Figure S1. Acute Myelogenous Leukemia: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S2. Acute Myelogenous Leukemia: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed \(-\log(P)\) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of \(-\log(P)\) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S3. Bladder: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S4. Bladder: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed -log(P) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of -log(P) for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S5. Breast: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, $PCNA$ metagene) resulted in significant gene-specific KM logrank tests.
Figure S6. Breast: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, $PCNA$ metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S7. Cervical: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KM logrank tests.
Figure S8. Cervical: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S9. Colorectal: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KM logrank tests.
Figure S10. Colorectal: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed -\log(P) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of -\log(P) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S11. Glioblastoma Multiforme: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S12. Glioblastoma Multiforme: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S13. Head and Neck: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S14. Head and Neck: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed -log(P) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of -log(P) for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S15. Low Grade Gliomas: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S16. Low Grade Gliomas: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S17. Liver: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KM logrank tests.
Figure S18. Liver: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed -log(P) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of -log(P) for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S19. Lung Sq. Cell: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, $PCNA$ metagene) resulted in significant gene-specific KM logrank tests.
Figure S20. Lung Sq. Cell: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S21. Lung: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S22. Lung: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S23. Melanoma: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S24. Melanoma: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed -log(\(P \)) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of -log(\(P \)) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S25. Ovarian: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S26. Ovarian: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KMlogrank tests. Square symbols denote the observed \(-\log(P)\) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of \(-\log(P)\) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S27. Renal Clear Cell: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KM logrank tests.
Figure S28. Renal Clear Cell: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed \(-\log(P)\) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of \(-\log(P)\) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S29. Renal Papillary: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KM logrank tests.
Figure S30. Renal Papillary: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed $-\log(P)$ for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of $-\log(P)$ for KM analysis of the best binarized PC using p randomly selected genes $B = 1000$ times.
Figure S31. Sarcoma: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, \(PCNA \) metagene) resulted in significant gene-specific KM logrank tests.
Figure S32. Sarcoma: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, PCNA metagene) resulted in significant gene-specific KM logrank tests. Square symbols denote the observed \(-\log(P)\) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of \(-\log(P)\) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S33. Stomach: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S34. Stomach: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KMlogrank tests. Square symbols denote the observed \(-\log(P)\) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of \(-\log(P)\) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.
Figure S35. Uterine: Kaplan-Meier logrank test results for single best binarized principal component (0,1) extracted from correlation matrix for p genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KM logrank tests.
Figure S36. Uterine: Empirical p-value test results for single best binarized principal component (0,1) extracted from correlation matrix for \(p \) genes whose adjusted expression (via age, stage, PCNA metagene) resulted in significant gene-specific KMlogrank tests. Square symbols denote the observed -\(\log(P) \) for the best binarized PC based on maximum likelihood analysis using KM analysis. Kernel density curves reflect the distribution of -\(\log(P) \) for KM analysis of the best binarized PC using \(p \) randomly selected genes \(B = 1000 \) times.