

1 Article

2 Effects of Continuous Deep Fat Frying on the Physical 3 and Chemical Properties of Assorted Brands of Edible 4 Cooking Oils Sold in Metropolitan Kampala

5 Timothy Omara^{1,2,3*}, Erisa Kigenyi^{3,4} (version xx)

6 ¹ Department of Quality Control, Quality Assurance and Product Development, AgroWays Uganda Limited,
7 34-60, Kyabazinga Way, Jinja Uganda; timothy.omara@agroways.ug/prof.timo2018@gmail.com

8 ² Department of Health Sciences, Unicaf University, Longacres, Lusaka, Zambia

9 ³ Department of Chemistry, Faculty of Science, Kyambogo University, Kampala, Uganda

10 ⁴ Department of Quality Control and Quality Assurance, Leading Distillers Uganda Limited, Kampala
11 Uganda, erisakp@gmail.com

12 * Correspondence: timothy.omara@agroways.ug/prof.timo2018@gmail.com; Tel.: +25-675-212-9606 (T.O.)

13 **Abstract:** Deep fat frying is not novel, but a classical antiquity culinary technique preferred chiefly
14 for its swiftness, amenity, conferment of a crisp texture, attractive sensorial and organoleptic
15 qualities and thus delectableness of the fries. Regrettably, repeated use of oils for deep frying
16 impacts the storage life and nutritional suitability of fries. This concerted study investigated the
17 effects of continuous deep fat frying on the physicochemical properties of ten brands of edible
18 cooking oils: Fortune Butto, Roki, Tamu, Best Fry, Golden Fry, Mukwano, Sunny, Sunvita, Sunlite
19 and Sunseed used in deep frying of potato chips in Kampala, Uganda. Three oil samples from local
20 Irish chip fryers were also collected. The color value (CV) and the acidification of the oils as free fatty
21 acid (FFA), peroxide value (POV), paraanisidine value (AnV) and iodine adsorption value (IV)
22 before and between ten successive deep-fryings using potato chips were determined. The possible
23 reuse of the oils was estimated from the frying round when a quality criterion surpassed national or
24 CODEX specifications for the respective edible cooking oils. For fresh oils, the statistical parameter
25 ranges were: CV (0.4R 3.4Y-7.7R 70Y), % FFA (0.0430-0.1508), POV (0.5951-6.6134 meqO₂/Kg), AnV
26 (0.90-4.30) and IV (57.62-128.35gI₂/100g). By the tenth fry, the values were respectively 3.0R
27 23Y-20.4R 70Y, 0.2286-0.4817, 11.1138-15.7525 meqO₂/Kg, 10.31-22.16 and 53.66-126.03 gI₂/100g.
28 Reuse of the oils for continuous frying of potatoes on the same day can be done only up to 7 times on
29 average for hard oils and 6 times for soft oils.

30 **Keywords:** Color; free fatty acids; iodine absorption value; paraanisidine value; peroxide value.

32 1. Introduction

33 Kampala, the central business district and capital city of Uganda is an area of population with
34 an approximated 1.53 million people in mid-2009 growing by 3.9% annually [1]. People in the city
35 are surviving on a vast array of ready-to-eat Ugandan unique deep-fried delicacies namely: fried
36 dough (mandazi), sweet plantain (gonja), edible grasshoppers (nsenene), banana pancakes
37 (kabalagala), Nile perch fish (emputa), chapatti, sausages, chicken, Irish potatoes and cassava chips
38 prepared using repeatedly used edible cooking oils. Sometimes, fresh oil is added to the used oils
39 and in either case, recycling of oil enhances the innocuous contamination and interaction of moisture
40 and air (oxygen) with the oil [2-5].

42

43 **1.1 Deep frying**

44 Deep frying (or less commonly deep-fat frying), is a yearthousand food-in-oil culinary
45 procedure performed at elevated temperatures, typically above the boiling point of water between
46 160°C to 190°C [6]. Material and heat transfers occur concomitantly with the wholly or partly
47 submersed food in the hot fat typically at or in excess of 180°C [7-9]. The heat, augmented by
48 moisture, oxygen and air culminates in food dehydration, further potentiating a complex cascade of
49 physical and chemical changes including breakdown of sugars and proteins via starch
50 gelatinization, protein denaturation, induced flavor and color [9], hydrolysis [10], free radical
51 production, formation of heterocyclic flavouring substances from amino acids, oxidation,
52 somerizations, dietary fibre softening, Millard reaction and caramelization. Hydrolytic degradation
53 ensues the attack of the ester linkage of triacylglycerols by water (a weak nucleophile) almost always
54 entrained in the food to be fried and yields diglycerols, monoglycerols and free fatty acids (FFAs).
55 This is further energized by the yielded fatty acids and other low molecular weight acids [11].
56 Copious amounts of water has been reported to hydrolyze deep frying oils more rapidly [12] than
57 steam [13]. On average, these reaction cascades increase oil darkening, flow viscosity, density,
58 specific heat, foaming and reduce considerably the smoke point [14].

59 **1.1. Stability of deep fat frying oils**

60 The heat stability of frying oil is governed primarily by two inherent factors: the fatty acid
61 composition and the presence of antioxidants and precursors such as butylatedhydroxyanisole
62 (BHA), *tert*-butylhydroquinone (TBHQ), butylated hydroxytoluene (BHT), propyl gallate (PG) and
63 tocopherols [15]. Antioxidants have been proven to retard room temperature auto-oxidation of oils
64 but are rendered inefficient at typical frying temperatures due to volatilization losses and thermal
65 fissions [16, 17]. An ideal frying oil should thus possess little amount of polyunsaturated fatty acids
66 (notably linolenic acids) and prominent levels of oleic acid with moderate amounts of saturated fatty
67 acids as the former are highly susceptible to oxidative degradation during frying [18], potentiating
68 breakdown reactions that often yield harmful polymers [19-21]. Thus, the accompanying changes in
69 the physical and chemical parameters of oils used repeatedly for deep frying has raised global health
70 concerns [22].

71 Subtly, the frying stability of oils are assessed by physicochemical investigation of changes
72 occurring during heating of the oils at elevated temperatures. The color value of oils, usually
73 expressed as $1 \times \text{Red} + 1 \times \text{Yellow Lovibond units}$, registers a drastic increase in both the red and
74 yellow units during the incipient phases of heating. According to the results of Baby Latha and
75 Nasirullah [23] using rice bran oil, a threefold increase in red units and nearly fourfold increase in
76 yellow units was found after 2 hours of frying while darkening occurred beyond 2 hours.
77 Physicochemical properties and oxidative degradation of the frying oil during the initial 2 hours of
78 heating registered a steep increment in POV from 0.2 to 6.3 meqO₂/kg, AnV from 5.04 to 19.4 and
79 total polar components from 1 to 4.1% [23]. FFA content of frying oils has been reported to rise with
80 number of fryings [24] and frying time [25]. The formed FFA, glycerol, di- and mono-acylglycerols
81 have been implicated by several authors to energize further thermohydrolysis [26-28]. Fatty acids
82 composition, tocopherols and total phenols influences the oxidative stability of oils during frying

83 [29, 30] with some polar compounds such as triacylglycerol dimers and oxidation triacylglycerols
84 [31, 32], dimers [33] and polymers [34] reported to accumulate during the frying process. Warner *et*
85 *al* [35] reported that polar compounds accumulation during potato chips frying in cottonseed oil
86 increased proportionately with increase in the oil linoleic acid content. Mono- and di-acylglycerols in
87 cotton seed oil during frying of potato chips at 155 to 195°C increased initially and then reached a
88 plateau according to the results of Houhoula *et al* [5].

