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Abstract: There is a formal analogy between the evolution of the universe, when this is seen as a
trajectory in the minisuperspace, and the worldline followed by a test particle in a curved spacetime.
The analogy can be extended to the quantum realm, where the trajectories are transformed into wave
packets that give us the probability of finding the universe or the particle in a given point of their
respective spaces: the spacetime in the case of the particle and the minisuperspace in the case of the
universe. The wave function of the spacetime and the matter fields, all together, can then be seen as a
super-field that propagates in the minisuperspace and the so-called third quantisation procedure can
be applied in a parallel way as the second quantisation procedure is performed with a matter field
that propagates in the spacetime. The super-field can thus be interpreted as made up of universes
propagating, i.e. evolving, in the minisuperspace. The analogy can also be used in the opposite
direction. The way in which the semiclassical state of the universe is obtained in quantum cosmology
allows us to obtain, from the quantum state of a field that propagates in the spacetime, the geodesics
of the underlying spacetime as well as their quantum uncertainties or dispersions. This might settle a
new starting point for a different quantisation of the spacetime.
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1. Introduction

In 1990 M. Gell-Mann and J. B. Hartle presented the sum-over-histories formulation of quantum
cosmology in a paper entitled "Quantum mechanics in the light of quantum cosmology", in which
the classical domains of familiar experience are derived from a decoherence process between the
alternative histories of the universe. In that paper [1], the authors conclude that quantum mechanics
is best and most fundamentally understood in the context of quantum cosmology. This is so mainly for two
reasons. First, the non-locality or, generally speaking, the non-separability of the quantum theory leads
to the assumption that it cannot be applied only to a given system since it is not isolated but coupled to
its natural environment, which is again coupled to another environment, and so forth [2]. The extrapolation
of that idea inevitably implies that the quantum theory must be applied, from the most fundamental
level, to the universe as a whole. Second, if this is so, the quantum mechanics of particles and fields
must be a derivable consequence of the application of the quantum theory to the whole universe.

For instance, there is no preferred time variable in the universe so, strictly speaking, it cannot
undergo any time evolution. However, we know from experience that the spacetime and the things
that are deployed in the spacetime evolve in time. Therefore, as Gell-Mann and Hartle show, time and
time evolution, and particularly the Schrödinger equation that provides us with the time evolution of
quantum systems, turn out to be emergent features of the quantum state of the universe. Furthermore,
the universe jeopardises some of the fundamentals of the quantum theory. For instance, what does
it mean concepts like uncertainty or non-locality in the context of a universe that is not deployed in
the spacetime but it contains it? Thus, quantum cosmology forces us to acquire a deeper and a wider
understanding of the quantum theory. It is from all these points of view from which the principles of
quantum mechanics can be most fundamentally understood in the context of quantum cosmology, as
the authors say.

The idea behind quantum cosmology is that the conditions imposed on the state of the universe
at the boundary1, together with the equations of quantum mechanics should be enough to assign
probabilities to any plausible event that may happen in the universe. This is the most that a non
deterministic theory like the quantum mechanics can provide. With that purpose, and following a
parallelism with the Feynman’s formalism of path integrals, Gell-Mann and Hartle extend the seminal
idea of Everett [3] and develop their sum-over-histories theory [1,4,5], in which a history is defined
as a time ordered sequence of projectors that represent all the possible outcomes that the infinite
constituents of the universe may give at each moment of time2. These fine-grained histories represent
therefore all the possibilities in the universe and, hence, they contain all the information of the universe.
However, these histories interfere among each other so in order to assign independent probabilities to
the exclusive outcomes of the semiclassical experience3 one must take some coarse graining around
the representatives values of the distinguished variables under study. In that process the fine detailed
information is lost but it is precisely because the loss of that ignored information that we can assign
consistent probabilities to the alternative outcomes of a given experiment. It may seem then curious
that the acceptance of a bit of ignorance is what allows us to obtain information from a physical system.

In the case of quantum cosmology, it turns out that (classical) time and the time evolution of matter
fields, which constitute the main ingredients of the semiclassical domain of our physical experience,
are emergent features that decohere from the fine-detailed description of the quantum state of the

1 Time is created at the onset of the universe and thus the wave function of the universe cannot be a time-dependent function,
so we cannot apply an initial condition on the state of the universe. However, the universe may have a boundary where to
impose the conditions that eventually would determine everything else in the whole history of the universe.

2 These are essentially the relative states of Everett’s formulation of quantum mechanics [3]. However, Everett did not provide
an explanation of why some states and no others are selected from the whole set of possible states. In order to explain it
Hartle needs to add, besides the boundary condition of the state of the universe and the equations of quantum mechanics, a
new ingredient: the coarse-graining process that makes some states to emerge from the decoherence process. These are the
selected states of the Everett’s formulation.

3 The outcomes of a classical experiment are exclusive, i.e. the cat is either dead or alive but not both.
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universe [5]. Thus, the sum-over-histories framework provides us with a consistent assignation of
probabilities to the different outcomes of a given experiment and, in cosmology, it supplies us with
an explanation for the appearance of the semiclassical domains of everyday experience4, where it is
developed the quantum field theories of matter fields; so, at least from the conceptual point of view,
everything seemed to be settled in quantum cosmology. The idea that was left is that little else could
be done. In order to understand quantum mechanically the primordial singularity we need a complete
quantum theory of gravity, and short after the origin the inflationary process seems to blur any posible
imprint of the quantum regime of the universe. Besides, everything that follows could be explained by
the quantum mechanics of particles and fields that, in the light of quantum cosmology, are emergent
features of the quantum state of the whole universe. Thus, quantum cosmology got stuck in the 90’s5.

Almost thirty years afterwards, the title of this paper becomes a humble tribute to Gell-Mann
and Hartle, and to many other authors that made possible the development of quantum cosmology
[1,2,5,11–32], and particularly to P. González-Díaz, who figuratively introduced me to all of them.
However, it also suggests the idea that it might be the time now, like in Plato’s cavern allegory, of
doing the way back to that proposed by Gell-Mann and Hartle. Perhaps, it may be now quantum
cosmology the one that can be benefit of a deeper insight in the light of the well known principles of the
quantum mechanics of particles and fields. With that aim in mind, we shall use the analogy between
the spacetime and the minisuperspace, as well as the analogy between their quantum mechanical
counterparts, to shed some light in both directions. In one direction, the analogy between quantum
cosmology and the quantum theory of a field that propagates in the spacetime provides us with
a useful framework where to develop a quantum theory of the whole multiverse. In the opposite
direction, the way in which the semiclassical state of the universe is obtained in quantum cosmology
from the quantum state of the universe will allow us to obtain, from the quantum state of a field
that propagates in the spacetime, the classical trajectories followed by test particles as well as their
quantum uncertainties. This might settle a new viewpoint for a different quantisation of the spacetime
coordinates.

The paper is outlined as follows. In Sec. 2 we sketch a brief description of the canonical procedure
of quantisation customary used in quantum cosmology. The aim of this section is by no means to be
exhaustive but just to provide to the unfamiliar reader with a brief introduction of the way in which
one arrives to the concept of the wave function of the whole universe. We end up the section showing
that for most practical purposes the assumption of the minisuperspace is well justified. In Sec. 3 we
develop the classical analogy between the evolution of the universe in the minisuperspace and the
trajectory of a test particle in a curved spacetime. In Sec. 4 we consider the wave function of the
spacetime and the matter fields, all together, as a super-field that propagates in the minisuperspace.
Then, a similar quantisation formalism to that made in a quantum field theory is applied and the
super-field is then interpreted made us of universes propagating in the minisuperspace. In Sec. 5 we
describe the semiclassical regime of the universe derived from the solutions of the Wheeler-DeWitt
equation and, analogously, we also obtain the trajectories of test particles in the spacetime from the
semiclassical expansion of the solutions of the Klein-Gordon equation. Finally, in Sec. 6 we summarise
and draw some conclusions.

4 The existence of a semiclassical domain in the universe, and actually our own existence, can be seen as two possible
outcomes of the cosmological experiment. As Hartle says [5], we live in the middle of this particular experiment.

