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Abstract 

In this study, we describe quark confinement in terms of linear interaction potentials and solve the 
problem of the net spin of a proton. The three quarks in a proton are assumed to revolve around a 
common center, and their masses are determined assuming they are Dirac particles. On the basis of 

these assumptions, the magnetic moment of a proton can be derived. Moreover, the rotation of the 
quarks is considered, in which an electrical current induces a magnetic field. Thus, the scalar product 

of the magnetic moment and field describes the linear interaction potential between the quarks, and 
the mass of the proton can be obtained. The proton mass predicted by this physical model is consistent 
with experimental values, and no numerical or fitting calculations are required. Furthermore, using the 

newly derived spins and angular momentum of the three quarks, we derived the net spin of a proton. 
Additionally, we predicted the mass of a pi-meson from the same model, which agrees with the 
experimental values. 

 

Keywords: quark, linear interactive potential, mass of a proton, spin, quark confinement, pi-meson 

 

 

1 Introduction 

 
Hadrons and quarks have been studied for decades. A proton is composed of three quarks [1-7], and 

its mass has been measured with good accuracy but cannot be predicted theoretically using analytic 
solutions. Numerical calculations for determining the proton mass are well known in quantum 
chromodynamics (QCD), where the mass of hadrons can be calculated using a supercomputer [8-12]. 

The QCD model is described by the SU(3) and Yang-Mills fields [13-15]. 
However, for lattice QCD, the calculation time needed is extremely long even when 

supercomputers are used, and the color charges used by lattice QCD are controversial because the 
color charge of the gluons that mediate the strong interaction has not yet been measured. Moreover, 
lattice QCD uses discrete distances and their interpolations, implying that lattice QCD is an essentially 

approximated method. Thus, there is a need for analytical calculations without the numerical or fitting 
method. Furthermore, currently, the pi-meson mass from quarks cannot be described using the QCD 
method. Recall, the color charge was initially introduced to avoid the violation of the expulsion 

principle [16]. However, because the spin of a quark is 1/6ħ not 1/2ħ, the three quarks in a proton do 

not violate the expulsion principle with no color charges.  
Moreover, the quark confinement problem or the question of why the proton persists is yet to be 

resolved because the numerical calculations for lattice QCD imply a so-called ideal experiment and 

the essentially approximated method, which does not reveal why quarks cannot be measured singly 
and why the proton is not destroyed permanently. This implies that lattice QCD does not provide a 
clear physical picture of the quark confinement. 

 Although lattice QCD calculations of the mass of hadrons have been conducted, based on 
experimental observations of Ω-, pi-and K-particles (i.e., the lattice QCD inputs these masses 

manually), the parameters have been determined such that the numerical calculations predict the 
masses of other unobserved hadrons [17]. Additionally, the lattice QCD inputs the mass of a quark 
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manually [17]. This result is meaningful to some extent, but the calculations cannot be performed 

without numerical and fitting modeling. In conclusion, the results cannot explain the basic physical 
picture of quark confinement. 
Herein, we use more simple and basic calculations for a proton than the QCD approach. This physical 

model yields mathematically the linear interaction potential between quarks, the spins of both a quark 
and a proton, and the mass of a proton without numerical calculations. 

First, we calculate the mass of a quark in a proton (i.e., up and down quark), the spin of a quark, 

the mass of a proton (i.e., the linear potential), and the net spin of a proton. To calculate the mass of a 
proton, we assume that three quarks have rotational moments, and the quark mass is determined from 

the energy gap in a quark’s space–time. The rotation of the quarks is attributed to an electrical current 
that induces a magnetic field, which explains the magnetic moment of a proton. The scalar product of 
the magnetic moment and the magnetic field produces a linear interaction potential between quarks 

that predicts the mass of a proton. 
Considering the background of the problem of the spin of a proton, thus far, it is considered that 

the summation of spins of quarks results in the spin of a proton. However, the spins of quarks' 

contributions reach only 30% of the total spins of a proton [18]. Also, in our previous study [19], 

although the value of spin of each quark is ±1/6ħ, the summation is 1/6ħ, which is 32% of the spin 

of a proton (1/2ħ). Herein, we consider this spin problem. The spin of a proton is the total angular 

momentum j, whose elements could be taken as a summation of spins of quarks and angular 
momentum l. This angular momentum l is naturally introduced because each quark has rotations to 
generate magnetic field energy. 

