 100
10 |- — 10~
s 10 - 5 g 10
10—12} f 10-127
10_16:‘ ‘ln&o' 20 0 50 0" | 10_161‘ T ey

-40 -20 0 20 40
/ !
Figure 12. Dynamical localization is destroyed in the quantum kicked rotor with continuous
measurements. Probability distribution P(I) of the angular momentum !/ (semilogarithmic plot),
after the first 512 time steps, for the measured dynamics of the quantum kicked rotor, Eq. (47) (solid
lines), compared to the unmeasured dynamics of the same system, Eq. (47) (dashed), for (a) weak vs.
(b) strong effective coupling. A continuous measurement of the full action distribution was assumed.
The parameter values are K = 5,27t = 0.1/G (G := (v/5 —1)/2),and v = 107* (a), v = 0.5 (b).

s67 The framework set by Eq. (A19) is easily extended to include dissipation [60—-62]. An additional
see term, proportional to the friction constant A,

i

160 A [HOr ﬁO} + [560/ [pOr xAO]]
1 e A I e 1A s
+ 5827\ ([®opo, [Ho, o] — [[Ho, %o, poto]) , (48)

seo induces incoherent transitions between angular momentum eigenstates towards lower values of /,
s modelling Ohmic friction with a damping constant A, as in the classical standard map with dissipation,
s Eqs. (22,23,24) [27,28]. In terms of a classical stochastic dynamics, to be detailed in the following
sz subsection, it corresponds to a drift of the probability density in phase space towards lower angular
sz momentum.

574 Describing the quantum dynamics in terms of a master equation for the reduced density operator
s7s only provides a global statistical account. However, in the semiclassical regime of small angular
s7e  momentum quantum i, compared to the periodicity of the classical phase space in the same observable
sz p, it can be replaced by an approximate description as a classical Langevin equation with a noise term
s7e  of quantum origin that induces diffusion in 6 [57-59]. Including again Ohmic friction with damping
s7o  constant A, it can be cast in the form of a classical map with noise term ¢, see App. C,

Pu+1 pn + Ksin(6,,41)
— . 49
(9%1) <9n +e M pu+Cn @)
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sso  3.2.2. Numerical results

581 Numerical experiments performed with both, the quantum map for the density matrix, Eqgs.
se2  (46,47), and its semiclassical approximation, Eqs. (A25,49), give a detailed picture of the effect of
se3  continuous observation on quantum chaos [57-59]. Figure 11 compares the time dependence of the
sea mean kinetic energy for the quantum kicked rotor, Eq. (37) (dashed lines), the same system under
ses  continuous measurement, Eq. (47) (solid lines), and the stochastic classical map, Eqs. (A25,A26) (dotted).
ses Above all, the data shown provide clear evidence that incoherent processes induced by measurements
sez  destroy dynamical localization. Even for weak coupling to the apparatus, Figs. 11a, 12a, classical angular
sss  momentum diffusion is recovered, albeit on a time scale 1. ~ v—1, much larger than the cross-over time
seo 1%, cf. Eq. (42), if v < 1/2L, and with a diffusion constant Dgm ~ D(K)n*/n., reduced accordingly
seo  With respect to its classical value D(K). For stronger coupling, the measurement-induced diffusion
se1  approaches the classical strength D(K). Since it randomizes the angle variable indiscriminately, erasing
so= all fine structure in classical phase space, it ignores deviations of D(K) from the gross estimate (14),
so3 caused, e.g., by accelerator modes of the classical standard map [25,50]. In fact, measurement-induced
soa diffusion occurs already for kick strengths K < K¢, below the classical threshold to chaotic diffusion
sos K. ~ 1, where in the exact classical map, diffusion is still blocked by regular tori extending across the
soo full range 6 € [0,277]. Moreover, Fig. 13b, showing the angular momentum distribution after 512 time
so7  steps, demonstrates that at this stage, the typical exp(—|!|/L) shape indicating localization has given
ses Way to a Gaussian envelope, characteristic of diffusion.

599 Figure 13 compares the angular momentum reached after 512 time steps for the measured
so quantum system in the description by the master equation (47) (dotted lines) with that obtained for the
s1 Noisy map (A25) (solid lines). For sufficiently strong coupling, Fig. 13b, it is faithfully reproduced by
sz the semiclassical Langevin equation (A25), as is the overall energy growth, see Fig. 11b (dotted line).
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Figure 13. Same as Fig. 12, but comparing the measured dynamics of the quantum kicked rotor, Eq.
(47) (dashed lines), to the stochastic classical map, Eqs. (A25,A26) (solid lines), for (a) weak vs. (b)
strong effective coupling. A continuous measurement of the full action distribution was assumed. The
parameter values are K = 10, 2th = 0.1/G (G := (v/5—1)/2),and v = 107 (a), v = 0.5 (b).

603 The diffusion constant of the measurement-induced angular momentum diffusion also allows us
s to estimate directly the entropy produced by the measured quantum system: Replacing in Eq. (21) the
s0s classical diffusion constant D(K) by the reduced quantum mechanical value Dgn, yields

c 27t Domt n*
I(t) = = |In [ 22290 +21n(>+1
" 2[ ( z ) e

sos As the production rate for diffusive spreading is independent of the diffusion constant, it is here

, (50)

s0r the same as for the classical standard map, [(t) = c¢/2t. Such a positive entropy production is
es Not compatible with entropy conservation in closed quantum systems, App. B. The only possible
s0o explanation therefore refers to the measured quantum system not being closed, so that the entropy
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s10 generated actually infiltrates from the macroscopic meter to which it is coupled. This interpretation
su1  becomes plausible also considering the fact that obviously, there must be an entropy flow from the
ez Object towards the meter—or else the measured data could not reach it: There is no reason why the
s13 information current from object to meter should not be accompanied by an opposite current, from
s1s Mmeter to object.

615 The three phases of the time evolution of, in particular, the weakly (i.e., with small coupling to
s1s the meter) measured quantum kicked rotor can now be interpreted from the point of view of entropy
1z flows: During the initial phase, n < n*, the quantum map follows closely the classical standard map,
e1s producing entropy from its own supply provided by the initial state. Once it is exhausted, at n ~ n*,
s10 entropy production stalls, the system localizes and crosses over to quasi-periodic fluctuations. Only
20 on a much longer time scale n 2 n. > n*, sufficient entropy infiltrates from the meter to become
ez1  manifest again in the dynamics of the kicked rotor as diffusive angular-momentum spreading. Getting
ez entangled by the measurement to the meter, the kicked rotor effectively attains an infinite Hilbert-space
23 dimension, despite dynamical localization, which restores close-to-classical behaviour.

624 While decoherence allowed substantiating the crucial role of the environment to induce chaotic
e2s dynamics in quantum systems, incorporating friction gives us the opportunity to take a look also
e26 at the modifications of dissipative classical chaos that are required by quantization. Here, it is a
2z static phenomenon, the fractal geometry of strange attractors, that collides with quantum mechanics:
e2s The infinite structural depth implied by self-similarity is incompatible with uncertainty. In order
e20 to “quantize strange attractors”, the master equation (48) as well as the stochastic semiclassical
e30 approximation, Eq. (49), can be solved numerically and compared with the classical dissipative
e standard map (22) [60-62]. Fig. 14 compares the stationary states approached by these maps for
ez 1> 1/A, the time scale of contraction onto the attractor. The classical strange attractor, Fig. 14a, here
ez represented as its support in (p, 0) phase space, roughly follows a (— sin §)-curve. The stationary state
e3a  Of the full quantum master equation, depicted as the Wigner function corresponding to the stationary
e3s density operator, Fig. 14c, shows a smoothed structure that eliminates the self-similarity of the classical
ess fractal geometry. The wavy modulations visible in panel (c) are owed to the tendency of Wigner
es7 function to exhibit fringes where it takes negative values, if the support of the positive regions is
ess  strongly curved. They are absent in the stationary state of the semiclassical noisy map, panel (b).
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Figure 14. Classical and quantum stationary-state distributions of the dissipative standard map for
n > 1/A. (a) Support of the strange attractor of the classical map (22) in (p,6) phase space. (b)
Stationary state of the semiclassical stochastic map (49), plotted at discrete angular momentum values
p; = hl, as in panel (c). (c) Long-time limit of the density operator for the master equation (48),
represented as the corresponding Wigner function, which has support along the quantized angular
momentum values [7, | € Z. The parameter values are n = 10, K = 5, A = 0.3, and 27ti = 0.02 (b,c).
Only the upper (positive-momentum, p > 0) part of phase space is shown, the lower (p < 0) part is
related to it by parity, p — —p, 0 — —6.
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630 4. Quantum measurement and quantum randomness in a unitary setting