5 Two important exceptions are the developments made in loop quantum cosmology [6] and the computation of next order
gravitational corrections to the Schrödinger equation made in Refs. [7–10].
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2. Quantum cosmology: a (very) brief review

2.1. Classical constraints

In the canonical approach of quantum cosmology, the quantum state of the universe is described by
a wave function that depends on the variables of the spacetime and on the variables of the matter fields.
It is the solution of the Wheeler-DeWitt equation [12], which is obtained by canonically quantising
the Hamiltonian constraint associated to the classical Hilbert-Einstein action plus the action of matter
[31,32]

S =
1

16π

∫
M

d4x
√
−g
(

4R− 2Λ
)
+

1
8π

∫
∂M

d3x
√

hK + Smatter, (1)

where we have used units in which G = c = 1, K = Ki
i is the trace of the extrinsic curvature, and for a

single scalar field ϕ with potential V(ϕ),

Smatter =
∫
M

d4x
√
−g
(

1
2

gµν∂µ ϕ∂ν ϕ−V(ϕ)

)
(2)

The next step consists of foliating the spacetime into space-like Cauchy hypersurfaces Σt, where
t denotes the global time function of the 3 + 1 decomposition (see, Fig. 1). A line element of the
spacetime can then be written as [31,32]

ds2 = gµνdxµdxν =
(

hijNi N j − N2
)

dt2 + hij

(
Nidxj + N jdxi

)
dt + hijdxidxj, (3)

where hij is the three-dimensional metric induced on each hypersurface Σt, given by [31]

hµν = gµν + nµnν, (4)

with the unit normal to Σt, nµ, satisfying, nµnµ = −1, and N and Ni are called the lapse and the shift
functions, respectively, which are the normal and tangential components of the vector field tµ, which
satisfies tµ∇µt = 1, with respect to the Cauchy hypersurface Σt (see the details in, for instance, Refs
[31,32]). In the Hamiltonian formulation of the Hilbert-Einstein action the variables of the phase space
turn out to be then the metric components, hij = hij(t,~x), the scalar field, ϕ(t,~x), and their conjugate
momenta [31,32]

πij = −
√

h
16π

(
Kij − hijK

)
, πϕ =

√
h

N

(
ϕ̇− Ni∂i ϕ

)
. (5)

With the 3 + 1 decomposition (3) one can show that the action (1) can be written as [32]

S =
∫

dtd3x
(

π0Ṅ + πi Ṅi − NH− NiHi
)

, (6)

so the lapse and shift functions act as Lagrange multipliers, with [32]

H = 16π Gijklπ
ijπkl −

√
h

16π

(
3R− 2Λ

)
+

1
2

√
h
(

1
h

π2
ϕ + hij∂i ϕ∂j ϕ + 2V(ϕ)

)
, (7)

Hi = −2Djπ
ij + hij∂jπϕ, (8)

and
Gijkl =

1
2

h−
1
2

(
hikhjl + hilhjk − hijhkl

)
, (9)

is the DeWitt metric [12]. Therefore, variation of the action (6) with respect to the lapse and the shift
functions yield the classical Hamiltonian and momentum constraint, respectively, i.e.

H = 0 , Hi = 0, (10)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 30 January 2019                   doi:10.20944/preprints201901.0316.v1

Peer-reviewed version available at Galaxies 2019, 7, 50; doi:10.3390/galaxies7020050

http://dx.doi.org/10.20944/preprints201901.0316.v1
https://doi.org/10.3390/galaxies7020050


5 of 26

Figure 1. Foliation of the spacetime into space and time. Left: in flat spacetime the lines of constant xi

are orthogonal to the spatial hypersurfaces Σ and the coordinate time t coincides with the proper time,
τ. Right: in a curved spacetime, there is a shift, given by Nidt, between the point that would have been
reached if the particle would have followed the orthonormal vector of the hypersurface, nµ at xi in Σt,
and the actual point of coordinates xi in dΣt+dt. The proper time τ is now ’lapsed’ with respect to the
coordinate time, t.

which are nothing more than the (00) and the (0i) components of Einstein’s equations.

2.2. Canonical quantisation

The canonical procedure of quantisation consists of assuming the quantum version of the classical
constraints (10) that would be obtained from the canonical quantisation of the momenta conjugated to
the configuration space

πij → −i
δ

δhij
, πϕ → −i

δ

δϕ
. (11)

In particular, the classical Hamiltonian constraint,H = 0, gives rise the well-known Wheeler-DeWitt
equation [12,31,32],(

−16πh̄2Gijkl
δ2

δhijδhkl
+

√
h

16π

(
− (3)R + 2Λ + 16πT̂00

))
φ(hab, ϕ) = 0, (12)

where h̄ is the Planck constant, and T̂00 reads

T̂00 =
−1
2h

δ2

δϕ2 +
1
2

hij ϕ,i ϕ,j + V(ϕ). (13)

The wave function φ(hab, ϕ) in (12) is called the wave function of the universe [23], and it is defined
in the abstract space of all possible three-metrics defined in Σt modulo diffeomorphisms, called the
superspace. Furthermore, the Wheeler-DeWitt equation (12) is not a single equation but in fact it is an
equation at each point x of the hypersurface Σt [32]. It is then easy to understand that the exact solution
of the Wheeler-DeWitt equation (12) is very difficult if not impossible to obtain for a general value of
the metric and a general value of the matter fields. For practical purposes, one needs to assume some
symmetries in the underlying spacetime to make it tractable. In that case, the number of variables of
the superspace can be notably reduced and for that reason it is called the minisuperspace6.

6 Note however that this space can still be infinite dimensional.
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2.3. Minisuperspace

The observational data indicate that the most part of the history of the universe this is
homogeneous and isotropic, at least as a first approximation. It seems therefore reasonable to
consider the minisuperspace associated to the homogeneous and isotropic spacetimes instead of
the full superspace. At first, it could seem meaningless not to consider the full superspace to describe
the quantum state of the universe since the most relevant regime for quantum cosmology seems
to be the singular origin of the universe, where the quantum fluctuations of the spacetime make
impossible to consider not only any symmetry in the spacetime but even the classical concept of
spacetime7. However, this is not necessarily the case. First, to describe the initial singularity, if this
exists, we would need a full quantum theory of gravity, which is not yet available. Second, there are
homogeneous and isotropic models of the universe for which the scale factor does not decrease further
than a minimal value, amin. In that case, if amin is of some orders higher than the Planck length the
quantum fluctuations of the spacetime can be subdominant. Furthermore, it could well happen that
the quantum description of the universe would also be relevant at other scales rather than the Planck
length, even in a macroscopic universe like ours. For all those reasons, it is justified to consider a
homogeneous and isotropic spacetime as a first approximation. Afterwards, we can analyse the small
departures from the homogeneity and the isotropy as corrections to the homogeneous and isotropic
background. This provides us with a relatively simple but still complete and useful model of the
universe, at least for the major part of its evolution, even in quantum cosmology.

If one assumes isotropy, the metric of the three-dimensional hypersurfaces, hij(t,~x) and the value
of the matter fields, ϕn(t,~x) can be expanded in spherical harmonics as [25,29]

hij(t,~x) = a2(t)Ωij + a2(t)∑
n

2dn(t)Gn
ij(~x) + . . . , (14)

ϕ(t,~x) =
1√
2π

ϕ(t) + ∑
n

fn(t)Qn(~x), (15)

where Ωij are the metric components of a line element in the three-sphere, Qn(x) are the scalar
harmonics, and Gn

ij(x) are the transverse traceless tensor harmonics, with n ≡ (n, l, m) (see Ref. [25]
for the details). More terms appear in the expansion of the metric tensor [25]. However, the dominant
contribution is given by the tensor modes of the spacetime, dn, and the scalar modes of the perturbed
field, fn, so let us focus on dn and fn as the representative of the inhomogeneous modes of the metric
and matter fields, respectively8.

If, as a first approximation, we only consider the homogeneous modes, the evolution of the
universe is essentially described by the zero order terms in (14-15), the scale factor a(t) and the
homogeneous mode of the scalar field ϕ(t), which would be the configuration variables of the
minisuperspace. In that case, as we shall see in Secs. 3 and 4, the Hilbert-Einstein action (1) and the
Wheeler-DeWitt equation (12) simplifies considerably and the wave function of the universe turns
out to be a function that only depends on these two variables, (a, ϕ). Although this minisuperspace
may look a very simplified space it provides us with a very powerful context where to describe the
evolution of a quite realistic model of the universe, even in quantum cosmology. Furthermore, it can
easily be generalised to other models of the universe without loosing effectiveness. For instance, we
could consider n scalar fields9, ϕ1, . . . , ϕn, to represent the matter content of the universe. In that case,
the resulting minisuperspace would be generated by the coordinates (a, ~ϕ), where ~ϕ = (ϕ1, . . . , ϕn).

7 When the quantum fluctuations of the spacetime are of the same order of the metric itself, the quantum state of the
spacetime would be described by a quantum superposition of geometries that make impossible the classical description of
the spacetime (see, Refs. [11,33]).

8 Eventually, these inhomogeneous modes will be interpreted as particles and gravitons propagating in the homogeneous and
isotropic background spacetime.

