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Abstract: The interest on the use of renewable energy resources is increasing, especially towards 
wind and hydro powers, which should be efficiently c onverted i nto e lectric e nergy v ia suitable 
technology tools. To this aim, data–driven control techniques represent viable strategies that can 
be employed for this purpose, due to the features of these nonlinear dynamic processes working 
over a wide range of operating conditions, driven by stochastic inputs, excitations and disturbances. 
Some of the considered methods, such as fuzzy and adaptive self–tuning controllers, were already 
verified on wind turbine systems, and similar advantages may thus derive from their appropriate 
implementation and application to hydroelectric plants. These issues represent the key features 
of the work, which provides some guidelines on the design and the application of these control 
strategies to these energy conversion systems. The working conditions of these systems will be 
also taken into account in order to highlight the reliability and robustness characteristics of the 
developed control strategies, especially interesting for remote and relatively inaccessible location 
of many installations.

Keywords: Wind turbine system; hydroelectric plant simulator; model–based control; data–driven 
approach; self–tuning control; robustness and reliability15

1. Introduction16

The trend to reduce the use of fossil fuels, motivated by the need to meet greenhouse gas17

emission limits, has driven much interest on renewable energy resources, in order also to cover global18

energy requirements. Wind turbine systems, which now represent a mature technology, have had19

much more development with respect to other energy conversion systems, e.g. for biomass, solar, and20

hydropower [1]. In particular, hydroelectric plants present interesting energy conversion potentials,21

with commonalities and contrast with respect to wind turbine installations [2–4].22

One common aspect regarding the design of the renewable energy conversion system concerns23

the conversion efficiency. However, as wind and hydraulic resources are free, the key point is24

represented by the minimisation of the cost per kWh, also considering the lifetime of the deployments.25

Moreover, by taking into account that the cost of control system technology (i.e. sensors, actuators,26

computer, software) is relatively lower than the one of the renewable energy converter, the control27

system should aim at increasing the energy conversion capacity of the given plant [5].28

The paper focuses on the development and the comparison of control techniques applied29

to a wind turbine system and a hydroelectric plant, by using a wind turbine benchmark and30

a hydroelectric simulator, respectively. The former process was proposed for the purpose of31

an international competition started in 2009 [6], whilst the latter system was developed by the32

same authors but with different purpose [7]. In fact, these simulators represent high–fidelity33

representations of realistic processes, developed for the validation and the verification of advanced34

control techniques. More general investigations of these plants and their components are addressed in35

[8] and [9], respectively, even if their structures were analysed for different purpose and applications.36
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With reference to wind turbine systems, can implement their regulation via ’passive’ control37

methods, such as the plants with fixed–pitch, and stall control machines. These systems may not use38

any pitch control mechanism or rely on simple rotational speed control [6]. On the other hand, wind39

turbine rotors exploiting adjustable pitch systems are often exploited to overcome the limitations40

due to the simple blade stall, and to improve the converted power [10]. Large wind turbines can41

implement another control technique modifying the yaw angle, which is used to orient the rotor42

towards the wind direction [10].43

On the other hand, regarding hydroelectric plants, it is worth noting that a limited number of44

works have addressed the application of advanced control techniques [11]. In fact, a high–fidelity45

mathematical description of these processes can be difficult to be achieved in practice. Some46

contributions took into account the elastic water effects, even if the nonlinear dynamics are linearised47

around an operating condition. Moreover, other papers proposed different mathematical models48

together with the strategies exploited to control these systems [12]. In the same way, linear and49

nonlinear dynamic processes with different regulation strategies are also proposed [13]. In particular,50

a fuzzy controller that needs for the proper design of the membership functions was proposed in [14].51

On the other hand, the paper [12] developed an advanced controller combining four control schemes52

that rely on adaptive, fuzzy and neural network regulators.53

Finally, regarding joint wind–hydro deployments, some more recent works analysed the54

problem of frequency control of isolated systems [15,16], which is not addressed in this paper.55

After these consideration, the main contribution of the paper aims at providing some guidelines56

on the design and the application of data–driven and self–tuning control strategies to two energy57

conversion systems. Some of these techniques were already verified on wind turbine systems, and58

important advantages may thus derive from the appropriate implementation of the same control59

methods for hydroelectric plants. In fact, it seems that investigations related with both wind and60

hydraulic energies present a reduced number of common aspects, thus leading to little exchange61

and share of possible common points. This consideration is particularly valid with reference to62

the more established wind area when compared to hydroelectric systems. Moreover, it analyses63

the application of the different control solutions to these energy conversion systems. In particular,64

the work introduces some kind of common rules for tuning the different controllers, for both wind65

turbine and hydroelectric plants. Therefore, the paper shows that the parameters of these controllers66

are obtained by exploiting the same tuning strategies. This represents the feature of this study. The67

common parts and the working conditions of these energy conversion systems will be also taken into68

account in order to highlight the reliability and robustness characteristics of the developed control69

strategies.70

Finally, the paper has the following structure. Section 2 summarises the simulation models used71

for describing the accurate behaviour of the dynamic processes. In particular, similar functional72

parts that characterise the processes under investigation will be highlighted, as they lead to similar73

design rules, illustrated in Section 3. To this aim, Section 3 summarises the design of the proposed74

control techniques, taking into account the available tools. In Section 4, these control strategies75

are implemented and compared, with respect to the achievable reliability and robustness features.76

