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Abstract

There is a large body of research on determining the impact of field variability of soil on
crop Yields. In contrast, site-specific information about crop responses to agronomic
treatments is less frequent. On-Farm Precision Experimentation (OFPE) brings important
information to understand the spatial variation of crop response to agronomic practices
and thus to improve agronomic decisions. The objective of this work was to investigate
the spatial variability of corn yield responses to nitrogen and seed rates using OFPE in
four fields in the US Midwest. Geographically weighted regression was applied to
generate local regression coefficients, which were used to delineate response zones in
each field. The results showed the existence of great potential to adjust the rates of these
inputs according to the response of each zone identified by the proposed method. The
results of this study can be applied to reevaluate expectations on variable rate
prescriptions guided largely by soil and variability.

Keywords: Zea mays L., nitrogen, chessboard design, geographically weighted
regression, yield response functions.

Introduction

In the last decades, site-specific technologies including yield monitors, remote sensing
imaging, and variable rate input application have become increasingly available to
farmers. Many farmers have access to spatial information, and software tools to process
this information into better decision. However, this decision-making process is usually
aided by a knowledge base largely supported by agronomic trials, which involves
changing management practices and subsequent monitoring of the effect on the system
output (Pringle et al. 2004). Traditional agronomic experimentation is usually conducted
in small plots that by design are managed to generate broad inferences from small field
areas. This scenario was conceived in a time when all experimental steps were labor
intensive, restricting the feasible extension of the plots. For decisions interacting with
environment and management, the results obtained in these experiments may not align
with farmers field’s conditions.

To improve the adoption of site-specific management, it is necessary to obtain additional
information about how site-specific treatments impact crop responses (Bullock and
Bullock 1994). Recent advances in GPS based technologies have enabled agronomic
experiments to be applied on-farm and in much larger areas than was previously possible.
Such experiments generate large amounts of site-specific response data that can be used
to understand the spatial variation of optimum rates. This involves approximating site-
specific yield response functions, which requires methods of spatial analysis (Bullock and
Lowenberg-DeBoer 2007). Site-specific prescriptions of inputs often make the
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assumption that crop responses are expressed by a linear function of yield or some soil
parameter, given that there is insufficient information about site-specific responses to
farm management. The Data Intensive Farm Management (DIFM) project has developed
a platform to carry out many on-farm experiments and better understand site-specific
yield responses.

The most prominent field design applied at the DIFM is the chessboard arrangement
covering the entire field. This arrangement generated an unprecedented amount of
information, requiring appropriated statistical methods to extract meaningful information.
Geographically weighted regression (GWR) is a statistical methodology that can be used
to highlight local differences in the relationship between spatial variables. The use of this
data analysis technique is particularly suitable for OFPE field arrangements since the
treatments are randomly assigned to entire fields. In the GWR, the parameters of the
models are allowed to vary in space and can be mapped and interpreted as a spatial
variable (Fotheringham 1997; Plant 2012). It can be used as an effective method to
evaluate the assumption of stationarity in situations of significant variation of regression
coefficients. Therefore, the objective of this study was to apply GWR to evaluate spatial
variability of corn response to nitrogen and seed rates in on-farm precision experiments.

Materials and methods

Field experiments

The datasets used in this research were generated from corn (Zea maiz L.) on-farm trials
conducted under the DIFM project. The fields were chosen to represent typical corn
production systems in the Corn Belt, with two rainfed fields from Illinois and two central
pivot irrigated fields from Nebraska, in the 2017 growing season (Table 1). Each
experiment had completely randomized designs (CRD) with at least four corn seeding
rates (SR) and four N rate (NR). Each field had on average 40 ha and 200 experimental
units. All treatment levels were implemented in the field using variable rate enabled seed
planters and nitrogen applicators. Each experimental unit was 85 m long and about 18 m
wide, representing two times the machinery swath width. Other farming practices were
kept constant throughout the field and were conducted by the farmers in accordance with
standard protocols for the region.

