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Abstract 

 

There is a large body of research on determining the impact of field variability of soil on 

crop yields. In contrast, site-specific information about crop responses to agronomic 

treatments is less frequent. On-Farm Precision Experimentation (OFPE) brings important 

information to understand the spatial variation of crop response to agronomic practices 

and thus to improve agronomic decisions. The objective of this work was to investigate 

the spatial variability of corn yield responses to nitrogen and seed rates using OFPE in 

four fields in the US Midwest. Geographically weighted regression was applied to 

generate local regression coefficients, which were used to delineate response zones in 

each field. The results showed the existence of great potential to adjust the rates of these 

inputs according to the response of each zone identified by the proposed method. The 

results of this study can be applied to reevaluate expectations on variable rate 

prescriptions guided largely by soil and variability. 

 

Keywords: Zea mays L., nitrogen, chessboard design, geographically weighted 

regression, yield response functions. 

 

Introduction 

 

In the last decades, site-specific technologies including yield monitors, remote sensing 

imaging, and variable rate input application have become increasingly available to 

farmers. Many farmers have access to spatial information, and software tools to process 

this information into better decision.  However, this decision-making process is usually 

aided by a knowledge base largely supported by agronomic trials, which involves 

changing management practices and subsequent monitoring of the effect on the system 

output (Pringle et al. 2004). Traditional agronomic experimentation is usually conducted 

in small plots that by design are managed to generate broad inferences from small field 

areas. This scenario was conceived in a time when all experimental steps were labor 

intensive, restricting the feasible extension of the plots. For decisions interacting with 

environment and management, the results obtained in these experiments may not align 

with farmers field’s conditions. 

To improve the adoption of site-specific management, it is necessary to obtain additional 

information about how site-specific treatments impact crop responses (Bullock and 

Bullock 1994). Recent advances in GPS based technologies have enabled agronomic 

experiments to be applied on-farm and in much larger areas than was previously possible. 

Such experiments generate large amounts of site-specific response data that can be used 

to understand the spatial variation of optimum rates. This involves approximating site-

specific yield response functions, which requires methods of spatial analysis (Bullock and 

Lowenberg-DeBoer 2007). Site-specific prescriptions of inputs often make the 
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assumption that crop responses are expressed by a linear function of yield or some soil 

parameter, given that there is insufficient information about site-specific responses to 

farm management. The Data Intensive Farm Management (DIFM) project has developed 

a platform to carry out many on-farm experiments and better understand site-specific 

yield responses.  

The most prominent field design applied at the DIFM is the chessboard arrangement 

covering the entire field. This arrangement generated an unprecedented amount of 

information, requiring appropriated statistical methods to extract meaningful information. 

Geographically weighted regression (GWR) is a statistical methodology that can be used 

to highlight local differences in the relationship between spatial variables. The use of this 

data analysis technique is particularly suitable for OFPE field arrangements since the 

treatments are randomly assigned to entire fields. In the GWR, the parameters of the 

models are allowed to vary in space and can be mapped and interpreted as a spatial 

variable (Fotheringham 1997; Plant 2012). It can be used as an effective method to 

evaluate the assumption of stationarity in situations of significant variation of regression 

coefficients. Therefore, the objective of this study was to apply GWR to evaluate spatial 

variability of corn response to nitrogen and seed rates in on-farm precision experiments.  

 

Materials and methods 

 

Field experiments 

The datasets used in this research were generated from corn (Zea maiz L.) on-farm trials 

conducted under the DIFM project. The fields were chosen to represent typical corn 

production systems in the Corn Belt, with two rainfed fields from Illinois and two central 

pivot irrigated fields from Nebraska, in the 2017 growing season (Table 1). Each 

experiment had completely randomized designs (CRD) with at least four corn seeding 

rates (SR) and four N rate (NR). Each field had on average 40 ha and 200 experimental 

units. All treatment levels were implemented in the field using variable rate enabled seed 

planters and nitrogen applicators. Each experimental unit was 85 m long and about 18 m 

wide, representing two times the machinery swath width. Other farming practices were 

kept constant throughout the field and were conducted by the farmers in accordance with 

standard protocols for the region. 

 
Table 1. Description of the four cornfields used for the on-farm precision experimentation. 

Field* Location Irrig. 
Seed Rate 

(seeds ha-1) 

N Rate 

(kg ha-1) 

ECS 

(mS m-1) 

Elev. 

(m) 

Yield  

(Mg ha-1) 

1 Effingham – IL No 66k – 96k 78 – 129 20 (4) 180 11.2 (1.7) 

2 Moultrie – IL No 76k – 96k 96 – 147 28 (5) 210 11.9 (0.4) 

3 Hamilton – NE Yes 69k – 89k 24 – 99 40 (7) 572 14.9 (0.6) 

4 Clay – NE Yes 69k – 91k 0 – 90 49 (6) 522 15.9 (0.8) 

*Irrig: Irrigation; ECS: Soil electrical conductivity (0-30 cm); Elev: Elevation; Numbers inside 

parenthesis are the standard deviation. 