Section 5 ends the paper summarising the main achievements of the paper, and drawing some77

concluding remarks.78

2. Simulator Models and Reference Governors79

This section recalls the basic structure and the common points of the simulators used for80

describing the wind turbine and the hydroelectric processes considered in this paper.81

This work considers a horizontal–axis wind turbine device, as nowadays it represents the most82

common type of installation for large–scale deployments. Moreover, this three–bladed wind turbine83

follows the principle that the wind power activates its blades, thus producing the rotation of the low84

speed rotor shaft. This rotational speed required by the electric generator is increased via a gear–box85
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with a drive–train. More details on this simulator are available in [6]. The schematic diagram of86

this benchmark that helps to recall its main variables and function blocks developed in the Simulink87

environment is depicted in Fig. 1, thus showing also its working principles.88
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Figure 1. Block diagram of the wind turbine simulator.

The wind turbine simulator has 2 controlled outputs, i.e. the generator rotational speed ωg(t)89

and its generated power Pg(t). The wind turbine model is controlled by means of two actuated90

inputs, i.e. the generator torque τg(t) and the blade pitch angle β(t). The latter signal controls the91

blade actuators, which are implemented by a hydraulic circuit [6].92

Several other measurements are acquired from the wind turbine benchmark: the signal ωr(t)
represents the rotor speed and τr(t) is the reference torque. Moreover, aerodynamic torque signal
τaero(t) is computed from the wind speed v(t), which is usually available with limited accuracy. On
the other hand, the aerodynamic torque τaero(t) depends on the power coefficient Cp, as shown by Eq.
(1):

τaero(t) =
ρ A Cp (β(t), λ(t)) v3(t)

2 ωr(t)
(1)

ρ being air density, A the area swept by the turbine blades during their rotation, whilst λ(t) is the93

tip–speed ratio of the blade. The nonlinear relations of Eq. (1) is represented in Figure 2, which is94

depicted for different values of λ(t), v(t) and β(t).95

Tip-speed ratio ����

�=0°

�=5°

�=10°

�=15°

0.5

0.4

0.3

0.2

0.1

0

1 5 10 15

Cp

[]

Figure 2. Example of the power coefficient function.

It is worth noting the mathematical relation of Eq. (1) representing the driving force of the96

wind turbine process, whose formulation will be similar for the hydroelectric plant, as shown in97

the following.98

The overall continuous–time representation of the wind turbine benchmark can be represented
via Eq. (2): 

ẋ(t) = fc (x(t), u(t))

y(t) = x(t)
(2)
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with u(t) = [τr(t) β(t)]T and y(t) =
[
ωg(t) Pg(t)

]T . fc (·) is described by means of a continuous–time99

nonlinear function that will be exploited for representing the complete dynamic behaviour of the100

controlled process. Moreover, since this paper will analyse several data–driven control approaches,101

this system will be used to acquire N sampled data sequences u(k) and y(k), with k = 1, 2, . . . N102

from a realistic wind turbine plant [6].103

Finally, the wind turbine simulator includes a control system that maintains the generator speed104

ωg(t) at its nominal value ωnom = 1551, 76rpm, and the generated power Pg(t) near to the rated power105

Pr = 4.8MW. This is achieved by properly changing both β and τg, depending on the operating106

conditions, which move the wind turbine system to the partial load to the full load working regions107

(operating regions 2 and 3, respectively) [6].108

On the other hand, the hydroelectric plant considered in this work consists of a high water head109

and a long penstock, which includes also upstream and downstream surge tanks, with a Francis110

hydraulic turbine [17], as recalled in Fig. 3. The hydroelectric simulator consists of a reservoir with111

water level HR, an upstream water tunnel with cross-section area A1 and length L1, an upstream surge112

tank with cross–section area A2 and water level H2 of appropriate dimensions. A downstream surge113

tank with cross–section area A4 and water level H4 follows, ending with a downstream tail water114

tunnel of cross–section area A5 and length L5. Moreover, between the Francis hydraulic turbine and115

the two surge tanks, there is a the penstock with cross–section area A3 and length L3. Finally, Fig. 3116

highlights a tail water lake with level HT . The levels HR and HT of the reservoir and the lake water,117

respectively, are assumed to be constants.118
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Figure 3. Overall scheme of the hydroelectric process.

The mathematical description of the pure hydraulic system, which does not include the Francis119

hydraulic turbine, can be found in [18,19]. This model was modified by the authors in order to120

consider the the Francis turbine [7].121

In the following, the complete model of the hydroelectric system is recalled, in terms of the
variable h, which represents the water pressure relative deviation, whilst q is the flow rate relative
deviation. More details can be found in [7]. Therefore, the overall model of the hydroelectric
simulator is described by the relations of Eq. (3), which express the non–dimensional variables with
respect to their relative deviations: 