Table 1. Description of the four cornfields used for the on-farm precision experimentation.
Seed Rate N Rate ECS Elev. Yield

Field* Location Irrig. (seedshal) (kghal) (mSm?) (m) (Mg ha)
1 Effingham—1IL  No 66k —96k 78 —129 20 (4) 180 11.2(1L.7)
2 Moultrie — IL No 76k —96k 96 -—147 28 (5) 210 11.9(0.4)
3 Hamilton— NE  Yes 69k —89k  24-99 40 (7) 572 14.9 (0.6)
4 Clay — NE Yes 69k — 91k 0-90 49 (6) 522 15.9(0.8)

*Irrig: Irrigation; ECS: Soil electrical conductivity (0-30 cm); Elev: Elevation; Numbers inside
parenthesis are the standard deviation.

Data collection and processing

Yield data was collected during harvest using the combine yield mapping systems. Digital
elevation maps (DEM) and soil electrical conductivity (EC) were used to characterize
field variability. DEM maps were created by interpolating the elevation obtained by the
real-time kinematic global navigation satellite system receiver (RTK GNSS). Other
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topographical indexes were derived from the DEM to represent slope, curvature, and
terrain wetness index. EC data was collected previous to planting using a Veris U3 sensor
system (Veris Technologies, Inc. Salina, KS). The yield point coordinates were used to
sample the information from the interpolated EC and DEM maps. The length of the
experimental unit was further divided to produce almost squared polygons (Figure 1a).
These were used as the observational units, and all data was averaged to these polygons
with approximately 400 m2 (Figure 1b).
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Figure 1. Field trial arrangement of the on-farm precision experiment in Field 3 at Hamilton-NE
(a), and subsection of the field ilustrating yield monitor data and the observational units (b).

Methodology of Analysis
Based on ordinary least squares, GWR modifies the estimates of intercept (fo) and
regression coefficients (f1) as a function of the geographic position (xi,yi) (Eqg.1).

Y; = Bo(xi, ¥i) + B1(xi, yi) + &, i=1..,n (1)

Following matrix notation regression coefficients are estimated as:

b(x,y:) = X'GOuy )X X'Gx,y:)Y,  (2)

WhereY is the vector whose components are the Yiand X is a matrix containing the values
of the explanatory variables Xi. In this notation, the GWR model incorporates local
variation in the estimated coefficients b(xi, yi) by incorporating a geographic weighting
matrix G(xi, yi). This diagonal matrix incorporates the distance dij between predictors X;
at (xi, yi) and dependent observations Y;j at location (xj, yj). As dj increases, the
explanatory variable is expected to decrease in influence over the response variable (Plant
2012). This decay is captured by elements gj; of the matrix G (Eq. 3).

9ij(x;,yi) = exp (‘ [%]2> (3)

For this study, we used a Gaussian adaptive spatial kernel, with a bandwidth h set to
include for each location several neighbors corresponding to 5% of the total number of
data points. Following these specifications, GWR analysis was conducted using the R
package spgwr (Bivand and Yu 2017). The regression model had yield as the dependent
variable and the NR and SR effects as the independent variables, plus an intercept.
Therefore, for each coordinate in the center of the Gaussian kernel, three model
parameters were estimated, as well as statistical metrics such as the standard error and the
R-squared.
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The resulting coefficients of NR and SR were standardized between 0 and 1, by
subtracting the minimum and dividing by the maximum value. These coefficients were
labeled as seed rate response index (SRI1) and nitrogen rate response index (NRI). As the
index increases, so does the responsiveness to treatments. These indexes were submitted
to unsupervised k-means clustering to create three response zones for each field to better
illustrate the differences. The indexes were also compared with auxiliary variables
representing the spatial variability of soil and terrain parameters, using correlation
analysis.

