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Abstract 

 

The objective of this work was to investigate the use of remotely sensed vegetation 

indices to improve the quality of yield maps. The method was applied to the yield data of 

twelve cornfields from the Data Intensive Farm Management project. The results revealed 

the need to time shift the yield values up to three seconds to better match the sensor 

readings with the geographic coordinates. The residuals of the yield prediction model 

were used to identify points with unlikely yield values for that location, as an alternative 

to traditional approaches using local spatial statistics, without any assumption of spatial 

dependence or stationarity. The temporal and spatial distribution of the standardized 

coefficients for each experimental unit highlighted the presence of trends in the data. At 

least five out of the twelve fields presented trends that could have been induced by data 

collection. 

 

Keywords: on-farm precision experimentation, normalized difference vegetation index, 

data filtering, error correction. 

 

Introduction 

 

On-Farm Precision Experimentation (OFPE) is becoming an important resource to 

understand the spatial variation of crop response to management practices and thus 

improve agronomic decisions. High-quality yield data are fundamental for obtaining real 

insights from this type of experiment. Previous research studies have demonstrated that 

yield data quality affects the outcome of OFPE data analysis (Griffin et al. 2008). Thus, 

there is great interest in finding new methods to improve yield monitor information 

quality. Most publications aiming to establish guidelines to improve yield data quality are 

focused on removing erroneous observations. The majority of data cleaning 

methodologies include global frequency distribution-based filtering rules, complemented 

by local or spatial methods (Leroux et al. 2018). However, even when carefully followed, 

these methods leave sources of uncertainty unaccounted. Temporal drift and other 

artificial trends can be present in the yield data when sensors are not properly maintained, 

cleaned or calibrated. These problems are harder to detect when multiple machines are 

used to harvest the same field, because they generate data with different levels of noise 

and bias. The spatial resolution of yield data is of greater importance in OFPE scenarios, 

impacting the minimum size of the plots and the costs of trial implementation. A better 

understanding of the data quality can guide the decision to what level the data should be 

aggregated prior to further analysis. 

The presence of distinct treatments in neighboring plots poses an extra complexity not 

accounted for in conventional techniques for filtering spatial data. Conventional methods 
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assume that the spatial dependence of the yield data distribution can be used to estimate 

the yield value at one point based on its neighbors’ yield values, and that the difference 

between the observed and the estimated yield values may be used as a criterion for 

defining outlying points (Lyle et al. 2014). However, this assumption is generally invalid 

for OFPEs, which are designed to vary seed and nitrogen rates in neighboring plots, 

meaning that neighboring yield value samples may be drawn from different frequency 

distributions. Incorporating this information is necessary to avoid the removal of points 

at which yield was measured accurately, and therefore avoid the introduction of biases in 

the analysis.  

The use of auxiliary sources of information may be an important strategy to deal with the 

particularities of OFPE data outlined above. Remotely sensed information with high 

temporal and spatial resolution is becoming increasingly available, and has been 

successfully used to predict yields at different scales (Khanal et al. 2018; Peralta et al. 

2016). Therefore, the objective of this work was to investigate the use of remotely sensed 

vegetation indices to improve the quality of yield maps. 

 

Materials and methods 

 

Yield data from twelve cornfields were recorded during the 2017 harvest season by 

combines equipped with different yield monitoring systems. There were seven rainfed 

fields, six of them in in Illinois (Fields 03, 05, 08, 09, 10 and 11) and one in Ohio (Field 

6), and five irrigated fields, four of them in Nebraska (Fields 02, 04, 07 and 12) and one 

in Kansas (Field 01). The number of variables available for each field varied according 

to the yield monitor model and software used to extract the data. The minimum variables 

consisted of only longitude, latitude and yield, while for some datasets information on 

moisture content, harvest time and machine orientation was also available. In order to 

replicate the same procedure on all fields, only the yield and coordinates data were used. 

