

1 Article

2 Expression of toll-like receptors (TLR2 and TLR4) in 3 the eyes of mice intranasally infected with 4 *Acanthamoeba* sp.

5 Karolina Kot ¹, Danuta Kosik-Bogacka ^{1,*}, Natalia Łanocha-Arendarczyk ¹, Agnieszka
6 Wojtkowiak-Giera ² and Agnieszka Kolasa-Wołosiuk ³

7 ¹ Department of Biology and Medical Parasitology, Pomeranian Medical University in Szczecin,
8 70-204 Szczecin, Poland; kotkarolina17@gmail.com (K.K.); nlanocha@pum.edu.pl (N.Ł.-A.)

9 ² Department of Biology and Medical Parasitology, Poznan University of Medical Sciences, Fredry 10,
10 61-701 Poznan, Poland; awojtko@ump.edu.pl

11 ³ Department of Histology and Embryology, Pomeranian Medical University in Szczecin,
12 70-204 Szczecin, Poland; agnieszka.kolasa@pum.edu.pl

13 * Correspondence: kodan@pum.edu.pl; Tel.: +48-91-466-1672

14

15 **Abstract:** Toll-like receptors (TLRs) play a key role in the innate immune response to numerous
16 pathogens, including *Acanthamoeba* sp. The aim of this study was to determine the expression of
17 TLR2 and TLR4 in the eyes of mice following intranasal infection with *Acanthamoeba* sp. Amoebae
18 used in this study were isolated from the bronchial aspirate of a patient with acute myeloid leukemia
19 (AML) and atypical symptoms of pneumonia. We found statistically significant differences in the
20 expression of TLR2 and TLR4 in the eyes of immunocompetent mice at 8, 16, and 24 days post
21 *Acanthamoeba* sp. infection (dpi) compared to control. Immunosuppressed mice showed significant
22 differences in the expression of TLR2 at 16 and 24 dpi compared to uninfected animals. Our results
23 indicate that TLR2 and TLR4 are upregulated in the eyes of mice in response to *Acanthamoeba* sp.
24 We suggest that it is possible for trophozoites to migrate through the optic nerve from the brain to
25 the eyes.

26 **Keywords:** *Acanthamoeba* sp.; eyes; toll-like receptor 2 (TLR2); toll-like receptor 4 (TLR4)

27

28 1. Introduction

29 Parasitic infections can initiate both specific and non-specific immune responses. Toll-like
30 receptors (TLRs) are a family of membrane receptors that play a key role in the non-specific immune
31 response, recognizing pathogen-associated molecular patterns (PAMPs) common to most pathogenic
32 microorganisms. Recognition and binding of PAMPs leads to dimerization or oligomerization of
33 TLRs and recruitment of intracellular signaling molecules, including myeloid differentiation primary
34 response 88 (MyD88), Toll/interleukin-1 receptor domain-containing adapter protein (TIRAP), TIR-
35 domain-containing adapter-inducing interferon- β (TRIF), TRIF-related adaptor molecule (TRAM),
36 and Sterile-alpha and Armadillo motif containing protein (SARM) [1,2]. The myeloid differentiation
37 primary response gene (88) (MyD88) is a universal adaptor molecule in inflammatory pathways
38 downstream of all TLRs, except TLR3. Binding of MyD88 to TLR leads to the activation of MAP
39 kinases, including extracellular signal-regulated kinases ERK1/2 and transcription nuclear factor
40 kappa light-chain-enhancer of activated B cells (NF- κ B), which controls the expression of genes
41 encoding pro-inflammatory cytokines, such as tumor necrosis factor (TNF- α) and interleukin-2 (IL- β) [3]. TIRAP mediates transmission of TLR2 and TLR4 signals and activates the MyD88-dependent
42 pathways. TRIF binds to TLR3 and TLR4, activating an alternative pathway that leads to the
43

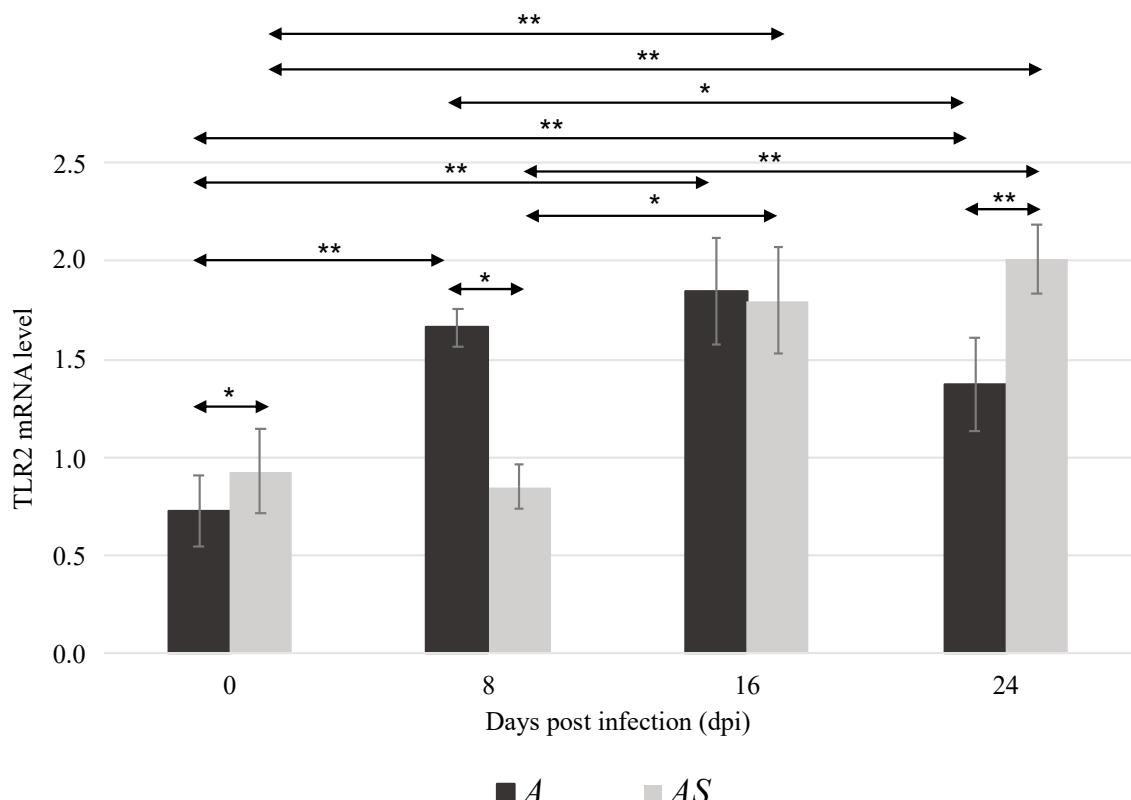
44 activation of NF- κ B, MAP kinases, and interferon regulatory factor 3 (IRF3), which regulates the
45 expression of type I interferons (IFN), mainly IFN- α [3].