640 In the examples discussed in the preceding sections, the central issue was chaotic entropy
ea1 production and its suppression by coherence effects in closed quantum systems. Measurement served
ss2 as a particular case of interaction with a macroscopic environment, giving rise to a two-way exchange of
ess information. A transfer of information on the state of the object is the essence of measurement. It does
sas NoOt even require a human observer, the physical environment can play the role of the “witness” [52].
sss  Conversely, entropy entering the measured object from the side of the apparatus imparts a stochastic
sss component to the proper dynamics of the object [19]. Quantum chaos is specially sensitive to this effect,
eaz as even minuscule amounts of entropy penetrating from outside become manifest in the long-time
sss behaviour. The reason for this sensitivity lies in the unbounded amplification of perturbations, a global
seo instability chaotic systems show throughout their state space.

650 The present section takes up this idea to explore its consequences in the context where its relevance
es1  is far less obvious. In quantum measurement, instabilities of the measurement process itself, instead of
es2  a sensitive dependence on initial conditions of a measured chaotic system, let us expect similar effects
ess  as in the case of quantum chaos. It is not obvious, though, where in the context of measurement such
esa instabilities should exist, of a kind even remotely comparable to chaotic dynamics. To see this, a final
ess  step has to be added to the above outline of the quantum measurement process.

oso  4.1. Quantum randomness from quantum measurement

657 The collapse of the wavepacket is not only incompatible with a unitary time evolution, it also
ese  violates the conservation of entropy (App. B). If the measured system is initiated in a pure state,

$0,ini) = )_aala), (51)

eso  (assuming a discrete basis of eigenstates of the measured operator, e.g., Rla) = x4 |1x>, « € 7Z)acomplete
eso collapse leads to a mixed state comprising the same components,

P0,ini = [Y0ini) (Yol = Pocips = Y pala)(al,  po = |aa|*. (52)
/4

esx The increase in entropy from the pure initial state (Iin; = 0) is thus

Iclps =—cTr (pAO,clps 1n(ﬁ0,clps)) = Z Pu ln(p“)' (53)
«

es2 It is readily explained and can be modelled in microscopic detail as a consequence of the entanglement
se3 Of the object with the macroscopic apparatus [11-14,19,55]. It means that during this phase of the
esa measurement, both components share their entropy, so that it can no longer be uniquely partitioned
ees into a meter part and an object part. In the reduced density operator of the object, but likewise in that
sss for the meter, this correlation becomes manifest as information gain: Iips > I0,ini + Im,ini- The reduced
sz density operator of the object, “collapsed"” to its diagonal, (a|00 cips|®’) = Pady’—q, is interpreted as a
ess  set of probabilities p, for the measurement resulting in the eigenvalue x, of the measured operator £.
669 With this step, the measurement is not yet complete. From the Copenhagen interpretation
s70 onwards [53], all quantum measurement schemes add a crucial final transition, to the object exiting
1 the process again in a pure state, one of the eigenstates |«),

PO,clps = Z pala) (&) = Pofin = { |a) (x| with probability p, (54)
/4

ez returning the information content to its initial value, Ig fi, = Ioini = 0. This step is sometimes referred
ers  to as “second collapse of the wavepacket”. In contrast to the “first collapse”, though, it is usually
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e7a considered to be of little interest for the discussion of fundamentals of quantum mechanics, since it
e7s appears as a mere classical random process, analogous to drawing from an urn. There is, however,
e7 also a quantum mechanical side to it. With the second collapse, the object gets disentangled from
e7 the meter again, but there is absolutely no reason why the entropy previously shared between them
ezs  should be segmented afterwards in the same way as it had been partitioned before the measurement.
ero Information can have been interchanged among the two systems. On the side of the object, it becomes
seo manifest as the random process behind the phrase “with probability p,”.

681 This applies at least to all measurements of operators with a discrete spectrum, such as, for
es2 example, the angular momentum [ of the kicked rotor. It becomes particularly evident in the case of
ses Operators on finite-dimensional Hilbert spaces, notably and as the simplest possible instance, two-state
ssa  systems (“qgbits”), say H = span{||), 1)}, £|{) = —% 1), 2[1) = %H‘) Preparing it as a Schrodinger
ees cat, neutral with respect to measurements of £,

1
V2
ess the results ||) (]| and [1) (1| are expected with equal probabilities p| = py = 0.5. While each outcome
esz is a pure state with definite eigenvalue, repeated measurements of an ensemble of systems in the
ees same initial state result in a random binary sequence, distinguished as “quantum randomness” and
seo considered unpredictable in a more fundamental sense than any classical stochastic process [63]. The
s00  von-Neumann entropy, as canonical measure of the information contained in a quantum system, is not
eo1 able to capture the difference between a pure state resulting from a deterministic preparation and an
ez element of a sequence of pure states which, as an ensemble, represent a prototypical random process.
693 The mere existence of a set of privileged states, the eigenstates of the measured operator (forming
e0s the “pointer basis”, a term coined by Zurek [11-14]), of course does not imply any instability. To be
eos sure, the conservation under unitary transformations of the overlap (¢|¢) as a measure of distance
ss between two states |), |¢) ensures that there cannot be any attractors or repellers in Hilbert space [64].
soz This situation changes, however, as soon as the non-unitary dynamics of incoherent processes in the
eos projective Hilbert space is concerned. In quantum measurement, in particular, the quantum Zeno effect
e00  [65,66] plays a pivotal role [12]: If a measurement is made on a state vector that is about to rotate away
70 from a pointer-basis state it has been prepared in, for example by a previous measurement of the same
71 Observable, this subsequent measurement will project the state back to the nearest pointer basis state
702 as indicated by Eq. (54) [11-14], that is, the state it just departed from. The more frequently the same
703 measurement is being repeated, the stronger will be its stabilizing effect towards the initial pointer
70s  state: it thus becomes an attractor in the projective Hilbert space of the measured object [11,12].

705 If there is not just a single such state but a finite or even countably infinite number of attractors,
706 it is clear that their basins of attraction in projective Hilbert space must be separated by boundaries,
7 manifolds along which the system is unstable. For example, for a two-state system, the projective
s Hilbert space is the Bloch sphere, its poles representing the pointer states, hence the attractors for
700 measurements of the vertical spin component (Fig. 16). Symmetry already implies that the boundary
70 separating their basins of attraction, the two hemispheres, must be the equator, representing the
72 manifold all Schrodinger-cat states as defined in Eq. (55). Of course, the attraction towards the poles is
n2  strongest in their immediate neighbourhood but vanishes for states orthogonal to the pointer states, as

[Yomi) = —= () £ 1)), (55)

=z applies to all states along the equator.

714 The description in terms of an evolution equation for the density operator, such as the master
=5 equation (A19), however does not allow to go beyond stating likelihoods, in this example equal
ns probabilities for the two outcomes. Otherwise, it leaves the second collapse as a black box. A more
=z profound analysis is possible, though, by going to a detailed microscopic account of the coupled
ns  Object-meter system. Since this comprehensive system is closed as a whole, it not only permits a
7o description in the framework of unitary time evolution. The conservation of entropy moreover opens
720 the possibility to follow the information interchanged between the two subsystems.
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= 4.2, Spin measurement in a unitary setting

722 The setup sketched in Sect. 3.2.1 is a suitable starting point for a model of measurements on a
723 two-state system. In order to include a microscopic account of the meter, it is broken down into a set
724 Of, say, harmonic oscillators with frequencies w;. The measurement object now reduces to a spin-%
725 system. Modifying the object-meter coupling, Egs. (45,44) accordingly, it now takes the form

Howm = Zgna'z(ﬁjl +a,) O(t), (56)

726 Where the measured observable is specified as £o = 07, the vertical spin component, coupled with a
727 strength g, to meter operators £; , = a} + @, (the position operators of the nth mode of the meter, up to
22s  afactor v/2). Complemented by self-energies Ho = %hwoffx of the objectand Hy = Y, fiwy, (ﬁ,ﬁﬁn + %)
720 Of the meter, the total Hamiltonian for the measurement process is obtained as

H = Ho + Hom + Hwm

1 1
— Ehwoﬁx + Y gn0= (4} + a0) O(t) + Y_ hewn <a;an + 2) (57)
n n

730 In terms of quantum optics, for instance, it can be interpreted as describing a two-level atom interacting
751 with a microwave cavity supporting discrete modes n [67].