9 Spinorial and vector fields can be considered as well.
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One could also consider anisotropies by choosing a minisuperspace with coordinates (ax, ay, az, ~ϕ),
or we can consider isotropy but not homogeneity, as in (14-15), and then, the minisuperspace would
be the infinite-dimensional space spanned by the variables (a, ϕ, ~f , ~d, . . .), where ~f = ( f1, f2, . . .),
~d = (d1, d2, . . .), . . ., are the vectors formed with all the inhomogeneous modes of the expansions
(14-15). It is easy to see then that the use of the minisuperspace is well justified to describe many
models of the universe, including the most realistic ones.

In all those cases the evolution of the universe can be seen as a parametrised trajectory in the
corresponding minisuperspace, with parametric coordinates (a(t), ϕ(t), ~f (t), ~d(t), . . .), where the time
variable t is the parameter that parametrises the trajectory in the minisuperspace. In this paper, we shall
assume an homogeneous and isotropic background as a first approximation and the inhomogeneities
will be analysed as small perturbations propagating in the isotropic and homogeneous background.
In that case, the evolution of the universe would basically be given by the path in the (a, ϕ) plane,
and the inhomogeneities would only produce small vibrations in the rest of planes around the main
trajectory in the minisuperspace. Even if we think that the minisuperspace approximation is not fully
satisfactory, we shall see in this paper that it is still very useful for obtaining a deep understanding
of the application of the quantum theory to the universe as a whole. For instance, it allows us to
uncover an accurate relationship that exists between the quantisation of the evolution of the universe
in quantum cosmology and the well-known procedure of quantisation of particles and matter fields in
quantum mechanics.

3. Classical analogy: the geometric minisuperspace

As we already pointed out, the evolution of the universe can be seen as a parametrised trajectory
in the minisuperspace, with the time variable t being the parameter that parametrised the trajectory.
If we assume homogeneity and isotropy in the background spacetime, as we stated in the previous
section, then, Ni = 0, ∀i in (3), and the metric becomes

ds2 = −N2dt2 + a2(t)dΩ2
3, (16)

where a(t) is the scale factor, and dΩ2
3 is the line element on the three sphere. The lapse function N

parametrises here the ways in which the homogeneous and isotropic spacetime can be foliated into
space and time, which are just time reparametrizations. If N = 1 the time variable t is called cosmic
time and if N = a(t), t is renamed with the Greek letter η and is called conformal time because in terms
of η the metric becomes conformal to the metric of a closed static spacetime. For the matter fields, let
us consider the homogeneous mode of a scalar field, ϕ(t), minimally coupled to gravity. Later on we
shall consider inhomogeneities of the spacetime and the matter fields as small perturbations of the
homogeneous and isotropic background. The Einstein-Hilbert action (1) simplifies and can then be
written as [31]

S = Sg + Sm =
∫

dtN
(

1
2

GAB
q̇A q̇B

N2 − V(q)
)

, (17)

where the variables of the minisuperspace, qA, are the scale factor and the homogeneous mode of the
scalar field10, i.e. q ≡ {a, ϕ}. The metric Gijkl in (9) turns out to be now [31]

GAB = diag(−a, a3), (18)

and the potential term, V(q) in (17), that contains all the non kinetic terms of the action,

V(q) ≡ V(a, ϕ) =
1
2

(
−a + a3V(ϕ)

)
. (19)

10 For convenience the scalar field has been rescaled according to, ϕ→
√

2ϕ.
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Figure 2. The evolution of the universe can be seen as a parametrised trajectory in the minisuperspace.
Trajectories in the minisuperspace with positive zero components of the tangent vector entail a growing
value of the scale factor so they represent expanding universes. Analogously, those with negative zero
component in the tangent vector describe contracting universes.

The first term in (19) comes from the closed geometry of the three space, and V(ϕ) is the potential of
the scalar field. The case of a spacetime with a cosmological constant, Λ, is implicitly included if we
consider a constant value of the potential of the scalar field, V(ϕ) = Λ

3 .
The action (17) shows that the minisuperspace is equipped with a geometrical structure formally

similar to that of a curved spacetime, with the tensor (18) being the metric tensor, called the
minisupermetric [31], and a line element in the minisuperspace given by

ds2 = −ada2 + a3dϕ2. (20)

In the spacetime, the trajectory followed by a test particle can be obtained from the action [34]

S =
m
2

∫
dτ n

(
1
n2 gµν

dxµ

dτ

dxν

dτ
− 1
)

, (21)

where n is a function that makes the action (21) invariant under reparametrizations of the affine
parameter τ. The analogy between the actions (21) and (17) is the base of the parallel analysis that will
be done in this paper between the description of the evolution of the universe in the minisuperspace
and the trajectory followed by a test particle in a curved spacetime. The variation of the action (21)
yields the well-known geodesic equation,

d2xµ

dτ2 + Γµ
αβ

dxα

dτ

dxβ

dτ
= 0, (22)

which turns out to be the Euler-Lagrange equation associated to the action (21). Similarly, the classical
evolution of the universe can be seen as the trajectory in the minisuperspace that extremizes the action
(17). The parametric coordinates a(t) and ϕ(t) of the curve that describes the evolution of the universe
are then given by

q̈A + ΓA
BC q̇B q̇C = −GAB ∂V

∂qB , (23)
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where11, q̇A ≡ dqA

Ndt , and ΓA
BC are the Christoffel symbols associated to the minisupermetric GAB, defined

as usual by

ΓA
BC =

GAD

2

{
∂GBD

∂qC +
∂GCD

∂qB −
∂GBC

∂qD

}
. (24)

In the case of the minisupermetric (18) the non vanishing components of ΓA
BC are

Γa
aa =

1
2a

, Γa
ϕϕ =

3a
2

, Γϕ
ϕa = Γϕ

aϕ =
3
2a

. (25)

Inserting (25) in (23) one obtains12

ä +
ȧ2

2a
+

3a
2

ϕ̇2 = − 1
2a

+
3
2

aV(ϕ) , ϕ̈ + 3
ȧ
a

ϕ̇ = −1
2

∂V(ϕ)

∂ϕ
, (26)

which are the classical field equations [31,35]. The evolution of the universe can then be seen as a
trajectory in the minisuperspace formed by the variables a and ϕ (see, Fig. 2). The time variable
parametrises the worldline of the universe and the solutions of the field equations, a(t) and ϕ(t), are
the parametric coordinates of the universe along the worldline. Because the presence of the potential V
in (23), t is not an affine parameter of the minisuperspace and the curved (a(t), ϕ(t)) is not a geodesic.
However, it is worth noticing that the action (17) is invariant under time reparametrisations in the
sense that the curve that extremizes the action does not depend on the parametrisation we use to
describe it. This is so because the lapse function N is not a dynamical variable and therefore, δS

δN = 0.
We can then make the following change in the time variable

dt̃ = m−2V(q)dt, (27)

where m is some constant. Together with the conformal transformation

G̃AB = m−2V(q)GAB, (28)

the action (17) transforms as

S =
∫

dt̃N
(

1
2N2 G̃AB

dqA

dt̃
dqB

dt̃
−m2

)
. (29)

The new time variable, t̃, turns out to be the affine parameter of the minisuperspace geometrically
described by the metric tensor G̃AB, with geodesic equation given by

d2qA

dt̃2 + Γ̃A
BC

dqB

dt̃
dqC

dt̃
= 0. (30)

Thus, the classical trajectory of the universe can equivalently be seen as either a geodesic of the
minisuperspace geometrically determined by the minisupermetric G̃AB or a non geodesic of the
minisuperspace geometrically determined by13 GAB.

In the Lagrangian formulation of the trajectory of a test particle in the spacetime we can define
the momenta conjugated to the spacetime variables as, pµ = δL

δ dxµ

dτ

. The invariance of the action (21)

11 Unless otherwise indicated we shall always consider cosmic time, for which N = 1.
12 Recall that the scalar field ϕ has been rescaled according to ϕ→

√
2ϕ, see f.n. 10.