Q
Qr

= 1 + qt
H
Hr

= 1 + ht
n
nr

= 1 + x
G = 1 + y

(3)

with qt is the turbine flow rate relative deviation, ht the turbine water pressure relative deviation, x122

the turbine speed relative deviation, and y the wicket gate servomotor stroke relative deviation. In123

particular, in Eq. (3), Hr = 400m represents the reservoir water level, Qr = 36.13m3/s is the water124

flow rate, nr = 500rpm is the rated rotational speed. The hydraulic turbine power is Pr = 127.6MW125

with efficiency rated value ηr = 0.90.126

In the following, the non–dimensional performance curves of the hydraulic turbine considered in
this work are briefly summarised, as they represent an important nonlinear part of the hydroelectric
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plant. In particular, the non–dimensional water flow rate Q/Qr is expressed as a function of the
non–dimensional rotational speed n/nr, and represented by the second order polynomial of Eq. (4):

Q
Qr

= G

[
a1

(
n
nr

)2
+ b1

(
n
nr

)
+ c1

]
= f1 (n, G) (4)

Moreover, the relation of Eq. (4) includes the wicked gate opening, described by the non–dimensional127

parameter G, varying from 0 to 100%. Fig. 4 represents the curve derived for G = 100%, i.e. fully open128

wicked gate. Moreover, the curve at η = 0% is also depicted, thus defining the operating conditions129

of the Francis hydraulic turbine.130
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Figure 4. Representation of the non–dimensional water flow rate Q/Qr with respect to the
non–dimensional rotational speed n/nr.

The variables and parameters of the hydroelectric model were selected according to the work131

[19] in order to represent a realistic hydroelectric plant simulator. Moreover, as for the wind turbine132

benchmark, the signals that can be acquired from the actuator and sensors of the hydroelectric plant133

are modelled as the sum of the actual variables and stochastic noises, as proposed in [7]. For this134

benchmark, a standard PID regulator was proposed to compensate the hydraulic turbine speed135

[19]. Due to its nonlinear characteristics, this solution may lead to unsatisfactory responses, with136

high overshoot and long settling time, as highlighted in [19], since a gain scheduling of the PID137

parameters would have been required. Thus, advanced control strategies that were already proposed138

for the wind turbine benchmark and recalled in Section 3 will be briefly summarised and applied139

to the hydroelectric simulator, as shown in Section 4. Extended simulations, comparisons, and the140

sensitivity analysis of the proposed solutions represent one of the key points of this paper.141

Finally, it is worth noting that some relations of the hydroelectric system have been linearised,142

see e.g. the relations of Eq. (3). However, these simplified models has been considered for comparison143

purpose, as the nonlinear parts of the processes under investigation are closer, as highlighted by Eqs.144

(1) and (4).145

3. Control Techniques for Energy Conversion Systems146

This section recalls those data–driven and self–tuning control methodologies that will be147

designed and compared when applied to the considered energy conversion benchmark and simulator.148

In general, the control techniques proposed for the systems under investigation should lead to the149

computation of the control law generating the input u(t) that allows to track the given reference150

or set–point r(t) for the controlled output y(t). For example, the wind turbine system requires the151

computation of the optimal rotational speed (ωr or ωg for the working regions 2 and 3, respectively).152

Moreover, the reference torque τr and the blade pitch control β are exploited to obtain the needed153

rotational velocity ωg. On the other hand, the hydroelectric system requires an optimal velocity154
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reference nr that is obtained for this plant, and the control of u and y allows to track n according155

to the desired value nr.156

The remainder of this section describes briefly several control schemes consisting of self–tuning,157

data–driven, and Artificial Intelligence (AI) strategies, such as fuzzy logic and adaptive methods,158

as well as Model Predictive Control (MPC) approach. First, with reference to the process output,159

the desired transient or steady–state responses can be considered, as for the case of self–tuning PID160

regulators summarised in Section 3.0.1. On the other hand, if the frequency behaviour is taken into161

account, the desired closed–loop poles can be fixed as roots of the closed–loop transfer function. This162

represent the design approach used by the adaptive strategy considered in Section 3.0.3. Moreover,163

when robust performances are included, the minimisation of the sensitivity of the closed–loop system164

with respect to the model–reality mismatch or external disturbances can be considered. This approach165

is related for example to the fuzzy logic methodology reported in Section 3.0.2. Some other strategies166

provide solutions to this optimisation problem when it is defined at each time step, as for the167

case of the Model Predictive Control (MPC) with disturbance decoupling considered in Section168

3.0.4. The considered strategy integrates the advantages of the MPC solution with the disturbance169

compensation feature.170

Note that some of the control solutions were already proposed by the authors in particular for171

the wind turbine and wind park installations [20].172

3.0.1. Self–Tuning PID Control173

Industrial processes commonly exploit closed–loop including standard PID controllers, due to
their simple structure and parameter tuning [21]. The control law depends on the tracking error e(t)
defined by the difference between the desired and the measured output signals, i.e. e(t) = r(t) −
x(t). This signal is injected into the controlled process after proportional, integral and derivative
computations. Therefore, the continuous–time control signal u(t) is generated by the PID regulator
in the form of Eq. (5):

u(t) = Kp e(t) + Ki

∫ t

0
e(τ) dτ + Kd

de(t)
dt

(5)

with Kp, Ki, Kd being the PID proportional, integral, and derivative gains, respectively. The most174

common strategy exploited for the computation of the optimal parameters of the PID governor uses175

proper Ziegler–Nichols formulas [21]. However, with the development of relatively recent automatic176

software routines, the PID optimal parameters can be easily determined by means of direct tuning177

algorithms implemented for example in the Simulink environment. These strategies require the178

definition of the controlled process as Simulink model, such that they balance the input–output179

performances of the monitored system in terms of response time and stability margins (robustness)180