89 Frequent replenishing of frying oil retards its hydrolysis [36] and increases its frying life; alkalis
90 deployed in cleaning a fryer potentiates oil hydrolytic degradation while the frying time has no
91 appreciable effect on hydrolysis rate [37]. Diop *et al* [38] investigated the effects of deep fat frying on
92 chemical properties of three selected brands of oils (two peanut oils A and B and sunflower oil, C)
93 common in Senegalese preparation of fried meat, fish and potatoes. Their findings revealed that
94 frying affects the chemical stability of cooking oils. The acid value as reported increased after 40
95 minutes from 0.62 to 1.08 mg/kg after frying fish, from 0.39 to 0.73mg/kg for meat and 0.37 to 0.51
96 mg/kg for potatoes. Peroxide value increased slightly for A and sharply for B and C oils.

97 Juárez *et al* [39] assessed some physicochemical changes occurring during discontinuous potato
98 frying using milanesas and churros in partly hydrogenated, soybean and sunflower oils. For 80.5
99 hours of churros deep fat frying, the oils measured total polar compounds surpassing 25% and the
100 corresponding percentage dimeric and polymeric triacylglycerols surpassed 10% with tocopherol
101 losses of 70%. Xu *et al* [40] compared the oxidative stability of camellia oil composed of saturated
102 fatty acid (SFA), monounsaturated fatty acid (MSFA) and polyunsaturated fatty acid (PUFA) in a
103 ratio of 1:7:1 during potato deep frying with palm and peanut oils composed of SFA, MSFA and
104 PUFA in ratios of 4:4:1 and 2:4:4 respectively. Their evaluations of acid value, IV, POV, AnV, total
105 oxidation (TOTOX) value, tocopherols content and fatty acids composition of the oils registered little
106 alteration of the fatty acid contents of camellia oil with alpha-tocopherol reported to be more
107 thermally labile compared to gamma and delta tocopherols. They concluded that the stabilities of
108 the oils as determined by oxidizability value followed the sequence camellia oil > palm oil >peanut
109 oil. The initially highest recorded AnV was in palm oil, which rose from 0.11 to 0.40. The recorded
110 AnV change was initially high in peanut oil prior to frying but increased more gradually from 0.74 to
111 1.04 while that of camellia oil rose from 0.17 to 0.55. The IV recorded in peanut oil was the largest
112 though it reduced from 104.74 to 80.52 gI₂/100g. Insignificant changes of 53.83 to 45.36 gI₂/100 g and
113 65.40 to 55.29 gI₂/100g was registered in palm oil and camellia oils respectively. POV in palm oil
114 registered an increment from 4.98 to 18.86 meqO₂/kg while that of peanut and camellia oils changed
115 from 4.75 to 13.24 meqO₂/kg and 4.68 to 11.58 meqO₂/kg. The least AnV was in camellia oil that
116 increased from 1.70 to 51.78 while peanut and palm oils registered 2.25 to 84.71 and 1.36 to 60.00
117 respectively. Abdulkarim [41] assessed the frying suitability of high-oleic *Moringa oleifera* seed oil
118 saturated fatty acid (SFA) consisting of SFA: MUFA: PUFA in a ratio of 2:7:0 vis-a-vis soybean, palm
119 olein and canola oils with SFA: MUFA:PUFA ratios of 1.5:2.5:6, 4:4:1 an 1:6:3 respectively.
120 Experimental results showed that the %FFA of the four conventional oils used comparatively in the
121 assessment respectively increased by 66.6, 71.4, 60.0 and 65.0%. TOTOX and AnV values of the oils
122 were registered in the order *Moringa oleifera* seed oil< palm olein < canola and soybean oils [41].

123 This research, in addition to assessing the effects of continuous deep-fat frying on the
124 physicochemical parameters of edible cooking oils sold in Metropolitan Kampala reveals the
125 maximum number of times the edible oils can be reused for continuous deep frying of Irish potato
126 chips without posing potential health risk to the final consumers.
127

128 **2. Materials and Methods**

129 *2.1. Apparatus and reagents*

130 The chemicals used in this investigation were of high analytical purity. The assortment of
131 volumetric glassware employed were presterilized in an autoclave and oven dried prior to analysis.
132 Mettler PM200 balance (Marshall scientific, USA) was used for all weighings. Amprobe IR608A
133 non-contact infrared thermometer with laser pointer, -18°C to 400°C (Amprobe, Everett, USA) was
134 used for monitoring temperatures during frying.

135 *2.2. Sampling procedure and sample size*

136 Six one litre samples of hard oil brands (Fortune butto, Roki, Tamu, Best fry, Golden fry and
137 Mukwano) and soft oil brands (Sunny, Sunvita, Sunlite and Sunseed) of approximate manufacturing
138 dates were procured from Mega Standard supermarket, Yusuf Lule road, Kampala-Uganda on 4th
139 May 2017. The brands were chosen based on their common use in deep frying according to a
140 prestudy tour taken and were majorly brands from two giant oil processing companies: Bidco
141 Uganda Limited (BUL)-Jinja Uganda and Mukwano Industries Limited-Kampala Uganda. Hence
142 exactly thirty (30) samples of cooking oils were procured and maintained in their original packaging
143 materials under ambient conditions to avoid any possible degradation. Three oil samples used up to
144 ten times continuous fry from Makindye division of Metropolitan Kampala were collected at
145 intervals from three randomly selected local traders carrying out deep frying of Irish potato chips
146 during their successive fries. Ten (10) kilograms of fresh white (Irish) potatoes (*Solanum tuberosum*),
147 were purchased from Nakasero market, Nakasero Hill, Market square road, Kampala, washed and
148 peeled manually using a clean stainless-steel knife. They were then sliced into cylindrical sizeable
149 pieces (1cm×1cm×3cm) corresponding to that used in the Kampala Irish potato culinary. The
150 analyses were done at the Quality control laboratory of Mukwano Industries Limited, Plot 30,
151 Mukwano Road, Kampala Industrial area.

152 *2.3. Analysis of fresh oil samples*

153 Both physical and chemical parameters of the oil samples were analyzed before being used for
154 deep fat frying.

155 *2.4. Frying method*

156 Exactly 400g of the Irish potato slices were submersed in oil in Skyline VT5424 4L Electric Deep
157 Fryer (Skyline, New Dehli, India) with detachable oil tank and slotted spoon with 1500mL of the
158 heated oil maintained at 140°C for 6 minutes. A frying time of 10 minutes was used with 800g of the
159 Irish fried in 20 minutes.

160

161

162 *2.5. Determination of colour*

163 Colour value (colour index) of the oil samples free from moisture and insoluble impurities were
164 measured in triplicates in a Lovibond Tintometer (The Tintometer Ltd, UK) using a 2.54cm cell
165 operating in the transmittance mode and recorded in Lovibond units.

166 *2.6. Determination of free fatty acids*

167 Exactly 10g of the oil sample was weighed in a 250ml beaker. 60mls of neutralized ethanol was
168 added and then boiled. The solution was then titrated with standardized 0.025M sodium hydroxide
169 using phenolphthalein indicator until the solution just turned pink. The FFA value was expressed as
170 the percentage of oleic acid in the sample [42].