 

Data collection and processing 

Yield data was collected during harvest using the combine yield mapping systems. Digital 

elevation maps (DEM) and soil electrical conductivity (EC) were used to characterize 

field variability. DEM maps were created by interpolating the elevation obtained by the 

real-time kinematic global navigation satellite system receiver (RTK GNSS). Other 
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topographical indexes were derived from the DEM to represent slope, curvature, and 

terrain wetness index.  EC data was collected previous to planting using a Veris U3 sensor 

system (Veris Technologies, Inc. Salina, KS). The yield point coordinates were used to 

sample the information from the interpolated EC and DEM maps. The length of the 

experimental unit was further divided to produce almost squared polygons (Figure 1a). 

These were used as the observational units, and all data was averaged to these polygons 

with approximately 400 m² (Figure 1b).  

 

 
Figure 1. Field trial arrangement of the on-farm precision experiment in Field 3 at Hamilton-NE 

(a), and subsection of the field ilustrating yield monitor data and the observational units (b). 

 

Methodology of Analysis 

Based on ordinary least squares, GWR modifies the estimates of intercept (β0) and 

regression coefficients (β1) as a function of the geographic position (xi,yi) (Eq.1). 

𝑌𝑖 = 𝛽0(𝑥𝑖, 𝑦𝑖) + 𝛽1(𝑥𝑖, 𝑦𝑖) + 𝜀𝑖, 𝑖 = 1, … , 𝑛.      (1) 

Following matrix notation regression coefficients are estimated as: 

𝑏(𝑥𝑖, 𝑦𝑖 ) =  (𝑋ʹ𝐺(𝑥𝑖, 𝑦𝑖  )𝑋)−1 𝑋ʹ𝐺(𝑥𝑖 , 𝑦𝑖  )𝑌,     (2) 

Where Y is the vector whose components are the Yi and X is a matrix containing the values 

of the explanatory variables Xi. In this notation, the GWR model incorporates local 

variation in the estimated coefficients b(xi, yi) by incorporating a geographic weighting 

matrix G(xi, yi).  This diagonal matrix incorporates the distance dij between predictors Xi 

at (xi, yi) and dependent observations Yj at location (xj, yj).  As dij increases, the 

explanatory variable is expected to decrease in influence over the response variable (Plant 

2012). This decay is captured by elements gjj of the matrix G (Eq. 3).  

𝑔𝑖𝑗(𝑥𝑖, 𝑦𝑖  ) =  𝑒𝑥𝑝 (− [
𝑑𝑖𝑗

ℎ
]

2

)     (3) 

For this study, we used a Gaussian adaptive spatial kernel, with a bandwidth h set to 

include for each location several neighbors corresponding to 5% of the total number of 

data points. Following these specifications, GWR analysis was conducted using the R 

package spgwr (Bivand and Yu 2017). The regression model had yield as the dependent 

variable and the NR and SR effects as the independent variables, plus an intercept. 

Therefore, for each coordinate in the center of the Gaussian kernel, three model 

parameters were estimated, as well as statistical metrics such as the standard error and the 

R-squared. 

a) b) 
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The resulting coefficients of NR and SR were standardized between 0 and 1, by 

subtracting the minimum and dividing by the maximum value. These coefficients were 

labeled as seed rate response index (SRI) and nitrogen rate response index (NRI). As the 

index increases, so does the responsiveness to treatments. These indexes were submitted 

to unsupervised k-means clustering to create three response zones for each field to better 

illustrate the differences. The indexes were also compared with auxiliary variables 

representing the spatial variability of soil and terrain parameters, using correlation 

analysis.  

 

Results and Discussion 

 

Overall yield values were higher in the irrigated fields in Nebraska, averaging 15.4 Mg 

ha-1, than the non-irrigated fields in Illinois, averaging 11.4 Mg ha-1 (Table 1). The 

coefficient of yield coefficient of variation (CV) was smaller than 10% for most fields, 

except for Field 1 in which the CV was 15%. The low CVs are probably due to the 

aggregation of the data in the polygons, which tends to smooth the variations, and to the 

high average yield observed for the fields, which denotes favorable weather conditions. 

Although the overall variation is not large, it is possible to observe the presence of spatial 

variation in the yield in the fields. The main distinct area in Field 3 (Figure 2a), is the low 

yielding region in the northwest of the field. Comparing the yield with the results of the 

GWR analysis in this area for the SR (Figure 2b), most of this area can be considered as 

highly responsive to the increment in seed rates, indicating a negative correlation between 

yield and the optimum SR. However, the east side of the field present the highest yields 

and also the highest responses to SR. The ability of using the results from the GWR 

analysis to make this type of observation, which would not be possible without mapping 

the regression coefficients, is one of the motivations for recommending its application in 

the analysis of OFPE data. 

Similar results regarding the spatial variation of the response index were observed in the 

four fields used in this study. These results reiterate the importance of incorporating the 

spatial variability as one of the basis for agronomic experimentation. The presence of 

high responses in regions with contrasting yield levels can be seen as a good indication 

that yield potential or target yield alone are not good predictors of the optimum rates. 