Comparing these analytic results with experimental observations, the analytic model corresponds 
well with the observed mass and spin of a proton. The derived linear potential provides a mechanism 
that explains how a larger relative distance between quarks causes a stronger attractive force between 

them, implying that quarks cannot be measured in isolation. Although quark confinement has been 
numerically modeled [12,13], herein, we use analytical, mathematical expressions without numerical 

methods; thus, a purely physical model for quark confinement is obtained. 

 

2 Theory 

 

2.1 Proposed model 

As shown in Fig. 1, circular coordinates with a radius r are considered. Each apex has a quark whose 
electric charge is +1/3e because the net charge of a proton is +e. In this model, each quark revolves 

around the origin O, maintaining a constant relative distance between the three quarks. Fig. 1, therefore, 
shows a simple model of a proton. 

 

 

 

 

 

 

 

 

2.2 Mass and spin of a quark 

 

Mass of a quark 
 

The mass of a quark is derived by considering the coulombic force: 

𝐹𝐸 =
1

3
𝑒𝐸 =  

𝑑𝑝𝑞

𝑑𝑡
,      (1) 

where pq is the momentum of a quark, which rotates. 

r O 

Fig. 1 Model of a proton. Three quarks are located at each apex of the equilateral triangle. 

Maintaining the shape of the triangle, the rotation along the origin O is introduced. 
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On the basis of Eq. (1), the coulombic force from a quark is equal to that from an electron, as expressed 

as follows: 

𝑝𝑞  =  3𝑝, 𝑝 =  
𝑚𝑒𝑣

√1 − 
𝑣2

𝑐2

,       (2) 

where p and me are the momentum and mass of an electron, respectively. 

Thus, the mass of a quark mA is expressed as follows: 

𝑚𝐴  =  3𝑚𝑒.       (3) 

 
Spin of a quark 
 

Spin magnetic momentum is expressed as follows: 

𝜇𝐵  =  −𝑔
𝑞

𝑚𝐴
𝑠,       (4) 

where q and s denote the charge of a quark and the spin angular momentum, respectively. 

Herein, the g-factor in Eq. (4) is assumed to be equal to 3. 

𝜇𝐵  =  −3
1/3𝑒

3𝑚𝑒
s =  −

𝑒

𝑚𝑒
(

1

3
𝑠).      (5) 

Because s in Eq. (5) is ±
1

2
ħ, the quark spin is, 

𝑠𝑞  =  ±
1

6
ħ.       (6) 

This spin value is 30% for the net spin of a proton and thus agrees with experiments [18]. 

 

2.3 Mass of a proton and the linear potential 

 

The rotation of the three quarks can be modeled as the current I if we consider the quarks as charged 
particles. Thus, 

𝐼 =  
3 × (1/3)𝑒

𝑇
 =  

𝜔𝑒

2𝜋
,          (7) 

where T, e, and ω denote the period of the rotation movement, the charge of an electron, and the 

angular frequency of the motion, respectively. 
A magnetic moment is generally defined as 

𝑝 =  𝐼𝑆,       (8) 

where p, I, and S denote the magnetic moment, current, and area, respectively. 
The area S is simply expressed as 

𝑆 =  𝜋𝑟2.         (9) 

The following assumptions are introduced: 
(1)  The quark mass is determined by the energy gap of the vacuum in a quark space–time (i.e., it is a 

Dirac particle) 
(2)  The rotational angular frequency is determined by the energy gap from the quarks’ vacuum 
(3)  This Dirac particle is described as 

 
1

2
ħ𝜔 =  3𝑚𝐴𝑐2,         (10) 

where the left-hand side denotes the zero-point energy of the quark in a vacuum and the right-hand 

side is the sum of the energies of the three quarks at rest, with 𝑚𝐴 being the mass of a single quark. 

