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Abstract: Clustering is an important task in data mining that has become more challenging due to the1

ever-increasing size of available datasets. To cope with these big data scenarios, a high-performance2

clustering approach is required. Sparse grid clustering is a density-based clustering method that3

uses a sparse grid density estimation as its central building block. The underlying density estimation4

approach enables the detection of clusters with non-convex shapes and without a predetermined5

number of clusters. In this work, we introduce a new distributed and performance-portable variant6

of the sparse grid clustering algorithm that is suited for big data settings. Our compute kernels7

were implemented in OpenCL to enable portability across a wide range of architectures. For8

distributed environments, we added a manager-worker scheme that was implemented using MPI. In9

experiments on two supercomputers, Piz Daint and Hazel Hen, with up to 100 million data points10

in a 10-dimensional dataset, we show the performance and scalability of our approach. The dataset11

with 100 million data points was clustered in 1198 s using 128 nodes of Piz Daint. This translates12

to an overall performance of 352 TFLOPS. On the node-level, we provide results for two GPUs,13

Nvidia’s Tesla P100 and the AMD FirePro W8100, and one processor-based platform that uses Intel14

Xeon E5-2680v3 processors. In these experiments, we achieved between 43% and 66% of the peak15

performance across all compute kernels and devices, demonstrating the performance portability of16

our approach.17

Keywords: clustering; machine learning; distributed computing; performance portability; GPGPU;18

OpenCL; peak performance19

1. Introduction20

In data mining, cluster analysis partitions a dataset according to a given measure of similarity.21

The partitions obtained as a result of the clustering process are called clusters. The clustering of22

big datasets poses additional challenges as not all clustering algorithms scale well in the size of the23

dataset. Furthermore, mapping clustering approaches to modern hardware platforms such as graphics24

processing units (GPUs) requires new parallel approaches. And for the use on supercomputers or in25

the cloud, algorithms need to be designed for distributed computing.26

There is a wide range of algorithms that perform clustering. The classic k-means algorithm27

iteratively improves an initial guess of cluster centers [1]. Efficient variants of the k-means algorithm28

have been proposed, e.g. by using domain partitioning through k-d-trees [2] or by a more careful29

selection of the initial cluster centers [3]. As a major disadvantage, k-means requires the number30

of clusters to be known in advance, which is not always possible. Moreover, in contrast to many31

alternatives k-means cannot detect clusters with non-convex shape.32

DBSCAN probably is the most widely-used density-based clustering approach [4]. In its basic33

form, it constructs a cluster based on the number of data points in an ε-sphere around each data point.34

If spheres overlap and have enough data points in them, the data points are part of the same cluster.35

For m data points, the complexity of DBSCAN was stated as O(m log m) in the original paper [4].36

However, more recent work shows that the actual complexity has a lower bound of Ω(m4/3) [5,6].37
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DENCLUE is another example for clustering based on density estimation. It uses a kernel density38

estimation algorithm [7]. Spectral clustering methods cluster datasets by solving a mincut problem on39

a weighted neighborhood graph [8]. There are many more approaches to clustering, e.g. using neural40

networks [9], described in the literature [1,10].41

Some clustering algorithms support GPUs for higher performance. Takizawa and Kobayashi42

presented a distributed and GPU-accelerated k-means implementation in 2006, before modern GPGPU43

frameworks like CUDA and OpenCL were available [11]. Since then, further GPU-enabled k-means44

algorithms have been developed [12–15]. Fewer published results are available for density-based45

GPU-accelerated clustering. CUDA-DClust is a GPU-accelerated variant of DBSCAN that uses an46

indexing approach to reduce distance calculations [16]. Andrade et al. developed a GPU-accelerated47

variant of DBSCAN called G-DBSCAN employing an algorithm with quadratic complexity in the48

dataset size [17].49

While many clustering algorithms have been proposed, not many have been shown to work in50

big data scenarios. k-means++ is a map-reduce variant of the k-mean algorithm that has been used to51

cluster a 4.8 million data points dataset on a Hadoop cluster with 1968 nodes [18]. MR-DBSCAN is a52

DBSCAN variant that could cluster a 2d dataset with up to 1.9 billion data points and is implemented53

with a map-reduce approach as well [19]. The published results of MR-DBSCAN demonstrate excellent54

performance. However, it uses a grid discretization that makes assumptions on the distribution of55

the dataset throughout the domain. Furthermore, it is unclear how the algorithm will scale to higher56

dimensions, as the grid discretization is fully affected by the curse of dimensionality [20]. RP-DBSCAN57

implements a similar approach compared to MR-DBSCAN, but uses a more advanced partitioning58

scheme [5]. RP-DBSCAN was able cluster a 13d dataset with 4.4 billion data points.59

In this work, we introduce a new distributed and performance-portable variant of the sparse grid60

clustering algorithm. This approach builds upon prior work which presented the basic theory and61

compared our approach to other clustering strategies [21].62

The unique building block of our approach is the sparse grid density estimation algorithm. Sparse63

grids are a method for spatial discretization that has been applied to higher-dimensional settings with64

up to 166 dimensions and moderate intrinsic dimensionality [22]. Therefore, in contrast to many65

spatial partitioning approaches, the underlying sparse grid density estimation mitigates the curse of66

dimensionality. The sparse grid clustering method does not rely on assumptions about the distribution67

of data, it can successfully suppress noise and it can detect clusters of non-convex shape. Compared to68

k-means, sparse grid clustering does not require the number of clusters as a parameter of the algorithm.69

In this paper, we use the Euclidean norm as the measure for the similarity of data points.70

Methods based on sparse grids have been used for regression and classification tasks [22,23].71

In prior work, we have shown the applicability of these methods in heterogeneous computing and72

high-performance computing settings [24–26]. However, to our knowledge this work presents the first73

high-performance results for sparse grid clustering.74

Our algorithm was designed with a focus on high performance and performance portability. On75

the node-level we use OpenCL, as it offers basic portability across a wide range of hardware platforms.76