732 The model is not complete without specifying the initial state of the total system. Supposing that
733 it factorizes between object and meter [11,12,54,55],

[¥ini) = [¥0,ini) | ¥M,ini), (58)

73s  the initial states of the two components can be defined separately. For the object, assume a state that
735 is neutral with respect to measurements of 0, as in Eq. (55). The initial state of the meter should not
73s introduce a spatial bias of position or momentum, either, so that (£\;) = 0, (pp) = 0. Otherwise it can
73z be an arbitrary coherent superposition of harmonic oscillator states.

738 A crucial issue concerning Hamiltonian and initial condition is their symmetry under spatial
730 reflections z — —z with respect to the direction of the vertical spin component. The total Hamiltonian
70 as well as the initial state of the object should be invariant under this transformation, otherwise the
71 measurement would be biased. This symmetry is equivalent to parity in the z-direction, effectuated by
7a2 Operators IAIZ,S = 0y for the two-state system and ﬁZ,M = exp (in Y ﬁ:rlﬁn) for the meter [68], so that
a3 the total system must be invariant under the transformation

I, = I, sIT, v = 0y exp (inZﬁfﬁn> ) (59)
n
74 Indeed, it is readily verified that fl;r SHOTAIZIS = Ho, fI;r,MHMIATZ,M = Ay, and
I AomI Lz = 1T 60116 Y gul T\ (8 + 2,)TL M ©(1)
n
= (_&z) <_ Zgn(ﬁl + ﬁn)) ®(t) = HOM' (60)
n

7as  Given this invariance, the Hilbert space of the total system decomposes into two eigensubspaces of IT,,

H=H, M., 61)
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76 H4 comprising symmetric, H_ antisymmetric states under I'T,. As the object (two-state) as well as
7a7  the meter (boson) sector of the total system can be decomposed individually into an even and an odd
s subspace, the parity subspaces decompose further into

Hy = Mg+ @ Hmq ® Hs,— @ Hu,—,

(62)
7{_:=?@ﬁJ®7hm,6¥HS,C@7ﬁm+.

740 At the same time, both possible measurement outcomes, ||) as well as [1), manifestly break the
750 invariance under z — —z individually, even if on average, they are balanced. In the framework of a
751 unitary time evolution, where the Hamiltonian as well as the initial state of the object are symmetric,
72 the only possible explanation is that the asymmetry is introduced by the initial state of the meter.

753 Reconstructing the measurement in a unitary account of the full object-meter system allows us to
7s¢  pursue the time evolution of the total state vector in continuous time. Yet it is desirable, in order to
755 compare with the standard view of quantum measurement, to record diagnostics that enable assessing
756 the progress towards a definite classical outcome. Two aspects are of particular significance for this
757 purpose: The approach of the spin component towards a pure state is reflected in the time dependence
7ss  of the von-Neumann entropy [54] of the reduced density operator

Io(t) = —cTro[po(t) In(po(t))],  Po(t) = Trm[p(t)], (63)

7 and can be quantified as its purity, Po(t) = Tro[p3(t)]. Representing po(t) as a Bloch vector a =

700 (ay,ay,az), ax == 3 Tr(po0y) etc., the purity is reflected in its length, Po(t) = 1(1+ |a|?). The
761 asymmetry of the spin state with respect to z-parity can be expressed as its polarization,

az(t) = %(Pﬁ(t) —poy(t) = %((Tlﬁ(f)lﬁ —(Up)1)), (64)

72 that is, as the vertical (z-) component of the Bloch vector.

703 4.3. Simulating decoherence by finite heat baths

764 An essential condition to achieve an irreversible loss of coherence in a system coupled to a
7es Macroscopic environment is that the spectrum of the environment, be it composed of harmonic
7es oscillators, spins [69], or other suitable microscopic models, be continuous on the energy scales of
ez the central system, or equivalently, that the number N of modes the environment comprises be large,
7es N > 1. As a general rule, based on energy-time uncertainty, recurrences occur on a time scale 1/Aw if
760 the spectrum exhibits structures on the scale Aw. However, in the present context of a unitary model
770 for quantum measurement, it is more appropriate to stop short of the limit N — oo. Evidently, this can
1 be achieved only if irreversibility as a hallmark of decoherence is sacrificed.

772 This price appears acceptable, though, as long as a faithful description of the processes of interest
773 is required only over a correspondingly large, but finite time scale, as is the case, for example,
77a in computational molecular physics and in quantum optics. Numerical experiments simulating
775 decoherence with heat baths of finite Hilbert space dimension [70-72] provide convincing evidence
776 that even with a surprisingly low number of bath modes, N of the order of 10, most relevant features of
7z decoherence can be satisfactorily reproduced, see Fig. 15. This suggests to restrict the dimension of the
7zs meter sector of the Hilbert space underlying the Hamiltonian (57) accordingly to a finite number N,

1 N N 4. 1
H= Ehwoﬁx + Y gnz(a) +an) O(t) + Y hiwy (aZan + 2) . (65)
n=1 n=1
770 Like this, the Hamiltonian can be considered as a model of, e.g., a two-level atom in a high-Q microwave
7e0 cavity [67]. The mode number N thus assumes the role of a central parameter of the model.
781 Experience with similar models comprising finite baths [70,72], suggests the following scenario:
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782 e For small values N 2 1, the time evolution comprises only a few, but typically incommensurate,
783 frequencies and should appear quasi-periodic.
78 e Already for moderate numbers, say N = O(10), the unitary model will exhibit a similar
785 behaviour as has been observed for standard models of quantum optics and solid-state physics,
786 known as “collapses and revivals” [67]. In particular, the Zeno effect implies that the object state
787 approaches one of the pointer states and remains in its vicinity for a longer time, before it may
788 jump to another (in the case of spin measurement, the opposite) pointer state.
789 e For N >> 1, the excursions of the object state away from pointer states will become smaller
790 and the frequency of switching episodes—spin flips in the case of spin measurements—should
701 reduce, that is, the times the object spends close to a pointer state should grow very large. In
702 particular, as soon as the object state is sufficiently close to one of the pointer states, a behaviour
703 reminiscent of the quantum Zeno effect should emerge [12].

70s  In fact, a similar scenario has been predicted for a model in the spirit of quantum optics, representing
705 the object by a two-state atom and meter and environment, respectively, by two microwave cavities
s coupled through a waveguide [67].

7
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Figure 15. Decoherence-like behaviour can be simulated by coupling a harmonic oscillator to a
reservoir comprising only a finite number N of boson modes (harmonic oscillators as well). The figure
shows the time evolution of four diagnostics of decoherence for different values of N, ranging from
N = 0 (isolated central system) through 10, 20, 50, 100, through 500 (see legend). (a) Total energy
in the central system, showing a crossover from exponential to power-law decay for N > 10. (b)
Purity P(t) = Tr[(0o(t))?]. (c) Instantaneous dissipation rate, i.e., ratio of effective friction force to
time-dependent velocity (inset: total energy as in panel (a)), for N = 1, 10, 50, 100. (d) Degree of
memory, measured as the non-Markovianity Ny (t) = 1 fot dt' |P(#')], P(t) denoting the purity as
depicted in panel (b). Reproduced from [72] with kind permission.