Yield maps of previous years are commonly used as the deciding factor to delineate 

management zones or to make variable rate prescriptions. However, there is no guarantee 

that the optimum rate in two given regions with similar yields is in fact the same. 

 

 
Figure 2. Corn yield (a), and the seed rate response index (b) in Field 3 at Hamilton-NE, 

for the 2017 crop season. 

 

 

a) b) 
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Unsupervised k-means clustering was used to generate yield response zones as an 

alternative to the traditional yield-based management zone delineation.  There is no 

reason to assume the same zones are optimum for different inputs, therefore distinct 

response zones were created for SR and for NR in each field. The clusters were labeled 

as “High”, “Medium”, and “Low” according to the average response index in each group. 

The results were consistent across fields in terms of the delineation of meaningful spatial 

contiguous zones and the different yield response in each zone. 

The two fields in Illinois were more responsive to NR than SR. In these fields, the 

response to NR was positive for the high and medium response zones and no response 

was observed in the low response zone (Figure 3). In the low response areas of this field, 

there seems to be no decrease in yield using the lowest N rate at 96 kg ha-1 in comparison 

with the higher rates, therefore there exists a potential to apply less N in this region of the 

field while maintaining the same yields. For the same fields, the response to SR was 

positive only in the high response zone, no response was observed in the medium response 

zone and negative response was observed in the low response zone. In this scenario, the 

average rate was already optimized for the average response of the field, but there is still 

potential to increase the yields using the same amount of SR, by redistributing it inside 

the field according to the response zones. 

The two irrigated fields in Nebraska were more responsive to SR than NR. In these fields, 

the response to SR was positive for the high and medium response zones and no response 

was observed in the low response zone (Figure 4). In the high response zones the yield is 

increased by more than 1500 kg ha-1 when the SR is increased from 69k to 89k, in the 

medium response zone the yield increase for the same variation is still more than 1000 kg 

ha-1, while in the low response areas of this field the increase is within the variation 

represented in the boxplot. Therefore, there is a great potential to adjust the seed rates 

according to the response of each zone. The response to NR in the same fields was 

positive only in the high response zone, no response was observed in the medium response 

zone and negative response was observed in the low response zone. 

 

 
Figure 3. Zones of yield response to nitrogen (NRI) and corresponding box-plots showing the 

different yield response to nitrogen rate treatments, for the Field 2 at Moultrie, IL. 
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Figure 4. Zones of yield response to seed rate (SRI) and corresponding box-plots showing the 

different yield response to seed rate treatments, for the Field 3 at Hamilton, NE. 

 

Correlations between the NRI and SRI and different field variables are shown in Table 2. 

In general, the field characteristics impacting SRI are different than the ones impacting 

NRI. Elevation had a dominant role impacting SRI with correlations of 0.76 and -0.60 for 

Field 1 and Field 3, respectively. For most of the fields the correlation between electrical 

conductivity and topographic characteristics were less than 0.30. These low correlations 

imply that there might be interactions between these field characteristics within the field, 

impacting these different yield responses to NRI and SRI treatments. 

Depending on availability, more variables could be added to this list, including the yields 

and remotely sensed data in previous years. Multivariate statistical methods and other 

methods of data analysis can also be employed to explore the additive contribution of 

different factors. Future work will also focus on developing econometrics models to 

identify optimal treatment rates based upon input prices and site-specific yield responses 

to NR and SR in fields. In addition, as more fields are added to the DIFM project, 

relationships between site-specific responses and site-specific characteristics will be 

further investigated. 

 
Table 2. Correlation coefficient between the crop response to seed and nitrogen rate and field 

characteristics. 

Field* Variable ECS ECD Elevation Slope Curvature TWI 

1 
SRI 0.08 0.17 -0.60 0.19 0.00 0.17 

NRI -0.26 -0.22 -0.02 0.20 -0.04 0.08 

2 
SRI 0.41 0.30 -0.38 -0.36 0.26 0.11 

NRI -0.11 -0.01 0.19 0.12 -0.11 0.02 

3 
SRI -0.17 -0.20 0.18 -0.05 -0.28 -0.08 

NRI -0.13 -0.10 0.26 -0.09 -0.38 -0.14 

4 
SRI -0.30 -0.28 0.76 0.58 -0.38 0.01 

NRI 0.16 0.08 -0.44 -0.29 0.27 -0.17 

*ECS: Soil electrical conductivity (0-30 cm); ECD: Soil electrical conductivity (0-90 cm); TWI: 

Terrain wetness index; SRI: Seed rate responsiveness index; NRI: Nitrogen rate responsiveness 

index. 
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Conclusions 

 

The DIFM project has developed a platform to carry out many on-farm experiments and 

better understand site-specific yield responses. The use of GWR identified differential 

yield responses to seed rate and nitrogen in cornfields in different producing regions in 

US Midwest. Therefore, there is great potential to adjust the rates of these inputs 

according to the response of each zone identified by the proposed method. 

The presence of high responses in regions with contrasting yield levels can be seen as a 

good indication that yield potential or target yield alone might not be good predictors of 

the optimum rates. These results should be taken into account when setting expectations 

on variable rate prescriptions guided largely by soil and yield variability. 
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