13 This is the basis of the reasoning made in [34]. The trajectoy followed by a test particle can be seen either as a geodesic in a
given metric or as a non geodesic in a conformal metric under the action of some potential [34] (see also, Refs. [36,37]).
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under reparametrisations of the affine parameter leads to the Hamiltonian constraint, δH
δn = 0, which

turns out to be the momentum constraint of the particle

gµν pµ pν + m2 = 0. (31)

A similar development can be done in the minisuperspace. The momenta conjugated to the
variables of the minisuperspace are given by

p̃A ≡
δL

δ
dqA

dt̃

, (32)

and the Hamiltonian constraint associated to the action (29) turns out to be

G̃AB p̃A p̃B +m2 = 0, (33)

or in terms of the metric GAB and the time variable t,

GAB pA pB +m2
ef(q) = 0, (34)

where for convenience we have written, m2
ef(q) = 2V(q), with V(q) given by (19). It is worth noticing

that the phase space does not change in the transformation {GAB, t} → {G̃AB, t̃}, because

δL̃

δ
(

dqA

dt̃

) ≡ p̃A = G̃AB
dqB

dt̃
= GAB

dqB

dt
= pA ≡

δL

δ
(

dqA

dt

) , (35)

where, pA = {pa, pϕ} and qA ≡ {a, ϕ}.
There is a clear analogy then between the evolution of the universe, when this is seen as a path in

the minisuperspace, and the trajectory of a test particle that moves in a curved spacetime. It allows us
not only to see the evolution of the universe as a trajectory in the minisuperspace but also to attain a
better understanding of the quantisation of both the evolution of the universe and the trajectory of
a particle in the spacetime. Within the former, we shall see that the analogy allows us to study the
wave function of the universe as another field, say a super-field, that propagates in the minisuperspace,
and whose quantisation can thus follow a similar procedure to that employed in the quantisation of
a matter field that propagates in the spacetime. Therefore, following the customary interpretation
made in a quantum field theory, this new field can be interpreted in terms of test particles propagating
in the minisuperspace, i.e. in terms of universes evolving according to their worldline coordinates.
From this point of view, the natural scenario in quantum cosmology is a many-universe system, or
multiverse, much in a similar way as a many particle system is the natural scenario in a quantum
field theory. In the opposite direction in the analogy between the minisuperspace and the spacetime,
the way in which the semiclassical description of the universe is obtained, i.e. the way in which a
classical trajectory in the minisuperspace is recovered from the quantum state of the wave function
of the universe, will allow us to recover from the quantum state of the field ϕ the geodesics of the
spacetime where it propagates, i.e. the trajectories followed by the particles of the field, as well as the
uncertainties or deviations from their classical trajectories, given by the corresponding Schrödinger
equation.

4. Quantum picture

4.1. Quantum field theory in the spacetime

The formal analogy between the minisuperspace and a curved spacetime can be extended to the
quantum picture too. Let us first notice that in the quantum mechanics of fields and particles, the
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momentum constraint (31) can be quantised by transforming the momenta conjugated to the spacetime
variables into operators, pµ → −ih̄ ∂

∂xµ . With an appropriate choice of factor ordering14, it gives the
so-called Klein-Gordon equation (

−h̄2�x + m2
)

ϕ(t,~x) = 0, (36)

where,

�x ϕ = gµν∇µ∇ν ϕ =
1√−g

∂

∂xµ

(√
−ggµν ∂ϕ

∂xν

)
, (37)

with, g = det(gµν). The field ϕ(t,~x) in (36) is then interpreted as a field that propagates in the
spacetime, which is the configuration space of the Klein-Gordon equation. Note however the presence
in (36) of the Planck constant, h̄, which does not appear when the Klein-Gordon equation is derived
from the action of a classical field15. The difference can be thought to be irrelevant . In fact, most of the
time it is taken units in which h̄ = 1 so the Planck constant disappears. However, the presence of the
Planck constant in (36) is subtle and important. It will allow us to develop a semiclassical expansion of
the solutions of the Klein-Gordon equation that, following the parallelism with quantum cosmology,
will yield at zero order h̄0 the classical trajectory of a test particle moving in the given spacetime; and,
at first order in h̄, the uncertainties in the position given by the Schrödinger equation (see Sec. 5 and
Ref. [34]). Thus, all the classical and quantum physics of a single particle is already contained in (36).

However, the most powerful feature of a quantum field theory is that it allows us to describe
the quantum state of a many-particle system, and there, in the many particle scenario, new quantum
effects can appear that cannot be present in the context of one single particle, like entanglement and
other quantum correlations. Therefore, let us consider the so-called second quantisation procedure of
the scalar field ϕ, which follows as it is well known (see, for instance, Refs. [39,40]) by expanding the
field ϕ(x) in normal modes uk(x),

ϕ(x) = ∑
k

akuk(x) + a∗u∗k (x), (38)

where uk(x) and a∗k (x) are two linearly independent solutions of the Klein-Gordon equation (36),
which are orthonormal under the customary scalar product [39]

(ϕ1, ϕ2) = −i
∫

Σ
ϕ1(x)

↔
∂ µ ϕ∗2(x)

√
hdΣµ, (39)

where dΣµ = nµdΣ, with nµ a future-directed unit vector orthogonal to the three-dimensional
hypersurface Σ, dΣ is the volume element in Σ, and h is the determinant of the metric induced
in Σ, i.e. h = det(hij). In that case, the modes ui(x) satisfy the customary relations

(uk, ul) = δkl , (u∗k , u∗l ) = −δkl , (uk, u∗l ) = 0. (40)

The quantisation of the field (38) is then implemented by promoting the constants ak and a∗k into
quantum operators, âk and â†

k , respectively, satisfying the following commutation relations

[âk, â†
l ] = δkl , [âk, âl ] = [â†

k , â†
l ] = 0. (41)

14 The one that makes the Klein-Gordon equation (36) invariant under rotations in the spacetime.
15 This way of obtaining the Klein-Gordon equation from the Hamiltonian constraint of a test particle that propagates in the

spacetime is well-known since a long time. It can be seen, for instance, in Ref. [38]. However it is not customary used in
quantum field theory.
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Then, one defines a vacuum state, |0〉 = ∏k |0k〉, where |0k〉 is the state annihilated by the ak operator,
i.e. âk|0k〉 = 0. The vacuum state |0k〉 describes, in the representation defined by âk and â†

k , the
no-particle state for the mode k of the field. We can then define the excited state,

|mk1 , nk2 , . . .〉 = 1√
m!n! . . .

((
â†

k1

)m (
â†

k2

)n
. . .
)
|0〉, (42)

as the many-particle state representing m particles in the mode k1, n particles in the mode k2, etc. It
allows us to write the general quantum state of the field as

|ϕ〉 = ∑
m,n,...

Cm,n,...|mk1 nk2 . . .〉, (43)

where |Cm,n,...|2 is the probability to find m particles in the mode k1, n particles in the mode k2, etc.
Thus, when the modes uk are sufficiently localised16, the field can be interpreted as made up of
particles propagating in the spacetime with different values of their momenta, whose trajectories are
the geodesics of the subjacent spacetime (see Sec. 5). The quantum state (43) contains all the essence
and the distinctive character of the quantum theory. For instance, it allows us to consider an entangled
state like

|ϕ〉 = ∑
n

Cn|n~kn−~k〉 = C0|0~k0−~k〉+ C1|1~k1−~k〉+ . . . , (44)

which represents the linear combination of perfectly correlated pairs of particles moving in opposite
directions (with opposite values of their spatial momenta,~k and −~k). An entangled state like (44)
revolutionised the quantum mechanics, it showed that the distinguishing feature of quantum mechanics
is the non-locality, or better said the non-separability, of the quantum states [41,42]. It also entailed
the appearance of new crucial developments in the physics of nowadays like, for instance, quantum
information theory and quantum computation, among others. In the case of the universe, it seems now
quite bizarre to think of an entangled state like (44) or a many particle state in quantum cosmology.
However, if the expected effects [43,44] would be confirmed by astronomical observation, it would
certainly revolutionise the picture of our universe in a similar way.

4.2. Quantum field theory in the minisuperspace

A similar procedure of canonical quantisation can be followed in the minisuperspace by
establishing the correspondence principle between the quantum and the classical variables of the
phase space when they are applied upon the wave function, φ = φ(a, ϕ). In the configuration space,

a→ âφ = aφ, ϕ→ ϕ̂φ = ϕφ , pa → p̂aφ ≡ −ih̄
∂φ

∂a
, pϕ → p̂ϕφ ≡ −ih̄

∂φ

∂ϕ
. (45)

Then, with an appropriate choice of factor ordering, the Hamiltonian constraint (33) transforms into
the Wheeler-DeWitt equation (

−h̄2�̃q +m2
)

φ = 0, (46)

with, �̃q ≡ ∇̃2
LB, where the Laplace-Beltrami operator ∇LB is the covariant generalisation of the Laplace

operator [31], given by

�̃q ≡ ∇̃2
LB =

1√
−G̃

∂A

(√
−G̃G̃AB∂B

)
, (47)

16 The exact meaning of "sufficiently localised" will be specified later on in Sec. 5.
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or in terms of the variables without tilde the classical Hamiltonian constraint (34) becomes(
−h̄2�q +m2

ef(q)
)

φ = 0, (48)

where �q is the Laplace-Beltrami operator (47) with the metric GAB instead of G̃AB, and m2
ef(q) is

defined after (34) as, m2
ef(q) = 2V(q), with V(q) given by (19).