171 *2.7. Determination of Iodine adsorption value*

172 Iodine value was determined according to ISO 3961: 2009 iodometric procedure [43]. 0.2g of oil
173 sample was weighed into a quick fit flask and dissolved in 20ml of chloroform. 25mL of Hanus
174 iodine solution was added to the resultant solution. Few drops of potassium iodide were put on
175 mouth of the flask and then kept in the dark for 30minutes. The sample was then removed and 10mls
176 of 15% Potassium Iodide solution was added followed by 100mls of freshly distilled water. The
177 solution was subsequently titrated with a standard 0.1N Sodium thiosulphate solution while stirring
178 until the golden yellow color appeared. Exactly 5mls of starch indicator was added to the resultant
179 solution and titration was continued until the blue-black solution turned colorless. A blank was
180 conducted where the total halogen content of 25mL of Hanus iodine was determined by a sodium
181 thiosulphate solution without the addition of an oil sample. Iodine value was expressed in grams of
182 Iodine absorbed by 100g of the oil.

183 *2.8. Determination of peroxide value*

184 Peroxide value was estimated according to ISO 3960: 2007 [44] and recorded as milliequivalents of
185 active oxygen/kg of oil.

186 *2.9. Determination of paraanisidine value*

187 Paraanisidine value was determined using the AOCS Official Method Cd 18-90 [45] and expressed
188 in anisidine numbers.

189 **3. Results and statistical analyses**

190 Analyses were performed in triplicate and the statistical average values were calculated using
191 Microsoft Excel 2016.

192 *3.1. Hard oils*

193 The investigated physicochemical properties of the hard oils are given in *Table 1*.
194

Table 1. Changes in the physicochemical properties of the hard oils.

Oil	Sample	CV	%FFA	POV (meq O ₂ /Kg)	AnV	IV (g of I ₂ /100g)
Fortune	Fresh oil	4.8R 70Y	0.0977	1.6924	2.50	57.67
Butto	First fry	6.0R 70Y	0.1305	3.0157	3.50	57.56
	Second fry	6.3R 70Y	0.1420	3.0481	3.90	56.46
	Third fry	7.1R 70Y	0.1428	3.2682	4.20	56.42
	Fourth fry	7.3R 70Y	0.1522	3.6635	4.80	56.14
	Fifth fry	7.5R 70Y	0.1779	6.0672	5.24	55.57
	Sixth fry	8.0R 70Y	0.2544	8.3062	7.73	55.21
	Seventh fry	8.2R 70Y	0.2613	9.3708	8.94	54.80
	Eighth fry	8.5R 70Y	0.3269	9.9978	10.14	54.65
	Ninth fry	9.0R 70Y	0.3513	10.4800	10.35	54.12
	Tenth fry	9.9R 70Y	0.3776	12.2809	11.84	53.66
Roki	Fresh oil	4.6R 70Y	0.1099	0.7848	1.80	60.06
	First fry	6.1R 70Y	0.1305	1.9309	2.50	59.31
	Second fry	6.1R 70Y	0.1356	2.8011	2.80	59.15
	Third fry	6.5R 70Y	0.1449	3.0712	3.40	58.92
	Fourth fry	7.2R 70Y	0.1527	3.2109	4.00	58.92
	Fifth fry	7.5R 70Y	0.1541	5.3638	4.85	58.51
	Sixth fry	8.2R 70Y	0.1702	5.7558	5.38	57.77
	Seventh fry	8.4R 70Y	0.1865	6.9578	5.83	57.77
	Eighth fry	9.5R 70Y	0.2098	9.7719	6.44	57.60
	Ninth fry	10.0R70Y	0.2472	9.9846	7.47	57.27
Tamu	Tenth fry	10.8R70Y	0.2844	11.1138	10.31	57.05
	Fresh oil	5.0R 70Y	0.0987	0.71370	2.30	58.88
	First fry	6.3R 70Y	0.1365	2.0110	3.80	58.34
	Second fry	6.6R 70Y	0.1443	4.5741	4.20	58.29
	Third fry	6.9R 70Y	0.1527	5.5595	5.30	58.05
	Fourth fry	7.3R 70Y	0.1812	7.6355	6.90	57.50
	Fifth fry	8.5R 70Y	0.1993	10.0566	8.94	57.34
	Sixth fry	8.7R 70Y	0.2939	10.5666	9.70	57.01
	Seventh fry	9.8R 70Y	0.3079	11.0939	11.24	56.96
	Eighth fry	10.0R 70Y	0.3053	11.2413	11.39	56.47
Golden fry	Ninth fry	10.8R 70Y	0.3305	12.5219	11.59	56.26
	Tenth fry	12.0R 70Y	0.3833	13.0047	14.73	55.51
	Fresh oil	5.4R 70Y	0.1247	1.7272	2.60	57.62
	First fry	6.5R 70Y	0.1462	4.0312	3.40	57.62
	Second fry	6.9R 70Y	0.1825	4.5876	4.80	57.57
	Third fry	7.2R 70Y	0.2017	6.0430	6.20	57.66
	Fourth fry	7.8R 70Y	0.2668	7.2802	7.50	57.40
	Fifth fry	8.4R 70Y	0.3029	8.0133	8.40	57.06
	Sixth fry	9.1R 70Y	0.3428	9.3237	10.80	56.90
	Seventh fry	10.0R70Y	0.3374	10.0599	11.40	56.45
	Eighth fry	11.0R70Y	0.3874	10.6783	11.80	56.42
	Ninth fry	11.8R70Y	0.4441	10.9245	12.40	56.47

Mukwano	Tenth fry	12.4R70Y	0.4817	11.7157	12.80	56.15
	Fresh oil	4.5R 70Y	0.0576	0.7119	0.90	61.59
	First fry	5.8R 70Y	0.1429	3.9388	2.90	61.18
	Second fry	6.2R 70Y	0.1581	4.1649	3.40	60.57
	Third fry	6.5R 70Y	0.1665	4.6978	4.50	60.20
	Fourth fry	6.4R 70Y	0.1755	6.1839	6.20	60.31
	Fifth fry	7.0R 70Y	0.2275	7.4132	6.80	59.92
	Sixth fry	7.4R 70Y	0.2372	7.4361	7.90	59.22
	Seventh fry	8.3R 70Y	0.2534	9.7599	8.70	59.06
	Eighth fry	8.9R 70Y	0.2785	9.9139	10.20	58.71
	Ninth fry	9.5R 70Y	0.3216	11.009	12.69	58.34
	Tenth fry	10.9R70Y	0.3310	11.820	14.73	58.13
Best fry	Fresh oil	5.2R 70Y	0.1376	2.3542	3.40	58.34
	First fry	7.4R 70Y	0.1927	3.1264	4.90	58.16
	Second fry	7.9R 70Y	0.2528	4.2248	5.80	57.94
	Third fry	8.3R 70Y	0.2655	4.5703	7.70	57.25
	Fourth fry	8.8R 70Y	0.2829	5.8642	8.40	57.29
	Fifth fry	9.7R 70Y	0.2854	6.1624	9.11	57.13
	Sixth fry	10.5R 70Y	0.2978	6.9323	12.63	57.03
	Seventh fry	12.0R 70Y	0.2989	8.8926	14.21	57.04
	Eighth fry	15.0R 70Y	0.3595	10.422	16.12	56.87
	Ninth fry	16.0R 70Y	0.3591	11.017	17.03	56.71
	Tenth fry	17.5R 70Y	0.3591	11.952	17.77	56.66

196

197 *3.2. Soft Oils*198 The physicochemical properties of the soft oils are given in *Table 2*.