The field trials were conducted as part of the Data-Intensive Farm Management (DIFM) 

project, in which OFPE is used to generate data to improve understanding of crop 

responses to seeding and nitrogen fertilizer application rates. The fields where chosen to 

represent the range of yield variation commonly observed in these trials (Figure 1).  Each 

field had on average 40 ha and 200 experimental units, represented by 85 m long and 18 

m wide polygons. This information was incorporated using the polygon identification as 

a predictor factor, without relating the experimental units with the treatment applied. This 

method was chosen instead of using the treatment values and the model residuals for 

subsequent analysis to fully separate the data cleaning from the model evaluation steps, 

since it could introduce biases. 

Remote sensed data consisted of Planet Labs PSSE4 imagery with RGB and NIR bands 

at three-meter spatial resolution (Planet Team, 2017). Cloud-free images were chosen 

from consecutive fifteen-day periods, beginning thirty days after sowing and ending 

fifteen days before harvest. Thus images were acquired on eight to ten dates per field. 

The image products were already corrected to surface reflectance (Houborg and McCabe 

2018), and the values were used directly to calculate the normalized difference vegetation 

index (NDVI) for each date. Principal component analysis was applied to NDVI data for 

the whole season in order to generate six orthogonal variables containing more than 90% 

of the variance in the NDVI. The values of the pixel touching each yield point were 

transferred to the yield dataset. 
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Yield data were first submitted to exploratory descriptive statistics and basic error 

removal, with the exclusion of all the points with values differing from the average by 

more than three times the interquartile range. Multiple linear regression models were 

fitted to predict yield variability, considering the six principal components (PCs) and plot 

identification as predictors, with no interactions. Yield values were also shifted across 

time, from ten seconds behind to ten seconds ahead of the registered time position. The 

records in the dataset were in chronological order and shifting yield values in time was 

done by shifting the index of the record. The time shift that resulted in the highest R-

squared was considered as the correct time delay for each field. The final multiple linear 

regression model used in subsequent analysis was fit to the yield corrected for time delay. 

The autocorrelation of sequential points in time was used to identify the level of noise in 

the yield registered by the yield monitoring sensors. The same method was applied to the 

predicted yield for comparison. 

The coefficient estimates for each experimental unit were standardized to have zero mean 

and unit variance. These coefficients were fitted in the yield prediction model to each 

polygon and represent the portion of yield variance not explained by the PCs due to the 

different treatments or changes in yield not related to changes in the NDVI. The 

standardized coefficients were compared to the relative time of harvest, defined as the 

average relative file position of the yield points over that plot, to investigate the presence 

of trends or drifts over time. The same values were also mapped to explore the spatial 

distribution of the plot coefficients. Finally, the standardized residuals from the yield 

prediction model were used as indicators of the probability of a point having been 

erroneous. All procedures described and figures presented in this paper were developed 

using the R programing language (R Core Team, 2018). 

 

 
Figure 1. Histograms of corn yield distribution (Mg ha-1) for the 12 fields under the Data 

Intensive Farm Management project. The red line represents the expected 

frequency for normally distributed data with the mean and standard deviation 

(SD) shown in each histogram. 
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Results and discussion 

 

The histograms of the yield distribution in each field as recorded by the yield monitor 

(Figure 1) show that the data follow a normal distribution in most situations. Values are 

concentrated around the mean, and there are more values below the average than would 

be expected from sampling the normal distribution. This reflects the biological meaning 

of these values, since many factors can reduce the yields, but increases in yield are limited 

by the crop’s maximum biological potential. The datasets represent a range of high 

yielding fields, varying from 10.7 Mg ha-1, slightly lower than the national average of 

11.1 Mg ha-1in the 2017 season (United States Department of Agriculture - USDA, 2017), 

to 15.8 Mg ha-1. The standard deviation of yield varied from less than 1.0 Mg ha-1 to more 

than 3.0 Mg ha-1, illustrating differences in field growing conditions. 