We not only support GPUs and processors of different vendors, our approach achieves a major fraction77

of the peak performance of all devices used. To map our method to clusters and supercomputers,78

we implemented a distributed manager-worker scheme. Due to the underlying method and the79

high-performance distributed approach, we show that sparse grid clustering is well-suited for large80

datasets. We provide results for 10d datasets with up to 100 million data points and 100 clusters.81

The remainder of this paper is structured as follows. In Sec. 2, we give an overview of the82

sparse grid clustering algorithm. Then, in Sec. 3, we introduce the sparse grid density estimation83

as our core component. The other components of the algorithm are introduced in Sec. 4. Section 584

describes the parallel and distributed implementation and discusses features of the algorithms from85

a high-performance perspective. We show results for three node-level hardware platforms and two86
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(a) The dataset for cluster analysis
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(b) A density estimation of the 2d dataset and the grid
points (black) of the sparse grid density function
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(c) After calculating the k-nearest-neighbor graph
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(d) The k-nearest-neighbor graph after being pruned
Figure 1. The application of the sparse grid clustering algorithm to a 2d dataset with three slightly
overlapping clusters. After calculating the sparse grid density estimation and the k-nearest-neighbor
graph, the graph is pruned using the density estimation. This splits the graph into three connected
components.

supercomputers in Sec. 6. Finally, in Sec. 7, we remark on implications of the presented algorithm and87

discuss future work.88

2. Clustering on Sparse Grids89

In this section, we describe the sparse grid clustering algorithm on a high level. We describe its90

components in Sec. 3 and 4 in more detail.91

Sparse grid clustering assumes a d-dimensional dataset T with m data points that was normalized
to the unit hypercube [0, 1]d:

T := {xi ∈ [0, 1]d}m
i=1. (1)

We further assume that the dataset has been randomized.92

The sparse grid clustering algorithm is a four step algorithm. Except for the last one, these steps are93

shown in Fig. 1 at the example of a 2d dataset with three clusters. The sparse grid clustering algorithm94

first calculates a density estimation of the dataset using the sparse grid density estimation algorithm95

(Fig. 1b). Then, a k-nearest-neighbor graph of the dataset is computed (Fig. 1c). In the third step, the96

density estimation is used to prune the graph. The algorithm prunes nodes in low-density regions and97

edges that intersect low-density regions (Fig. 1d). In the fourth and final step the weakly-connected98

components of the pruned graph are retrieved. The connected components of the graph are returned99

as the detected clusters.100

This description immediately suggests one of the tuning parameters of the algorithm. The sparse101

grid clustering method requires a carefully chosen threshold value t that is used for pruning the102

k-nearest-neighbor graph.103
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(a) A 1d full grid in nodal basis
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(b) A 1d sparse grid in the hierachical basis
Figure 2. The nodal and the sparse grid in Fig. 2a and Fig. 2b both have discretization level l = 3 and
are equal for d = 1. Both use hat functions φl,i as basis functions, but in a nodal and in a hierarchical
formulation. Note that sparse grids employ less grid points compared to full grids of the same level for
d ≥ 2 (see Fig. 3).
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(a) The subgrids of varying discretization level. Dotted
lines outline the support of the basis functions centered
at the grid points.
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(b) The 2d sparse grid (black) obtained by
superimposing the components grids.

Figure 3. The subgrids of a sparse grid with l = 3 (Fig. 3a) and the resulting sparse grid (Fig. 3b).
Greyed out subgrids and grid points would be part of the corresponding full grid.

3. Estimating Densities on Sparse Grids104

The sparse grid density estimation is build upon the concept of sparse grids. We therefore briefly105

introduce sparse grids and then describe how densities can be estimated with the sparse grid method.106

3.1. Sparse Grids107

As this work focuses on the sparse grid clustering algorithm and not on the basic sparse grid108

method, this introduction to sparse grids is necessarily brief. For a thorough presentation, we109

recommend the overview by Bungartz and Griebel [27].110

A d-dimensional grid can be defined on the unit hypercube [0, 1]d with an equidistant mesh width111

hn = 2−n for a discretization level n and, therefore, 2nd grid points. With basis functions centered at112

the grid points, a corresponding function space is spanned by the linear combinations of the basis113

functions. We call this a full grid approach. Full grids can be represented in a hierarchical basis. From114

this representation, it is a small step to sparse grids.115

The hierarchical approach constructs a final grid by superimposing a set of subgrids. First,
we define an index set that is used to enumerate the grid points on the d-dimensional subgrids of
discretization level l ∈ Nd:

Il := {(i1, . . . , id) : 0 < ik < 2lk , ik odd}. (2)

In this work, we employ hat functions as basis functions. The scaled and translated 1d hat
functions are defined as

φl,i(x) := max(0, 1− |2l x− i|). (3)
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For d > 1, we use a tensor-product approach:

φl,i(x) :=
d

∏
j=1

φlj ,ij
(xj). (4)

Given an index set Il and the basis functions φl,i, we can define the subspaces

Wl := span{φl,i : i ∈ Il}. (5)

The subgrids and their grid points xl,i := (i1hl1 , . . . , idhld) for the subspaces W(1,1) . . . W(3,3) are116

displayed in Fig. 3a for a 2d grid.117

With the direct sum
⊕

, a full grid of discretization level n ∈ N in the hierarchical basis can be
defined as

Vn :=
⊕
|l|∞≤n

Wl. (6)

Figure 2 shows how a 1d grid is represented in the standard (nodal) basis (Fig. 2a) and the hierarchical118

basis (Fig. 2b).119

Sparse grids are based on the observation that for sufficiently smooth functions only a small
additional interpolation error is introduced if certain grid points are removed [27]. This mitigates the
curse of dimensionality. As a result, the sparse grid function space V(1)

n is constructed from a different
set of subspaces:

V(1)
n :=

⊕
|l|1≤n+d−1

Wl. (7)