797 Of practical interest is the opposite extreme, N = 1, as it allows us to study some issues analytically
s that are no longer so readily accessible for higher values of N. The Hamiltonian
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1 1
Hg, = fhwoax + g02(a" +a) O(t) + hawy ([frﬁ + 2) . (66)

700 also referred to as spin-boson Hamiltonian or quantum Rabi model [73,74], is frequently employed as the
so0 standard model for two-level atoms interacting with a bosonic field. It is often considered in a slightly
s1 simplified version: If a rotating-wave approximation is applied that excludes double excitation or
s02 de-excitation processes (generated by 6,4t or 6_4), the interaction term reduces to Hoy = (04 +
s 0_a'"), denoting 64 := 1 LovT iy ). With this modification, the spin-boson Hamiltonian is also known
sos  as Jaynes-Cummings model. The emblematic feature exhibited by spin-boson systems are Rabi oscillations,
sos  oscillations of the two-state system between its lower and its upper level with a frequency proportional
s0s to the coupling g. A further simplification of Eq. (66), often called semi-classical Rabi model, replaces the
so7  coupling to the boson mode with frequency wj by an external driving with the same frequency [75,76],
sos  Hg = %ha)()@'x + g0 cos(wlt).

809 With the Hamiltonian (66), it is straightforward to specify the parity eigensubspaces referred to in
a0 Eq. (62). The even eigenspace comprises states of the form

(11 - )Y cwiil2a £1),  (67)

a=0

¥iv)=—=(+M) Z C2el20) or [¥__)=

3\

\f

s the odd subspace is spanned by states of the form

¥i) = Z50 1) Dcanln t 1) o [¥-0)= (1)~ [1) L ea). (@9

s12 Numerical results for the quantum dynamics, generated both by the Jaynes-Cummings model [77]
s and by the complete spin-boson Hamiltonian [73,74], in a parameter regime relevant for the present
s1a  modelling, in particular for strong coupling, exist already and are consistent with the expectations
a5 pointed out here. For the present application to quantum measurement, there is no obvious justification
a6 for a rotating-wave approximation. With the full Hamiltonian (66), the von-Neumann equation for the
17 density operator, i dp/dt = [Hg, f] is readily evaluated at t = 0 (App. D). Evaluating the evolution
s1e  equation for the reduced two-state density operator at t = 0, for an initial state as in Eq. (58), which
a0 factorizes into a Schrodinger cat for the two-state system and an arbitrary superposition of boson
s20 eXxcitations,

e}

% (£ 11) L el (69)

sz this yields for the initial tendency of the polarization a, = 1(¢z),

[¥=(0)) =

d

%) ! (PTT( ) —0,,(0)) = 0. (70)

e22 That is, to leading order, the state vector starts rotating around the z-axis of the Bloch sphere, but does
=22 not leave the equator. However, going to the second time derivative, one finds

o=

d2

1 n n > *
Tl az(f)‘ho = 5 (01+(0) =H11(0)) = +28wo ), Va + 1Re(cupacy)- (71)
- a=0
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Figure 16. Spin measurement on the Bloch sphere. The quantum dynamics of spin measurements
is dominated by two “pointer states”, eigenstates of the measured operator ¢z, i.e., |1;) and |]),
represented on the Bloch sphere as North (green dot) and South pole (red dot). Owing to the quantum
Zeno effect, they attract nearby states of the measured system. At the same time, the short-time
evolution of the measured spin for a meter comprising only a single boson mode, Eq. (71), suggests
that a state initiated on the equator of the Bloch sphere (black dot), besides rotating around the equator,
will tend towards one of the poles, depending on the initial state of the meter boson mode.

824 This result indicates that to second order in time, a state prepared as a Schrodinger cat with
s2s respect to vertical spin will exhibit polarization if the initial state of the boson fulfills a specific
s2s condition. The terms in the sum over « in Eq. (71) only contribute if not all products c,1c; of two
sz subsequent expansion coefficients vanish. It has an obvious interpretation in terms of symmetry: The
s2s boson components in the eigensubspaces of the parity operator I, Egs. (67,68), are characterized by
s20 encompassing exclusively even or exclusively odd components of each sector, spin and boson, of the
e30 total system. The condition ¢, 41c; 7 0 for the boson sector therefore implies that the initial state of the
sa1  meter must not belong to either one of the two eigensubspaces H . and H _, hence must break z — —z
sz parity, while the initial state of the spin itself has to remain unbiased.

833 Combining these analytic findings with the quantum Zeno effect (Sect. 4.1) allows to predict
s« that initial states, unbiased as to spin polarization, will move away from the equator of the Bloch
s3s  sphere, the attraction basin boundary between spin-up and spin-down, in a direction depending on
e3s an asymmetric initial state of the meter, to become attracted by that pole of the Bloch sphere they are
37 already approaching, see Fig. 16.

838 Following a similar research program as in quantum chaos, comparing quantum dynamics to
s30 its closest classical analogue, it would be tempting to study the unitary model for spin measurement
se0 in some appropriate classical limit. A model based on a symmetric double-well potential, closely
=a1 analogous in many respects to a spin measurement, can be conceived that already provides relevant
saz insights, as sketched in App. E. A similar model for a classical binary “random” process, a coin toss,
sa3 has been analyzed in all detail in Ref. [78]. Diaconis et al. construct the basin boundaries separating
sas initial conditions of the coin that lead to either one of the two outcomes “head” and “tail”. It shows
sas a conspicuous structure of alternating fine fringes corresponding to these final conditions. While in
sss  the case of coin tosses, the sensitive dependence on the initial state of the coin itself serves as random
sa7  generator, it is the initial state of the environment that generates randomness in the double-well model.

sas 4.4, Perspectives

840 A unitary account of quantum measurements with random outcome, as outlined in this section,
sso  is presently being worked out. Starting from the analytical framework presented here, it requires
es1  massive numerical calculations. The quantum model with finite mode number N can be evaluated in
ss2  numerical simulations following a similar strategy as in the cited work on finite heat baths in optics
es3  and quantum molecular dynamics. The classical model of a bistable measurement process gives rise to
ssa  sets of coupled Hamiltonian equations of motion that can be integrated using symplectic solvers.
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855 In both cases, the immediate objective is to increase the mode number as far as possible, in order
sss  to come close to an irreversible behaviour, at least on time scales larger than all characteristic times of
es7  the object. The scenario sketched above for sufficiently high values of N is a plausible expectation,
sse  based on arguments involving analogies and extrapolating known results. It would relegate it to a
sse  similar category of practically incalculable many-body phenomena such as, e.g., classical thermal
seo fluctuations or Brownian motion.

s61 An unexpected but important consequence of this view is that it effectively merges the “first”
sz and the “second” collapse of the wavepacket into a single unitary process. In this way;, it avoids the
ses conceptually inconvenient detour from a pure initial state (a Schrédinger cat) to a mixture, after the
sea first collapse, and back to a pure state (a definite measurement result) and in particular complies with
ses entropy conservation throughout the entire measurement.

a6 Besides this central message, a unitary account of quantum measurement has various additional
se7 testable implications:

so8 o The approach of the object state to one of the pointer states, as final result of the measurement, will
869 never be complete. In the limit N — oo, the discrepancy is expected to become arbitrarily small,
870 but the postulate of pure states resulting from quantum measurement cannot be accomplished
o71 literally.

a72 e Owing to the unavoidable entanglement between object and meter, the initial state of the meter
873 does not only affect the final state of the object, the state of the object upon leaving the apparatus
a7a in turn also leaves a trace in the meter, which can then be probed by the following measurement.
875 This implies the possibility of correlations between subsequent spin measurements, otherwise
876 incompatible with their randomness, if their separation in time is extremely short.

a77 e Spin measurements on systems prepared as Schrodinger cats with respect to the measured spin
e78 component are in the focus of this section. Notwithstanding, also “redundant” measurements,
879 performed on systems that are prepared already with a definite polarization in the measured
880 direction, are of interest in this context: The existence of a back-action of the meter on the object
se1 implies that even in the case of redundant measurements, albeit with very low probability, the
882 measurement process could alter the spin polarization—trigger a spin flip—so that the result
883 would not coincide with the state of the spin upon entering the apparatus.

ses o The approach outlined herein emphasizes the relevance of the meter state for the measurement
a5 outcome. Besides its initial state proper, this includes also invariant properties of the meter, such
as6 as its eigenenergy spectrum and the way it couples to the object. If, for example, the “meter” is
se7 represented by a microwave cavity, as is often the case in quantum optics, particular structures
ses in the cavity spectrum will have an observable effect on the measurement results.

sso e In state-of-the-art laboratory experiments on quantum randomness [63], photons in
890 counter-rotating polarization states replace the spins traditionally used as gpbits in this context. It
801 appears possible and tempting to work out the theory developed here so as to apply it to photon
802 experiments.