199

Table 2. Changes in the physicochemical properties of the soft oils.

Oil	Sample	CV	%FFA	POV (meq O ₂ /Kg)	AnV	IV (g of I ₂ /100g)
Sunseed	Fresh oil	0.4R 3.4Y	0.1508	6.6134	4.30	58.30
	First fry	1.0R 4.7Y	0.1567	7.8224	5.70	58.02
	Second fry	1.1R 5.4Y	0.1693	8.8646	6.60	58.08
	Third fry	1.2R 6.3Y	0.1829	9.2997	7.40	57.88
	Fourth fry	1.3R 7.2Y	0.1932	10.2907	9.50	57.87
	Fifth fry	2.0R 8.5Y	0.2099	10.8085	10.90	57.83
	Sixth fry	2.1R 9.9Y	0.2152	10.9622	13.80	57.71
	Seventh fry	2.1R 11Y	0.2201	10.9920	16.70	57.72
	Eighth fry	2.4R 13Y	0.2715	12.2302	17.90	57.57
	Nineth fry	2.9R 14Y	0.2769	13.4418	19.50	57.45
	Tenth fry	2.6R 22Y	0.2908	13.6042	20.20	57.40
Sunny	Fresh oil	0.8R 4.9Y	0.0884	1.4980	2.50	128.35
	First fry	1.6R 14Y	0.1163	2.1135	3.70	127.13
	Second fry	1.9R 15Y	0.1407	3.0874	4.00	126.94
	Third fry	2.1R 19Y	0.1571	4.3946	4.90	126.88
	Fourth fry	2.7R 16Y	0.1766	5.0359	6.20	126.70

	Fifth fry	2.9R 19Y	0.1875	6.7514	7.60	126.69
	Sixth fry	3.0R 23Y	0.1917	7.9430	9.40	126.33
	Seventh fry	3.0R 24Y	0.2173	9.0678	10.40	126.27
	Eighth fry	3.3R 24Y	0.2435	10.3814	12.80	126.24
	Nineth fry	3.5R 27Y	0.2477	10.8668	15.50	126.08
	Tenth fry	3.6R 27Y	0.2540	11.7032	17.50	126.03
Sunvita	Fresh oil	0.9R 5.1Y	0.0430	1.4714	2.80	126.96
	First fry	0.9R 6.7Y	0.0892	3.3087	3.50	126.10
	Second fry	0.9R 7.5Y	0.1503	3.8037	4.70	123.03
	Third fry	1R 9.1Y	0.1666	4.9809	5.70	124.88
	Fourth fry	1.1R 11Y	0.1937	5.2830	6.80	123.96
	Fifth fry	1.3R 11Y	0.1991	5.9740	7.75	123.27
	Sixth fry	1.7R 14Y	0.2136	8.2301	10.46	122.59
	Seventh fry	2.1R 15Y	0.2576	10.11	14.89	121.81
	Eighth fry	2.4R 20Y	0.3081	11.53	15.78	121.48
	Nineth fry	2.8R 22Y	0.3078	14.68	16.49	121.48
	Tenth fry	3.0R 23Y	0.3396	15.37	18.66	120.28
Sunlite	Fresh oil	0.7R 5Y	0.0963	1.2723	2.60	126.80
	First fry	0.7R 5.5Y	0.1098	2.0882	2.92	126.46
	Second fry	0.8R 5.8Y	0.1319	3.9624	3.50	125.98
	Third fry	1.0R 6.0Y	0.1458	4.4835	4.30	125.79
	Fourth fry	1.3R 6.8Y	0.1603	5.9978	5.80	125.73
	Fifth fry	1.5R 6.8Y	0.1720	7.5574	6.90	125.47
	Sixth fry	1.8R 7.2Y	0.2001	9.0822	8.30	125.29
	Seventh fry	2.0R 7.5Y	0.2159	10.5798	10.0	124.89
	Eighth fry	2.4R13.0Y	0.2599	11.2972	12.72	124.57
	Nineth fry	2.56R 13Y	0.2828	11.9001	14.68	124.55
	Tenth fry	2.9R14.5Y	0.3202	12.7721	16.02	124.21

200

201 3.3. Oils From Outside Chips Fryers

202 The physicochemical properties of oils from outside chips fryers are presented in *Table 3*.203 **Table 3.** Changes in the physicochemical properties of oils from outside chips fryers.

Oil	Sample	CV	%FFA	POV (meq O ₂ /Kg)	AnV	IV (g of I ₂ /100g)
First fryer	Fresh oil	6.8R 70Y	0.1399	3.1037	4.30	58.42
	First fry	7.4R 70Y	0.1499	3.5849	5.10	58.42
	Second fry	7.9R 70Y	0.1556	4.4937	6.80	58.38
	Third fry	8.1R 70Y	0.1698	5.8645	7.50	58.30
	Fourth fry	8.9R 70Y	0.2013	8.6028	7.90	58.34
	Fifth fry	9.7R 70Y	0.2432	9.0689	9.00	58.15
	Sixth fry	10.7R 70Y	0.2449	10.738	10.40	57.67
	Seventh fry	12.0R 70Y	0.2466	11.0264	14.20	57.66
	Eighth fry	12.9R 70Y	0.2635	12.2278	16.50	57.55
	Nineth fry	14.8R 70Y	0.3094	14.6568	17.50	57.55
	Tenth fry	15.2R 70Y	0.3334	15.7525	19.90	57.35

Second fryer	Fresh oil	4.5R 70Y	0.1007	0.5951	2.80	59.43
	First fry	6.0R 70Y	0.1282	0.9021	3.40	59.23
	Second fry	6.0R 70Y	0.1300	1.5840	3.80	58.90
	Third fry	6.2R 70Y	0.1354	2.2182	4.50	58.97
	Fourth fry	7.1R 70Y	0.1398	2.9961	5.10	58.55
	Fifth fry	7.3R 70Y	0.1403	3.3954	6.30	58.37
	Sixth fry	7.8R 70Y	0.1625	4.4962	6.50	58.27
	Seventh fry	8.2R 70Y	0.1687	5.1984	7.40	58.15
	Eighth fry	8.7R 70Y	0.1812	6.5811	8.50	58.10
	Nineth fry	9.0R 70Y	0.2014	6.9981	9.10	58.10
	Tenth fry	9.5R 70Y	0.2286	7.995	10.70	58.12
Third Fryer	Fresh oil	7.7R 70Y	0.0496	1.1957	2.70	128.16
	First fry	9.0R 70Y	0.1362	1.6099	3.60	127.18
	Second fry	10.1R 70Y	0.1535	1.7636	3.90	126.33
	Third fry	10.9R 70Y	0.1634	2.0909	4.80	124.79
	Fourth fry	12.5R 70Y	0.1697	2.5227	5.90	124.22
	Fifth fry	14.3R 70Y	0.2030	2.4450	7.46	123.30
	Sixth fry	16.0R 70Y	0.2980	2.9739	8.65	121.40
	Seventh fry	17.0R 70Y	0.3235	6.0875	14.20	120.13
	Eighth fry	18.8R 70Y	0.3874	6.3546	17.98	118.77
	Nineth fry	19.2R 70Y	0.4165	7.1760	20.70	119.00
	Tenth fry	20.4R 70Y	0.4748	8.5800	22.16	119.14