Results and Discussion

Overall yield values were higher in the irrigated fields in Nebraska, averaging 15.4 Mg
ha, than the non-irrigated fields in lllinois, averaging 11.4 Mg ha' (Table 1). The
coefficient of yield coefficient of variation (CV) was smaller than 10% for most fields,
except for Field 1 in which the CV was 15%. The low CVs are probably due to the
aggregation of the data in the polygons, which tends to smooth the variations, and to the
high average yield observed for the fields, which denotes favorable weather conditions.
Although the overall variation is not large, it is possible to observe the presence of spatial
variation in the yield in the fields. The main distinct area in Field 3 (Figure 2a), is the low
yielding region in the northwest of the field. Comparing the yield with the results of the
GWR analysis in this area for the SR (Figure 2b), most of this area can be considered as
highly responsive to the increment in seed rates, indicating a negative correlation between
yield and the optimum SR. However, the east side of the field present the highest yields
and also the highest responses to SR. The ability of using the results from the GWR
analysis to make this type of observation, which would not be possible without mapping
the regression coefficients, is one of the motivations for recommending its application in
the analysis of OFPE data.

Similar results regarding the spatial variation of the response index were observed in the
four fields used in this study. These results reiterate the importance of incorporating the
spatial variability as one of the basis for agronomic experimentation. The presence of
high responses in regions with contrasting yield levels can be seen as a good indication
that yield potential or target yield alone are not good predictors of the optimum rates.
Yield maps of previous years are commonly used as the deciding factor to delineate
management zones or to make variable rate prescriptions. However, there is no guarantee
that the optimum rate in two given regions with similar yields is in fact the same.

Yield (Mg ha-")
12510 13.0

13.010 13.5

13510 14.0 SRI

14.0t0 14.5 00t00.2

14510 15.0 021004

15010 15.5 0.4100.6
I15‘5m 16.0 I 0.6t00.8

16.010 16.5 T 0810 1.0

Figure 2. Corn yield (a), and the seed rate response index (b) in Field 3 at Hamilton-NE,
for the 2017 crop season.
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Unsupervised k-means clustering was used to generate yield response zones as an
alternative to the traditional yield-based management zone delineation. There is no
reason to assume the same zones are optimum for different inputs, therefore distinct
response zones were created for SR and for NR in each field. The clusters were labeled
as “High”, “Medium”, and “Low” according to the average response index in each group.
The results were consistent across fields in terms of the delineation of meaningful spatial
contiguous zones and the different yield response in each zone.

The two fields in Illinois were more responsive to NR than SR. In these fields, the
response to NR was positive for the high and medium response zones and no response
was observed in the low response zone (Figure 3). In the low response areas of this field,
there seems to be no decrease in yield using the lowest N rate at 96 kg ha® in comparison
with the higher rates, therefore there exists a potential to apply less N in this region of the
field while maintaining the same vyields. For the same fields, the response to SR was
positive only in the high response zone, no response was observed in the medium response
zone and negative response was observed in the low response zone. In this scenario, the
average rate was already optimized for the average response of the field, but there is still
potential to increase the yields using the same amount of SR, by redistributing it inside
the field according to the response zones.

The two irrigated fields in Nebraska were more responsive to SR than NR. In these fields,
the response to SR was positive for the high and medium response zones and no response
was observed in the low response zone (Figure 4). In the high response zones the yield is
increased by more than 1500 kg ha when the SR is increased from 69k to 89Kk, in the
medium response zone the yield increase for the same variation is still more than 1000 kg
ha?, while in the low response areas of this field the increase is within the variation
represented in the boxplot. Therefore, there is a great potential to adjust the seed rates
according to the response of each zone. The response to NR in the same fields was
positive only in the high response zone, no response was observed in the medium response
zone and negative response was observed in the low response zone.
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Figure 3. Zones of yield response to nitrogen (NRI) and corresponding box-plots showing the
different yield response to nitrogen rate treatments, for the Field 2 at Moultrie, IL.
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Figure 4. Zones of yield response to seed rate (SRI) and corresponding box-plots showing the
different yield response to seed rate treatments, for the Field 3 at Hamilton, NE.