46 *Acanthamoeba* sp. can be found in a wide variety of environments: soil, dust, air, natural water,
47 tap water, drinking and bottled water, seawater, swimming pools, sewage, sediments, air-
48 conditioning units, dental treatment units, hospitals and dialysis units, eyewash stations, and contact
49 lenses. They also often infect bacterial, yeast, and mammalian cell cultures [4]. In earlier studies,
50 antibodies for *Acanthamoeba* antigens were found in 50% to 100% of studied populations, indicating
51 that contact with these pathogens is common [5,6]. *Acanthamoeba* sp. are the causative agents of
52 granulomatous amoebic encephalitis (GAE), a fatal disease of the central nervous system (CNS), and
53 amoebic keratitis (AK), a painful vision-threatening disease of the eyes [7,8]. Several species of
54 *Acanthamoeba*, including *A. castellanii*, *A. polyphaga*, *A. hatchetti*, *A. culbertsoni*, *A. rhysodes*, *A. griffini*,
55 *A. quina*, and *A. lugdunensis*, have been reported to cause AK [9]. AK is most common in contact lens
56 wearers (>8%), occurring when lenses are stored contrary to the recommendations of doctors and
57 manufacturers, as well as in patients with mechanical corneal damage [10,11]. Studies of
58 *Acanthamoeba* keratitis found that the host immune system prevents the spread of amoebae into the
59 eyeball and other organs through the recruitment of neutrophils [12-14]. However, there is some data
60 showing infection of the eyeball in hosts with disseminated acanthamoebiasis [15].

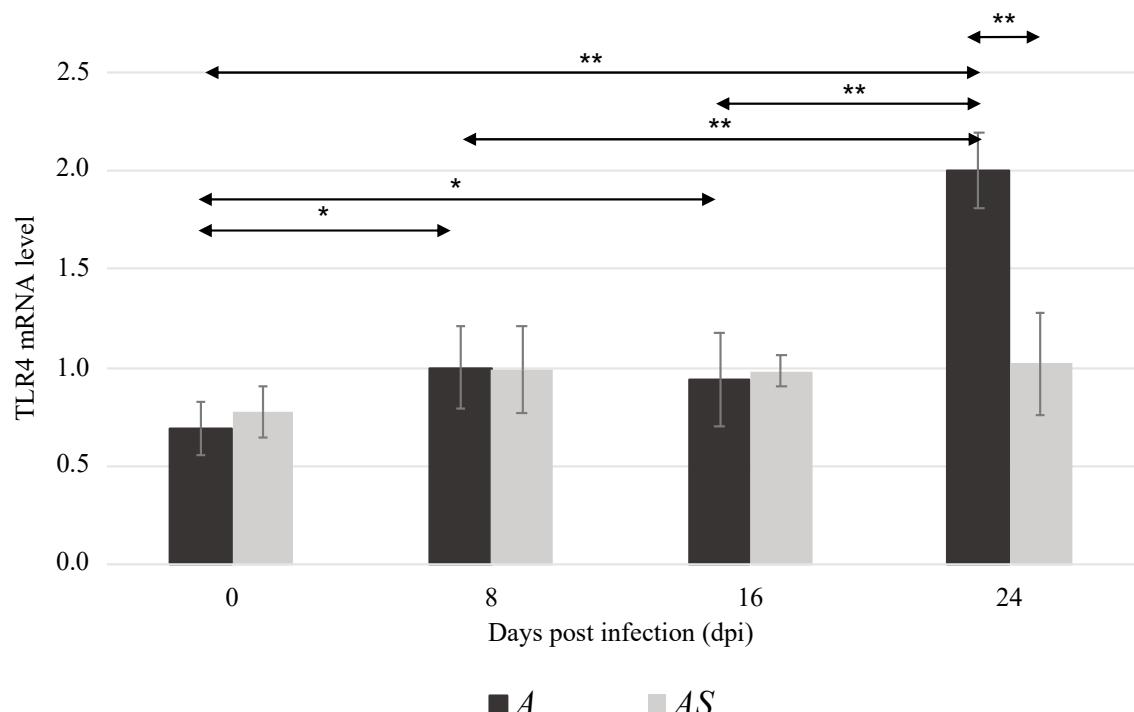
61 The receptor responsible for immune recognition of *Acanthamoeba* sp. is TRL4 [16]. Based on *in*
62 *vitro* and *in vivo* studies, it was found that TLR-4 is expressed during amoebic infection in AK.
63 Activation of TLR4 stimulates the pathways TLR4- MyD88- NF- κ B and TLR4-ERK1/2 to induce the
64 secretion of inflammatory cytokines, including chemokine ligand 2 (CXCL2), IL-8, TNF- α , and IFN- α [16-18]. TLR activation also plays a significant role in directing helper T (Th) lymphocyte
65 differentiation. The presence of TLR ligands mainly initiates a Th1 response, but may also lead to the
66 appearance of induced regulatory T lymphocytes [19]. Recent studies on the AK mouse model
67 showed that amoebic invasion induces Th17 lymphocytes and Treg lymphocytes in the cornea [20].
68 In our earlier studies on generalized acanthamoebiasis, induction of Th1, Th2, and Th17 expression
69 was seen in immunocompetent hosts in the late stages of *Acanthamoeba* sp. infection, whereas in hosts
70 with suppressed immunity, we observed a strong Th1 response, without Th17 [21].

71 Previous studies on the role of TLRs in acanthamoebiasis have focused mainly on the expression
72 or activation of TLRs in the corneas of people with AK, after contact lenses with clinical isolates of
73 *Acanthamoeba* were placed onto the center of corneas or the *Acanthamoeba* solution was applied to
74 previously scratched corneas [16,18]. In this study, mice were infected intranasally with *Acanthamoeba*
75 sp. Following infection, we determined the expression of TLR2 and TLR4 in eye structures.

77 2. Results


78 2.1. Expression of *tlr2* and *tlr4* genes

79 There were significant differences in the levels of mRNA expression of both TLR2 and TLR4 in
80 immunocompetent mice (group A) at 8, 16, and 24 days post *Acanthamoeba* sp. infection, and in the
81 expression of TLR2 in immunosuppressed mice (AS) between 16 and 24 dpi.