204

205 **4. Discussion**206 **4.1. Color**

207 There is no standard specification for colour as per Uganda National Bureau of Standards (UNBS)
 208 for edible oils. However, most edible oil refining companies (including Mukwano group of
 209 companies) have internal colour specifications of 7.5R 70Y maximum. Sunseed, Sunvita, Sunlite and
 210 Sunny cooking oils passed colour parameter specifications even after the tenth fry. Mukwano after
 211 the 6th fry, Fortune Butto, Roki and Best fry after the 5th fry, while Tamu after the 4th fry and Golden
 212 fry after the 3rd fry fell out of specifications (Tables 1 and 2). Oil from the first and second outside
 213 chips fryers fell out of colour specifications after a fry while oil from the third outside chips fryer did
 214 not meet the specifications (Table 3). The physical change in the color value of oils is a rather
 215 intuitive and swift visual index implicative of a trend of oil deterioration. Of the fresh oil samples,
 216 oil from the third outside chips fryer had the highest color reading of 7.7R 70Y (Table 3) while the
 217 lowest color reading was obtained from the oil from the Sunseed with a color reading of 0.4R 3.4Y
 218 (Table 2). The color readings increased steadily. By the ninth fry, the color recitation for oil from the
 219 third outside chips fryer could hardly be determined experimentally (Table 3) and by the tenth fry,
 220 the oil from the second outside chips fryer had become reasonably dark. Generally, by the tenth fry,
 221 all the oils had changed the color of the fried food product. Available empirical data shows that
 222 unsaturated carbonyl compounds (including ketones, conjugated dienoic acids) and degraded
 223 oxidation compounds such as hydroxides and hydroperoxides induce oil darkening [46-48].

224 Another close cause of the observed colour regression could be attributable to the dispersion of
225 Millard pigments from the fries [49]. Choe and Min [8] also hinted that polymerized fats
226 accumulated in a fryer during frying causes foam and gum formation as well as oil darkening. Oil
227 darkening, albeit, an experimentally valuable index while monitoring deterioration of oils heated at
228 elevated temperatures has been underscored to not be solely attributable to oxidative degradation
229 by Che Man and Tan [50]. Non-enzymatic browning of potato chips has been reported to be
230 proportionate to the amount of reducing sugars in the potato, as both browning and Maillard
231 reactions are stimulated by the level of oxidation of the food and the entrained characteristic heme
232 pigments [51]. More so, the Maillard reaction enhances nutrient losses and the ensuing browning
233 intensity it impacts on the fries is proportionate to the proteinaceous loss of the amino acids: lysine,
234 histidine and methionine. This result is in agreement with the diagnostic statements of Orthoefer
235 and Cooper [52] that assorted frying oils and the food fried darken oils to varying degrees during
236 deep frying.

237 **4.2. Free fatty acids**

238 The chief composition of oils is fatty acids and degree of unsaturation is the very first factor
239 influencing the oxidative stability of frying oils despite other oil intrinsic and external factors [30].
240 For fresh oils, the lowest FFA of 0.0430 was observed in Sunvita while the highest recorded FFA of
241 0.1508 was in Sunseed (Table 2). Roki, Best fry, third chips fryer oil and Sunvita were still within the
242 maximum % FFA specification of 0.30 after the tenth fry. Sunlite after the 9th fry, Mukwano and oil
243 from second outside chips fryer after the 8th fry while Fortune Butto, Sunny and oil from first outside
244 chips fryer after the 7th fry had % FFA greater than the maximum FFA specification of UNBS. Tamu
245 and Sunseed after the 6th fry and Golden fry after the 4th fry had the % FFA greater than the
246 maximum FFA specification of 0.30. The differences observed in the fresh oil FFA values could be
247 attributed to blending of several edible oils by the manufacturing companies. Blending of assorted
248 edible oils is known to alter the fatty acid profile of oils [53, 54] and can steeply retard oxidation of
249 oils during deep-fat frying. The increase in free fatty acid values of oils can be attributed to the
250 breakdown of long carbon chains into shorter carbon chains due to thermal and oxidative
251 decomposition of oils at elevated temperatures. During elevated temperature heating of oils, FFA
252 formation is attributed to the cleavage and oxidation of double bonds to form carbonyl compounds,
253 which are subsequently oxidized to fatty acids of low molecular masses [55-57]. It is preferred
254 frequently by food processors for indication of oil acidity and oil authenticity verification [14, 58].
255 Filtration of frying oils have been reported to reduce FFA content of oils and improve their frying
256 stability. The results of this study is concordant with that of Stevenson *et al* [59] who reported that
257 edible oils with %FFA less than 0.05% and POV of 1.0 meqO₂/kg or less are best suited for deep
258 frying.

259 **4.3. Peroxide value**

260 For peroxide values of fresh oil samples, oil from the second outside chips fryer had the lowest
261 peroxide value (0.5951meqO₂/Kg) while the highest peroxide value of 6.6134 meqO₂/Kg was
262 observed in Sunseed. Aside from the nature of the oil, fresh oils to be utilized in deep fat frying
263 should have a Codex regulatory maximum POV of 15meqO₂/Kg [60]. The peroxide values increased
264 significantly during the successive fries. The increase in the peroxide values of oils following frying

265 is because of oxidation of carbon atoms adjacent to the double bonds in the triacylglyceride structure
266 leading to the formation of hydroperoxides. These hydroperoxides, are the direct cause of anisidine
267 value shoot up as they decompose further to secondary oxidative components which constitute the
268 paraanisidine components. Peroxide value is implicative of incipient oxidation which directly
269 translates to the buildup and breakdown of oxidation products. Peroxides are reasonably unstable,
270 and fissions at typical frying temperatures. In addition, it is a useful biomarker of the preliminary
271 stages of rancidity occurring under mild conditions and the freshness of the lipid matrix. Thus, the
272 greater the POV, the faster will the oxidation of the oil occur [61]. After the fifth fry, the peroxide
273 value of all oils was still concordant with the maximum Codex standard POV for vegetable oils.
274 However, only Best fry and Sunseed after the tenth fry were still in the maximum Codex standard
275 POV of 10meq O₂/Kg. Roki after the 9th fry, while Fortune Butto and Mukwano after the 8th fry fell
276 out of specifications (Table 1). Sunvita and oil from first outside chips fryer were out of specifications
277 after the 7th fry; Golden fry, Sunny and Sunlite were all out of specifications of POV after the 6th fry.
278 Oil from second outside chips fryer after the fifth fry was out of specification while Tamu and oil
279 from third outside chips fryer fell out of the maximum Codex standard POV after the 4th and 3rd fry
280 respectively. The observed increase in peroxide value during heating of oils have been reported by
281 other authors [14, 62, 63]. Furthermore, polyunsaturated oils exhibit readily depressed stability at
282 elevated temperatures because the unsaturated fatty acids are readily oxidized to peroxides [63, 64].
283 Empirical data shows that the peroxide values of fresh oils may be higher than the Codex standard
284 primarily owing to improper storage and packaging that triggers degradation via photo-oxidation.
285 Self-oxidation may supposedly occur in storage due to chemical interaction with air, peculiarly
286 oxygen [65].