The customary approach of quantum cosmology consists of considering the solutions, exact or
approximated, of the Wheeler-DeWitt equation (48) and to analyse the quantum state of the universe
from the perspective of the wave function so obtained. This is what we can call the quantum mechanics
of the universe [5,24]. This is the only thing we need if we are just considering the physics of one single
universe, which has been the cosmological paradigm so far. As it is well-known (see, Sec. 5.1 and Refs.
[24,28]), the wave function φ contains, at the classical level, the classical evolution of its homogeneous
and isotropic background, i.e. the trajectory of the universe in the minisuperspace; and at first order in
h̄ it contains the Schrödinger equation for the matter fields that propagate in the background spacetime.
Thus, it contains in principle all the physics of a single universe.

However, as we have seen in the case of a field that propagates in the spacetime, it is the
description of the field in a quantum field theory what extracts all the distinctive power of the quantum
theory. We are then impeled to follow a similar approach and exploit the remarkable parallelism
between the geometric structure of the minisuperspace and the geometrical properties of a curved
spacetime to interpret the wave function φ(a, ϕ) as a field that propagates in the minisuperspace. We
can then formally apply a procedure of quantisation that parallels that of a second quantisation, which
is sometimes called third-quantisation [45–49] to be distinguished from the customary one. Then, let us
expand the super-field φ(a, ϕ) in terms of normal modes

φ(q) = ∑
i
(biui(q) + b∗i u∗i (q)) , (49)

where the index i schematically represents the set of quantities necessary to label the modes, the sum
must be understood as an integral for the continuous labels, and the functions ui(q) and u∗i (q) form
now a complete set of mode solutions of the Wheeler-DeWitt equation (46) which, analogously to the
modes of a field that propagates in a spacetime, are now orthonormal under the scalar product

(u1(q), u2(q)) = −i
∫

Σ
u1(q)

↔
∂ µu∗2(q)

√
gΣ dΣµ, (50)

where, in analogy to a curved spacetime (see, Ref. [39]), dΣµ = nµdΣ, with nµ a future directed unit
vector17 orthogonal to the spacelike hypersurface Σ in the minisuperspace, with induced metric given
by gΣ and volume element dΣ. Let us notice that the modes ui(q) in (49) depend now on the variables of
the minisuperspace, qA = {a, ϕ}, instead of on the coordinates of the spacetime. In the minisuperspace
geometrically determined by the minisupermetric (18), a natural choice is the 1-dimensional subspace
generated at constant a by the variable ϕ (dΣ = dϕ), then, gΣ = a3 and nµ = (a−

1
2 , 0), so the scalar

product (50) becomes [50]

(u1, u2) = −i
∫ +∞

−∞
dϕ a

(
u1(a, ϕ)

↔
∂ au∗2(a, ϕ)

)
. (51)

17 By a future directed vector in the minisuperspace we mean a vector positively oriented with respect to the scale factor
component, which is the time-like variable of the minisuperspace.
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The quantisation of the theory is then implemented by promoting the constants bi and b∗i to quantum
operators, b̂i and b̂†

i , respectively, satisfying the customary commutation relations

[b̂i, b̂†
j ] = δij , [b̂i, b̂j] = [b̂†

i , b̂†
j ] = 0. (52)

This is what we can call second quantisation of the spacetime and the matter fields, all together18. The
operators b̂†

i and b̂i are respectively the creation and the annihilation operators of universes, whose
physical properties are described by the solutions, ui(q), of the Wheeler-DeWitt equation (see Sec.
5). Different boundary conditions imposed on the state of the universe [13,19] give rise to different
mode solutions of the Wheeler-DeWitt equation. It is worth noticing however that two different mode
solutions in (49) would be related by a Bogolyubov transformation. Therefore, the solutions that
correspond to different boundary conditions would be related, in the third quantisation formalism, by
a Bogolyubov transformation19

Similarly to the quantum field theory in the spacetime, we have to define a ground state, |0〉 =
∏i |0i〉, where |0i〉 is the state annihilated by the operator b̂i, i.e. b̂i|0i〉 = 0. It describes, in the
representation defined by b̂i and b̂†

i , the no-universe state for the value i of the mode. It means that
the ground state |0〉 represents the no-universe at all state, which can be called the nothing state [48].
The excited state, i.e. the state representing different number of universes with values i1, i2, . . ., is then
given by

|mi1 , ni2 , . . .〉 = 1√
m!n! . . .

[(
b†

i1

)m (
b†

i2

)n
. . .
]
|b0〉, (53)

which represents m universes in the mode i1, n universes in the mode i2, etc. Let us notice that in
the case of a field that propagates in a homogeneous and isotropic spacetime the value of the mode~k
represents the value of the spatial momentum of the particle [39,40]. In the homogeneous and isotropic
minisuperspace the value of the mode i corresponds to the eigenvalue of the momentum conjugated
to the scalar field ϕ, which formally plays the role of a spatial like variable in the minisuperspace.
Therefore, the values i1, i2, . . ., in (53) label the different initial values of the time derivatives of the
scalar field in the universes. Thus, the state (53) represents m universes with a scalar field with ϕ̇ ∼ i1,
n universes with a scalar field with ϕ̇ ∼ i2, etc. They represent different energies of the matter fields
and, therefore, different number of particles in the universes. The general quantum state of the field φ,
which represents the quantum state of the spacetime and the matter fields, all together, is then given by

|φ〉 = ∑
m,n,...

C(b)
mn...|bmi1 ni2 . . .〉, (54)

which represents therefore the quantum state of the multiverse [49].
In the quantisation of a field that propagates in a curved spacetime there is an ambiguity in the

choice of mode operators of the quantum scalar field. The different representations are eventually
related by a Bogolyubov transformation so at the end of the day the vacuum state of one representation
turns out to be full of particles20 of another representation [40]. The ambiguity is solved by imposing
the appropriate boundary conditions that give rise to the invariant representation, in which the vacuum
state represents the no particle state along the entire history of the field [51]. In the minisuperspace b̂†

i
and b̂i in (49) would be the creation and the annihilation operators, respectively, of the corresponding
invariant representation [51]. Thus, the ground state of the invariant representation, |0〉, would
represent the nothing state at any point of the minisuperspace. It seems therefore to be the appropriate

18 We do not call it second quantisation of the universe because in this formalism there is not only a universe but a set of many
universes described analogously to the many-particle representation of a quantum field theory.

19 This can explicitly be seen in a very simplified cosmological model [50]. As we shall see later on, it will have consequences
in the quantum creation of universes.

20 In the quantisation of a complex scalar field it would be full of particle-antiparticle pairs.
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Figure 3. Left: in a quantum field theory the field is described in terms of particles that follow with the
highest probability the classical trajectories given by the geodesics with however some uncertainties
in their positions. Right: the wave function that describes the quantum state of the spacetime and
the matter fields, all together, can be seen as a another field, say a super-field, that propagates in the
minisuperspace. The universes can then be seen as ’test’ particles following classical trajectories in the
minisuperspace with quantum uncertainties given by the Schrödinger equation of their matter fields.

representation to describe the universes of the multiverse. However, we can assume (as a boundary
condition) that the state of the super-field φ at the boundary Σ(a0), where a0 is the value of the scale
factor at which the universes are created from the gravitational vacuum, is given by the ground state
|0̄〉 of the diagonal representation of the Hamiltonian at a0, given by21 b̄†

i and b̄i. In that case, assuming
that the universes undergo from the onset an inflationary period in which the inflaton field can be
considered nearly constant, i.e. ϕ̇ � 1 and V(ϕ) ≈ H2

0 , then, the super-field φ that represents the
quantum state of the spacetime and the matter fields, all together, would then be represented by an
infinite number of correlated universes, because, as it happens in a quantum field theory (see, Ref.
[40]), we have

|0̄〉 = ∏
i

1

|αi|
1
2

(
∑
n

(
βi

2αi

)n
|ni, n−i〉

)
, (55)

where αi and βi are the Bogolyubov coefficients that relate the diagonal and the invariant representation,
b̄i, b̄†

i and bi, b†
i , respectively, i.e.

bi = α∗i b̄i + βi b̄† , b†
i = αi b̄†

i + β∗i b̄i. (56)

It is worth noticing that because the isotropy of the underlying minisuperspace in the region where
the universes are created, i.e. the region limited by small values of the scale factor and large values of
the inflaton field, the universes would be created in correlated states, |ni, n−i〉, with opposite values
of their momenta, i and −i. The creation of universes in pairs with opposite values of the momenta
conjugated to the minisuperspace variables would conserved the value of the total momentum and
it is besides a consequence of the quantum creation of universes in (55). As we shall see in Sec. 5 it
will have important consequences because the time variables of the two universes of a given pair are
reversely related [52]. Therefore, particles propagating in the observer’s universe would be clearly
identified with matter and particles moving in the time reversely universe can naturally be identified
with antiparticles. It might explain, therefore, the primordial matter-antimatter asymmetry observed
in the context of a single universe [53].