[21]. In particular, the PID automatic tuning procedure implemented in the Simulink toolbox181

performs the computation of the linearised model of the energy conversion systems studied in this182

paper. The logic scheme of this procedure is sketched in Fig. 5.183

+
_

r(t)

u(t)

y(t)e(t)

y(t)

PID parameter
optimiser

System linearised
model

PID automatic tuning
Simulink toolbox

PID controller

Energy conversion
system simulator

Figure 5. Block diagram of the monitored system controlled by the PID regulator with self–tuning
feature.
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Note finally that the PID block in Fig. 5 performs the computation of a linearised model of the184

controlled system, if required. Therefore, the optimiser included in the PID block and implemented in185

the Simulink environment derives of the PID parameters that minimise suitable performance indices,186

as described in [21].187

3.0.2. Data–Driven Fuzzy Control188

Fuzzy Logic Control (FLC) solutions are often exploited when the dynamics of the monitored189

process are uncertain and can present nonlinear characteristics. The design method proposed in this190

work exploits the direct identification of rule–based Takagi–Sugeno (TS) fuzzy prototypes. Moreover,191

the fuzzy model structure, i.e. the number of rules, the antecedents, the consequents and the fuzzy192

membership functions can be estimated by means of the Adaptive Neuro–Fuzzy Inference System193

(ANFIS) toolbox implemented in the Simulink environment [22].194

The TS fuzzy prototype relies on a number of rules Ri, whose consequents are deterministic
functions fi(·) in the form of Eq. (6):

Ri : IF x is Ai THEN ui = fi(x) (6)

where the index i = 1, 2, . . . , K describes the number of rules K, x is the input vector containing the
antecedent variables, i.e. the model inputs, whilst ui represents the consequent output. The fuzzy set
Ai describing the antecedents in the i–th rule is described by its (multivariable) membership function
µAi (x) → [0, 1]. The relation fi(x) assumes the form of parametric affine model represented by the
i–th relation of Eq. (7):

ui = aT
i x + bi (7)

with the vector ai and the scalar bi being the i–th submodel parameters. The vector x consists of195

a proper number n of delayed samples of input and output signals acquired from the monitored196

process. Therefore, the term aT
i x is an Auto–Regressive eXogenous (ARX) parametric dynamic model197

of order n, and bi a bias.198

The output u of the TS fuzzy prototype is computed as weighted average of all rule outputs ui
in the form of Eq. (8):

u =
∑K

i=1 µAi (x) yi(x)

∑K
i=1 µAi (x)

(8)

The estimation scheme implemented by the ANFIS tool follows the classic dynamic system199

identification experiment. First, the structure of the TS fuzzy prototype is defined by selecting a200

suitable order n, the shape representing the membership functions µAi , and the proper number of201

clusters K. Therefore, the input–output data sequences acquired from the monitored system are202

exploited by ANFIS for estimating the TS model parameters and its rules Ri after the selection of a203

suitable error criterion. The optimal values of the controller parameters represented by the variables204

ai and bi of (7) are thus estimated [23].205

The work proposes also a strategy different from ANFIS that can be exploited for the estimation206

of the parameters of the fuzzy controller. This method relies on the Fuzzy Modelling and207

Identification (FMID) toolbox designed in the Matlab and Simulink environments as described in208

[24]. Again, the computation of the controller model is performed by estimating the rule–based209

fuzzy system in the form of Eq. (8) from the input–output data acquired from the process under210

investigation. In particular, the FMID tool uses the Gustafson–Kessel (GK) clustering method [24] to211

perform a partition of input–output data into a proper number K of regions where the local affine212

relations of Eq. (7) are valid. Also in this case, the fuzzy controller model of Eq. (8) is computed213

after the selection of the model order n and the number of clusters K. The FMID toolbox derives the214

variables ai and bi, as well as the identification of the shape of the functions µAi by minimising a given215

metric [24].216
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Note that the overall digital control scheme consisting of the discrete–time fuzzy regulator of Eq.217

(8) and the controlled system includes also Digital–to–Analog (D/A) and Analog–to-Digital (A/D)218

converters, as shown in Figure 6.219

r

u(t)

y(t)

D/A

A/D
y

u
k

k

Fuzzy
inference
system

z -1

u
k-2

k

z -1

k-1

Fuzzy controller

r
k

z -1

y
k-1

r

y
k

z -1

u
k-1

Fuzzy logic Simulink block

Energy conversion
system

Figure 6. Block diagram of the monitored system controlled by the fuzzy regulator.