82 In immunocompetent mice (group A), TLR2 mRNA expression significantly increased at 8, 16,
83 and 24 dpi compared to the uninfected controls (group C) ($p<0.01$, Fig. 1). At 24 days post
84 *Acanthamoeba* sp. infection, TLR2 mRNA expression decreased compared to 8 dpi ($p<0.05$). In mice
85 treated with the immunosuppressive drug (group AS), TLR2 mRNA expression increased
86 significantly at 24 dpi ($p<0.01$). We found statistically significant differences in the expression of TLR2
87 between the uninfected mice (group C) and those observed at 16 ($p<0.05$) and 24 ($p<0.01$) days post
88 *Acanthamoeba* sp. infection (group AS). Moreover, statistically significant differences in expression
89 were observed between immunocompetent (group A) and immunosuppressed (group AS) mice at 0
90 ($p<0.05$), 8 ($p<0.05$), and 24 ($p<0.01$) days post *Acanthamoeba* sp. infection.

91 The expression of TLR4 in immunocompetent mice (group A) was increased at 8 ($p<0.05$), 16
92 ($p<0.05$), and 24 ($p<0.01$) days post *Acanthamoeba* sp. infection compared to uninfected mice (group
93 C) (Fig. 2). Statistically significant differences were observed in the immunocompetent (group A)
94 mice between 8 dpi and 24 dpi, and between 16 dpi and 24 dpi ($p<0.01$). In mice treated with the

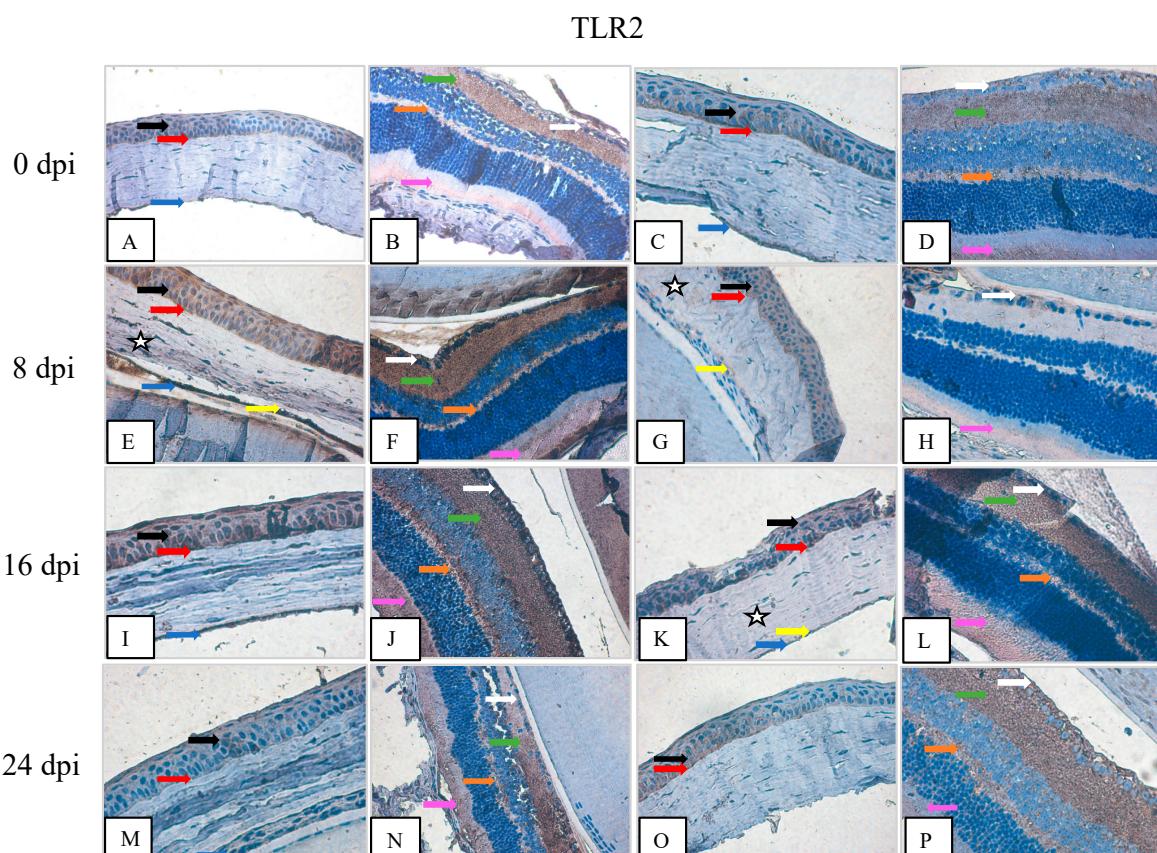
95 immuno-suppressive drug, no statistically significant differences were found in the level of TLR4
96 expression between uninfected mice (group CS) and those infected with *Acanthamoeba* sp. (group
97 AS). Comparison of TLR4 expression levels between immunocompetent (group A) and
98 immuno-suppressed (group AS) mice showed a statistically significant difference only at 24 days post
99 *Acanthamoeba* sp. infection ($p<0.01$).
100

101
102 **Figure 1.** The mRNA expression of the *tlr2* gene in the eyes of uninfected (0 dpi) and infected mice at
103 8, 16, and 24 days post *Acanthamoeba* sp. infection (dpi), according to the immunological status of
104 hosts (A - immunocompetent mice; AS - immuno-suppressed mice). The data represent mean \pm SD;
105 * $p<0.05$, ** $p<0.01$, compared with control value from uninfected mice (Mann-Whitney U test).

106
107 **Figure 2.** The mRNA expression of the *tlr4* gene in the eyes uninfected (0 dpi) and infected mice at 8,
108 16, and 24 days post *Acanthamoeba* sp. infection (dpi), according to the immunological status of hosts
109 (A - immunocompetent mice; AS - immunosuppressed mice). Data represent mean \pm SD; * $p<0.05$,
110 ** $p<0.01$, compared with control value from uninfected mice (Mann-Whitney U test).