21 From now on we omite the hats on top of the operators to ease the notation.
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5. Particles and universes propagating in their spaces

5.1. Semiclassical universes: classical spacetime and quantum matter fields

In quantum mechanics, the trajectories are transformed into wave packets. Instead of definite
positions and definite trajectories, what we have in quantum mechanics is a wave function that gives
us the probability of finding the particle in a particular point of the spacetime (see, Fig. 3). In the
semiclassical regime this probability is highly peaked around the classical trajectory and we recover
the picture of a classical particle propagating along the particle worldline.

Similarly, we can see quantum cosmology as the quantisation of the classical trajectory of the
universe in the minisuperspace. In that case, the wave function φ(a, ϕ) can be interpreted as a field
made up of universes which, in the classical limit, follow definite trajectories in the minisuperspace,
i.e. their spacetime backgrounds follow in that limit the classical evolution determined by the field
equations. At first order in h̄, however, there is some uncertainty in the matter field coordinates given
by the Schrödinger equation of the matter fields.

In order to show it, let us consider the WKB solutions of the Wheeler-DeWitt equation (48), which
can be written as

φ(q) = ∑ φ+ + φ− = ∑ C(q)e+
i
h̄ S(q) + C(q)e−

i
h̄ S(q), (57)

where Cn(q) and Sn(q) are a slow varying and a rapid varying functions, respectively, of the
minisuperspace variables, and the sum extends to all possible classical configurations [24]. Because
the hermitian character of the Wheeler-DeWitt equation, which in turn is rooted on the time reversal
symmetry of the Hamiltonian constraint (34), the semiclassical solutions come in conjugate pairs like in
(57), which can be associated to the mode solutions u(q) and u∗(q) in (49). These two solutions represent
classical universes is the following sense. If we insert the solutions φ± into the Wheeler-DeWitt equation
(48) and expand it in power of h̄, then, at zero order in h̄ it is obtained the following Hamilton-Jacobi
equation

GAB ∂S
∂qA

∂S
∂qB +m2

ef(q) = 0. (58)

It can be shown [5,24] that this equation turns out to be the Hamiltonian constraint (34) if we assume a
time parametrisation of the paths in the minisuperspace given by

∂

∂t
= ±GAB ∂S

∂qA
∂

∂qB . (59)

In that case,

q̇A = ±GAB ∂S
∂qB , and

∂S
∂qA = ±GAB q̇B = pA, (60)

so that the Hamilton-Jacobi equation (58) becomes the Hamiltonian constraint (34). Furthermore,
from (60) and (58) one can derive the equation of the geodesic of the minisuperspace (23). Therefore,
at the classical level, i.e. in the limit h̄ → 0, one recovers from the semiclassical solutions (57) the
classical trajectory of the universe in the minisuperspace, i.e. one recovers the classical description
of the background spacetime of the universe. In that sense, these solutions describe the classical
spacetime of the universes they represent. It is worth noticing the freedom that we have to choose
the sign of the time variable in (59), +t or −t. The Hamiltonian constraint (34) is invariant under a
reversal change in the time variable because the quadratic terms in the momenta. However, the value
of these momenta in (60) is not invariant under the reversal change of the time variable. It means that
we have two possible values of the momenta, +pA and −pA, which are associated to the conjugated
solutions of the Wheeler-DeWitt equation (48). It means that the universes are created in pairs with
opposite values of their momenta so that the total momentum is conserved (see, Fig. 4). In the time
parametrisation of the minisuperspace, the two reversely related time variables, t and −t, represent
the two possible directions in which the worldlines can be run in the minisuperspace, with positive
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and negative tangent vectors, ±vt (see, Fig. 2). One of the universes is moving forward and the other is
moving backward in the sense that one of the trajectories has a positive zero component of the tangent
vector, i.e. ȧ > 0, and the other has a negative zero component, ȧ < 0. Therefore, one of the universes
is increasing the value of the scale factor, so it corresponds to an expanding universe, and the other is
reducing the value of the scale factor, so it corresponds to a contracting universe.

Therefore, the evolution of the classical background spacetime is obtained as the zero order in h̄
in the expansion of h̄ of the Wheeler-DeWitt equation with the semiclassical states (57). We shall see
now that the Schrödinger equation of the matter fields that propagate in the background spacetime is
recovered at the next order, h̄1. Then, one obtains from the semiclassical states (57) the semiclassical
picture of quantum matter fields propagating in a classical spacetime. For the shake of concreteness,
let us consider the minisuperspace of homogeneous and isotropic spacetimes considered in Secs. 3
and 4, with small inhomogeneities propagating therein. If these are small, the Hamiltonian of the
background and the Hamiltonian of the inhomogeneities are decoupled, so the total Hamiltonian can
be written [25,29]

(Ĥbg + Ĥm)φ = 0, (61)

where the Hamiltonian of the background spacetime, Hbg, is given by

Ĥbg =
1
2a

(
∂2

∂a2 +
1
a

∂

∂a
− 1

a2
∂2

∂φ2 + a4V(ϕ)− a2
)

, (62)

and Hm is the Hamiltonian of the inhomogeneous modes of the matter fields. In that case, the wave
function φ depends not only on the variables of the background but also on the inhomogeneous
degrees of freedom, i.e. φ = φ(a, ϕ;~xn), where ~xn can denote either the tensor modes of the perturbed
spacetime, dn, or the scalar modes of the perturbed field, fn (see, (14-15)). The semiclassical wave
function (57) can now be written as [24,30]

φ = ∑ φ+ + φ− = ∑ Ce
i
h̄ Sψ + Ce−

i
h̄ Sψ∗, (63)

where C and S depend only on the variables of the background, a and ϕ, and ψ = ψ(a, ϕ;~xn) contains
all the dependence on the inhomogeneous degrees of freedom. Once again, because the real character
of the Wheeler-DeWitt equation, the solutions come in conjugated pairs that represent, in terms of the
same time variable, a pair of expanding and contracting universes. As we already said, at zero order in
the expansion in powers of h̄ of the Wheeler-DeWitt equation, now given by the quantum Hamiltonian
constraint (61), with the semiclassical solutions (63) it is obtained the Hamiltonian constraint (58),
which with the minisupermetric (18) reads

−
(

∂S
∂a

)2
+

1
a2

(
∂S
∂ϕ

)2
+ a4V(ϕ)− a2 = 0. (64)

In terms of the time variable t given by (59), which now reads

∂

∂t
= ±

(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
, (65)

and implies

ȧ2 =
1
a2

(
∂S
∂a

)2
, ϕ̇2 =

1
a6

(
∂S
∂ϕ

)2
, (66)
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the Hamiltonian constraint (64) turns out to be the Friedmann equation22

(
ȧ
a

)2
+

1
a2 = ϕ̇2 + V(ϕ). (67)

At first order in h̄ in the expansion of the Wheeler-DeWitt equation with the semiclassical solutions
(63), it is obtained [29,43]

∓ ih̄
(
−1

a
∂S
∂a

∂

∂a
+

1
a3

∂S
∂ϕ

∂

∂ϕ

)
ψ = Hmψ, (68)

where the minus sign corresponds to φ+ in (63) and the positive sign corresponds to φ− in (63). The
term in brackets in (68) is the time variable of the background spacetime (65), so (68) turns out to be the
Schrödinger equation for the matter fields that propagate in the classical background spacetime. We
have then recovered, at zero and first orders in h̄, the semiclassical picture of quantum matter fields,
which satisfy the Schrödinger equation (68), propagating in a classical spacetime that satisfies the
Friedmann equation (67). However, in order to obtain the correct sign in the Schrödinger equation (68)
one must choose a different sign for the time variables in the two universes of the conjugated pair in (63).
For the branch represented by φ+ one must take the negative sign in (65) and the positive sign for φ−.
It means that the physical time variables of the two universes, i.e. the time variable measured by actual
clocks that are eventually made of matter and therefore governed by the Schrödinger equation, are
reversely related, t2 = −t1. The universes are therefore both expanding or both contracting universes
in terms of their physical time variables, t1 and t2 [52]. Howecer, considering two contracting universes
at the onset become uninteresting because the newborn universes, which with the highest probability
are created with a small value of the scale factor, would then delve again into the gravitational vacuum
where they just emerged. Therefore, the most interesting solution is the creation of two expanding
universes with their physical time variables reversely related. After the inflationary period matter is
created in both universes. However, from the point of view of an observer in one of the universes, say
Alice, the particles that propagate in the symmetric universe look as they were propagating backwards
in time so they would naturally be identified with the antimatter that is absent from her universe. For
an observer in the other universe, say Bob, the things are the other way around. The particles created in
his universe are seen by Bob as the matter and the particles of the symmetric universe (Alice’s universe
in this case) would be identified with the antimatter that Bob does not observe in his own universe.
Nor Alice of Bob can see the particles of the partner universes, i.e. they cannot see the primordial
antimatter, because the Euclidean gap that separates the two universes23 (see, Fig. 4). Thus, primordial
matter and antimatter would be created in different universe and that might explain the primordial
matter-antimatter asymmetry observed in the context of a single universe [53,54].