803 Random spin measurements are almost invariably discussed in a special context where indeed

s0a they play a crucial role: Einstein-Podolsky-Rosen (EPR) experiments [79-81]. This issue has deliberately
s0s been avoided here, as it is charged with misleading connotations. In particular, in EPR experiments,
s quantum randomness is not only inextricably connected to nonlocality, it is even discussed as
so7 depending on it as on a necessary condition [63]. The present approach, however, is unrelated
se  to this question, and it is not intended to contribute in any sense to the long-standing debate around
s0o nonlocality and hidden-variable approaches. Yet it cannot be denied that it has implications also for
soo the interpretation of EPR experiments. Should it be the case that the meter has an impact on individual
so1 Spin measurements, how then can spontaneous correlations arise between simultaneous measurements
%02 OnN spin pairs with a space-like separation? This issue should be relegated to future research as a
s0s particularly intriguing subject, to be addressed once the basic questions raised in this section have
s0s been settled.
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o0s 5. Conclusions

206 The present report spans a wide arc, from minimalist models of chaos inspired by card shuffling,
so7 through pseudo-chaotic behaviour in pixelated spaces, through the quantum death of classical chaos,
soe through spin measurement. These diverse subjects do have a common denominator. They allow to
%00 peek, from a macroscopic observation platform, into details of information processing on the smallest
s10 scales, directing attention to a few essential aspects: fundamental limits of total information supply
s and storage density on these scales, “vertical” information currents interchanging entropy with large
o1z scales, “horizontal" exchange of entropy with adjacent degrees of freedom of the environment.

013 They are relevant in particular for an understanding of stochastic processes, collectively perceived
s1s as “randomness”, on the macroscopic level. The analysis presented here supports the view that they
sis form exceptional points where information is not dumped into, but lifted up from small scales. in
s16  volcanic eruptions. While this idea may be little more than a helpful metaphor in the context of
a1z classical chaos, it suggests surprising consequences if applied to a seemingly unrelated field, quantum
sie  measurement. The randomness generated in quantum measurement can be seen in a similar spirit
s10  as resulting from an instability of the coupled object-meter system as it evolves towards alternative
s20 Mmeasurement results.

021 An interpretation and extrapolation of quantum chaos in this sense is but a single example of
o2z the fruitfulness of studying quantum phenomena in terms of information currents. This approach,
23 originating in and inspired by the success of quantum information science applied to computing, is
222 developing into an active research area of its own right, with applications in quantum optics, quantum
»2s many-body physics, and other areas waiting to be explored.

026 While entropy and information currents have proven invaluable tools to understand classical
s2z and quantum chaos, the discussion of randomness in quantum measurement reveals a significant
o2s shortcoming of quantum entropy as an analytical instrument: It is insensitive to the difference between
20 ordered strings and random strings. Intuitively, a structural criterion for randomness should also
30 be reflected in a suitable entropy measure for quantum processes, as it is indeed addressed on the
oa1  classical level, notably in the context of algorithmic complexity [82-85].
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sa1  Appendix A. Entropy conservation under classical canonical transformations

042 For a classical mechanical system comprising f degrees of freedom, specify the state as a
eas probability density function

p: RY - RY, R¥ 51— p(r) e RT, /dzfrp(r) =1. (A1)

oaa In the absence of birth and death processes, dp(r, t)/dt = 0, it evolves in time according to the Liouville
eas equation [26]

0

5P t) = {H(x1),p(r 1)}, (A2)
was  {H(r,t),p(r,t)} denoting the Poisson bracket with the Hamiltonian H(r,t). For the evolution over
ea7 finite times, say from p(r/,t') to p(r”, "), that means that the density is conserved along a trajectory or
oas  flow line,
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p(r”, t//) _ p(r/(r“), t/) _ p(F—l (t//, tl)r//, tl), (A3)

sss Where the operator-valued vector function F(#”,#) maps phase-space points r’ at time ' along their
o0 trajectory till . Conversely, F~1(#, ') traces phase-space vectors back along their trajectory from ¢”
o1 tot.

052 For a state given by a continuous probability density at time ¢, the classical information can be
oss  defined as

I(t) = —c/dzfrp(r,t)h1(d{4p(r, ). (Ad)

osa  The constant ¢ fixes the units of information, d 4 is the resolution in units of action in two-dimensional
ess phase space, given for example by the accuracies dy of length and d, of momentum measurements,
oss 4 = dydy. In order to relate the information at time t" to that at an earlier or later time #/, we can refer
sz to the evolution of the density over a finite time interval, Eq. (A3),

(") = —c/dzfr”p(r", t")ln(dﬁp(r”, t//))

:-—c/lﬂfw7ﬁﬁfla”¢®r%t@1n<d£p(ﬁflu”JUr%t3). (A5)

s [t suggests itself to change the integration variable from the “new” phase-space coordinate r” to the
o “0ld” one r/, involving the Jacobian determinant det(dr” /dr’). The (2f X 2f)-matrix M, also known as
sso stability matrix, linearizes the transformation F,

a’ 9 .

— = F(t",t')r. A6
o1 In the framework of Hamiltonian mechanics, F must be canonical, which requires that M complies
sz with the symplectic condition MtJM = ], ] denoting the symplectic unit matrix [26]. For the Jacobian,

oea it means that (det(M ))2 = 1. This allows to rewrite the integration in Eq. (A5) as,

I(t") = —¢ / 2y’ | det(M)| p(t, ') In(d,p(x', ')
= —c/dzfr’p(r/, t’)ln(df;p(r’, ) = I(t). (A7)

sea The conservation of information in classical Hamiltonian dynamics, manifest in Eq. (A7), evidently is
ses alemma of symplectic phase-space volume conservation under canonical transformations [26]. It is
ses also as general: For example, it extends unconditionally also to systems driven by a time-dependent
ez external potential force, such as the kicked rotor, Eq. (11), which typically do not conserve energy.

sss  Appendix B. Entropy conservation under quantum unitary time evolution

As the most general measure of the information content of the state of a quantum system,
described by the density operator §(t), define the von-Neumann entropy,

I(t) = —cTelp(t) In(p(1))] (A8)

seo Based on the density operator, this definition readily covers time evolutions that include incoherent
s70  processes, such as dissipation or measurement. In the special case of a unitary time evolution, generated
onn by a Hamiltonian H(t) (that may well depend on time), the density operator evolves according to the
o2 von-Neumann equation [86]
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S0 = S 1A0,p(0) (49)
arf n AP
o7z The evolution over a finite time, from p(t') to p(t"), generated by Eq. (A9)
plt") =T, ¢)p(t) UM (1", ), (A10)
o7a is mediated by the unitary time evolution operator
t//
U(t",t')y = Texp < dt H(t)) , (A11)
t/
ors  where the operator 7 effectuates time ordering.
o76 Combining Eq. (A8) with (A11), the von-Neumann entropy [87] is found to evolve from t' to t’ as
I(t") = —cTr[p(t") In(p( ))]
= —cTe [Q(", ) p(¢) UH (", ) In (A", ) p(#) TH (7, 1) ) | (A12)

ozz In order to evaluate the trace, expand the operator-valued log function in a Taylor series around the
ore identity [, In(f + £) = ¥° ; a,2", a, = In" (1) /n! = (=1)""1/n,

Qe ¢) p(t') O (¢, 1) i an (T(E", ) p(E) U (¢, ) — f)”] . (A13)

n=1

I(t") = —cTr

oe Permuting factors under the trace and eliminating intermediate products U (#”, #)U(t",t') = I,