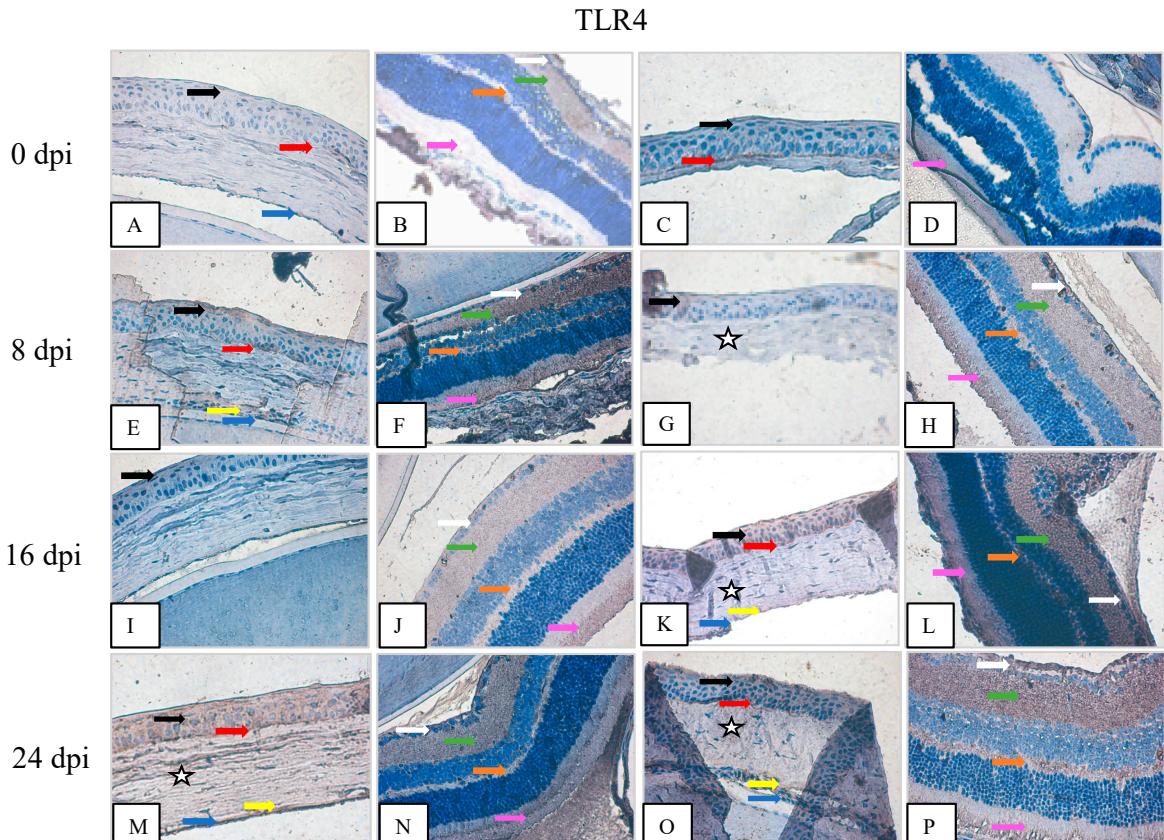
111 2.2. Immunohistochemical (IHC) reaction

112 In uninfected immunocompetent (group C) mice, immunohistochemical detection of TLR2 was
113 mainly localized to the corneal epithelium (Fig. 3A, black arrows), Bowman's membrane (Fig. 3A, red
114 arrows), and corneal endothelium (Fig. 3A, blue arrows). TLR2 expression in *Acanthamoeba* sp.-
115 infected immunocompetent (group A) mice was detected in the same structures as in the control
116 group. The highest expression was observed at 8 dpi (Fig. 3E).


117 Brown pigmentation indicating TLR4 immunohistochemical staining was observed in the
118 corneal epithelium (black arrows), Bowman's membrane (red arrows), corneal stroma (white
119 asterisks), and corneal endothelium (blue arrows). The level of expression of TRL2 in uninfected
120 immunosuppressed (group CS) mice was comparable to that of uninfected immunocompetent
121 (group C) controls. In *Acanthamoeba* sp.-infected immunosuppressed (group AS) mice, TLR2 was
122 expressed in all corneal layers, with the highest expression levels observed at 16 dpi. In
123 immunosuppressed (group AS) mice at 8 and 24 days post *Acanthamoeba* sp. infection, the corneal
124 endothelium (Fig. 3G and Fig. 3O) and Descemet's membrane (Fig. 3O) were found as TLR2-negative
125 at 24 dpi.

126 In the retinae of immunocompetent (group A) and immunosuppressed (group AS) mice, TLR2
127 expression was observed in the optic nerve fiber layer (white arrows), the inner and outer plexiform
128 layers (green and orange arrows, respectively), and the rods and cones layer (pink arrow) (Fig. 3).
129 TLR2 immunoexpression was most intense at 8 and 16 days post *Acanthamoeba* sp. infection (Fig. 3F
130 and Fig. 3J). Changes in immunoexpression of TLR2 were also observed in the visual part of the retina
131 in immunosuppressed mice (group AS). The highest TLR2 expression levels were observed at 24 dpi
132 (Fig. 3P).

133 Expression of TLR4 in the corneas of uninfected immunocompetent (group C) mice was similar
134 to that of TLR2. Similarly, the highest TLR4 expression levels were seen at 24 dpi (Fig. 4). TLR4
135 expression at 24 dpi was observed in all corneal layers, including the corneal epithelium (black
136 arrow), Bowman's membrane (red arrow), corneal stroma (white star), posterior limiting


137 (Descemet's) membrane (yellow arrow), and corneal endothelium (blue arrow). In
 138 immunosuppressed mice (group CS), the weakest expression of TLR4 was observed at 8 dpi (Fig. 4G)
 139 and the strongest at 16 dpi (Fig. 4K) and 24 days post amoeba infection (Fig. 4O). In the cornea,
 140 expression of both TLR2 and TLR4 was found only in the perinuclear space.

141 In the visual part of the retina in the eyes of immunocompetent and immunocompetent mice,
 142 expression of TLR4 was observed in the optic nerve fiber layer (white arrow), the inner plexiform
 143 layer (green arrow), the outer plexiform layer (orange arrow), and rods and cones layer (pink arrow)
 144 (Fig. 4). In immunocompetent hosts, the intensity of the immunohistochemical reaction increased 8
 145 days after *Acanthamoeba* sp. infection (Fig. 4F), then fell at 16 dpi (Fig. 4J) and increased again,
 146 reaching a maximum at 24 dpi (Fig. 4N). Brown pigmentation indicating immunohistochemical
 147 detection of TLR4 in the visual part of the retina of immunosuppressed animals (groups AS or CS)
 148 was different than that observed for TLR2. The weakest expression of TLR4 was observed in the
 149 control group (C) and was visible only in the layer of rods and cones (Fig. 4D). The intensity of TLR4
 150 expression increased with the duration of infection (Fig. 4H, L, P). No TLR2-positive or TLR4-positive
 151 cells were found in the ganglion cell layer or in the inner or outer nuclear layers in either
 152 immunocompetent or immunocompetent mice.