With reference to Figure 6, note finally that the fuzzy controller block implemented in the220

Simulink environment includes a suitable number n of delayed samples of the signals acquired from221

the monitored process. Moreover, the fuzzy inference system in Figure 6 implements the TS model of222

Eq. (8). The delay n, the membership functions µAi , and the number of clusters K are estimated by223

the FMID and the ANFIS toolboxes, as described in [24].224

3.0.3. Data–Driven Adaptive Control225

The adaptive control technique proposed in this work relies on the recursive estimation of a 2–nd
order discrete–time transfer function G(z) with time–varying parameters described by Eq. (9):

G(z) =
β1 z−1 + β2 z−2

1 + α1 z−1 + α2 z−2 (9)

where αi and βi are identified on–line at each sampling time tk = k T, with k = 1, 2, . . . , N, for N226

samples, and T being the sampling interval. z−1 indicates the unit delay operator. A viable and227

direct way for deriving the model parameters in Eq. (9) that is proposed in this work is based on the228

Recursive Least–Square Method (RLSM) with directional forgetting factor, which was presented in229

[25].230

Once the parameters of the model of Eq. (9) have been derived, this paper proposes to compute
the adaptive controller in the form of Eq. (10):

uk = q0 ek + q1 ek−1 + q2 ek−2 + (1− γ) uk−1 + γ uk−2 (10)

with ek and uk represent the sampled values of the tracking error e(t) and the control signal uk at
the time tk, respectively. With reference to the description of Eq. (10), by following a modified
Ziegler–Nichols criterion, q0, q1, q2, and γ represent the adaptive controller parameters, which are
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derived by solving a Diophantine equation. As described in [25], by considering the recursive 2–nd
order model of Eq. (9), this technique leads to the relations of Eqs. (11):

q0 = 1
β1

(d1 + 1− α1 − γ)

γ = s1
r1

β2
α2

q1 = α2
β2
− s1

r1

(
β1
β2
− α1

α2
+ 1
)

q2 = s1
r1

(11)

where: 
r1 = (b1 + b2)

(
a1 b2 b1 − a2 b2

1 − b2
2
)

s1 = a2 ((b1 + b2) (a1 b2 − a2 b1) + b2 (b1 d2 − b2 d1 − b2))

(12)

Note that the design technique proposed in this work and represented by the relations of Eqs. (11)
and (12) assumes that the behaviour of the overall closed–loop system can be approximated by a 2nd
order transfer function with characteristic polynomial represented by Eq. (13):

D(s) = s2 + 2 δ ω s + ω2 (13)

with δ and ω being the damping factor and natural frequency, respectively. s is the derivative
operator. Furthermore, if δ ≤ 1, the following relations are used [25]:

d1 = −2 e−δ ω T cos
(

ω T
√

1− δ2
)

d2 = e−2 δ ω T

(14)

The on–line control law of Eq. (10) is used for the regulation of the continuous–time nonlinear system231

by including D/A and A/D converters, as highlighted in the scheme of Figure 7.232

r u(t)

y(t)

D/A

A/D
y

u
k

k

z -1

u
k-1

k

u
k

Adaptive controller

Adaptive
controller

design

ARX on-line
identification

y
k

r
k

u
k-1

u
k

y
k

������,
ii

STCSL Simulink block

Energy conversion
system

Figure 7. Block diagram of the monitored system controlled by the adaptive regulator.

Note finally that the adaptive control sketched in Figure 7 is implemented via the Self–Tuning233

Controller Simulink Library (STCSL) block in the Simulink environment. It includes the module234

performing the on–line identification of the ARX model of Eq. (9), which is used for the adaptive235

controller design in the form of Eq. (10) [25].236
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3.0.4. Model Predictive Control with Disturbance Decoupling237

The general structure of the proposed Model Predictive Control (MPC) is illustrated in Figure238

8, with the MPC managing objectives and constraints of the control inputs. The MPC works as a239

standard MPC controller when the nominal plant is considered, and generates the reference inputs. In240

the presence of disturbance or uncertainty effects, the considered solution provides the reconstruction241

of the equivalent disturbance signal acting on the plant. This represent the key feature of this242

structure, which compensates the disturbance effect and ’hide’ it to the overall system. In this way, it243

decouples the disturbance effect from the nominal MPC design.244

Reference plant

MPC
Optimisation

Kalman
filter

y
l

x r

d
^

u

u(t)
x

l

u r

x r x
l

Energy conversion
system

Reference r

Disturbance estimator

MPC Controller

Figure 8. Block diagram of the disturbance compensated MPC scheme.

The overall scheme is thus represented aim by the MPC design with disturbance compensation,
such that the compensated system has response very similar to the nominal system and the
constraints are not violated. The fault compensation problem within the MPC framework is defined
as follows. Given a state–space representation of the considered system affected by disturbance or
uncertainty has the following form:{

ẋl = Al xl + Bl u + Bd d + w
yl = Cl xl + v

(15)

and its nominal reference model: {
ẋr = Al xr + Bl ur

yr = Cl xr
(16)

the disturbance compensation problem is solved by finding the control input u that minimises the
cost function:

J =
∫ t+Nc ∆t

t

(∥∥xl − xr
∥∥2

Q +
∥∥u̇
∥∥2

R

)
dτ (17)

given the reference input ur.245

In Eq. (15) the matrices Al , Bl , Bd and Cl are of proper dimensions. The vector yl represents246

the output measurements, xl is the state of the model with disturbance, whilst xr is the reference247

state, and yr the reference output, corresponding to the reference input ur of the nominal model. The248

vectors w and v include the model mismatch and the measurement error, respectively. d represents249

the equivalent disturbance signal. In Eq. (17) t is the current time, ∆t is the control interval, and Nc250

is the length of the control horizon. Q and R are suitable weighting matrices. Note that the model of251