Correlations between the NRI and SRI and different field variables are shown in Table 2.
In general, the field characteristics impacting SRI are different than the ones impacting
NRI. Elevation had a dominant role impacting SRI with correlations of 0.76 and -0.60 for
Field 1 and Field 3, respectively. For most of the fields the correlation between electrical
conductivity and topographic characteristics were less than 0.30. These low correlations
imply that there might be interactions between these field characteristics within the field,
impacting these different yield responses to NRI and SRI treatments.

Depending on availability, more variables could be added to this list, including the yields
and remotely sensed data in previous years. Multivariate statistical methods and other
methods of data analysis can also be employed to explore the additive contribution of
different factors. Future work will also focus on developing econometrics models to
identify optimal treatment rates based upon input prices and site-specific yield responses
to NR and SR in fields. In addition, as more fields are added to the DIFM project,
relationships between site-specific responses and site-specific characteristics will be
further investigated.

Table 2. Correlation coefficient between the crop response to seed and nitrogen rate and field
characteristics.

Field* Variable ECS ECD Elevation  Slope  Curvature TWI
1 SRI 0.08 0.17 -0.60 0.19 0.00 0.17
NRI -0.26 -0.22 -0.02 0.20 -0.04 0.08

5 SRI 0.41 0.30 -0.38 -0.36 0.26 0.11
NRI -0.11 -0.01 0.19 0.12 -0.11 0.02

3 SRI -0.17 -0.20 0.18 -0.05 -0.28 -0.08
NRI -0.13 -0.10 0.26 -0.09 -0.38 -0.14

4 SRI -0.30 -0.28 0.76 0.58 -0.38 0.01
NRI 0.16 0.08 -0.44 -0.29 0.27 -0.17

*ECS: Soil electrical conductivity (0-30 cm); ECD: Soil electrical conductivity (0-90 cm); TWI:
Terrain wetness index; SRI: Seed rate responsiveness index; NRI: Nitrogen rate responsiveness
index.
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Conclusions

The DIFM project has developed a platform to carry out many on-farm experiments and
better understand site-specific yield responses. The use of GWR identified differential
yield responses to seed rate and nitrogen in cornfields in different producing regions in
US Midwest. Therefore, there is great potential to adjust the rates of these inputs
according to the response of each zone identified by the proposed method.

The presence of high responses in regions with contrasting yield levels can be seen as a
good indication that yield potential or target yield alone might not be good predictors of
the optimum rates. These results should be taken into account when setting expectations
on variable rate prescriptions guided largely by soil and yield variability.

Acknowledgements

This research was funded in part by a USDA National Institute of Food and Agriculture
Food Security Program grant, award number 2016-68004-24769.

References

Bivand, R., & Yu, D. (2017). spgwr: Geographically Weighted Regression. https://cran.r-
project.org/package=spgwr

Bullock, D. S., & Bullock, D. G. (1994). Calculation of optimal nitrogen fertilizer rates.
Agronomy Journal, 86(5), 921-923.

Bullock, D. S., & Lowenberg-DeBoer, J. (2007). Using spatial analysis to study the values
of variable rate technology and information. Journal of Agricultural Economics,
58(3), 517-535. d0i:10.1111/j.1477-9552.2007.00116.x

Fotheringham, A. S. (1997). Trends in quantitative methods I: stressing the local.
Progress in Human Geography, 21(1), 88-96.

Plant, R. E. (2012). Spatial data analysis in ecology and agriculture using R. cRc Press.

Pringle, M. J., Cook, S. E., & McBratney, A. B. (2004). Field-scale experiments for site-
specific crop management. Part I: Design considerations. Precision Agriculture,
5(6), 617-624. doi:10.1007/s11119-004-6346-1


http://dx.doi.org/10.20944/preprints201902.0007.v1