Figure 3 shows how a 2d sparse grid is constructed from subgrids that correspond to the subspaces of120

the grid.121

A sparse grid function f ∈ V(1)
n is given as

f (x) = ∑
|l|1≤n+d−1

∑
i∈Il

αl,iφl,i(x) =:
N

∑
j=1

αjφj(x) , (8)

where we sum up all N weighted basis functions in some order, and where N denotes the total number122

of grid points. Since our algorithms iterate the basis functions linearly, we use the simplified notation123

when the algorithms are presented. The coefficients αl,i are usually referred to as surpluses.124

3.2. The Sparse Grid Density Estimation125

The sparse grid density estimation, originally proposed by Hegland et al. [28], uses an initial
density guess fε than is smoothed using a spline-smoothing approach:

f̂ = arg min
u∈V

∫
Ω
(u(x)− fε(x))2dx + λ||Lu||2L2

. (9)

This approach results in a function f̂ ∈ V that balances closeness to the initial density guess with
the regularization term ||Lu||2L2

that enforces smoothness on the resulting density function. The
regularization parameter λ controls the degree of smoothness of f̂ . L usually is some differential
operator. We use the initial density guess proposed by Hegland et al. that places a Dirac delta function
δxi at every data point xi:

fε :=
1
m

m

∑
i=1

δxi . (10)
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Figure 4. The effect of the regularization parameter λ on a 2d dataset with four data points. For smaller
λ values, the function becomes more similar to the initial density guess of Dirac δ functions. The
function becomes smoother for higher values of λ.

As in prior work, we compute the best sparse grid function u ∈ V(1)
n and use a surplus-based

regularization approach [22]. Therefore, the problem to solve is

f̂ = arg min
u∈V(1)

n

∫
Ω
(u(x)− fε(x))2dx + λ

N

∑
i=1

α2
i . (11)

This formulation leads to a system of linear equations

(B + λI)α = b, (12)

with Bij = (φi, φj)L2 , the identity matrix I and bi =
1
m ∑m

j=1 φi(xj).126

We solve this system of linear equations with a conjugate gradient solver (CG). Given this iterative
solver, two major operations need to be performed: calculating the right-hand side once and computing
the matrix-vector product v′ = (B + λI)v in every CG iteration. The calculation of the right-hand side
is straightforward. However, the matrix-vector product requires efficient computations of the L2 inner
product of pairs of basis functions:

(φl,i, φl′ ,i′)L2 =
∫

Ω
φl,i(x)φl′ ,i′(x)dx (13)

=
∫ 1

0
φl1,i1(x1)φl′1,i′1

(x1)dx1· · ·
∫ 1

0
φld ,id(xd)φl′d ,i′d

(xd)dxd. (14)

The 1d integrals can be computed directly:

∫ 1

0
φl,i(x)φl′ ,i′(x)dx =

{
2
3 hl , xli = xl′i′ ,

hl′φl,i(xl′i′) + hlφl′i′(xli), else.
(15)

We note that in many instances the integral will be zero due to the non-overlapping support of the hat127

functions.128

Figure 4 shows the effect of varying the regularization parameter λ for a 2d dataset. λ has to be129

chosen with care, as too small values might split a single cluster into multiple clusters. On the other130

hand, if λ is too large separate clusters could be part of the same high-density region.131

3.3. Streaming Algorithms for the Sparse Grid Density Estimation132

A high-performance sparse grid density estimation algorithm needs to efficiently compute the133

two operations described above: the computations of the matrix-vector product v′ = (B+ λI)v and the134

right-hand side b with bi =
1
m ∑m

j=1 φi(xj). To efficiently perform these operations, we use an implicit135

matrix approach. That is, components of the matrix B get re-computed whenever they are accessed.136
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This approach might seem wasteful at first glance. However, as the size of B scales quadratically in the137

number of grid points, it quickly becomes infeasible to store the matrix in memory.138

Algorithm 1: The streaming algorithm for
computing the right-hand side b

for i = 0 . . . N do
bi ← 0
for j = 0 . . . m do

bi += ∏dim
d=1 φ

(d)
i (x(d)j )

bi ← 1
m bi

Algorithm 2: The streaming algorithm for
computing the matrix-vector multiplication
v′ = (B + λI)v

for i = 0 . . . N do
v′i ← 0
for j = 0 . . . N do

v′i += ∏dim
d=1

∫ 1
0 φ

(d)
i φ

(d)
j dx · vj

v′i += λ · vi

139

The computation of the right-hand side requires the computation of m vector components.140

Algorithm 1 shows the loop structure of a scalar version of this operation. As the basis function141

evaluations in the innermost loop are independent, we can parallelize this algorithm over the outer142

loop, i.e. the iteration over the grid points. The evaluation of hat functions is branch-free. Therefore,143

this algorithm is well-suited for vectorization.144

We can formulate the matrix-vector operation as a second streaming algorithm with two nested145

loops over the grid points. This is shown in Algorithm 2. Similar to the hat function evaluations of146

the right-hand side, the L2 norms can be independently computed as well. Thus, we can parallelize147

Algorithm 2 by processing the outer loop in parallel. The two cases for computing the 1d integral148

according to Eq. 15 slightly complicate vectorization. Our approach is the computation of both cases149

in a vectorized algorithm and a single conditional move to return the correct result. Computing150

the xli = xl′i′ case is only a single multiplication, as we can move the computation of hl = 2−l to151

a precomputation step. Therefore, and because the xli = xl′i′ case rarely occurs, the overhead in152

each integration step is low compared to an optimal algorithm that would only evaluate the correct153

integration case.154

4. Other Steps155

In this section, we first present the algorithm for computing the k-nearest-neighbor graph. Then,156

we show how we apply the sparse grid density estimation to prune it. Finally, we briefly describe how157

we perform the connected component search in the pruned graph.158

4.1. Computing the k-Nearest-Neighbor Graph159

Algorithm 3: A variant of the O(m2) k-nearest-neighbor algorithm that uses b bins.