Eq. (15) can be derived by nonlinear model linearisation or identification procedures, as suggested in252

Sections 3.0.1 and 3.0.3, respectively.253
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This work proposes to solve the problem in two steps: the reconstruction of the disturbance d,
i.e. d̂, provided by the disturbance estimation module, and the MPC tool. Due to the model–reality
mismatch and the measurement error in (15), the Kalman filter (18) is used to provide the estimation
of the state vector xl , the output yl of the system affected by the estimated disturbance d̂:{

ẋl = Al xl + Bl u− Bl d̂ + K f (yl − Cl xl)

yl = Cl xl
(18)

where K f is the Kalman filter gain. In this way, based on the estimations d̂ and xl , an MPC is designed,
which contains the reference model of Eq. (16) and the filtered system of Eq. (18), with d̂ provided by
the Kalman filter. Moreover, the MPC has the objective function:

∫ t+Nc ∆t

t

[
(xl − xr)

T Q (xl − xr) + u̇T R u̇
]

dτ (19)

in which xl and xr are the states of the filtered and the reference models, respectively. The integrated254

MPC with the Kalman filter solves this general disturbance compensation problem, as long as the255

estimations of both the state and the disturbance are correct. An illustration of the structure of the256

fault compensated MPC is shown in Figure 8.257

The global estimation and control scheme is a nonlinear MPC problem with the nominal model258

for the considered energy conversion systems of Eq. (15), the disturbance d with its estimator,259

and the Kalman filter of Eq. (18) as prediction model. The local observability of the model of Eq.260

(15) is essential for state estimation, which is easily verified. The implementation of the proposed261

disturbance compensation strategy has been integrated into the MPC Toolbox of the Simulink262

environment.263

4. Simulation Results264

The results obtained with the application of the developed control techniques are evaluated via
the percent Normalised Sum of Squared Error (NSSE%) performance function in the form of Eq. (20):

NSSE% = 100

√√√√∑N
k=1 (rk − ok)

2

∑N
k=1 r2

k

(20)

with rk being the sampled reference or set–point r(t), whilst ok is the sampled continuous–time signal265

representing the generic controlled output y(t) of the process. In particular, this signal is represented266

by the wind turbine generator angular velocity ωg(t) in Eq. (2), and the hydraulic turbine rotational267

speed n in Eq. (3) for the hydroelectric plant.268

Note that the wind turbine benchmark and the hydroelectric plant simulator of Section 2 allow269

the generation of several input–output data sequences due to different wind speed v(t) effects and270

hydraulic transient under variable loads, respectively. Moreover, in order to obtain comparable271

working situations, the wind turbine benchmark has been operating from partial to full load272

conditions (from region 2 to region 3). It is thus considered the similar maneuver of the hydroelectric273

system operating from the start–up to full load working condition. After these considerations, Section274

4.1 summarises the results obtained from the wind turbine benchmark first. Then, the same control275

techniques will be verified when applied to the hydroelectric simulator.276

4.1. Control Technique Performances and Comparisons277

Figure 9 reports the results achieved with the control methodologies and the tools summarised278

in Section 3. In particular, Figure 9 depicts the wind turbine generator angular velocity ωg when the279

wind speed v(t) changes from 3m/s to 18m/s for a simulation time of 4400s [6].280
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Figure 9. Wind turbine controlled output compensated by (a) the self–tuning PID regulator, (b) the
fuzzy controller, (c) the adaptive regulator, and (d) the MPC approach with disturbance decoupling.

In detail, with reference to the picture in Figure 9 (a), the parameters of the PID regulator of Eq.281

(5) have been determined using the self–tuning tool available in the Simulink environment. They282

were settled to Kp = 4.0234, Ki = 1.0236, Kd = 0.0127. The achieved performances are better than the283

ones obtained with the baseline control laws proposed in [6].284

Moreover, Figure 9 (b) shows the simulations achieved with the data–driven fuzzy identification285

approach recalled in Section 3.0.2. In particular, a sampling interval T = 0.01s has been exploited,286

and the TS fuzzy controller of Eq. (8) has been obtained for a number K = 3 of Gaussian membership287

functions, and a number n = 2 of delayed inputs and output. The antecedent vector in Eq. (7) is288

thus x = [ek, ek−1, ek−2, uk−1, uk−2]. Both the data–driven FMID and ANFIS tools available in the289

Matlab and Simulink environments provide also the optimal identification of the shapes of the fuzzy290

membership functions µAi of the fuzzy sets Ai in Eq. (6).291

On the other hand, the picture in Figure 9 (c) shows the capabilities of the adaptive controller of292

Eq. (10). The time–varying parameters of this data–driven control technique summarised in Section293