5.2. Semiclassical particles: geodesics and uncertainties in the position

The analogy between the evolution of the universe in the minisuperspace and the trajectory of a
particle in a curved spacetime can make us to ask whether the classical trajectories of test particles in
general relativity can also be derived from the quantum state of a field that propagate in the spacetime.
The answer is yes [34]. We shall see now that the solutions of the Klein-Gordon equation contain not
only information about the matter field they represent but also about the geometrical structure of the
spacetime where they propagate through the geometrical information contained in the corresponding
geodesics. In order to show it, let us consider the analogue in the spacetime to the semiclassical wave
function (57),

ϕ(x) = C(x)e±
i
h̄ S(x), (69)

22 Recall that the field ϕ was rescaled according to ϕ→
√

2ϕ, see f.n. 10.
23 The Euclidean gap also prevent matter and antimatter from collapse
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Figure 4. The creation of universes in entangled pairs [43]. In order to obtain the correct value of the
Schrödinger equation in the two universes, their physical time variables must be reversely related. In
that case, particles moving in the symmetric universe look as they were moving backward in time
so they are naturally identified with the antiparticles that are left in the observer’s universe. The
primordial matter-antimatter asymmetry observed in the context of a single universe would thus be
restored in the multiverse. Particles and antiparticles do not collapse at the onset because the Euclidean
gap that exists between the two newborn universes [43,53].

where, x = (t,~x), and C(x) and S(x) are two functions that depend on the spacetime coordinates.
Then, inserting the semiclassical wave function (69) into the Klein-Gordon equation (36) and expanding
it in powers of h̄, it is obtained at zero order in h̄ the following Hamilton-Jacobi equation

gµν ∂S
∂xµ

∂S
∂xν

+ m2 = 0, (70)

which is the momentum constraint (31) if we make the identification, pµ = ∂S
∂xµ . Furthermore, with the

following choice of the affine parameter,

∂

∂τ
= ± 1

m
gµν ∂S

∂xµ

∂

∂xν
, (71)

one arrives at
pµ = ±mgµν

dxν

dτ
. (72)

With the momentum constraint (70) and the value of the momenta (72) one can derive the equation of
the geodesic (22) [34]. The two possible signs in the definition of the affine parameter in (71) correspond
to the two possible ways in which the geodesic can be run, forward and backward in time. These are
the solutions used by Feynman to interpret the trajectories of particles and antiparticles of the Dirac’s
theory [55].

For instance, let us consider the case of a flat DeSitter spacetime, with metric element given by

ds2 = −dt2 + a2(t)dΩ2
3, (73)

with a(t) ∝ eH0t, for which the analytical solutions of the Klein-Gordon are well known. In conformal
time, η =

∫ dt
a , and in terms of the rescaled field, χ(η,~x) = a(η)ϕ(η,~x), the Klein-Gordon equation

(36) becomes

h̄2χ′′ − h̄2∇2χ +

(
m2a2 − h̄2 a′′

a

)
χ = 0, (74)
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where the prime denotes the derivative with respect to the conformal time. Notice here the appearance
of the Planck constant with respect of the customary expression of the Klein-Gordon (see, for instance,
Refs. [39,40]). Let us go on by decomposing the function χ in normal modes as

χ(η,~x) =
∫ d3~k

(2π)
3
2

χ~k(η)e
± i

h̄
~k·~x, (75)

where the normal modes χ~k satisfy
h̄2χ′′~k + ω2

k(η)χ~k = 0, (76)

with k = |~k|, and in the case of a flat DeSitter spacetime

ω2
k(η) = k2 +

(
m2

H2 − 2h̄2
)

1
η2 . (77)

The solutions of the wave equation (76) can easily be found [39,40] in terms of Bessel functions. The
solution with the appropriate boundary condition is given by [40]

vk(η) =

√
π|η|

2
H(2)

n

(
k|η|

h̄

)
, (78)

whereH(2)
n (x) is the Hankel function of second kind and order n, with

n =

√
9
4
− m2

h̄2H2
. (79)

These are the customary modes of the Bunch-Davies vacuum. Note however the presence here of the
Planck constant h̄ in the argument and in the order of the Hankel function. It does not appear when
the Klein-Gordon is derived from the action of a classical field. In the present case, it is going to allow
us to make an expansion of the modes in powers of h̄. Using the Debye asymptotic expansions for
Hankel functions [34], one can write

H(2)
im
h̄H

(
k

h̄Ha

)
≈

√
2h̄H
πωc

e−
πm
2h̄H e−

i
h̄ (

ωc
H −

m
H log( a

k (m+ωc))) (1 +O(h̄)) , (80)

where,
ωc ≡ ωc(k, η) =

√
k2 + m2a2. (81)

Then, the solutions of the Klein-Gordon equation can be written in the semiclassical form of the wave
function (69) with,

S(η,~x) =~k ·~x− ωc

H
− m

H
log
( a

k
(m + ωc)

)
. (82)

In that case, the momentum constraint (70) is satisfied because, from (82), we have

∂S
∂η

= ωc(η), and ~∇S =~k, (83)

so the momentum constraint turns out to be the dispersion relation given by (81). We can now choose
the affine parameter τ, defined by

∂

∂τ
= ± 1

a2m

(
−ωc

∂

∂η
+~k · ~∇

)
, (84)
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in terms of which,
d~x
dτ

= ± 1
a2m

~k ,
dη

dτ
= ∓ 1

a2m
ωc, (85)

that satisfy the geodesic equation of the flat DeSitter spacetime, given by the Euler-Lagrange equations
associated to the action (21).

Therefore, at the classical level, which is given by the limit24 h̄ → 0, the solutions of the
Klein-Gordon equation give rise to the classical geodesics of the spacetime where they are propagating
[34]. It means that the Klein-Gordon equation contains not only information about the quantum state
of the field but also about the geometrical structure of the underlying spacetime. At first order in h̄ it
also contains the quantum information given by the Schrödinger equation, in the non-relativistic limit.
In the case of a free scalar field that propagates in the flat DeSitter spacetime, for which the metric
element is given by (73), the Klein-Gordon equation (36) can be written in cosmic time as

h̄2 ϕ̈ + h̄2 3ȧ
a

ϕ̇− h̄2∇2
Σ ϕ + m2 ϕ = 0, (86)

where ∇2
Σ is the three-dimensional Laplacian defined in the hypersurface Σ. In the non-relativistic

regime, we can assume that the field ϕ(t,~x) has the semiclassical form

ϕ(t,~x) =
1

a
3
2

e−
i
h̄ mtψ(t,~x), (87)

where ψ(t,~x) is the non-relativistic wave function of the field. Then, insert it in the Klein-Gordon
equation (86), and disregarding second order time derivatives, or equivalently orders of h̄2 and higher,
it is obtained [34] the Schrödinger equation for the free wave function ψ(t,~x), i.e

ih̄
∂ψ

∂t
= − h̄2

2m
∇2

Σψ(t,~x). (88)

The same method can be applied to more general metrics, not only to that of a flat DeSitter
spacetime. In order to show it let us consider the metric element,

ds2 = gµνdxµdxν = −|gtt|dt2 + hijdxidxj, (89)

with, |gtt| = 1 + 2V(x). It is now convenient to make the conformal transformation, g̃µν = |gtt|−1gµν,
together with the following reparametrisation in the action (21), dλ = m|gtt|−1dτ, so that the
momentum constraint of the particle (21) can be split into a relativistic and a non relativistic parts as