Notably, in a vacuum (not a quark vacuum), the following equation holds for an electron: 

 
1

2
ħ𝜔 =  𝑚𝑒𝑐2,                 (11) 

where me denotes the mass of an electron. 
Eq. (11) can also be considered a pair creation of an electron and a positron. Thus, Eq. (10) is also 

considered a pair creation of a proton and an antiproton (i.e., �̅��̅��̅�).  
Considering the above Eq. (10), the magnetic moment of a proton p is given as 

𝑝 =  
𝑒

2𝜋

6𝑚𝐴𝑐2

ħ
𝜋𝑟2.              (12) 

The magnetic field H induced by current I is expressed as follows: 

𝐻 =  
𝐼

2𝑟
 =  

𝜔𝑒

4𝜋𝑟
 =  

𝑒

4𝜋𝑟

6𝑚𝐴𝑐2

ħ
.              (13) 

Thus, in combination with the magnetic moment p, the linear interaction potential is expressed as 
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follows: 

𝐸 =  −𝑝 ∙ 𝐻 =  −𝑒2 1

8𝜋
(

6𝑚𝐴𝑐2

ħ
)2𝑟.        (14) 

This potential yields the proton mass given as 
|𝐸|  =  𝑚𝑝𝑐2,                          (15) 

where mp denotes the proton mass. 
 
2.4 Spin of a proton  

 
Because the rotational period time T is divided by a quantized time tc, 

𝑇 =  𝑛𝑡𝑐,          (16) 

where tc of the quantized space–time is derived from the zero-point energy for a quark [19]. For this 
quantized space–time, see the Appendix of this paper. In the quark space, the zero-point energy is 

defined as 
1

2
ħ𝜔 =  3𝑚𝐴𝑐2,            (10) 

where mA is the mass of a quark. Notably, the first generation of quark mass is three times that of an 
electron. Now, from Eq. (10), the quantized space–time is derived as 

𝑡𝑐  =  
2𝜋ħ

6𝑚𝐴𝑐2
.             (17) 

We assume that the angular momentum is quantized as 

𝑙 =  𝑛ħ,                  (18) 

where n is an integer. 
Considering Eq. (10), the angular frequency ω is given as 

𝜔 =  
6𝑚𝐴𝑐2

ħ
.          (19) 

 

As shown in the proposed quark model (Fig. 1), the triangle whose apex denotes each quark has a 
rotation with the period T, 

2𝜋𝑎 =  𝑇𝑣,                        (20) 

where v and a denote the velocity of the quarks’ rotation and the constant radius of a proton, 
respectively. 

Here, the angular momentum is expressed as 

𝑙 =  3𝑚𝐴  ×  3𝑣 ×  𝑎 =  9𝑎𝑚𝐴𝑣,     (21) 

where the number of quarks is 3; thus, combining Eqs. (16), (17), and (20), 

2𝜋𝑎 =  n
2𝜋ħ

6𝑚𝐴𝑐2
∙

𝑙

9𝑎𝑚𝐴
.             (22) 

On the basis of the above equation, l can be expressed as follows: 

𝑙 =  2𝜋𝑎
6𝑚𝐴𝑐2

2𝜋ħ
∙ 9𝑎𝑚𝐴

1

𝑛
.                                  (23) 

Also, considering that 

𝑙 =  𝑛ħ,            (18) 

then, 

𝑛2  =  54𝑚𝐴
2𝑐2𝑎2 1

ħ2
.             (24) 

Therefore, 
 

𝑙 =  √54
𝑚𝐴𝑎𝑐

ħ
ħ ≈ 0.336ħ.              (25) 

Here, a =  0.8 × 10−15 𝑚 (i.e., the radius of a proton), and mA is three times the mass of an electron. 