Input : dataset T = {xi ∈ [0, 1]d}m
i=1

Output : k-nearest-neighbor graph g as neighborhood list
for c = 1 . . . b do

distsc ← 0
for i = 1 . . . m do

c← 0 // c iterates over the number of bins
for j = 1 . . . m do

dist← distance(xi, xj)

if dist < distsc+1 then
binsc+1 ← j
distsc+1 ← dist

c← (c + 1) mod b
gi ← extract_nearest_k(dists, bins, i)
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To create the k-nearest-neighbor graph, we have developed an approximate variant of the O((k +160

d)m2) algorithm that compares all pairs of data points. Instead of creating a neighborhood list with161

k entries directly, we employ an approach with b bins that implicitly splits the dataset into b ranges.162

For every data point i the dataset is iterated. Thereafter, each bin contains the nearest neighbor of its163

assigned range of data points. To obtain an approximate k-nearest-neighbor solution, the k indices164

with the smallest associated distances are selected from the b bins. Pseudocode for this approach is165

displayed in Algorithm 3.166

This k-nearest-neighbor algorithm offers several advantages. It is not affected by the curse of167

dimensionality and therefore works well for the higher-dimensional datasets we target. In contrast,168

spatial partitioning approaches such as k-d-trees tend to suffer from the curse of dimensionality.169

Furthermore, it maps well to modern hardware architectures as it is straightforward to parallelize and170

vectorize. Through cache blocking of the outer loop that iterates i, the resulting algorithm is highly171

cache-efficient as well. Finally, the number of bins b is the only parameter to specify.172

Binning was introduced for performance reasons. It allows us to only perform a single comparison173

in the innermost loop instead of k comparisons and, therefore, reduces the complexity to O(dm2). The174

effect on the detected clusters is minimal, as it is very likely that nodes are still connected to close-by175

nodes of the same density region and therefore the same cluster. Furthermore, edges that intersect176

low-density regions get pruned, as we describe in the next section.177

The overall clustering algorithm is relatively robust with regard to different values of k. However,178

k should not be too small. Otherwise, the k-nearest-neighbor graph might be split into more connected179

components than are desired. For larger values of k, performance decreases slightly in the subsequent180

pruning step as the pruning algorithm has linear complexity in k. In our experience, choosing k with181

values between five and ten balances this trade-off. Consequently, we set b to 16, as it is larger than182

expected values of k and leads to a good-enough approximation of the k-nearest-neighbor graph.183

On modern hardware platforms, this choice of b should not increase the cache or register memory184

requirements of the algorithm to an extent that would affect performance.185

4.2. Pruning the k-Nearest-Neighbor Graph186

Algorithm 4: A streaming algorithm for pruning low-density nodes and edges of the
k-nearest-neighbor graph. The density function is evaluated at the location of the nodes
and at the midpoints of the edges.

Input : k-nearest-neighbor graph g as neighborhood list, dataset T,
density estimation f̂ (x) = ∑N

j αjφj(x), threshold t
Output : pruned k-nearest-neighbor graph g
for i = 0 . . . m do

if f̂ (xi) < t then
prune_node(gi)
continue

p1, . . . , pk ← load_midpoints(T, gi)
for j = 1 . . . k do

if f̂ (pj) < t then
prune_edge(gi,j)

To prune the k-nearest-neighbor graph, we use two criteria. The density function is evaluated at187

the position xi that corresponds to the current graph node gi. If the density is below a threshold t, the188

node and its edges are removed. Furthermore, we evaluate at the midpoints of all outgoing edges and189

prune all edges where the density is below t. By evaluating the midpoints, clusters can be successfully190

separated even if two data points are in high-density regions that belong to different clusters. Our191

pruning approach is shown in Algorithm 4.192

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2019                   doi:10.20944/preprints201902.0019.v1

Peer-reviewed version available at Algorithms 2019, 12, 60; doi:10.3390/a12030060

http://dx.doi.org/10.20944/preprints201902.0019.v1
http://dx.doi.org/10.3390/a12030060


9

Similar to the other algorithms presented, iterations of the outer loop are independent and can193

therefore be parallelized. The most expensive operations in this loop, multiple evaluations of the194

density function, are branch-free. Therefore, this algorithm is straightforward to vectorize as well.195

As there are only O(m · (k + 1)) conditionals compared to overall O(m(k + 1)N) operations, the196

conditionals do not significantly impact performance.197

4.3. Connected Component Detection198

To detect the weakly connected components in the pruned graph, we first convert the directed199

graph to an undirected graph by adding all inverted edges. Then, we perform a depth-first search200

to detect the connected components. This classical algorithm performs O(km) memory operations.201

Because the complexity of this algorithm is significantly lower compared to all other steps, this202

algorithm is only shared-memory parallelized and not distributed.203

5. Implementation204

In this section, we describe how our sparse grid clustering approach was implemented. To that205

end, we first consider the OpenCL-based node-level implementation and then present our distributed206

manager-worker approach.207

5.1. Node-Level Implementation208

Except for the connected component detection, all steps of the clustering algorithm have been209

implemented as OpenCL kernels. There are two OpenCL kernels for the density estimation: one for210

calculating the right-hand side and one for the matrix-vector multiplication. A third OpenCL kernel211

implements the k-nearest-neighbor graph creation and a fourth kernel implements the density-based212

graph pruning.213

From a performance engineering perspective, these OpenCL kernels have some commonalities.214

All kernels were parallelized over the outermost loop, exploiting the fact that the loop iterations are215

independent. Furthermore, all OpenCL kernels were designed to be branch-free. The only exception is216

the density matrix-vector multiplication kernel that has a single branch in the innermost loop. This217

branch is implemented using the OpenCL select function to differentiate between the integration cases.218