287 *4.4. Paraanisidine value*

288 Oxidative degradation of oils is innocuously deleterious as it impacts sensorial and organoleptic
289 attributes of fries [66]. Primary oxidation quantifies the amount of hydroperoxides as peroxide value
290 (POV). Further degradation of hydroperoxides yields aldehydes, ketones, carboxylic acids, short
291 chain alkanes and alkenes better quantitatively described by paraanisidine value (AnV). For fresh
292 oils, the lowest value of 0.90 was observed in Mukwano vegetable cooking oil (Table 1) while the
293 highest recorded AnV was 4.30 in Sunseed and oil from first outside chips fryer (Tables 2 and 3
294 respectively). Golden fry, Tamu, Best fry, Sunny, Sunlite, Fortune Butto, Mukwano, Sunvita, Roki
295 and oil from first and second outside chips fryer after the tenth fry were still within the range (0.00 to
296 20.00) after the tenth fry. Only the oil from third outside chips fryer and Sunseed exceeded the
297 maximum value after the 9th and 8th fry respectively. Secondary oxidation products are principally
298 non-volatile aldehydes, principally 2,4-dienals and 2-alkenals [67, 68] which anisidine value is a
299 quantitative measure. The AnV was observed to increase gradually between the successive fries.
300 Initial stages of heating resulted in faster increase of AnV followed by a gradual increment. This
301 could be due to further decomposition of the carbonyls and polymerization reactions. Similar results
302 have been reported by Xu *et al* [40] in their comparison of oxidative stability of edible oils under
303 continuous deep frying conditions.

304 **4.5. Iodine adsorption value**

305 At fresh conditions, the maximum IV observed was in sunny cooking oil (128.35gI₂/100g) (Table
306 2) and the least was observed in Golden fry vegetable oil (57.62gI₂/100g) (Table 1). The iodine
307 adsorption value, iodine number or sometimes iodine index, is chemically the mass of iodine in
308 grams that is consumed by 100 grams of a chemical substance by mass as oleic acid. Iodine numbers
309 are often used to determine the amount of unsaturation in fatty acids. The higher the Iodine index
310 (the greater the unsaturation), the faster is the tendency of oil oxidation during heating at elevated
311 temperatures as in deep frying [69]. Iodine index, is a frequently measured vital analytical measure
312 of the unsaturation of an edible cooking oil [70]. It was observed that IV decreased slightly during
313 deep frying. Golden fry, Tamu, Best fry, Sunny, Sunlite, Fortune button, Mukwano, Sunvita, Roki,
314 Sunseed and oil from first, second and third outside chips fryer even after the tenth fry were still
315 within specifications. The observed decrement in the Iodine index is concordant with the decrement
316 in double bonds attributed to oxidation and thermal decomposition.

317 **4.6. Frying stability of the edible cooking oils**

318 The average number of times the hard oils and soft oils could be re-used for continuous deep-fat
319 frying were statistically calculated using Microsoft Excel 2016. The analysis gave an average of 7.0
320 times for hard oils and 6.25 times (approximately 6 times) for soft oils.

321 **5. Conclusions**

322 Prior to deep-fat frying, all the selected brands of edible cooking oils met the National and thus
323 Codex specifications in terms of the assessed physicochemical properties. Oil from the third outside
324 chips fryer however, failed to meet the color specification. After successive deep fat fryings, the
325 physicochemical properties of the edible oils increased significantly between fryings and some oils
326 went out of specifications of the Codex standards before the tenth fry. Iodine adsorption values
327 decreased only slightly for the ten fryings. The results of the study showed that changes in the
328 physical and chemical parameters increases with increase in the number of fries of the potato chips.
329 Repeated re-use of oils for consecutive deep frying of potato chips on the same day can be done only
330 up to a maximum of 7 times on average for hard oils and 6 times for soft oils with the oils still
331 regarded as safe for frying potato chips for human consumption. Thus, hard oils should be preferred
332 to soft oils for deep frying of Irish potato chips.

333 There is a continuous need to subtly carry out research on every new edible cooking oil brand on
334 the Ugandan market as most companies tend to package a blend of oils. Further comprehensive
335 research should be done to elucidate the variation of physicochemical properties of other edible
336 cooking oil brands on the Ugandan market such as Nile, Fortune, Kimbo, Cow boy and Ufuta.
337 Further research should be done with other food samples such as fish, cassava, chicken, plantain,
338 dough, meat and edible grasshoppers as the nature of the food sample influences the quality of the
339 oil after deep frying. The organoleptic test of smell should not be used physiognomically in making
340 conclusions about the suitability of cooking oils after deep fat frying as it is hard to clearly deduce
341 since individual sensoriums vary widely and thus judgement is made so indifferently. Other
342 physicochemical properties of the investigated edible cooking oils such as smoke point, viscosity,
343 moisture content, volatile matter content, total polar components and saponification value should be
344 determined.

345 **Author Contributions:** Conceptualization, Timothy Omara and Erisa Kigenyi; Data Curation, Timothy Omara
346 and Erisa Kigenyi; Methodology, Timothy Omara and Erisa Kigenyi; Project Administration, Erisa Kigenyi.

347 **Funding:** This research received no external funding.

348 **Acknowledgments:** We acknowledge the support of Mukwano Group of Companies which enabled us to
349 realize and finalize this research.

350 **Conflicts of Interest:** The authors declare no conflict of interest

351 **References**

- 352 1. Uganda National Bureau of Statistics (UBOS). Preliminary Results for Uganda Population and Housing
353 Census, pp. xii, 2009.
- 354 2. Peers, K.E. and Swoboda, P.A.T. Deterioration of Sunflower Seed Oil Under Simulated Frying Conditions and
355 During Small-Scale Frying of Potato Chips. *J Sci Food Agric* **1982**, *33*, 389–395.
- 356 3. Cuesta, C., Sanchez-Muniz, F.J., Garrido-Polonio, C., Lopez-Varela, S. and Arroyo, R. Thermo-oxidative and
357 Hydrolytic Changes in Sunflower Oil Used in Frying With a Fast Turnover of Fresh Oil. *J Am Oil Chem Soc*, **1993**,
358 *70*, 1069–1073.
- 359 4. Sanchez-Muniz, F.J., Cuesta, C., Lopez-Varela, M.C., Garrido-Polonio, M.C. and Arroyo, R. Evaluation of the
360 Thermal Oxidation Rate of Sunflower Oil Using Various Frying Methods. In: Applewhite TH, editor. *Proceedings of*
361 *World Conference on Oilseed and Technology and Utilization*. Champaign, Ill: American Oil Chemists Society, 1993.
- 362 5. Houhoula, D.P., Oreopoulou, V., Tzia, C. The Effect Of Process Time and Temperature on the Accumulation
363 of Polar Compounds in Cottonseed Oil During Deep-Fat Frying. *J Sci Food Agric*, **2003**, *83* (4), 314–319.
- 364 6. Aladedunye, F.A. Curbing Thermo-Oxidative Degradation of Frying Oils: Current Knowledge and
365 challenges. *European J Lipid Sci Tech*, **2015**, *117* (11), 1867–1881.
- 366 7. Kita, A. The Influence of Potato Chemical Composition on Crisp Texture. *Food Chem*, **2002**, *76* (2), 173–179.
- 367 8. Choe, E. and Min, D. B. Chemistry of Deep-Fat Frying Oils and Fats. *J Food Sci*, **2007**, *72* (5), 77–86.
- 368 9. Weisshaar, R. Quality Control of Used Deep-Frying Oils. *European J Lipid Sci Tech*, **2014**, *116* (6), 716–722.
- 369 10. Yoon, S.H., Kim, S.K., Kim, K.H., Kwon, T.W. and Teah, Y.K. Evaluation of Physicochemical Changes in
370 Cooking Oil During Heating. *J Am Oil Chem Soc*, **1987**, *64* (6), 870–873.
- 371 11. Mariod, A., Omer, N., Al, E. and Mokhtar, M. Chemical Reactions Taken Place During Deep-Fat Frying and
372 Their Products: A review. *SUST J Natur Medic Sci. Supplementary issue*, **2014**, *09*, 1–17.
- 373 12. Dana, D. and Saguy, I.S. The Protective Role of Water Injection on Oil Quality in Deep Fat Frying
374 Conditions. *Eur Food Res Tech*, **2003**, *217*, 104–109.
- 375 13. Pokorny, J. Flavor Chemistry of Deep Fat Frying in Oil. In: Min DB, Smouse TH, editors. *Flavor chemistry of lipid*
376 *foods*. Champaign, Ill., USA: American Oil Chemists Society, 1989.
- 377 14. Park, J. and Kim, J. Monitoring of Used Frying Oils and Frying Times for Frying Chicken Nuggets Using
378 Peroxide Value and Acid Value. *Korean J Food Sci An*, **2016**, *5*(36), 612–616.
- 379 15. Rohman, A. and Che Man, Y.B. Authentication of Extra Virgin Olive Oil from Sesame Oil Using FTIR
380 Spectroscopy and Gas Chromatography. *Int J Food Prop*, **2015**, *15*, 1309–18.
- 381 16. Boskou, D. Stability of Frying Oils In Frying of Food: Principles, Changes, New Approaches, VCH
382 Publishers: New York. **1998**, 174–182.
- 383 17. Choe, E. and Lee, J. Thermo-oxidative Stability of Soybean Oil, Beef Tallow and Palm Oil During Frying of
384 Steamed Noodles. *Korean J Food Sci Tech*, **1998**, *30*, 288–292.
- 385 18. Chen, J.F., Tai, C.Y., Chen, Y.C., and Chen, B.H. Effects of Conjugated Linoleic Acid on the Oxidation
386 Stability of Model Lipids During Heating and Illumination. *Food Chem*, **2001**, *72*, 199–206.