3.0.3 have been computed on–line via the relations of Eqs. (11) with the damping factor and the294

natural frequency variables δ = ω = 1 in Eq. (13).295

Finally, the picture of Figure 9 (d) highlights the results achieved with the MPC technique with296

disturbance decoupling recalled in Section 3.0.4. The state–space model of the wind turbine nonlinear297

system of Eq. (2) exploited for the design of the MPC and the Kalman filter for the estimation of the298

disturbance has order n = 5, with a prediction horizon Np = 10 and a control horizon Nc = 2. The299

weighting factors have been settled to wyk = 0.1 and wuk = 1, in order to reduce possible abrupt300

changes of the control input. Note that, in this case, the MPC technique has led to the best results,301

since it exploits a disturbance decoupling strategy, whilst its parameters have been iteratively adapted302

in the Simulink environment in order to optimise the MPC cost function of Eq. (17), as addressed in303

Section 3.0.4.304

The second test case regards the hydroelectric plant simulator, where the hydraulic system305

with its turbine speed governor generates hydraulic transients due to the load changes. In order306

to consider operating situations similar to the wind turbine benchmark, the capabilities of the307
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considered control techniques applied to the hydroelectric simulator have been evaluated during308

the start–up to full load maneuver. Moreover, an increasing load torque has been imposed during the309

start–up to full load phase, which is assumed to last 300s because of the large size of the considered310

Francis turbine, and for a simulation of 900s.311

Under these assumptions, Figure 10 summarises the results achieved with the application of312

the control strategies recalled in Section 3. In particular, for all cases, Figure 10 highlights that the313

hydraulic turbine angular velocity n increases with the load torque mg0 during the start–up to full314

working condition maneuver.315
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Figure 10. Hydroelectric system with (a) the self–tuning PID regulator, (b) the fuzzy controller, (c) the
adaptive regulator, and (d) the MPC approach with disturbance decoupling.

In more detail, Figure 10 (a) shows the performance of the PID regulator when its parameters are316

determined via the self–tuning procedure recalled in Section 3.0.1. Furthermore, Figure 10 (a) shows317

that the PID governor with self–tuning capabilities is able to keep the hydraulic turbine rotational318

speed error n− nr null (r(t) = nr, i.e. the rotational speed constant) in steady–state conditions.319

Figure 10 (b) reports the results concerning the TS fuzzy controller described by Eq. (8) in Section320

3.0.2. This fuzzy controller was implemented for a sampling interval T = 0.1s, with a number K = 2 of321

Gaussian membership functions, and a number n = 3 of delayed inputs and output. The antecedent322

vector exploited by the relation of Eq. (7) is thus x = [ek, ek−1, ek−2, ek−3, uk−1, uk−2, uk−3, ].323

Moreover, as recalled in Section 3.0.2, the data–driven FMID and ANFIS tools implemented in the324

Simulink toolboxes are able to provide the estimates of the shapes of the membership functions µAi325

used in Eq. (8).326

On the other hand, Figure 10 (c) reports the simulations obtained via the data–driven adaptive327

controller of Eq. (10), whose time–varying parameters are computed by means of the relations of328

Eqs. (11). The damping factor and the natural frequency parameters used in Eq. (13) were selected329

as δ = ω = 1. The STCSL tool described in Section 3.0.3 implements this data–driven adaptive330

technique using the on–line identification of the input–output model of Eq. (9) [25].331

Finally, regarding the MPC technique with disturbance decoupling proposed in Section 3.0.4,332

Fig. 10 (d) reports the simulations obtained using a prediction horizon Np = 10 and a control horizon333

Nc = 2. Also in this case, the weighting parameters have been fixed to wyk = 0.1 and wuk = 1, in334

order to limit fast variations of the control input, as it will be remarked in the following. Furthermore,335
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the MPC design was performed using a linear state–space model for the nonlinear hydroelectric plant336

simulator of order n = 6.337

In order to provide a quantitative comparison of the tracking capabilities obtained by the338

considered control techniques for the wind turbine benchmark, the first row in Table 1 summarises339

the achieved results in terms of NSSE% index.340

Table 1. Performance of the considered control solutions.

Simulated Working Standard Self–tuning Fuzzy Adaptive MPC
system Condition PID PID PID PID Scheme
Wind From partial

turbine to full load 11.5% 7.3% 5.7% 4.1% 2.8%
Hydro From start–up
plant to full load 6.2% 4.9% 3.1% 1.8% 0.9%

In particular, the NSSE% values in the first row of Table 1 highlight better capabilities of the341

proposed fuzzy controllers with respect to the PID regulators with self–tuning feature. This is342

motivated by the better flexibility and generalisation capabilities of the fuzzy tool, and in particular343

the FMID toolbox proposed in [24]. A better behaviour is obtained by means of the adaptive solution,344

due to its inherent adaptation mechanism, which allows to track the reference signal in the different345

working conditions of the wind turbine process. However, the MPC technique with disturbance346

decoupling has led to the best results, as reported in the first row of Table 1, since is able to optimise347

the overall control law over the operating conditions of the system, by taking into account future348

operating situations of its behaviour. while compensating the disturbance effects.349