The correlation between PCs and yield was usually higher for the first PC (Table 1), 

which explains most of the variability. The main exception was field 6, in which the 

second and third components had the highest absolute value of correlation. The ability of 

the time series of NDVI images to predict the yield varied among the fields. The best 

results were observed in field 2, with 75% of the variance explained by the model. The 

worst performance was observed in field 10, with only 16% of the variance explained by 

the model. These results are important because the utility of the satellite images to 

improve the accuracy of the yield maps is directly related to their ability to predict yield. 

Nevertheless, the low performance of the yield prediction can also be caused by noise in 

the yield data, and by the inability of the model to capture the underlying relations. Further 

exploration of the field 10 data revealed that the problem was very likely to be with the 

yield data itself (Figure 2b). 

 

Table 1. Correlation coefficient between each principal component of the NDVI images 

and the yield, and the coefficient of determination of the yield prediction using all PCs 

and the experimental unit polygon identification. 
Field PC1 PC2 PC3 PC4 PC5 PC6 R2 

1 0.65 -0.20 -0.08 0.08 0.04 -0.04 0.73 

2 0.74 -0.12 0.08 0.17 -0.12 0.02 0.75 

3 0.38 0.05 0.03 -0.03 0.00 0.08 0.61 

4 0.52 0.27 0.32 -0.05 -0.37 -0.23 0.45 

5 0.40 0.22 0.05 0.01 0.00 0.08 0.41 

6 0.07 -0.29 -0.33 -0.04 0.04 -0.04 0.29 

7 0.48 -0.11 -0.16 0.22 0.02 -0.05 0.50 

8 0.45 0.34 0.11 -0.01 0.00 0.00 0.48 

9 0.45 0.50 -0.11 0.00 0.05 -0.05 0.58 

10 0.18 -0.17 0.17 0.00 -0.03 0.00 0.16 

11 0.16 -0.23 -0.16 0.01 -0.02 0.08 0.28 

12 0.50 0.31 -0.15 0.05 -0.01 -0.03 0.59 

 

Consistent results of the optimum time shift were obtained by representing the R-squared 

of the yield prediction as function of the time shift applied to the yield. All fields presented 

the highest R-squared between zero and three seconds, with decreasing values when large 

time shifts were applied. Only three of the fields didn’t increase the R-squared when the 

yield values where shifted in time, meaning that the right delay was already been used in 

the monitor configuration. The data in four fields should be shifted by one second, in 
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other four fields by two seconds, and in one field by three seconds in order to match the 

yield values with the coordinates (Figure 2a). 

Fields 4 and 10 presented noisy data with negative temporal autocorrelation (Figure 2b). 

The accuracy of the data with these characteristics is questionable. It is likely that a sensor 

malfunction was the reason for such behavior. Discarding the data, especially for field 10 

could be the more reasonable decision. For field 4, aggregating the data every few seconds 

could be a viable strategy. If the data is aggregated to every experimental unit, the short 

scale noise introduced by the sensor may not be a problem. The autocorrelation in the 

yield prediction was usually higher, evidencing that the NDVI variation is smoother than 

the variability registered by the yield monitor. 

The standardized residuals of the yield prediction model were used to identify points with 

unlikely yield values for that location, as an alternative to the traditional approach of using 

local statistics without any assumption of spatial dependence or stationarity. The 

traditional criterion of excluding points outside the range of three times the standard 

deviation can be applied. 

In the two fields chosen as example (Figure 3), most of the errors highlighted with the 

more intense green and red colors are due to subtle changes in the machine speed or the 

wrong cutting width. There is no tendency of eliminating points close to the border of the 

experimental units with different treatments or to consider as erroneous the data points 

with low yields due to low nitrogen rates, for example. Although the proposed 

methodology requires the use of additional information, it can be considered simpler than 

most of the current procedures recommended for yield data filtering (Lyle et al. 2014), 

avoiding the use of many arbitrarily chosen steps and parameters. 