H = Hr + Hnr = 0, (90)

with,

Hr = −
1

2m
p2

t +
m
2

, Hnr =
1

2m
h̃ij pi pj + mV(x), (91)

where h̃ij is the inverse of the metric induced by g̃µν in the spatial sections Σ̃, with h̃ij = ∆−1hij. In that
case, following a similar procedure to that made above with equations (86-88), one arrives at [34]

ih̄
∂ψ

∂t
=

(
− h̄2

2m
∇2

Σ̃ + V(x)

)
ψ(t,~x), (92)

24 h̄ is a constant so by the limit h̄→ 0 we mean that the magnitudes at hand are very large when they are compared with the
value of the Planck constant.
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which is the Schrödinger equation of a particle moving in a space with metric h̃ij under the action of
the potential V(x). A specially interesting case is the Schwarzschild spacetime, for which the metric
reads

ds2 = −∆dt2 + ∆−1dr2 + dΩ2
3, (93)

with, ∆ = 1− 2M
r , in units for which c = G = 1. In that case, following the same procedure one arrives

at the Schrödinger equation (92) with the Newtonian potencial of a gravitational body with mass M,
V(~r) = −M

r . Far from the Schwarzschild radius, ∆ ≈ 1, so the metric of the spatial sections induced
by g̃µν can be approximated by the metric of the flat space. However, closed to the event horizon h̃ij
would entail a significant departure from the flat space. It means that far enough from the gravitational
body it is recovered25 the Newtonian picture of a test particle propagating in a flat spacetime under
the action of the gravitational potential V(r).

Therefore, we have shown that the solution of the Klein-Gordon equation (36) contains at order
h̄0, i.e. at the classical level, the classical trajectories of test particles moving in the spacetime where
the quantum field propagates; and, at first order in the Planck constant, h̄1, it provides us with the
Schrödinger equation (92). In the particle interpretation of the scalar field, the former gives the curve
where it is most probable to find the particles and the latter gives the dispersion in their positions,
which is given by

∆2~x = 〈ψ|~̂x2|ψ〉 − 〈ψ|~̂x|ψ〉2. (94)

Thus, we can specify now the meaning given in Sec. 4.1 to "sufficiently localised" for interpreting the
modes u(x) and u∗(x) in terms of particles and their trajectories: the dispersion of their positions,
given by ∆~x, must be small compared with 〈~x〉, i.e.

∆~x
〈~x〉 � 1. (95)

When the condition (95) is satisfied one can interpret the the field in terms of particles26. Furthermore,
the preceding approach might provide us with a new starting point for the quantisation of the
spacetime. Let us notice that ∆~x in (94) would entail a purely quantum deviation from the geodesic
motion. In turn, geodesic deviation can be associated to a non zero value of the Riemann tensor [56,57].
Thus, the quantum deviation ∆~x could be eventually related to some curvature of quantum nature,
which would entail a novel approach for the quantisation of the spacetime27.

Similarly, the modes ui(q) of the third quantisation procedure, which are the solutions of the
Wheeler-DeWitt equation, represent semiclassical universes in the sense that they represent, at zero
order in h̄, the classical spacetime background where the matter fields propagate and, at first order in
h̄, the uncertainties in the values of the matter fields. Therefore, far from the cosmological singularities
or the turning points [58,59], the wave function φ(a, ϕ) can be seen as a field that propagates in the
minisuperspace and can be interpreted as made up of particles, i.e. semiclassical universes whose
matter contents are randomly distributed among all the possible values (recall that the scalar field ϕ

25 Classically, the changes, g̃µν = ∆−1gµν and dλ = m∆−1dτ, transform the action (21) into [34]

S =
∫

dλ
1
2

h̃ij
dxi

dλ

dxj

dλ
−V(r),

which, far from the even horizon, corresponds to the action of a test particle moving in a flat space under the action of the
Newtonian potential, V(~x) = −M

r (in units, G = c = 1). It means that the trajectory of a free test particle in a Schwarzschild
spacetime is equivalent, far from the even horizon, to the trajectory of the test particle in a flat space under the action of
the Newtonian potential, as it is expected. Similarly, the Schrödinger equation (92) is the non relativistic version of the
corresponding Klein-Gordon equation (36).

26 For instance, in the case of a flat DeSitter spacetime, the modes with physical wavelengths λphys much smaller than the
cosmological horizon, Lh = 1

H0
, can be interpreted in terms of particles with highly definite trajectories [34].

27 This will be done elsewhere.
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is the space like coordinate of the minisuperspace). It represents therefore the quantum state of the
whole multiverse, in the minisuperspace approximation.

6. Conclusions and further comments

There is a formal analogy between the evolution of the universe in the minisuperspace and the
trajectory of a test particle in a curved spacetime that allows us to interpret the former as a trajectory in
the minisuperspace with parametric coordinates given by the solutions of the classical field equations,
a(t) and ϕ(t). The time variable t is the parameter that parametrises the trajectories. The invariance
of the Lagrangian associated to the Hilbert-Einstein action, and therefore of the field equations too,
with respect to a time reversal change of the time variable indicates that the universes can be created
in pairs with opposite values of the momenta conjugated to the minisuperspace variables. A positive
value of the momentum conjugate to the scale factor entails a positive value of the zero component of
the tangent vector to the trajectory, i.e. it entails an increasing value of the scale factor, so the associated
solution represents an expanding universe. In terms of the same time parametrisation, the partner
universe with the opposite value of the momentum entails a decreasing value of the scale factor so
it corresponds to a contracting universe. Therefore, in terms of the same time variable one of the
universes of the pair would be a contracting universe and the other an expanding universe.

The analogy between the evolution of the universe in the minisuperspace and the trajectory
of a test particle in the spacetime can be extended to the quantum picture too. The wave function
that represents the quantum state of the spacetime and the matter fields, all together, can be seen
as a super-field that propagates in the minisuperspace. Then, a third quantisation procedure can be
applied that parallels that of the second quantisation for a field that propagates in the spacetime.
We can then define creation and annihilation operators of universes and the super-field can be
interpreted as made up of universes evolving (i.e. propagating) in the minisuperspace. The appropriate
representation to describe the universes in the minisuperspace is the invariant representation of the
quantum Hamiltonian associated to the Hilbert-Einstein action. In terms of the invariant representation
the ground state of the super-field represents the nothing state, which corresponds to the state of no
universe at all at any point in the minisuperspace. However, the minisuperspace could be full of
universes if the boundary state of the super-field is the ground state of a different representation. In
particular, if the boundary state of the super-field is the ground state of the diagonal representation
of the Hamiltonian at some boundary Σ(a0), where a0 is the scale factor at which the universes are
created, then, the minisuperspace would be full of pairs of universes with opposite values of their
momenta conjugated to the variables of the minisuperspace in a correlated or entangled state.

In the semiclassical regime of the wave function of the universe we recover the picture of quantum
matter fields propagating in a classical spacetime background. The modes of the mode decomposition
of the super-field represent, in that case, semiclassical universes propagating in the minisuperspace.
The cosmic time naturally appears in this regime as the WKB parameter that parametrises the classical
trajectory, i.e. it parametrises the classical evolution of the spacetime background of the universes. At
first order in the Planck constant, we obtain the Schrödinger equation that determines the quantum
evolution of the matter fields in the pair of universes. However, the time variable in the two universes
of the pair must be reversely related in order to obtain the appropriate value of the Schrödinger
equation in the two symmetric universes. It means that in terms of their physical time variables, i.e. in
terms of the time variables given by actual clocks that are eventually made of matter, the two universes
of the symmetric pair are both expanding or both contracting. The consistent solution would be
considering two expanding universes because two newborn contracting universes would rapidly delve
again into the gravitational vacuum from which they just emerged. For an internal inhabitant of the
universe, the particles that propagate in the partner universe would look like if they were propagating
backward in time so they would naturally be identified with the antiparticles that he or she does not
observe in his/her universe. The matter-antimatter asymmetry observed in the context of a single
universe would be thus restored.
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The semiclassical formalism can also be applied to the quantum state of a field that propagates in
a curved spacetime. In that case, the zero order component in h̄ of the semiclassical expansion of the
field gives rives the equation of the geodesic of the underlying spacetime. Therefore, the solution of
the Klein-Gordon equation contains not only information about the quantum state of the field but also
information about the geometrical structure of the spacetime where it propagates. At first order in
h̄ one obtains the corresponding Schrödinger equation that gives the evolution of the uncertainties
in the position of the particles of the field. Therefore, when the field modes are sufficiently localised
the field can be interpreted in terms of particles propagating with the highest probability along the
geodesics of the spacetime but with some uncertainty or deviation from the classical path given by
the wave functions of the corresponding Schrödinger equation, which would eventually be related to
some curvature of pure quantum nature.
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