387 19. Gertz, C. and Klostermann, S. H. Analysis of Acylamide And Mechanisms of its Formation in Deep-Fried
388 Products. *Eur J Lipid Sci Tech*, **2002**, 104, 762–771.

389 20. Debnath, N.K., Rastogi, N.K., Gopal Krishna, A.G. and Lokesh, B.R. Oil Partitioning Between Surface and
390 Structure of Potato Slices-A Kinetic Study. *Food Sci Tech*, **2009**, 42,1054–1058.

391 21. Ghidurus, M., Turtoi, M., Boskou, G., Niculita, P. and Stan, S. Nutritional and Health Aspects Related to
392 Frying (I). *Roman Biotech Letts*, **2010**, 15, 5675–5682.

393 22. Dhaka, V., Gulia, N., Ahlawat, K. and Khatkar, B. Trans Fats –Sources, Health Risks and Alternative
394 Approach – A Review. *J Food Sci Tech*, **2011**, 48, 534-541.

395 23. Baby Latha, R. and Nasirullah. Physico-chemical Changes in Rice Bran Oil During Heating at Frying
396 Temperature. *J Food Sci Tech*, **2014**, 51, 335-340.

397 24. Chung, J., Lee, J. and Choe, E. Oxidative Stability of Soybean and Sesame Oil Mixture During Frying of Flour
398 Dough. *J Food Sci*, **2004**, 69, 574-578.

399 25. Mazza, G. and Qi, H. Effect of After-Cooking Darkening Inhibitors on Stability of frying Oil and Quality of
400 French Fries". *J Am Oil Chem Soc*, **1992**, 69, 847–853.

401 26. Frega, N., Mozzon, M. and Lecker, G. Effects of Free Fatty Acids on Oxidative Stability of Vegetable Oil. *J Am*
402 *Oil Chem Soc*, **1999**, 76, 325–329.

403 27. Miyashita, K., and Takagi, T. Study on the Oxidative Rate and Prooxidant Activity of Free Fatty Acids. *J Am*
404 *Oil Chem Soc*, **1986**, 63, 1380–1384.

405 28. Mistry, B.S. and Min, D.B. Effects of Fatty Acids on the Oxidative Stability of Soybean Oil. *J Food Sci*, **1987**, 52
406 (3), 831–832.

407 29. Karakaya, S. and Simsek, S. Changes in Total Polar Compounds, Peroxide Value, Total Phenols, and
408 Antioxidant Activity of Various Oils Used in Deep Fat Frying. *J Am Oil Chem Soc*, **2011**, 88, 1361–1366.

409 30. Casal, S., Malheiro, R., Sendas, A., Oliveira, B.P.P and Pereira, J.A. Olive Oil Stability Under Deep-Frying
410 Conditions. *Food Chem Toxicol*, **2010**, 48, 2972–2979.

411 31. Romero, A., Cuesta, C. and Sanchez-Muniz, F.J. Effect of Oil Replenishment During Deepfat Frying Of
412 Frozen Foods In Sunflower Oil And High-Oleic Acid Sunflower Oil. *J Am Oil Chem Soc*, **1998**, 75, 161–167.

413 32. Xu, X., Tran, V.H., Palmer, M., White, K. and Salisbury, P. Chemical and Physical Analyses and Sensory
414 Evaluation Of Six Deep-Frying Oils. *J Am Oil Chem Soc*, **1999**, 76, 1091–1099.

415 33. Gordon, M.H. and Kourimska, L. The Effects of Antioxidants On Changes In Oils During Heating And Deep
416 Frying. *J Sci Food Agric*, **1998**, 68, 347–353.

417 34. Tompkins, C. and Perkins, E.G. Frying Performance of Low-Linolenic Acid Soybean Oil. *J Am Oil Chem Soc*,
418 **2000**, 77, 223–229.

419 35. Warner, K., Orr, P. and Glynn, M. Effect of Fatty Acid Composition of Oils on Flavor and Stability of Fried
420 Foods. *J Am Oil Chem Soc*, **1997**, 74, 347–356.

421 36. Romero, A., Cuesta, C. and Sa'nchez-Muniz, F. J. Trans Fatty Acid Production In Deep Fat Frying Of Frozen
422 Foods With Different Oils and Frying Modalities. *Nutr Res*, **2000**, 20(4), 599–608.

423 37. Naz, S., Siddiqi, R. and Sayeed, S.A. Effect of Flavonoids on the oxidative Stability of Corn Oil During Deep
424 Frying. *Int J Food Sci Tech*, **2005**, 43(10), 1850-1854.

425 38. Diop, A., Ndao, S., Cissé, M., Baldé, M., Ndiaye, B. and Diop, Y.M. Effect of Deep-Fat Frying on Chemical
426 Properties of Edible Vegetable Oils Used by Senegalese Households. *Afr J Food Agric Nutr Dev*, **2014**, 14(6),
427 9418-9438.

428 39. Juárez, M.D., Osawa, C.C., Acuña, M.E., Sammán, N. and Gonçalves, L.A.G. Degradation in Soybean Oil,
429 Sunflower Oil and Partially Hydrogenated Fats After Food Frying, Monitored By Conventional and
430 Unconventional Methods. *Food Control*, **2010**, 22, 1920–1927.