I(t") = —cTr lp( ) i a, AT (¢, ) (U, 1) (p(t’)T)H*(t”,t’))”tl(t”,t’)]
= —cTr [p(t’) ian(ﬁ(t’)—f)” , (A14)

the sum under the trace recomposes to

I(") = —cTe[p(t) In(p(¥))] = L(#). (A15)

ssc The decisive argument in this derivation is evidently that unitary transformations leave the trace of
se1 transformed operators invariant, in direct analogy to the conservation of phase-space volume under
ez canonical transformations that guarantees entropy conservation in classical Hamiltonian dynamics, cf.
083 App A.

osa  Appendix C. Quantum and semiclassical time evolution of the kicked rotor under continuous
sss mMeasurement

086 In order to avoid technicalities not related to the question of the effects of decoherence on quantum
se7  chaos, the response of the meter is assumed to be Markovian, that is, to be immediate on the time scales
ses  Of the measured system, which requires the spectrum of the underlying heat bath to be sufficiently
ses smooth. That means, in terms the autocorrelation function of the meter operator £y [58],

s0 denoting the autocorrelation time of £\1 as Ty and the variance of its fluctuations in the uncoupled

901 eter as <x§4>0. For the object, coupled to the meter via Egs. (45) or (44), this already entails
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an irreversible dynamics. It can be represented as the time evolution of the reduced density
operator po(t) = Trm(f(t)). In the interaction picture, fo1(t) = exp(iHot/h)po(t) exp(—iHot/T)
(transforming to a reference frame that follows the proper dynamics generated by Hp, the Hamiltonian
of the object), Eq. (A16) implies a master equation of Lindblad type [57-59]

po1 = 7[%o1 [Po1 %o, (A17)

The parameter v = ¢°Ty(#3;)0 has the meaning of a diffusion constant, as becomes evident by
rewriting Eq. (A17) in the representation of the operator canonically conjugate to £o = lo, that s, of 6,

. D nis P
poi(6,t) = =, (0lpo(1)10) = 7 545 po(0,1). (A18)

The full master equation for the object density operator is then [57-59]

po = —%[Ho,ﬁo] + 7[%o, [0, %ol], (A19)
now including the unitary time evolution induced by Ho through the term (—i/#)[Ho, fo]. A quantum
map for the reduced density operator §p is obtained by integrating the master equation over a single
period of the driving. For the rotation phase of the time evolution, between two subsequent kicks, Eq.
(A19) yields in the angular-momentum representation, for the case of a global angular-momentum
measurement, Eq. (44),

i
(foln'y = exp (=5 (12 = %) (1= n'2) (o) (A20)

that is, off-diagonal matrix elements (often referred to as “quantum coherences”) decay with a
rate determined by their distance | — m from the diagonal and the effective coupling . If the full
distribution is measured, see Eq. (45), this step takes the form

exp (=212 —m?) — ) (Upolm’) 1 £,

Il A ! ! ! (A21)
(Ipoll’) V=

{I"lpo|m') = {
The kicks are too short to be affected by decoherence, their effect on the evolution of the density
matrix results from the unitary term in Eq. (A19) alone. The integration over the 6-dependent kicks is
conveniently performed by switching from the /- to the f-representation and back again, resulting in

e

("poIm")y = 3o by (k)b (R)(I'| oo ") (A22)
I',m'=—o0
The Bessel functions by, (x) = i"],(x) result from the integration over 6. The full quantum map is
obtained concatenating Eqs. (A20) or (A21) with (A22). For measurements of (I), Eq. (44), it reads

[0 9)

) . in A
sl = 2 by s0050 (k) exp (=5 =) = 0" = ') (s,

I',m'=—c0

I, (A23)

while for measurements of P(I), Eq. (45),

Upsmetlm) = 37 by (K)p_y, (K)
I'm'=—o0

ih _ n
exp (<207 %)) =10y + | Wpsali'). (820

d0i:10.20944/preprints201902.0058.v1
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1013 The semiclassical limit is approached letting the quantum scale 7, of the angular momentum
1014 become small as compared to the periodicity with period 27t of the classical standard map. In this
1015 limit, the Wigner function, which represents the density operator in a quantum equivalent of classical
116 phase space (with quantized momentum, though), evolves as a phase-space flow following classical
1017 trajectories, as does the corresponding classical phase-space density, but superposed with a random
118 quivering. These trajectories are adequately described by a noisy standard map similar to Eq. (12)

o [57-59],
Pun+1 _ Pn + KSin(GﬂJrl) (AZS)
9n+1 0 + Pn + ‘:n ’
1020 Now including a random process ¢, with mean (¢,) = 0, distributed as a Gaussian with variance
a8, = h2yd,_, for measurements of (p), or

(A26)

g = 0 with probability v,
" equidistributed in [0,1] with probability 1 — v,

1022 withv =1—e77,if P(I) is measured. If Ohmic friction is taken into account, as in the master equation
1023 (48), the noisy map (A25) acquires a damping of the angular momentum per time step by a factor

1024 exp(—)x),
Pn+1 _ Pn + KSin(6n+1> (A27)
9n+1 Gn + e_APn + C?I

1025 Appendix D. Initial time evolution for the spin-boson Hamiltonian with a single boson mode

1026 For the spin-boson Hamiltonian with a “heat bath” comprising only a single harmonic oscillator,
1027 cf. Eq (66),

Hy, = %hwo?rx + 802 (4" +2) ©(t) + e (fz*ﬁ + ;) , (A28)

1026 a few key quantities, such as the reduced density operator of the spin sector and its polarization, are
1020 analytically accessible at the initial time ¢ = 0.

1030 Prepare the boson mode in an arbitrary superposition of eigenstates,
9m(0)) = Y- eala), ) leaf? =1 (A29)
=0 a=0

1031 and the spin in a Schrodinger cat state

| . > — L
lpO,lru - \/i

1032 This amounts to an initial condition of the reduced density operator

() £=11). (A30)

. R 1 N
p0(0) = Trm (0(0)) = 5 (lo +0%), (A31)
1033 1i.e., in the representation of the eigenstates of 0,
1(1 =+£1
po(0) = 3 ( o ) (A32)

. . n 2 A
103« Evidently, it represents a pure state, (p(0))” = po(0).
1035 Its first time derivative is obtained immediately from the von-Neumann equation,
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S0, = Tro (5[, 0]
= g0y i) Va+ T (ear1cy + i yq6a)
a=
= £2g0, io Va4 1Re(cqi165). (A33)
a=
136 It implies, in particular, for the purity that
d . 2 5 5 5 A
5 TlEo®)] | = Trolfo(0)p0(0) +po(0)4o(0)]
=+g io Va4 1Re(cor16) Tro [ (Io £ 0x) 0y + 0y (Io £ %) |
a=
= +g i Va +1Re(cqp1c) Tro [0y +i0z + 6y —ioz] = 0. (A34)
a=0
1037 Defining the polarization as the vertical component of the Bloch vector,
a:(t) = (02) = Tro [2:o(t)] = 5 (p11(1) — 1 (1)) (A39)
1038 its first time derivative at t = 0 is obtained as
a,(t) = +2¢ i Va+1Re(cyy1¢;) Tro [620,] = 0. (A36)

a=0

1030 Along the same lines as in Eq. (A33), the initial second time derivative of the reduced density operator
1040 is found to be

0%22 po(t) ’t:O =Tro (;[Hsb,ﬁ(())o

(e )
=+2¢ ) Va+1 (wodzRe(cuy1cy) + wiylm(caiacy))
=0

T 2¢%0, i (|c,x|2(2¢x +1) +/(a+1)(a+1) Re(cmc;j)) , (A37)

a=0

1a1  The second time derivative of the purity reads

2
= 4¢? [ (Z Va+1 Re(caﬂcz))
=0
-Y ((sz +1)|cal® + 24/ (a + 1) (a +2) Re(cHch))] , (A38)
a=0
a2 and the second time derivative of the polarization is

iz (t) = 5 (01 (t) = Py () = £2gwo Y Vo + 1Re(cay1cy).- (A39)
a=0

NI =
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143 Appendix E. A classical analogue of spin measurement

1044 In order to construct a classical model that resembles quantum spin measurement as closely as
1045 possible, the two components of the quantum model, object and meter, require different strategies.
146 For the boson sector, no classical approximations are even necessary, as the heat bath composed of
104z harmonic oscillators is its own classical limit. By contrast, the two-state system representing the
14s  Mmeasurement object is located in the opposite, the extreme quantum regime. A classical limit in the
1040 formal sense does not exist.