 

 
Figure 2. a - Yield prediction performance as function of changing the delay of the yield 

record. The number inside the parenthesis in the legend represents the time 

with the highest R-squared. b - Temporal autocorrelation of the yield data 

observations in each field. c - Temporal autocorrelation of the predicted yield 

in each field. 

a) 

b) c) 
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The inclusion of other layers in the yield prediction model was also considered, especially 

the use of variables related to field topography. The use of the satellite images was 

preferred due to the difficulty of obtaining accurate elevation data for all fields and the 

possible correlation between the slope of the field and the errors in the yield monitor. 

The independence of the yield estimation errors and the yield monitor errors was one of 

the assumptions to identify the presence of artificial trends in the yield data. The trends 

are defined as the presence of a significant change in the estimated average of the yield 

in each polygon representing one experimental unit. 

Visualizing the standardized estimated coefficient of each polygon as function of the time 

of harvest can reveal such trends. Because the rates are randomly assigned to the plots, 

these coefficients should not present any correlation with time. This behavior can be 

observed in fields 2 and 4 (Figure 4), for example. Various levels of trends can be 

observed in other fields, from small deviation to the straight line in fields 6 and 12 to 

large deviations in fields 1 and 5. The spatial distribution of the estimated coefficients for 

each experimental unit can be used to further investigate these trends (Figure 5). The 

method used cannot distinguish between trends introduced by data collection and trends 

related to other management factors that may affect yield without affecting NDVI. 

Independent of the factor causing the trend, it is important to acknowledge the existence 

of these trends and to account for it when analyzing the yield response, either by 

excluding part of the data or including grouping factors. 

Differences similar to the pattern observed in field 2 (Figure 5a) are expected due to the 

different treatments in the field and the fact that some factors that affected yield may not 

have affected NDVI, especially late in the season, when the NDVI gets saturated. 

Differences such as the ones observed in field 1 (Figure 5b) are unlikely to be caused by 

the treatment effects in yield. The main stripe of negative values in the middle of the field 

is clearly an error and should be eliminated. Besides that, there are still three different 

clusters of errors present in the data. The group of negative values in the north of the field 

seems to be related to the harvest, since they are mostly aligned with the harvest direction. 

The group of values in the bottom of the field may be related to irrigation, since it shows 

a radial distribution. 

 

 
Figure 3. Spatial distribution of the standardized yield residuals in fields 1 (a) and 2 (b). 

 

b) a) 
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Figure 4. Standardized coefficients for each experimental unit compared to the relative 

time of harvest. The blue line represents a smoothed moving average. 

 

 

The use of an independent sensor to calibrate the load cell at the impact plate, such as a 

weighing system for the grain tank could contribute to the validation of this methodology. 

The use of simulation can also be an alternative to validate the proposed methodology  

(Leroux et al. 2017), but the delays in yield record and the presence of trends should be 

included in the simulated data. 

 

 

 
Figure 5. Spatial distribution of the standardized coefficients for each experimental unit 

in fields 1 (a) and 2 (b). 

 

 

 

 

a) b) 
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Conclusions 

 

The proposed method allowed the identification of the most likely time shift to be applied 

to correct the yield monitor values. This value varied from zero seconds, meaning that the 

value set in the monitor configuration was right, to three seconds, meaning that the value 

set in the yield monitor configuration should be increased by three to better match the 

sensor readings with the coordinates.  

The residuals of the yield prediction model were used to identify points with unlikely 

yield values for that location, based only on the global frequency distribution of the 

values. This method can be seen as an alternative to the traditional approaches using local 

spatial statistics, without any assumption of spatial dependence or stationarity. 

The temporal and spatial distribution of the standardized coefficients for each 

experimental unit highlighted the presence of trends in the data. Although the method 

cannot explain the reason for the trend, it can help to improve the quality of subsequent 

analysis by accounting for the trends in the model definition. 
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