153

154 **Figure 3.** Immunohistochemical staining with primary anti-TLR2 antibodies in the corneas (A, C, E,
 155 G, I, K, M, O) and retinae (B, D, F, H, J, L, N, (P) of immunocompetent (A, B, E, F, I, J, M, N) and
 156 immunosuppressed mice (C, D, G, H, K, L, O, P) from control groups (0 dpi) and at 8, 16, and 24 days
 157 post *Acanthamoeba* sp. infection (dpi). Magnification x40 (black arrows - corneal epithelium; red
 158 arrows - external limiting membrane, Bowman's membrane; white stars - stroma of cornea,
 159 substantia basalis; yellow arrows - Descemet's membrane; blue arrows - corneal endothelium; white
 160 arrows - optic nerve fiber layer; green arrows - inner plexiform layer; orange arrows - outer plexiform
 161 layer; pink arrows - rods and cones layer).

162

163 **Figure 4.** Immunohistochemical staining with primary anti-TLR4 antibodies in the corneas (A, C, E,
164 G, I, K, M, O) and retinas (B, D, F, H, J, L, N, (P) of immunocompetent (A, B, E, F, I, J, M, N) and
165 immunosuppressed mice (C, D, G, H, K, L, O, P) from control groups (0 dpi) and at 8, 16, and 24 days
166 post *Acanthamoeba* sp. infection (dpi). Magnification x40 (black arrows - corneal epithelium; red
167 arrows - external limiting membrane, Bowman's membrane; white stars - stroma of cornea,
168 substantia basalis; yellow arrows - Descemet's membrane; blue arrows - corneal endothelium; white
169 arrows - optic nerve fiber layer; green arrows - inner plexiform layer; orange arrows - outer plexiform
170 layer; pink arrows - rods and cones layer).

171

3. Discussion

172 Many authors have reported an important role for TLRs in protective immunity against
173 *Acanthamoeba* infection. For instance, in a study where mice were infected with *Acanthamoeba* sp.
174 isolated from a patient with *Acanthamoeba* keratitis and from environmental water samples, TLR2 and
175 TLR4 showed increased expression in pneumocytes, interstitial cells, and epithelial cells of the
176 bronchial tree [22]. Increased TLR2 and TLR4 expression was also observed in neurons, glial cells,
177 and endothelial cells within the neocortex [23]. Derda et al. [22] observed that in the lungs of mice
178 infected with *Acanthamoeba* sp., the expression of TLR2 was higher than the expression of TLR4.
179 Moreover, the authors observed increased expression of TLR2 and TLR4 from 2 to 30 days post
180 *Acanthamoeba* sp. infection.

181 Experimental models of amoebic corneal inflammation are created by introducing trophozoites
182 through intracorneal or intraconjunctival injection, deposition into the conjunctival cul-de-sac, or
183 topical application to an abraded corneal surface [24]. In human and laboratory animals corneal
184 epithelial cell lines, it was found that TLR4 plays a major role in corneal inflammation caused by
185 *Acanthamoeba* sp. infection [16-18]. *In vitro*, immunological interactions between this amoeba and the
186 corneal epithelium and corneal stroma were also found to increase expression of TLR2 [17]. However,
187 on repeating the experiment in the rat model, no increase in TLR2 expression at either the mRNA or
188 protein level [18] was found. In the present study, more statistically significant differences in mRNA-
189 level expression were observed for TLR2 than TLR4 in the eyeballs of mice inoculated with

190 *Acanthamoeba*. Johnson et al. [25] demonstrated previously that the activation of TLR2 by certain
191 ligands induced neutrophil recruitment and increased corneal thickness. Our histological
192 examination of the cornea did not reveal inflammatory cells in studied mice; however, we observed
193 an increased corneal thickness due to an increase in the number of layers of stratified nonkeratinized
194 squamous epithelium.

195 The level of mRNA expression of both TLR2 and TLR4 in immunocompetent animals was
196 significantly higher at 8, 16, and 24 dpi compared to the control group. In immunocompromised mice,
197 statistically significant differences in TLR2 expression compared to uninfected animals were seen at
198 16 and 24 dpi. In terms of TLR4 receptor expression, among immunosuppressed by
199 methylprednisolone mice, no statistically significant differences were found in comparison to levels
200 at 0 dpi. Jin et al. [26] showed that hydrocortisone increased expression of TLR2 and TLR4 in human
201 corneal epithelial cell lines (HCEC), while in human corneal fibroblasts (HCF), expression of these
202 receptors was decreased. The authors suggest that topical treatment with steroids may promote
203 opportunistic corneal infections by inhibiting the release of the innate immune response mediators
204 through the interaction of TLR with this glucocorticosteroid. Hara et al. [27] showed that
205 dexamethasone can increase HCEC susceptibility to viral infections by altering signaling pathways
206 of Toll-like receptors. In our study, mice were immunosuppressed by administration of the
207 glucocorticosteroid methylprednisolone. Statistically significant differences were observed between
208 the expression of TLR2 and TLR4 in immunocompetent and immunosuppressed mice. TLR2
209 expression was higher in the AS group compared to the A (unsuppressed) group and increased with
210 long-term amoeba infection (24 dpi). Regarding to TLR4, the expression of this receptor in
211 immunosuppressed mice was reduced at 24 dpi compared to the immunocompetent group.

212 Differences between the levels of expression observed in this paper and those of other authors'
213 papers may result from differences in the method of infection, type of immunosuppressant, our
214 performance of analyses in all structures of the eye, and/or differences between amoeba strains were
215 used.

216 Injection of amoeba trophozoites into the anterior chamber of the eye did not cause
217 morphological changes in the retina or posterior chamber of the eye [28]. However, in another study,
218 an injection of *Acanthamoeba* into the corneal stroma led to severe encephalitis in some animals [29].
219 This is explained by the belief that amoebae can migrate along corneal nerves [30]. Chandra et al. [15]
220 described the case of a patient with a normal immune response diagnosed with meningitis caused by
221 *Acanthamoeba* sp., in whom examination of the posterior part of the eyeball revealed subarachnoid
222 inflammation surrounding the optic nerve. Moreover, trophozoites of *Acanthamoeba* sp. were found
223 in the perioral space and optic nerve. In this study, *Acanthamoeba* sp. were reisolated from the eyeballs
224 and optic nerves of mice infected with amoebae.