In the previous section 2.2, we showed that the spin of each quark is given as 

s =  ±
1

6
ħ.                 (26) 

Thus, considering uud in a proton, the total spin of quarks is given as 

𝑠total  =  
1

6
ħ,         (27) 

and the total angular momentum j is 

𝑗 =  𝑠total  +  𝑙 =  
1

6
ħ +  0.336ħ =  0.496ħ ≈

1

2
ħ.           (28) 
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Measuring the spin of a proton as the total angular momentum as above, the result will agree well with 

the measurements [18]. 
 
2.5 Mass of a meson derived from quarks  

 

Please note that this section is the review section of our paper [19]. In the previous section, we 
described quarks’ interaction as static magnetic field energy, with which we could obtain the mass of 

a proton and a linear potential. The salient point is that this interaction was also derived from the zero-
point energy, and the linear attractive potential was obtained purely analytically (not numerically). 

Here we discuss the pi-meson, which acts between two nucleons as a strong attractive interaction. This 
force, which is the Lorentz force, is also derived from the zero-point energy. 

Fig. 2 shows the schematic of two nucleons in which three quarks rotate. Each rotation of the two 

nucleons has the same angular frequency and rotational direction. Now, we consider the motions of 
quarks 1a and 1b. 
 

 
 

Fig. 2 Schematic of two combining nucleons. Each number indicates a quark. In this model, the two 
triangles have the same rotation, i.e., they maintain their relative distances, and each triangle rotates 
with the same angular frequency and in the same direction. Notably, the angular frequency is derived 

from the zero-point energy. These quarks maintain a constant distance; i.e., the radius rc and rotational 
velocity remain the same. Thus, we can use the model in Fig. 3. In Fig. 3, quarks 1a and 1b move in 

the same direction with the same velocity. This model is analogized by two electric current leads, 
which exhibit an attractive force [20], which is the Lorentz force. Thus, the strong interaction between 
two nucleons is the Lorentz force, which is derived from the zero-point energy. 
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Fig. 3 Model of the previous figure. Quarks 1a and 1b rotate at the same relative distance rc. Thus, this 

is a model of line motions. Therefore, each quark experiences the Lorentz attractive force from the 
analogy of two current leads experiencing an attractive magnetic force between each other. 
 

Let us calculate the mass of a pi-meson considering this model.  
First, the internal magnetic permeability of a nucleon is determined on the basis of its perfect 
ferromagnetism (i.e., B = H). Therefore, the Lorentz force is given as 

𝐹 =  
1

3
𝑒𝑣𝐻,       (29) 

𝑣 =  𝑟𝑐𝜔.        (30) 

Here, the zero-point energy is expressed as follows: 
1

2
ħ𝜔 =  3𝑚𝐴𝑐2.      (31) 

Thus, 

𝑣 =  𝑟𝑐
6𝑚𝐴𝑐2

ħ
.       (32) 

From [17], three quarks, each having a charge 1/3e, rotates with an angular frequency ω, resulting in 
a current I and magnetic field H. Thus, the central magnetic field is given as 

𝐻 =  
𝐼

2𝑟𝑐
,        (33) 

𝐼 =  
1/3𝑒

𝑇
,       (34) 

where T is the period of rotations of the quarks. 

Thus, the current is expressed as 

𝐼 =  
1

3
𝑒

𝜔

2𝜋
 =  

1

3
𝑒

1

2𝜋

6𝑚𝐴𝑐2

ħ
.      (35) 

On the basis of this expression, the magnetic field is given as 

𝐻 =  
1

4𝜋

1/3𝑒

𝑟𝑐

6𝑚𝐴𝑐2

ħ
.     (36) 

Thus, energy, which has an important, attractive linear potential, is gained: 

𝑢 =  − ∫ 𝐹𝑑𝑟  =  −
1

3
𝑒𝑣𝐻𝑟𝑐  =  −

1

36𝜋
𝑒2𝑟𝑐(

6𝑚𝐴𝑐2

ħ
)2.   (37) 

Substituting the physics constants, 
|𝑢|  =  21.9 ×  10−12 J.      (38) 

Thus, we obtain the mass of pi-meson mm as 
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𝑚𝑚  =  2.4 × 10−28 kg.                          (40) 

This value agrees with the mass predicted by Yukawa [15]. 
 