Figure A1l. Damped motion in a symmetric double-well potential. In a quartic potential with a
symmetric parabolic barrier (a), Eq. (A40), from an initial state with zero momentum in the unstable
equilibrium position on top of the barrier, random impacts from an environment will send the system
with equal probability towards one of the potential minima at +xy = 4+/a/b. In the presence of
friction, Eq. (A44), it will come to rest, once transient oscillations are damped out, in that well which it
approached initially, giving rise to (b) basins of attraction associated to either one of the wells. The
parameter values of Eq. (A44) are a = 0.25, b = 0.01, A = 0.04.

1050 The fact that, in the limit of a quasi-continuous heat bath, the two opposite pointer states act as
151 attractors in Hilbert space suggests to compare them with a bistable classical system, say a symmetric
w52 quartic double-well with a parabolic barrier (Fig. Ala), given by the Hamiltonian

2

p a b
Ho(po, xo0) = 270 +Vo(x0), Volxo) = —5x+ 5x5 (A40)
mo 2 4
1053 If the heat bath takes the same form as in Eq. (65),
N 2 2
_ pn MpWy o
Hy(p,x) = n; (2mn +— xn> , (A41)

wsa Withp = (p1, ..., pn), x = (X1, ..., xx), and the interaction is modelled, as in the quantum case, as a
1055 linear position-position coupling,

N
Hom(x0,x) = gx0 Y Xn, (A42)
n=1
1056 the total Hamiltonian takes the form
H(po,xo,p,x) = Ho(po, o) + Hom(po, xo, p,x) + Hum(p, x). (A43)

1057 Itis evidently symmetric under the parity operation Py, x: (po, ¥0) = (—po, —x0), (p,x) = (—p, —X).
1se  An initial condition that comes as close as possible to Eq. (58), in particular to the Schrodinger cat
1080 state for the spin, would combine the double-well system prepared at rest in the unstable equilibrium
1060 position on top of the barrier (call it a “Buridan’s ass state”), po(0) = 0, xo(0) = 0, with an arbitrary
1061 initial condition of the heat bath oscillators, p(0) = po, x(0) = xo. The model can be interpreted as an
ez inverted pendulum or a pencil, initially balanced vertically, tip down on a horizontal surface, exposed
1063 to the impinging molecules of the surrounding medium.
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1068 As in the quantum model, the number of degrees of freedom N of the heat bath is a decisive
1es parameter. Already for N = 1, chaotic behaviour is expected for the coupled system. In the limit N —
1es 00, it should approach an irreversible dynamics, characterized by dissipation. With a position-position
w67 coupling as in Eq. (A42) and under similar conditions for the spectrum of the heat bath, it will take the
wes form of Ohmic friction (proportional to the velocity of the damped degree of freedom). For the object,
1060 this would imply an equation of motion such as

mo¥Xo = —AXo +axp — bx%, (A44)

170 With a friction coefficient A that depends on the microscopic coupling g and the spectrum of the heat
171 bath. For moderate values of A, the system will fall from the top of the barrier into one of the wells
1072 and, after oscillations within that well have faded out, remain at rest in that well. As the Hamiltonian
173 as well as the initial state of the object are parity symmetric, it is the initial conditions of the heat bath
wra  Oscillators which determine into which one of the two wells the object will fall. While the boundary
175 between the basins of attraction of the two wells (Fig. Alb) passes exactly through the initial state
w7 po(0) =0, x0(0) = 0, it becomes fuzzy in the presence of the environment and is displaced slightly
17z towards one of the two wells, depending on the initial condition of the environment.

17s  References

1070 1. Lorenz, E.N. J. Atmos. Sci. 1963, 20, 130.
1080 2. Shaw, R.S. Z. Naturforsch. 1981, 36 A, 80.

1081 3. Casati, G.; Chirikov, B.V,; Izrailev, EM.; Ford, J. Stochastic behavior of a quantum pendulum under a
1082 periodic perturbation. in Stochastic Behavior in Classical and Quantum Hamiltonian Systems; Casati, G.; Ford,
1083 J., Eds.; Springer: Berlin, 1992; Lecture Notes in Physics, Vol. 93, p. 334.

108s 4. Ozorio de Almeida, A.M. Hamiltonian systems: Chaos and quantization; Cambridge Momographs on
1085 Mathematical Physics, Cambridge University Press: Cambridge (UK), 1988.

1086 D. Brack, M.; Bhaduri, R.K. Semiclassical Physics; Frontiers in Physics, Vol. 96, Addison-Wesley: Reading (MS),
1087 1997.

1088 0. Feynman, R.P; Vernon Jr., EL. Ann. Phys. (N.Y.) 1963, 24, 118.

1080 7. Caldeira, A.O.; Leggett, A.]. Phys. Rev. Lett. 1981, 46, 211.

1000 8. Leggett, A.].; Chakravarty, S.; Dorsey, A.T.; Fisher, M.P.A; Garg, A.; Zwerger, W. Rev. Mod. Phys. 1987,
1001 59, 1.

1002 9. Joos, E.; Zeh, H.D. Z. Phys. B 1985, 59, 223.

1003 10. Joos, E.; Zeh, H.D,; Kiefer, C.; Giulini, D.J.W.; Kupsch, J.; Stamatescu, I.O. Decoherence and the Appearance of
1004 a Classical World in Quantum Theory, 2nd ed.; Springer: Berlin, 2003.

1005 11. Zurek, WH. Phys. Rev. D 1981, 24, 1516.

1006 12. Zurek, W.H. Phys. Rev. D 1982, 26, 1862.

o7 13.  Zurek, W.H. Pointer basis, and Inhibition of Quantum Tunneling by Environment-Induced Superselection.
1008 in Foundations of Quantum Mechanics in the Light of New Technology; Kamefuchi, S., Ed.; Physical Society of
1009 Japan: Tokyo, 1984; p. 181.

100 14.  Zurek, W.H. Collapse of the wavepacket: how long does it take? in Frontiers of Nonequilibrium Statistical
1101 Physics; Moore, G.T.; Scully, M.O., Eds.; Springer: Berlin, 1984; NATO ASI Series B: Physics, Vol. 135, p. 145.

1102 15. Zurek, W.H. Physics Today 1991, 44, 36.

1103 16. Zurek, W.H. Rev. Mod. Phys. 2003, 75, 715.

1106 17. Zurek, WH.,; Paz, ].P. Phys. Rev. Lett. 1994, 73, 2508.

1105 18. Alicki, R.; Loziniski, A.; Pakonski, P; Zyczkowski, K. J. Phys. A: Math. Gen. 2004, 37, 5157.

1106 19. Unruh, W.G.; Zurek, W.H. Phys. Rev. D 1989, 40, 1071.

107 20. Lichtenberg, A.L.; Liebermann, M.A. Regular and Chaotic Dynamics, 2nd ed.; Applied Mathematical Sciences,
1108 Vol. 38, Springer: New York, 1983.

1100 21. Schuster, H.G. Deterministic Chaos. An Introduction; Physik-Verlag: Weinheim, 1984.

uo  22.  Ott, E. Chaos in dynamical systems, 2nd ed.; Cambridge University Press: Cambridge (UK), 2002.


http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2019 d0i:10.20944/preprints201902.0058.v1

39 of 40

1111 23. Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis, 2nd ed.; Cambridge University Press: Cambridge
1112 (UK), 2004.

113 24, ChirikOV, B.V. Ph]/S REP. 1979, 52, 263.

11a 25. Karney, C.EF. Physica D 1983, 8, 360.

115 26. Goldstein, H. Classical Mechanics, 2nd ed.; Addison-Wesley: Reading (MS), 1980.

116 27. Zaslavsky, G.M. Phys. Lett. A 1978, 69, 145.

117 28. Schmidt, G.; Wang, B.W. Phys. Rev. A 1985, 32, 2994.

mis 29.  Reif, E Fundamentals of statistical and thermal physics; McGraw-Hill series in fundamentals of physics,
1110 McGraw-Hill: Boston (MS), 1965.