225 Confocal microscopy and histological analysis of the cornea in established cases of *Acanthamoeba*
226 keratitis show corneal oedema, presence of inflammatory cells in the corneal stroma, trophozoites
227 and cysts of *Acanthamoeba* sp. in all intraepithelial and stromal layers of the cornea, as well as regional
228 stromal necrosis [18,29,31]. In a patient with *Acanthamoeba* keratitis, Kato et al. [32] observed
229 polymorphonuclear leukocytes in the corneal stroma, an abscess in the granulation tissue at the sclera
230 near the ciliary body, and macrophages and lymphocytes surrounding blood vessels. There was no
231 inflammation of the retina and vascular system. In our study, despite the fact that *Acanthamoeba* sp.
232 was administered intranasally, we found morphological changes in the eyeballs of
233 immunosuppressed mice, including invagination of Bowman's membrane into the substantia propria
234 of corneal stroma and an increase in the number of layers of stratified nonkeratinized squamous
235 epithelium. Moreover, we found morphological changes of the ciliary body and dilatation of nuclear
236 layers of retina. However, no inflammatory cells or amoeba developmental forms were found in
237 eyeball structures.

238

239 **4. Materials and Methods**240 *4.1. Animal model*

241 Our experimental animal model has been described in our previous research [33,34]. Adult male,
242 Balb/c mice (~23 g, 6-10 months, Center of Experimental Medicine, Medical University in Białystok,
243 Poland) were housed individually on a 12h:12h light/dark cycle under controlled temperature with
244 free access to food and water.

245 All animal procedures were carried out in accordance with established practices for laboratory
246 animal work according to the 'Guide for the Care and Use of Laboratory Animals.'

247 The mice (n=96) were divided into four groups:

- 248 • group C - uninfected immunocompetent mice (control group; n=18);
- 249 • group CS - uninfected mice treated with an immunosuppressive drug (n=18);
- 250 • group A - *Acanthamoeba* sp. infected immunocompetent mice (n=30);
- 251 • group AS - *Acanthamoeba* sp. infected mice treated with an immunosuppressive drug (n=30).

252 Mice from groups A and AS were infected by intranasal inoculation with 3 μ l of suspension
253 containing 10-20 thousand of *Acanthamoeba* sp. strain AM22 isolated from a patient with acute
254 myeloid leukemia (AML) and atypical pneumonia [35]. Cultures were incubated at 37 °C in NN Agar
255 covered with a suspension of deactivated *Escherichia coli* according to standard protocol [36]. Animals
256 from control groups (C and CS) were given the same volume of saline (3 μ l 0.9% NaCl). To suppress
257 immunity, AS and CS animals were intraperitoneally administered (i.p.) 0.22 mg (10 mg/kg body
258 weight) methylprednisolone sodium succinate (MPS, Solu-Medrol, Pfizer, Europe MA EEIG)
259 dissolved in 0.1 mL 0.9% saline daily for four days before inoculation with *Acanthamoeba* sp. [33,37].

260 Mice were sacrificed by sodium pentobarbital (Euthasol vet, FATRO) injection administered
261 intraperitoneally at 2 mL/kg body weight. The mice were weighed, and then eyes were removed for
262 analysis. The virulence of *Acanthamoeba* sp. was determined by the degree of infection. Eye were
263 placed on NN agar and incubated at 41°C to assess infection intensity [38]. Observations of the culture
264 were performed daily for 10 days using a light microscope (x10).

265 The study was approved by the Local Ethical Committee for Experiments on Animals (No.
266 29/2015 and 64/2016).

268 *4.2. Isolation of RNA and conversion od cDNA by reverse transcription*

269 The expression of toll-like receptor (TLR2 and TLR4) genes at the mRNA level in the eyes of
270 mice from all groups was examined using reverse transcription polymerase chain reaction (RT-PCR).
271 Tissues were homogenized in liquid nitrogen, and total RNA was isolated according to the
272 manufacturer's instructions (Qiagen, Germany); more analytical procedures are given by
273 Wojtkowiak-Giera et al. [23].

274 *4.3. Real-time PCR*

275 TLR 2 and TLR 4 gene expressions in the eyes was measured by quantitative real-time
276 polymerase chain reaction (Q-PCR). Q-PCR was carried out in a LightCycler realtime PCR detection
277 system from Roche Diagnostic GmbH (Mannheim, Germany) using SYBR Green I as detection dye
278 and target cDNA was quantified by relative quantification using a calibrator; more analytical
279 procedures are given by Wojtkowiak-Giera et al. [23].

280 *4.4. Immunohistochemical staining*

281 Samples fixed in 4% buffered formalin solution (Avantor, Poland; cat. no.:432173111) were
282 subsequently embedded in paraffin and cut into sections of 4- μ m thickness. The sectioned tissue was
283 deparaffinized in microwave and irradiated with citrate buffer (pH 6.0) to induce epitope retrieval.
284 After slow cooling to room temperature, slides were washed in PBS twice for 5 min and then
285 incubated with primary antibodies overnight (4 C). Immunohistochemistry was performed using

286 specific primary rabbit polyclonal antibodies against TLR2 and TLR4 (Santa Cruz Biotechnology, Inc.,
287 cat. no. sc-10739 and sc-30002, respectively) in a final 1:500 dilution. Sections were stained with an
288 avidin-biotin-peroxidase system with diaminobenzidine as the chromogen (DakoCytomation, Code
289 K0679), performed according to staining procedure instructions included. Sections were washed in
290 distilled H₂O and counterstained with hematoxylin. For a negative control, specimens were
291 processed in the absence of primary antibodies. Positive staining was defined by visual identification
292 of brown pigmentation using light microscope (Leica, DM5000B, Germany).

293 **4.5. Statistical analysis**

294 Statistical analysis was performed using StatSoft Statistica 10.0 and Microsoft Excel 2016.
295 Intergroup comparisons were performed using Mann-Whitney U test. The significance level was
296 $p < 0.05$.

297 **5. Conclusions**

298 The present study indicates that TLR2 and TLR4 are upregulated in the eyes of mice in response
299 to *Acanthamoeba* sp. infection. The observed changes in the expression of both toll-like receptors may
300 confirm involvement of the innate immune system in the pathomechanism of intranasally-triggered
301 acanthamoebiasis. The results suggest that it may be possible for trophozoites to migrate through the
302 optic nerve from the brain to the eyeball.

303 **Author Contributions:** Kot Karolina, Kosik-Bogacka Danuta and Łanocha-Arendarczyk Natalia conceived and
304 designed the research. Kot Karolina, Kosik-Bogacka Danuta and Łanocha-Arendarczyk Natalia performed the
305 experiments; Kot Karolina, Wojtkowiak-Giera Agnieszka and Kolasa-Wołosiuk Agnieszka analyzed the data;
306 Kot Karolina and Kosik-Bogacka Danuta contributed to writing the manuscript. All authors read and approved
307 the final manuscript.

308 **Funding:** This research received no external funding

309 **Conflicts of Interest:** The authors declare no conflict of interest.