3 Results 

 

Here, we compare experimental observations with the value of the proton mass calculated using the 
proposed model. The physical parameters listed in Table 1 were used for the calculations. 
 

Table 1. Parameters for hand calculations 
 

Plank constant ħ                     1.05 × 10−34 Js 

Electric charge q                     1.6 × 10−19C 

Quark mass mA = 3 me                 3 ×  9.1 × 10−31 kg 

Proton radius r = a                    0.8 ×  10−15 m 

 
The results of the calculations are listed in Table 2. Experimental data are averaged from two sources 
[15,20]. As shown in Table 2, the theory of this study well predicts the mass of a proton. 

 
Table 2. Comparison of the mass of a proton  
 

Hand calculation     1.8 × 10−27 kg                             

Experiment         1.67 ×  10−27kg 

 

Moreover, Fig. 4 shows the linear potential between protons based on the interaction of pi-mesons. 
The equation is as follows: 

𝑈 =  
(3 × 

1

3
𝑒)2

4𝜋𝜀0𝑟
 +  3 × [−𝑒2 1

36𝜋
(

6𝑚𝐴𝑐2

ħ
)

2

𝑟].       (41) 

The first term indicates up or down quarks having the charge +1/3e interact with each other by the 
Coulomb repulsive force, and the second term indicates the attractive linear force derived in this study 
(Eq. (37)). Notably, the coefficient 3 implies that, to satisfy the conservation of the charge, there must 

be three modes in Fig. 2 (i.e., 1a–1b, 2a–2b, and 3a–3b). In Fig. 4, at approximately 1 fm, the potential 
becomes 0.85 GeV, which agrees with the experimental values [21].  
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Fig. 4 Linear potential between protons. The attractive linear potential is dominant, but at the realms 

less than 0.4 × 10−16  m, it becomes a repulsive interaction, which is because the three quarks 

having the same electrical positive charge interact as a Coulomb force. Figure 4 is compared with an 
experiment result [21], which implies that the presented theory agrees with the experiment. 
 

4 Discussion 

 

4.1 Advantages and significances of the proposed model over QCD and its validity 

 
Typically, strong force interactions are calculated using a lattice QCD. However, such calculations 

require numerical methods; thus, the resulting values are inaccurate, which describes why the quark 
is not measured singly and why the proton is not destroyed permanently. Notably, that lattice QCD 
employs discrete distances and their interpolations, which are insufficient for a continuous distance. 

Furthermore, the lattice QCD inputs the masses of quarks, K-, pi- and Ω-particles manually, such that 
the numetical calcaltion agree with the experimens [17].Thus, lattice QCD must be an essential 
approximation in addsition to the numerical and fitting calculations. As the approximated method, 

QCD is vital to some degree. However, currently, pi-meson has not been created from quarks using 
QCD. Finally, primitively, we cannot see the real, physical meaning, and existence of color charges, 

which have not yet been observed experimentally. 
Here, after setting the mass and spin of a quark, we started with a simple physical model of three 

quarks forming an equilateral triangle and used basic physical relations to derive the magnetic moment 

and mass of the proton. In the process, we derived the linear interaction potential. Thus, the interaction 
potential increases along with the relative distance between quarks. This relationship explains why 
protons persist and single quarks have not been observed. Thus, the mass of a proton is explained 

using the aforementioned model. Moreover, we could create pi-meson from the quarks, in which an 
interactive linear potential was also obtained. Furthermore, our model correctly predicts the net spin 

of a proton, implying that our employed model is valid. The signifiance of our presented paper is that, 
compared with the lattice QCD, we have not used any manual parameters, i.e., the present paper 
calculates the facts analytically without any fitting. 