On modern OpenCL platforms, this should be compiled to a conditional move. Because only standard219

arithmetic is used and because of the regular control flow, the four compute kernels get vectorized on220

all OpenCL platforms we tested. Due to the design of the compute kernels, we expect this to be the221

case on many untested OpenCL platforms as well.222

The local memory is used in all kernels to either share grid points or data points between all223

threads of the work-group. For example, the prune graph kernel evaluates 1d sparse grid basis224

functions in its innermost loop. The threads of a work-group process different data points, but all225

always evaluate their data point with the same basis function. Therefore, the data of the currently226

processed basis function can be shared efficiently through the local memory. Furthermore, the data227

point assigned to a thread remains constant throughout the lifetime of the thread. It can therefore be228

stored in private memory, which translates to the register file on GPU devices and the L1 cache (or the229

registers) on processors.230

Table 1 shows the number of floating-point operations for the different OpenCL kernels. As both231

the number of grid points N and the size of the dataset m can be large, all operations are potentially232

expensive. In most data mining scenarios, the sparse grid will have significantly fewer grid points233

than there are data points. Therefore, the k-nearest-neighbor graph creation is expected to be the most234

expensive operation. Depending on the number of CG iterations, the density matrix-vector product235

can be moderately expensive as well. However, it only depends on the grid points and therefore236

benefits from N < m.237

To estimate the achievable performance of our compute kernels, we calculated the arithmetic238

intensities of our compute kernels. As Tab. 1 shows, the arithmetic intensities of a work-group with a239
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Kernel FP ops./complexity Arith. int. (ws=1) Arith. int. (ws=128) Peak lim. (%)

density right-hand side N ·m · d · 6 1.5 F B−1 192 F B−1 67%
density matrix-vector CG-iter. · N2 · d · 14 1.2 F B−1 149 F B−1 64%

create graph m2 · d · 3 1.0 F B−1 129 F B−1 83%
prune graph m · N · (k + 1) · d · 6 4.5 F B−1 576 F B−1 67%

Table 1. The number of floating-point operations for the different OpenCL kernels and the arithmetic
intensities (in floating point operations per byte) for a work-group size (ws) of one thread and 128
threads. The peak limit states the achievable fraction of the peak performance given the instruction
mix of the compute kernels.

I/O

M

(a) Load dataset

M

W W W

(b) Broadcast
sparse grid and
dataset

M

W W W

(c) Receive b

M

W W W

(d) Broadcast v
and receive v′

(each CG step)

M

W W W

(e) Receive
pruned kNN
graph

I/O

M

(f) Find conn.
components,
report clusters

Figure 5. The distributed clustering algorithm from the perspective of the manager node. The
(inexpensive) assignment of index ranges is not shown.

single thread would be too low to achieve a significant fraction of the peak performance on modern240

hardware platforms (see Tab. 2 for the machine balances of the hardware platforms we used). However,241

with a larger work-group size of 128 threads, and because we efficiently use the shared memory,242

the arithmetic intensity is strongly improved. As a consequence, memory accesses do not limit the243

performance of these compute kernels on modern hardware platforms. On processor-based platforms,244

the L1 cache enables similarly-high arithmetic intensity values.245

The arithmetic intensity values would allow our compute kernels to achieve peak performance.246

However, as our compute kernels make use of instructions other than fused-multiply-add (FMA)247

operations, the instruction mix reduces the achievable performance. To calculate the peak limit given248

in Tab. 1, we make the (realistic) assumption that the remaining vector floating-point instructions run249

at half the performance of the FMA instructions [29].250

5.2. Distributed Implementation251

For distributed computing, we developed a manager-worker model that was implemented with252

MPI. To create work that can be assigned to the workers, we split the loops that were used for253

parallelization (the outermost loops of the compute kernels) once again. We use a static load balancing254

scheme that distributes the work equally to the workers. Our implementation supports single as well255

as double precision. Currently, we transfer double precision data even if single precision is used in the256

compute kernels.257

From the perspective of the manager node, the distributed algorithm consists of four major steps:258

creating the right-hand side of the density estimation, the density matrix-vector products, an integrated259

graph-creation-and-prune step and the connected component search. These steps are shown in Fig. 5.260

Note that the matrix-vector multiplication step (Fig. 5d) is repeated once per CG iteration.261

When the application is started, the dataset is read by the manager node and sent to all workers,262

requiring m · d · 8 B of communication per worker. Then, the manager node creates the grid and sends it263

to the workers as well. This requires 2 ·N · d · 8 B per worker to be communicated. After these relatively264

expensive transfers are completed, grid and dataset are held by the workers. Therefore, most remaining265

communication steps only require small amounts of data to be transferred. We demonstrate in Sec. 6266

that the overhead of these communication steps is indeed very low compared to the computational267

requirements of the remainder of the algorithm.268
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Device Type
Cores/
Shaders Frequency Peak (SP) Mem. Bandw. Machine Balance

Tesla P100 GPU 3584 1.3 GHz (boost) 9.5 TF 720 GB s−1 12.9 F B−1

FirePro W8100 GPU 2560 0.8 GHz (max) 4.2 TF 320 GB s−1 13.2 F B−1

2xXeon E5-2680v3 CPU 24 2.5 GHz (base) 1.9 TF 137 GB s−1 14.0 F B−1

Table 2. The hardware platforms used in the distributed and node-level experiments. We list the
frequency type that best matches our observations during the experiments.