310 **Abbreviations**

A	immunocompetent <i>Acanthamoeba</i> sp.-infected mice
AK	<i>Acanthamoeba</i> keratitis
AM 22	amoebic strain no.22
AML	Acute myeloid leukemia
AS	immunosuppressed <i>Acanthamoeba</i> sp.-infected mice
C	immunocompetent uninfected control group mice
CNS	central nervous system
CS	immunosuppressed uninfected mice
CXCL2	Chemokine (C-X-C motif) ligand 2
Dpi	days post infection
ERK 1/2	extracellular signal-regulated kinase
GAE	granulomatous amebic encephalitis
HCEC	human corneal epithelial cell lines
HCF	human corneal fibroblasts
IFN	interferon
IHC	Immunohistochemical reaction
IL-2	interleukin-2
IL-8	Interleukin-8
IRF3	interferon regulatory factor 3
MAP	mitogen-activated protein kinases
MPS	methylprednisolone sodium succinate
NF-κB	nuclear transcription factor
MyD88	Myeloid Differentiation primary response 88
PAMPs	Pathogen-associated molecular patterns
PCR	Polymerase chain reaction

RT-PCR	Reverse transcription PCR
Q-PCR	Real-time PCR
SARM	Sterile-alpha and Armadillo motif containing protein
Th	T helper cells
Th1	Type 1 T helper
Th2	Type 2 T helper
Th17	Type 17 T helper
TIR	Toll-interleukin-1 receptor
TIRAP	Toll-interleukin-1 receptor domain-containing adapter
TLR	Toll-like receptor
TLR2	Toll-like-2 receptor
TLR3	Toll-like-3 receptor
TLR4	Toll-like-4 receptor
TNF- α	tumor necrosis factor α
TRAM	TRIF-related adaptor molecule
Treg	Regulatory T cells
TRIF	TIR-domain-containing adapter-inducing interferon β

311 **References**

- 312 1. Mishra, B.B.; Gundra, U.M.; Teale, J.M. Toll-like receptors in CNS parasitic infections. *Curr Top Microbiol*
313 *Immunol* **2009**, *336*, 83-104. doi: 10.1007/978-3-642-00549-7_5.
- 314 2. Portou, M.J.; Baker, D.; Abraham, D.; Tsui, J. The innate immune system, toll-like receptors and dermal
315 wound healing: A review. *Vascul Pharmacol* **2015**, *71*, 31-36. doi: 10.1016/j.vph.2015.02.007.
- 316 3. Kawai, T.; Akira, S. TLR signaling. *Semin Immunol* **2007**, *19*, 24-32.
- 317 4. De Jonckheere, J. F. Ecology of *Acanthamoeba*. *Rev Infect Dis* **1991**, *13*, S385-S387.
- 318 5. Cerva, L. *Acanthamoeba culbertsoni* and *Naegleria fowleri*: occurrence of antibodies in man. *J Hyg Epidemiol*
319 *Microbiol Immunol*. **1989**, *33*, 99-103.
- 320 6. Cursons, R.T.; Brown, T.J.; Keys, E.A.; Moriarty, K.M.; Till, D. Immunity to pathogenic free-living amoebae:
321 role of humoral antibody. *Infect Immun*. **1980**, *29*, 401-407.
- 322 7. Martinez, A.J.; Visvesvara, G.S. Free-living, amphizoic and opportunistic amebas. *Brain Pathol*. **1997**, *7*, 583-
323 598.
- 324 8. Nagington, J.; Watson, P.G.; Playfair, T.J.; McGill, J.; Jones, B.R.; Steele, A.D. Amoebic infection of the
325 eye. *Lancet* **1974**, *2*, 1537-1540.
- 326 9. Schaumberg, D.A.; Snow, K.K.; Dana, M.R. The epidemic of *Acanthamoeba* keratitis: where do we
327 stand? *Cornea* **1998**, *17*, 3-10.
- 328 10. Król-Turmińska, K.; Olender, A. Human infections caused by free-living amoebae. *Ann Agric Environ Med*.
329 **2017**, *24*, 254-260. doi: 10.5604/12321966.1233568.
- 330 11. Kot, K.; Łanocha-Arendarczyk, N.A.; Kosik-Bogacka, D.I. Amoebas from the genera *Acanthamoeba* and their
331 pathogenic properties. *Ann Parasitol* **2018**, *64*, 299-308.
- 332 12. Harrison, J.L.; Ferreira, G.A.; Raborn, E.S.; Lafrenaye, A.D.; Marciano-Cabral, F.; Cabral, G.A. *Acanthamoeba*
333 *culbertsoni* Elicits Soluble Factors That Exert Anti-Microglial Cell Activity. *Infect Immun* **2010**, *78*, 4001-
334 4011. doi: 10.1128/IAI.00047-10.
- 335 13. Knickelbein, J.E.; Kovarik, J.; Dhaliwal, D.K.; Chu, C.T. *Acanthamoeba* keratitis: a clinicopathologic case
336 report and review of the literature. *Hum Pathol*. **2013**, *44*, 918-922. doi: 10.1016/j.humpath.2012.10.007.
- 337 14. Neelam, S.; Niederkorn, J.Y. Pathobiology and Immunobiology of *Acanthamoeba* Keratitis: Insights from
338 Animal Models. *Yale J Biol Med*. **2017**, *90*, 261-268.
- 339 15. Chandra, S.R.; Adwani, S.; Mahadevan, A. *Acanthamoeba* meningoencephalitis. *Ann Indian Acad Neurol*.
340 **2014**, *17*, 108-112. doi: 10.4103/0972-2327.128571
- 341 16. Alizadeh, H.; Tripathi, T.; Abdi, M.; Smith, A.D. Pathogenic strains of *Acanthamoeba* are recognized by TLR4
342 and initiated inflammatory responses in the Cornea. *PLOS One* **2014**, *9*, 3. doi: 10.1371/journal.pone.0092375
- 343 17. Ren, M.; Gao, L.; Wu, X. TLR4: the receptor bridging *Acanthamoeba* challenge and intracellular
344 inflammatory responses in human corneal cell lines. *Immunol Cell Biol*. **2010**, *88*, 529-536. doi:
345 10.1038/icb.2010.6.
- 346 18. Ren, M.Y.; Wu, X.Y. Toll-like receptor 4 signalling pathway activation in a rat model of *Acanthamoeba*
347 Keratitis. *Parasite Immunol*. **2011**, *33*, 25-33. doi:10.1111/j.1365-3024.2010.01247.x.

348 19. Grygorowicz, M.A.; Kozłowska, E. Involvement of receptors recognizing pathogen-associated molecular
349 patterns – TLRs in modulation of regulatory T cell CD4+CD25+FoxP3+ activity. *Post Mikrobiol* **2011**, *50*: 141-
350 154.