 
4.2 Reasons color charges are not needed 

 

To consider why we do not select the concept of a color charge, we recall that color charges were 
initially introduced so that the three quarks in a proton violate the expulsion principle because it was 
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assumed that each quark has a 1/2ħ spin as that of an electron. As mentioned in the previous section, 

however, the total spin stotal of a proton (uud) is 1/6ħ. (These quarks form the orbital angular 
momentum.) This value of the spin does not dominate over the spin of an electron 1/2ħ. The case that 
violates the expulsion principle is that the absolute value of the total spin stotal is over 1/2ħ. For example, 

when there are two equal up-spin electrons at an identical state, the total spin becomes 
1

2
ħ ×  2 =  ħ, 

which dominates over the value of 1/2ħ and violates the expulsion principle. However, even when our 

three quarks are considered and because the total spin stotal is 1/6ħ less than 1/2ħ, the expulsion 
principle is not violated with no color charge. 
 

5 Conclusions 

 

In this study, the problem of quark confinement and the net spin of a proton were studied. The three 

quarks revolve around a common center and have a mass. This rotation produces a current and a 
magnetic field, from which the magnetic moment of the proton can be calculated. Moreover, the scalar 
product of the magnetic moment and the magnetic field result in a linear potential between the quarks, 

and the mass of the proton can be obtained. This derived linear potential between the quarks explains 
the problem of quark confinement since the potential increases along with the distance between quarks. 

This relationship between the quark spacing and the linear potential explains why quarks are not 
observed in isolation and why protons cohere. 
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Appendix 

Zero-point energy and the concept of a quantized space–time 
 
The concept of quantized space–time, as well as the zero-point energy, can be elaborated in a vacuum 

condition. Herein, we describe each concept by solving the Dirac equation. The equation shows that, 
inside a vacuum, during the formation of electrons and positrons, the mass gap existing between them 

can be represented as follows: 

ħ𝜔0  =  2𝑚𝑒𝑐2,    (1a) 

where ω0, me, and c are the angular frequency, electron mass, and speed of light, respectively. 

Eq. (1a) can be expressed as follows: 
1

2
ħ𝜔0  =  𝑚𝑒𝑐2.     (2a) 

The left-hand side is identical to the expression of zero-point energy based on the Hamiltonian of the 

harmonic oscillation: 

𝐻 =  (𝑛 + 
1

2
)ħ𝜔0.    (3a) 

Notably, the first term in the expanded form of Eq. (3a) relates to time-dependent electromagnetic 
fields, which are calculated in depth using quantum mechanics, whereas the second term relates to 
time-independent electromagnetic fields. This expression for the zero-point energy is related to static 

electromagnetic fields. If the angular frequency ω0 is constant, then the zero-point energy is the 
universal specific constant energy. Eq. (3a) also describes the energy gap of the vacuum based on the 
result of the Dirac equation. Therefore, the zero-point energy could be considered an expression of the 

basic energy of the vacuum. As discussed in our previous report [19], the mass of an electron is the 
most basic parameter; thus, Eq. (2a) provides a constant quantized space λ0 and a quantized time t0, 

which are defined as follows: 

𝜆0  =  
ħ

2𝑚𝑒𝑐
,            (4a) 

𝑡0  =  
ħ

2𝑚𝑒𝑐2
.            (5a) 

Consequently, we can derive a more general equation of constant quantized space-time length and 
time as follows: 

𝜆𝑐  =  𝜆0√1 − 
𝑣2

𝑐2
,    (6a) 

𝑡𝑐  =  𝑡0√1 − 
𝑣2

𝑐2
.     (7a) 

 
Fig. 1a shows a schematic of the quantized space–time. The gravitational or Lorentz force from the 

magnetic fields is because up- and down-spin electrons embedded in a quantized space–time λc form 
rotations and then combine as paired quantized space–time because of the attractive force from the 

Lorentz force or gravity. This paired quantized space–time behaves like a boson. 
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Fig. 1a. Schematic model of a quantized space–time. The up- and down-spin electrons do not have 
real bodies but are embedded in a quantized space. That is, each of the two quantized spaces rotates 
to create quantized magnetic field energy, producing the Lorentz force F, which equals the attractive 

gravitational force F. Note that v denotes the rotational velocity, and the magnetic flux is defined on 
the central circle. 

 
 
 

 
 
 

 