To compute the density right-hand-side operation, every worker computes an index range of the269

components of b. As b is aggregated on the manager node, N · 8 B need to be transferred. During each270

CG step and after the final CG step, the manager sends v (α after the final iteration) to all workers.271

Each worker calculates the result of an index range of v′ and communicates the partial result back to272

the manager node. Therefore, N · 8 B per worker are communicated during each iteration and after the273

final iteration. Collecting the partial results for v′ requires another N · 8 B to be transferred per CG274

step.275

The creation of the k-nearest-neighbor graph only requires the assignment of index ranges and no276

further communication. Because the pruning of the k-nearest-neighbor graph reuses the same index277

ranges that were assigned in the graph creation step, this step only requires the pruned graph to be278

sent to the manager node. This step requires k ·m · 8 B to be transferred. Having received the pruned279

graph, the manager node performs the connected component detection and has thereby computed the280

clusters.281

6. Results282

In this section, we evaluate our distributed and performance-portable sparse grid clustering283

approach. We first present the hardware platforms and datasets that were used in the experiments.284

Then we provide the results of our node-level experiments that demonstrate performance portability.285

The quality of the clustering is discussed in the context of the node-level experiments as well. Finally,286

we present distributed performance results for two supercomputers: Hazel Hen and Piz Daint.287

6.1. Hardware Platforms288

On the node level, we used three different hardware platforms. Two of them are GPUs: the289

Nvidia Tesla P100 and the AMD FirePro W8100. To represent standard processor platforms, we used a290

dual socket machine with two Intel Xeon E5-2680v3 processors. The relevant technical details of these291

hardware platforms are summarized in Tab. 2.292

Our distributed experiments were conducted on two supercomputers. The Cray XC40 Hazel Hen293

is an Intel processor-based machine with 7712 nodes for a peak performance of 7.4 PF. Hazel Hen is294

located at the High Performance Computing Center Stuttgart (HLRS) in Stuttgart, Germany. It has295

dual socket nodes with Xeon E5-2680v3 processors and 128 GB of memory per node.296

The Cray XC40/XC50 Piz Daint is a mostly GPU-based supercomputer with a peak performance of297

27 PF. Piz Daint is located at the Swiss National Supercomputing Centre (CSCS) in Lugano, Switzerland.298

Each of the XC50 nodes that we used have a single Intel Xeon E5-2690v3 processor with 64 GB of299

memory and a single Nvidia Tesla P100 GPU. In our experiments, we only used the Tesla P100 to300

compute the main compute kernels of our application.301

6.2. Datasets and Experimental Setup302

In all of our experiments, we used synthetic datasets with clusters drawn from Gaussian303

distributions. The cluster centers µ were drawn randomly. We normalized the datasets to [0.1, 0.9]d. As304

this moves data points sufficiently towards the center of the domain, we can use a sparse grid without305

boundary grid points.306
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Name Size Clust. σ Dim. Dist. Noise Type

10M-3C 10M 3 0.12 10 3 · σ 0% distributed
100M-3C 100M 3 0.12 10 3 · σ 0% distributed
1M-10C 1M 10 0.05 10 7 · σ 2% node-level

1M-100C 1M 100 0.05 10 7 · σ 2% node-level
10M-100C 10M 100 0.05 10 7 · σ 2% node-level
Table 3. The Gaussian datasets for the distributed and the node-level runs

Name λ Threshold t Level Grid Points CG ε k ARI Type

1M-10C 1E-5 667 6 76k 1E-2 6 1.0 node-level
1M-100C 1E-6 556 7 0.4M 1E-2 6 0.85 node-level
10M-10C 1E-5 1167 7 0.4M 1E-2 6 1.0 node-level

10M-100C 1E-6 1000 7 0.4M 1E-2 6 0.90 node-level
10M-3C 1E-6 0.7 ·max(α) 7 0.4M 1E-3 5 - distributed
100M-3C 1E-6 0.7 ·max(α) 8 1.9M 1E-3 5 - distributed

Table 4. The parameters used for configuring the clustering algorithm and the adjusted Rand index
(ARI) for the node-level experiments. In the distributed runs, the threshold was specified as a fraction
of the maximum surplus of the density function. The node-level runs used an absolute threshold value.

The parameters used to generate the datasets are listed in Tab. 3. The datasets with 100 clusters307

are challenging, as the density estimation needs to correctly separate 100 high-density regions in a308

moderately-high dimensional setting. Furthermore, to make it possible to assess the quality of the309

clustering, we generated the node-level dataset so that the clusters are well-separated by forcing a310

minimum distance of 7 · σ between the cluster centers. We verified that the noise connects all clusters311

in the unpruned k-nearest-neighbor graph.312

As the clustering algorithm requires parameterization as well, these parameters are shown in313

Tab. 4. The adjusted Rand index (ARI) is a quality measure for clustering and is addressed in Sec. 6.4.314

In all of our experiments, we used single-precision floating-point arithmetic.315

6.3. Node-Level Performance and Performance-Portability316

The tables 6 and 7 show the runtimes of the node-level experiments. For more consistent results,317

the runs were repeated four times and the measurements averaged. The 1M-10C dataset could be318

processed on a Tesla P100 in less than 20 s. Processing the 1M-100C dataset is more time-consuming319

and required 248 s again using a Tesla P100. The main reason for the time increase is because the320

density estimation requires more time due to a larger sparse grid and a smaller λ, which leads to more321

CG iterations.322

Tesla P100 FirePro W8100 2xE5-2680v3

dens. right-hand side GFLOPS 4584 2271 (753 MHz) 1177
limit: 67% peak peak (of lim.) 48% (72%) 59% (88%) 61% (91%)

dens. matrix-vector GFLOPS 4090 1939 (759 MHz) 919
limit: 64% peak peak (of lim.) 43% (67%) 50% (78%) 48% (75%)

create graph GFLOPS 5474 1433 (467 MHz) 852
limit: 83% peak peak (of lim.) 58% (70%) 60% (72%) 44% (53%)

prune graph GFLOPS 5360 1817 (822 MHz) 1265
limit: 67% peak peak (of lim.) 56% (84%) 43% (64%) 66% (99%)