351 20. Suryawanshi, A.; Cao, Z.; Sampson, J.F.; Panjwani, N. IL-17A-mediated protection against *Acanthamoeba*
352 keratitis. *J Immunol* **2015**, *194*, 650-663. doi: 10.4049/jimmunol.1302707.

353 21. Łanocha-Arendarczyk, N.; Kolasa-Wołosiuk, A.; Wojciechowska-Koszko, I.; Kot, K.; Roszkowska, P.;
354 Krasnodębska-Szponder, B.; Paczkowska, E.; Machaliński, B.; Łuczkowska, K.; Wiszniewska, B.; Kosik-
355 Bogacka, D. Changes in the immune system in experimental acanthamoebiasis in immunocompetent and
356 immunosuppressed hosts. *Parasit Vectors* **2018**, *11*, 517. doi: 10.1186/s13071-018-3108-x.

357 22. Derda, M.; Wojtkowiak-Giera, A.; Kolasa-Wołosiuk, A.; Kosik-Bogacka, D.; Hadaś, E.; Jagodziński, P.P.;
358 Wandurska-Nowak, E. *Acanthamoeba* infection in lungs of mice expressed by toll-like receptors (TLR2 and
359 TLR4). *Exp Parasitol.* **2016**, *165*, 30-34. doi: 10.1016/j.exppara.2016.02.012.

360 23. Wojtkowiak-Giera, A.; Derda, M.; Kolasa-Wołosiuk, A.; Kosik-Bogacka, D.; Solarczyk, P.;
361 Jagodziński, P.P.; Wandurska-Nowak, E. Toll-like receptors in the brain of mice following infection with
362 *Acanthamoeba* spp. *Parasitol Res* **2016**, *115*, 4335-4344.

363 24. van Klink, F.; Alizadeh, H.; He, Y.; Mellon, J.A.; Silvany, R.E.; McCulley, J.P.; Niederkorn, J.Y. The role of
364 contact lenses, trauma, and Langerhans cells in a Chinese hamster model of *Acanthamoeba* keratitis. *Invest*
365 *Ophthalmol Vis Sci.* **1993**, *34*, 1937-1944.

366 25. Johnson, A.C.; Heinzel, F.P.; Diaconu, E.; Sun, Y.; Hise, A.G.; Golenbock, D.; Lass, J.H.; Pearlman, E.
367 Activation of toll-like receptor (TLR)2, TLR4, and TLR9 in the mammalian cornea induces MyD88-
368 dependent corneal inflammation. *Invest Ophthalmol Vis Sci.* **2005**, *46*, 589-595.

369 26. Jin, X.; Qin, Q.; Tu, L.; Qu, J. Glucocorticoids inhibit the innate immune system of human corneal fibroblast
370 through their suppression of toll-like receptors. *Mol Vis.* **2009**, *15*, 2435-2441.

371 27. Hara, Y.; Shiraishi, A.; Kobayashi, T.; Kadota, Y.; Shirakata, Y.; Hashimoto, K.; Ohashi, Y. Alteration of
372 TLR3 pathways by glucocorticoids may be responsible for immunosusceptibility of human corneal
373 epithelial cells to viral infections. *Mol Vis.* **2009**, *15*, 937-948.

374 28. Clarke, D.W.; Niederkorn, J.Y. The immunobiology of *Acanthamoeba* keratitis. *Microbes Infect* **2006**, *8*, 1400-
375 1405.

376 29. Feng, X.; Zheng, W.; Wang, Y.; Zhao, D.; Jiang, X.; Lv, S. A Rabbit Model of *Acanthamoeba* Keratitis That
377 Better Reflects the Natural Human Infection. *Anat Rec* **2015**, *298*, 1509-1517. doi: 10.1002/ar.23154.

378 30. Alfawaz, A. Radial keratoneuritis as a presenting sign in *Acanthamoeba* keratitis. *Middle East Afr J*
379 *Ophthalmol.* **2011**, *18*, 252-255.

380 31. Füst, Á.; Tóth, J.; Simon, G.; Imre, L.; Nagy, Z.Z. Specificity of in vivo confocal cornea microscopy in
381 *Acanthamoeba* keratitis. *Eur J Ophthalmol.* **2017**, *27*, 10-15. doi: 10.5301/ejo.5000817.

382 32. Kato, K.; Hirano, K.; Nagasaka, T.; Matsunaga, K.; Takashima, Y.; Kondo, M. Histopathological
383 examination of *Acanthamoeba* sclerokeratitis. *Clin Ophthalmol.* **2014**, *8*: 251-253. doi:10.2147/OPTH.S54807

384 33. Łanocha-Arendarczyk, N.; Baranowska-Bosiacka, I.; Kot, K.; Gutowska, I.; Kolasa-Wołosiuk, A.; Chlubek,
385 D.; Kosik-Bogacka, D. Expression and Activity of COX-1 and COX-2 in *Acanthamoeba* sp.-Infected Lungs
386 According to the Host Immunological Status. *Int J Mol Sci.* **2018**, *19*. doi: 10.3390/ijms19010121.

387 34. Łanocha-Arendarczyk, N.; Baranowska-Bosiacka, I.; Kot, K.; Pilarczyk, B.; Tomza-Marcianik, A.; Kabat-
388 Koperska, J.; Kosik-Bogacka, D. Biochemical Profile, Liver and Kinney Selenium (Se) Status during
389 Acanthamoebiasis in a Mouse Model. *Folia Biologica* **2018**, *66*, 33-40. doi.org/10.3409/fb_66-1.04.

390 35. Łanocha, N.; Kosik-Bogacka, D.; Maciejewska, A.; Sawczuk, M.; Wilk, A.; Kuźna-Grygiel, W. The
391 occurrence *Acanthamoeba* (free living amoeba) in environmental and respiratory samples in Poland. *Acta*
392 *Protozool.* **2009**, *48*, 271-279.

393 36. Culbertson, C.G.; Ensminger, P.W.; Overton, W.M. The isolation of additional strains FF pathogenic
394 *Hartmanella* sp. (*Acanthamoeba*): Proposed culture method for application to biological material. *Am. J. Clin.*
395 *Pathol.* **1965**, *43*, 383-387.

396 37. Markowitz, S.M.; Sobieski, T.; Martinez, A.J.; Duma, R.J. Experimental *Acanthamoeba* infections in mice
397 pretreated with methylprednisolone or tetracycline. *Am. J. Pathol.* **1978**, *92*, 733-744.

398 38. Górnik, K.; Kuźna-Grygiel, W. Histological studies of selected organs of mice experimentally infected with
399 *Acanthamoeba* spp. *Folia Morphol.* **2005**, *64*, 161-167.