431 40. Xu, T., Li, J., Fan, Y., Zheng, T. and Deng, Z. Comparison of Oxidative Stability Among Edible Oils Under
432 Continuous Frying Conditions. *Int J Food Prop*, **2015**, 18, 1478–1490.

433 41. Abdulkarim, S.M., Long, K., Lai, O.M., Muhammad, S.K.S. and Ghazali, H.M. Frying Quality and Stability of
434 High-Oleic Moringa Oleifera Seed Oil in Comparison With Other Vegetable Oils. *Food Chem*, **2007**, 105,
435 1382–1389.

436 42. AOCS. AOCS-Official Methods And Recommended Practices of the American Oil Chemists' Society. **2004**,
437 Champaign: American Oil Chemists' Society.

438 43. ISO. Animal and Vegetable Fats and Oils- Determination of Iodine Value. *ISO 3961: 2009*. Vol. 4th edn. **2009**,
439 Geneva, Switzerland.

440 44. ISO. Animal and vegetable Fats and Oils-Determination of Peroxide Value. *ISO 3960: 2007*. **2007**, Geneva,
441 Switzerland.

442 45. AOCS. AOCS. p-Anisidine value. In AOCS Official Method Cd 18-90: Official Methods and Recommended
443 Practices of the American Oil Chemists' Society. **1998**, Champaign, IL, USA.

444 46. Gutierrez, R., Gonzalez-Quijano, J. and Dobermanns, M.C. Analytical Procedures for the Evaluation of Used
445 Frying Fats. In: Varela G, Bender A E and Morton I D (Eds.), Frying of Food: Principles, Changes, New
446 Approaches. England: VCH-Ellis Horwood Ltd, 141-154

447 47. Augustin, M.A. and Berry, S.K. Efficacy of the Antioxidants BHA and BHT in Palm Olein During Heating
448 and Frying. *J Am Oil Chem Soc*, **1983**, 60, 1520-1523.

449 48. Farhoosh, R., Kenari, R.E. and Pooazrang, R. Frying stability Of Canola Oil Blended With Palm Olein, Olive
450 And Corn Oils. *J Am Oil Chem Soc*, **2009**, 86(1), 71-76.

451 49. Lalas, S., Gortzi, O. and Tsankanis, J. Frying stability of *Moringa stenopetala* Seed Oil. *Plant Foods Hum Nutr*,
452 **2006**, 61(2), 99-108.

453 50. Che Man, Y.B. and Tan, C.P. Effects of Natural Antioxidants on Changes in Refined, Bleached and
454 Deodorized Palm Olein During Deep-Fat Frying of Potato Chips. *J Am Oil Chem Soc*, **1999**, 76,331-339.

455 51. Reda, S.Y. Comparative Study of Vegetable Oils Subjected to Thermal Stress. Masters Dissertation,
456 Universidade Estadual de Ponta Grossa, **2000**.

457 52. Orthofer, E.T. and Cooper, D.S. Evaluation of Used Frying Oil. In: Perkins, E.G. Erickson, M.D. Deep frying:
458 Chemistry, Nutrition and Practical Applications. **1996**, AOAC Press: Champaign. 285-296.

459 53. Shiota, M., Konishi, H. and Tatsumi, K. Oxidative Stability of Fish Oil Blended with Butter. *J Dairy Sci*, **1999**,
460 82, 1877–1881.

461 54. Mamat, H., Aini, I.N., Said, M. and Jamaludin, R.. "Physicochemical characteristics of palm oil and
462 sunflower oil blends fractionated at different temperatures". *Food Chemistry*, Vol. 91, pp. 731–6, 2005.

463 55. Baby Latha, R. and Nasirullah. Effect of Heat on Physico-Chemical and Thermo-Oxidative Stability of
464 Repeatedly Heated Rice Bran Oil (RBO). *Int J Food Nutr Sci*, **2016**, 5, 2.

465 56. Faridah, D. N., Lioe, H.N., Palupi, N.S. and Kahfi, J. Detection of FFA and PV Values using FTIR for Quality
466 Measurement In Palm Oil Frying Activities. *J Oil Palm Res*, **2015**, 27(2),156-167.

467 57. S. Lalas. Quality of frying oil. Advances in Deep-fat Frying of Foods. New York, USA: CRC Press, 2009.

468 58. Ahmad-Tarmizi, A.H. and Siew, W.L. Quality Assessment of Palm Products Upon Prolonged Heat
469 Treatment. *J Oleo Sci*, **2008**, 57(12), 639-648.

470 59. Stevenson, S.G., Vaisey-Genser, M. and Eskin, N.A.M. Quality Control in the Use of Deep Frying Oils. *J Am*
471 *Oil Chem Soc.* **1984**, *61*, 1102–1108.

472 60. Codex Alimentarius. Codex Standard for Named Vegetable Oils, CODEX STAN 210-1999. Amended in 2005
473 and 2011. Rome, Italy, **1999**.

474 61. Atinifu, D.G. and Bedemo, B. Estimation of Total Free Fatty Acid and Cholesterol Content in Some
475 Commercial Edible Oils in Ethiopia, Bahir DAR. *J Cereals Oilseeds*, **2001**, *2*, 71-76.

476 62. Sulthana, S.N. and Sen, D.P. Studies on Deep Fat Frying: Changes During Heating of Oil. *J Food Sci Tech*,
477 **1979**, *16*, 208.

478 63. Serjouie, A., Tan, C.P., Mirhosseini, H. and CheMan, Y.B. Effect of Vegetable-Based Oil Blends on
479 Physicochemical Properties of Oils During Deep-Fat Frying. *Am J Food Tech*, **2010**, *5*(5), 310-323.

480 64. Che-Man, Y.B. and Wan-Hussin, W.R. Comparison of the Frying Performance of Refined, Bleached and
481 Deodorized Palm Olein and Coconut Oil. *J Food Lipids*, **1998**, *5*, 197–210.

482 65. Susheelamma, N.S., Asha, M.R., Ravi, R. and Kumar, A.K.V. Comparative Studies on Physical Properties of
483 Vegetable Oils and Their Blends After Frying. *J Food Lipids*, **2002**, *9*, 259–276.

484 66. Dana, D. and Saguy, I.S. Frying of Nutritious Food: Obstacles and Feasibility. *Food Sci Tech Res*, **2001**, *7*(4),
485 265-279.

486 67. Sulieman, M.R., Makhzangy, A.E. and Ramadan, M.F. Antiradical Performance and Physicochemical
487 Characteristics of Vegetable Oils Upon Frying of French Fries: A Preliminary Comparative Study. *J Food Lipids*,
488 **2006**, *13*(3), 259-276.

489 68. Bou, R., Navas J.A., Tres, A., Codony, R., Guardiola, F. Quality Assessment of Frying Fats and Fried Snacks
490 During Continuous Deep-Fat Frying at Different Large-Scale Producers. *Food Control*, **2012**, *27*(1), 254–267.

491 69. Tomkins, P.C. and Perkins, E.G. The Evaluation of Frying Oils with the P-Anisidine Value. *J Am Oil Chem*
492 *Soc*, **1999**, *76* (8), 945-947.

493 70. Otunola, A.G., Adebayo, G.B. and Olufemi, O.G. Evaluation of Some Physicochemical Parameters of
494 Selected Brands of Vegetable Oils Sold in Ilorin Metropolis. *Int J Phys Sci*, **2009**, *4* (5), 327-329.