Table 5. The node-level performance of the clustering algorithm. All results are for single-precision
arithmetic. The performance was measured with the 10M-10C dataset and the parameters listed
in Tab. 4. Note that the achievable peak performance is limited by the instruction mix to values
significantly below 100%.
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Figure 6. The duration of the node-level experiments with one million data points. Because the
1M-100C dataset requires a larger grid, the density estimation takes up most of the overall runtime.
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Figure 7. The duration of the node-level experiments with 10 million data points
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The experiments with the 10 million data points datasets are shown in Tab. 7. Due to the increased323

size of the datasets, the k-nearest-neighbor graph creation takes up the largest fraction of the runtime324

in both experiments. This illustrates that for large datasets, because of its quadratic complexity, the325

k-nearest-neighbor graph creation step will dominate the overall runtime. In these two experiments,326

increasing the number of clusters has only a small effect on the runtime. Mainly, because in both327

cases a sparse grid with level l = 7 was used. On the P100 platform, the experiments with the328

10M-100C dataset took 1162 s. The other hardware platforms took longer, proportional to their lower329

raw performance.330

Table 5 shows the performance achieved in the node-level experiments. It displays the331

performance in GFLOPS and the achieved fraction of peak performance. The achieved fraction332

of the peak performance relative to the instruction-mix-based limit is displayed as well. These results333

were calculated from the runs with the 10M-10C dataset as specified in Tab. 4.334

Our implementation achieved a significant fraction of the peak performance across all devices.335

Additionally, if the limit imposed by the instruction mix is taken into account, we see that many336

combinations of kernels and devices run close to their maximally achievable performance. The only337

kernel that reaches less than two-thirds of its achievable performance is the create graph kernel on338

the Xeon E5 platform. We suspect that this is due to throttling of the processor, as this operation puts339

extreme stress on the vector units.340

The fastest device by a significant margin is the Tesla P100, as it is the most recent of the devices and341

has the highest theoretical peak performance. It is 2.23− 3.29x faster than the W8100 and 4.41− 5.49x342

faster than the Xeon E5 pair.343

The FirePro W8100 achieves similar fractions of the peak performance compared to the P100 at a344

lower absolute level of performance. It is still 1.67− 1.98x faster than the pair of Xeon E5 processors.345

During our experiments, the FirePro W8100 displayed strong throttling which is why we list the346

average frequencies observed for the invidivual compute kernels. The reduced frequencies imply347

lower achievable peak performance (2 · 2560 · favr) which we take into account for the calculation348

of the peak performance and the resulting achieved fraction of peak performance. The average349

frequencies reported were measured in a separate run of the 10M-10C experiment. In case of the350

k-nearest-neighbor graph kernel, a frequency of only 492 MHz was measured. This nearly halves the351

achievable performance of this compute kernel.352

Because it has the lowest absolute performance, the pair of Xeon E5 processors scores lowest.353

However, the achieved fractions of the peak performance are similar to the other devices. This indicates354

that performance is not only portable across GPU platforms, but processor-based platforms as well.355

6.4. Clustering Quality and Parameter Tuning356

This work mostly focuses on the performance of our sparse grid clustering approach. Nevertheless,357

to make our evaluation more realistic, we tuned the clustering parameters of our node-level runs for358

(nearly) optimal clustering quality. For a more detailed discussion of the achievable level of quality,359

we refer to prior work which compared sparse grid clustering to other clustering algorithms [21]. A360

comparison of the sparse grid density estimation to other density estimation methods is available as361

well [30].362

To assess the quality, we used the adjusted Rand index (ARI) which compares two cluster363

mappings. Because we know the mapping of data points to clusters of each of our synthetic datasets,364

these reference cluster mappings were compared to the output of the sparse grid clustering algorithm.365

The calculated ARI of the node-level experiments is shown in Tab. 4. These results show that we366

can nearly perfectly reconstruct the clusters of both datasets with ten clusters. The datasets with 100367

clusters are more challenging and would require slightly larger grids for further improvements.368

We used a parameter tuning approach to fit the computed cluster mappings to the reference369

mappings. During parameter tuning, we first select a value for the regularization parameter λ and370

then search for the best pruning threshold t. This was implemented as two nested binary searches.371
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To speed up parameter tuning in general, our sparse grid clustering implementation allows for372

reusing of the k-nearest-neighbor graph and calculated density estimations. As the k-nearest-neighbor373

graph is the same independent of all parameters, it can be calculated once overall. Moreover, the374

density estimation changes only if λ is changed. Thus, the density estimation can be reused while375

an optimal value for t is searched. Only the comparably cheap graph pruning operation and the376

connected component search are performed at every parameter tuning step.377

6.5. Distributed Results on Hazel Hen378

Figure 8 shows the results of the distributed experiments conducted on Hazel Hen. Results are379

given for the individual compute kernels as well as the whole application run. The total runtime, and380

the average application TFLOPS derived from it, is based on the wall-clock time of the application and381

not only on the three major distributed operations. At the highest node count, it took 4226 s to process382

the 100M-3C dataset and 259 s to process the 10M-3C dataset. We achieved up to 100 TFLOPS for the383

100M-3C dataset using 128 nodes and up to 23 TFLOPS for the 10M-3C using 32 nodes. Therefore,384

we achieved 41% and 37% of the peak performance at the highest number of nodes for the whole385

application including all communication and file input-output operations.386

The creation and pruning of the k-nearest-neighbor graph scales nearly linearly. Calculating the387

density estimation scales slightly worse. As the grid is much smaller than the dataset, there is too little388

work available per node during the density estimation step to achieve optimal performance at high389

node counts.390

Figure 8c displays the duration of the initial loading and distribution of the dataset, the creation391

and the transfer of the sparse grid and the duration of the connected component search. As Fig. 8c392

shows, loading and communicating the dataset does not take up significant amounts of time. The393

same is true for creating and transferring the sparse grid. However, the connected component search394

becomes relatively expensive for the 100M-3C dataset, as it is performed on a single node and therefore395

cannot scale with an increasing number of nodes. Nevertheless, at 128 nodes the connected component396

search still only requires 107 s or 2.5% of the total runtime for the 100M-3C dataset. For the 10M-3C397

dataset and 32 nodes, the connected component search takes up 2.2% of the total runtime.398