1120 30. Crutchfield, ].P,; Packard, N.H. Int. . Theor. Phys. 1982, 21, 433.

1121 31. Huberman, B.A.; Wolff, W.E. Phys. Rev. A 1985, 32, 3768.

1122 32. Wolff, WE,; Huberman, B.A. Z. Phys. B 1986, 632, 397.

1123 33. Beck, C.; Roepstorff, G. Physica D 1987, 25, 287.

124 34 Gutzwiller, M.C. Chaos in Classical and Quantum Mechanics; Interdisciplinary Applied Mathematics, Vol. 1,

1125 Springer: New York, 1990.
1126 35. Reichl, L.E. The Transition to Chaos. In Conservative Classical Systems: Quantum Manifestations; Institute for
1127 Nonlinear Science, Springer: New York, 1992.

12 36.  Haake, . Quantum Signatures of Chaos, 3rd ed.; Springer Series in Synergetics, Vol. 54, Springer: Berlin,
1120 2010.

130 37. Balazs, N.L.; Voros, A. Europhys. Lett. 1987, 4, 1089.

1131 38. Balazs, N.L.; Voros, A. Ann. Phys. (N.Y.) 1989, 190, 1.

1132 39. Saraceno, M. Ann. Phys. (N.Y.) 1990, 199, 37.

1ss  40. Shepelyansky, D.L. Physica D 8, 1983, 208.

113a 41. Fishman, S.; Grempel, D.R.; Prange, R.E. Phys. Rev. Lett. 1982, 49, 509.

1135 42. Fishman, S.; Grempel, D.R.; Prange, R.E. Phys. Rev. A 1984, 29, 1639.

uss  43.  Shepelyansky, D.L. Phys. Rev. Lett. 1986, 56, 677.

137 44. Casati, G.; Ford, J.; Guarneri, I.; Vivaldi, F. Phys. Rev. A 1986, 34, 1413.

1138 45. Shirley, ]H Phys Rev. 1965, 138, B979.

1130 46. Zel’dovich, Y.B. Sov. Phys. JETP 1967, 24, 1006. [Zh. Eksp. Teor. Fiz. 1966, 51, 1492 (1966)].

1120 47. Anderson, PW. Phys. Rev. 1958, 109, 1492.

1141 48. Lee, P.A.; Ramakrishnan, T.V. Rev. Mod. Phys. 1985, 57, 173.

1142 49. Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Holt-Saunders International Editions: Philadelphia, 1976.
11a3 50. Iomin, A.; Fishman, S.; Zaslavsky, G.M. Phys. Rev. E 2002, 65, 036215.

1144 51, Izrailev, EM. Phys. Rep. 1990, 196, 299.

1145 52, Zurek, W.H. Phys. Rev. Lett. 2004, 93, 220401.

1146  53. Bohr, N. Nature 1928, 121, 580.

1147 54. von Neumann, J. Mathematical Foundations of Quantum Mechanics, new ed.; Princeton University Press:
1148 Princeton (N]), 2018. edited by N. A. Wheeler, translated by R. T. Beyer.

1149 55. Haake, F; Walls, D.F. Phys. Rev. A 1987, 36, 730.

1150  D6. Sarkar, S.; Satchell, J.S. Physica 1988, 29D, 343.

1151 57, Dittrich, T.; Graham, R. Europhys. Lett. 1990, 11, 589.

1152 58. Dittrich, T.; Graham, R. Phys. Rev. A 1990, 42, 4647.

1153 59, Dittrich, T.; Graham, R. Continuously Measured Chaotic Quantum Systems. in Quantum Chaos — Quantum
1154 Measurement; Percival, I.; Wirzba, A., Eds.; Springer: Berlin, 1992; NATO ASI Series C: Mathematical and
1155 Physical Sciences, Vol. 358, p. 219.

1156 60. Dittrich, T.; Graham, R. Z. Phys. B 1986, 62, 515.

1s7  61. Dittrich, T.; Graham, R. Europhys. Lett. 1987, 4, 263.

1158 62. Dittrich, T.; Graham, R. Ann. Phys. (N.Y.) 1990, 200, 363.

1150 63. Bierhorst, P; et al.. Nature 2018, 556, 223.

1160 64. Peres, A. Chaos, Solitons & Fractals 1995, 5, 1069.

1161 65. Misra, B.; Sudarshan, E.C.G. J. Math. Phys. 1977, 18, 756.

1162 66. Itano, WM.; Heinzen, D.J.; Bollinger, ].J.; Wineland, D.]. Phys. Rev. A 1990, 41, 2295.
1163 67. Raimond, ].M.; Brune, M.; Haroche, S. Phys. Rev. Lett. 1997, 79, 1964.


http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 7 February 2019 d0i:10.20944/preprints201902.0058.v1

40 of 40

1162 68. Bruskievich, P. Can. Undergrad. Phys. ]. 2007, VI, 30.

1165 69. Cucchietti, EM.; Paz, ].P.; Zurek, WH. Phys. Rev. A 2005, 72, 052113.

1166 70. Goletz, C.M.; Koch, W.; Gromann, F. Chem. Phys. 2010, 375, 227.

167 71. Hasegawa, H. Phys. Rev. E 2011, 83, 021104.

1168 /2. Galiceanu, M.; Beims, M.W.; Strunz, W.T. Physica A 2014, 415, 294.

1160 73. Finney, G.A.; Gea-Banacloche, J. Phys. Rev. A 1994, 50, 2040.

170 74. Irish, E.K.; Gea-Banacloche, J.; Martin, I.; Schwab, K.C. Phys. Rev. B 2005, 72, 195410.

unn 75.  GroBSmann, F; Hanggi, P. Europhys. Lett. 1992, 18, 571.

urz  76. Braak, D.; Chen, Q.H.; Batchelor, M.T.; Solano, E. . Phys. A: Math. Theor. 2016, 49, 300301.
uzz 77. Gea-Banacloche, J. Phys. Rev. A 1991, 44, 5913.

1174 78. Diaconis, P.; Holmes, S.; Montgomery, R. SIAM Rev. 2007, 49, 211.

17s  79. Einstein, A.; Podolsky, B.; Rosen, N. Phys. Rev. 1935, 47, 777.

176 80. Bell, ].S. Physics 1946, 1, 195.

177 81. Aspect, A.; Dalibard, J.; Roger, G. Phys. Rev. Lett. 1982, 49, 1804.

17s  82. Solomonoff, R.J. Inf. Control 1964, 7, 1.

1170 83. Kolmogorov, A.N. Inf. Transmission 1965, 1, 3.

1180 84. Chaitin, G.J. J. Assoc. Comput. Mach. 1966, 13, 547.

181 85. Zurek, W.H. Phys. Rev. A 1989, 40, 4731.

1182 86. Cohen-Tannoudji, C.; Diu, B.; Laloé, F. Quantum Mechanics; Vol. I, Wiley: New York, 1977.
ues  87.  Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information; Cambridge University Press:
1184 Cambridge (UK), 2000.


http://creativecommons.org/licenses/by/4.0/.
http://dx.doi.org/10.20944/preprints201902.0058.v1
http://dx.doi.org/10.3390/e21030286

	Introduction
	Classical chaos and information flows between micro- and macroscales
	Overview
	Example 1: Bernoulli map and baker map
	Example 2: Kicked rotor and standard map
	Anticipating quantum chaos: classical chaos on discrete spaces

	Quantum death and incoherent resurrection of classical chaos
	Quantum chaos in closed systems
	The quantized baker map
	The quantum kicked rotor

	Breaking the splendid isolation: quantum chaos and quantum measurement
	Modelling continuous measurements on the quantum kicked rotor
	Numerical results


	Quantum measurement and quantum randomness in a unitary setting
	Quantum randomness from quantum measurement
	Spin measurement in a unitary setting
	Simulating decoherence by finite heat baths
	Perspectives

	Conclusions
	Entropy conservation under classical canonical transformations
	Entropy conservation under quantum unitary time evolution
	Quantum and semiclassical time evolution of the kicked rotor under continuous measurement
	Initial time evolution for the spin-boson Hamiltonian with a single boson mode
	A classical analogue of spin measurement
	References