6.6. Distributed Results on Piz Daint399

We conducted the distributed experiments before we were able to do some final node-level400

optimizations, and due to compute time limitations we were not able to recompute the experiments.401

Thus, the results of these experiments are not directly comparable to the node-level performance402

results. Since these experiments, the node-level performance of all compute kernels was improved.403

Because of this, scalability might by slightly overestimated. Furthermore, the duration of the connected404

component search is not listed in these results, as we used a different algorithm at the time of the405

experiments.406

Figure 9 shows duration and performance of the experiments performed on Piz Daint for both407

the 10M-3C and 100M-3C datasets. Again, results are given for the individual compute kernels as well408

as the whole application run. As Fig. 9a shows, the application scales well to 128 nodes. Similar to409

the Hazel Hen results, the integrated graph-creation-and-prune step scales nearly linearly, whereas410

the density estimation scales slightly worse. Using 32 nodes, the clustering of the 10M-3C dataset411

takes 100 s. It takes 1198 s to cluster the 100M-3C dataset using 128 nodes. This translates to an average412

performance of 59 TFLOPS for the 10M-3C dataset and 352 TFLOPS for the 100M-3C dataset as Fig. 9b413

shows. Thus, at 128 nodes our implementation still achieves 29% of the peak performance for the414

whole application including all communication and the loading of the dataset.415

Figure 9c displays the duration of the initial loading and distribution of the dataset and the416

creation and transfer of the sparse grid to the workers. Only the loading of the dataset is somewhat417

expensive.418
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(b) The performance in TFLOPS of the clustering experiments on Hazel Hen
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(c) The durations for loading the dataset, creating the sparse grid and transferring both to the workers. We
additionally show the time needed to perform the connected component search.

Figure 8. Strong scaling results for both the 10M (left graphs) and 100M (right graphs) Gaussian dataset
on Hazel Hen. Figure 8a and Fig. 8b show duration and performance of the major compute kernels
and the application as a whole. The duration of other (minor) tasks is shown in Fig. 8c.

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 February 2019                   doi:10.20944/preprints201902.0019.v1

Peer-reviewed version available at Algorithms 2019, 12, 60; doi:10.3390/a12030060

http://dx.doi.org/10.20944/preprints201902.0019.v1
http://dx.doi.org/10.3390/a12030060


17

4 8 16 32

Nodes

101

102

D
u

ra
ti

o
n

(s
)

10M dataset

app. total

dens. right-hand side

sum density mult.

knn and prune

4 8 16 32 64 128

Nodes

102

103

104

D
u

ra
ti

o
n

(s
)

100M dataset

app. total

dens. right-hand side

sum density mult.

knn and prune

(a) The durations in seconds of the clustering experiments on Piz Daint
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(b) The performance in TFLOPS of the clustering experiments on Piz Daint
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(c) The durations for loading the dataset, creating the sparse grid and transferring both to the workers.

Figure 9. Strong scaling results for both the 10M (left graphs) and 100M (right graphs) Gaussian dataset
on Piz Daint. Figure 9a and Fig. 9b show duration and performance of the major compute kernels and
the application as a whole. The duration of other (minor) tasks is shown in Fig. 9c.
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Compared to Hazel Hen, the performance on Piz Daint is consistently higher, which is explained419

by the difference in node-level performance. However, due to the processor-based architecture, Hazel420

Hen nodes require less work per node to be fully utilized. Therefore, on Hazel Hen a slightly higher421

fraction of peak performance was achieved.422

7. Discussion and Future Work423

Sparse grid clustering, as implemented in the open source library SG++, is one the few clustering424

methods available for the clustering of large datasets on HPC machines. The underlying density425

estimation approach enables the detection of clusters with non-convex shapes and without a426

predetermined number of clusters. Due to the sparse grid discretization of the underlying feature427

space, the grid or discretization points are chosen independently of the data points. This is key to the428

linear complexity with respect size of the data of all sparse-grid-related algorithms. This property is429

highly useful for addressing big data challenges.430

With our optimized implementation, we have demonstrated performance portability across431

three hardware platforms. Due to the use of OpenCL as the programming language, careful and432

highly-tuned performance optimization, and algorithms that map very well to the capabilities of433

modern hardware platforms, we expect similar performance on related platforms. Our strong scaling434

experiments show that even on 128 nodes of Piz Daint, scalability is mainly limited by the available435

work per node.436

Our method achieves a significant fraction of the peak performance on all devices tested. This437

shows that OpenCL is a good choice for developing performance-portable software. Furthermore,438

our GPU results illustrate how the higher raw performance of GPUs in contrast to CPUs translates to439

similarly improved time-to-solution.440

As our next steps, we plan to further improve the performance of our approach by addressing441

two key issues: First, the k-nearest-neighbor graph creation currently uses an O(m2) algorithm and442

thus represents the bottle-neck. We already have an early implementation of a GPU-enabled variant443

of the locality-sensitive hashing algorithm. The locality-sensitive hashing algorithm can calculate an444

approximate k-nearest-neighbor graph in sub-quadratic complexity [31]. Adopting this algorithm,445

sparse grid clustering can be performed in sub-quadratic complexity as well.446

Second, our implementation supports the use of spatially-adaptive sparse grids [22,30]. They447

enable the placement of grid points only where they significantly contribute to the overall solution. An448

adaptive approach will significantly increase the dimensionality of the datasets that can be clustered as449

it has been demonstrated for standard learning tasks before. Currently, creating an adaptively-refined450

sparse grid is itself expensive as it requires the system of linear equations of the density estimation to be451

solved repeatedly after each refinement. Thus, a priori refinement strategies that create well-adapted452

sparse grids with less effort are another important direction of future research.453

8. Materials and Methods454

The source code of this study will be made available as part of the sparse grid toolbox SG++ at the455

time of publication [32]. We archive the scripts for creating the synthetic datasets at the same location.456
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