On the other hand, the results achieved by the validation of the considered control techniques350

to the hydroelectric plant simulator are summarised in the second row of Table 1. In this case, the351

values of the NSSE% function are evaluated for the considered conditions of varying load torque352

mg0 corresponding to the plant start–up to full load maneuver. According to these simulation results,353

good properties of the proposed self–tuning PID regulator are obtained, and they are better than the354

baseline PID governor with fixed gains developed in [19]. In fact, the self–tuning design feature of355

the Simulink environment is able to limit the effect of high–gains for the proportional and the integral356

contributions of the standard PID control law. On the other hand, the data–driven fuzzy regulator357

has led to even better results, which are outperformed by the adaptive solution. However, also for the358

case of the hydroelectric plant simulator, the best performances are obtained by means of the MPC359

strategy with disturbance decoupling. Note that, with reference to Table 1, the comparison should360

be performed by considering the NSSE% values for a given plant. In fact, even if the NSSE% index361

assumes quite similar values, it refers to control techniques implemented and applied to different362

processes.363

Finally, in order to highlight some further features of the considered, the controlled inputs364

applied to the wind turbine system are depicted and compared in Figures 11 (a) and (c), whilst the one365

feeding the hydroelectric plant in Figure 11 (b) and (d). For the sake of brevity, only the data–driven366

fuzzy controller and the MPC with disturbance decoupling have been summarised here.367

By considering these control inputs, with reference to the data–driven methodologies, and in368

particular to the design of the fuzzy controllers, off–line optimisation strategies allow to reach quite369

good results. However, control inputs are subjected to faster variations. Other control techniques can370

take advantage of more complicated and not direct design methodologies, as highlighted by the MPC371

scheme. In this case, due to the input constraint, its changes are reduced. This feature is attractive372

for wind turbine systems, where variations of the control inputs must be limited. This represents373

another important benefit of MPC with disturbance decoupling, which integrates the advantages of374

the classic MPC scheme with disturbance compensation effects. Therefore, with reference to these two375
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Figure 11. Wind turbine (a), (c) and hydroelectric plant (b), (d) compensated by the fuzzy controller
and the MPC approach with disturbance decoupling.

control methods, they can appear rather straightforward, even if further optimisation and estimation376

strategies have to be applied.377

4.2. Sensitivity Analysis378

This section analyses the reliability and robustness properties of the developed controllers when379

parameter variations and measurement errors are considered. This further investigation relies on380

the Monte–Carlo tool, since the control behaviour and the tracking capabilities depend on both the381

model–reality mismatch effects and the input–output uncertainty levels. Therefore, this analysis has382

been implemented by describing the parameters of both the wind turbine system and hydroelectric383

plant models as Gaussian stochastic processes with average values corresponding to the nominal ones384

summarised in Table 2 for the wind turbine benchmark.385

Table 2. Wind turbine benchmark parameters for the sensitivity analysis.

Variable R χ ωn Bdt Br

Nominal value 57.5 m 0.6 106, 09 rpm 775.49 N m s rad−1 7.11 N m s rad−1

Variable Bg Kdt ηdt Jg Jr

Nominal value 45.6 N m s rad−1 2.7 · 109 N m rad−1 0.97 390 kg m2 55 · 106 kg m2

Moreover, Table 2 shows that these model parameters have standard deviations of ±30% of the386

corresponding nominal values [6].387

On the other hand, Table 3 reports the hydroelectric simulator model variables with their388

nominal values varied by ±30% in order to develop the same Monte–Carlo analysis [7].389

Therefore, the average values of NSSE% index have been thus evaluated by means of 1000390

Monte–Carlo simulations. They have been reported in Tables 4 and 5 for the wind turbine benchmark391

and the hydroelectric plant simulator, respectively.392
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Table 3. Hydroelectric simulator parameters for the sensitivity analysis.

Variable a b c H f1
H f3 H f5 Ta

Nominal value -0.08 0.14 0.94 0.0481 m 0.0481 m 0.0047 m 5.9 s
Variable Tc Ts2 Ts4 Tw1 Tw3 Tw5

Nominal value 20 s 476.05 s 5000 s 3.22 s 0.83 s 0.1 s

Table 4. Sensitivity analysis applied to the wind turbine benchmark.

Standard Self–tuning Fuzzy Adaptive MPC
PID PID PID PID Scheme

13.8% 9.2% 7.6% 5.3% 3.9%

Table 5. Sensitivity analysis applied to the hydroelectric plant simulator.

Standard Self–tuning Fuzzy Adaptive MPC
PID PID PID PID Scheme
9.1% 7.4% 5.6% 3.5% 2.2%

It is worth noting that the results summarised in Tables 4 and 5 serve to verify and validate393

the overall behaviour of the developed control techniques, when applied to the considered wind394

turbine benchmark and hydroelectric plant simulator, respectively. In more detail, the values of the395

NSSE% index highlights that when the mathematical description of the controlled dynamic processes396

can be included in the control design phase, the MPC technique with disturbance decoupling still397

yields to the best performances, even if an optimisation procedure is required. However, when398

modelling errors are present, the off–line learning exploited by the data–driven fuzzy regulators399

allows to achieve results better than model–based schemes. For example, this consideration is400

valid for the PID controllers derived via the self–tuning procedure. On the other hand, fuzzy401

controllers have led to interesting tracking capabilities. With reference to the data–driven adaptive402

scheme, it takes advantage of its recursive features, since it is able to track possible variations of403

the controlled systems, due to operation or model changes. However, it requires quite complicated404

and not straightforward design procedures relying on data–driven recursive algorithms. Therefore,405

fuzzy–based schemes use the learning accumulated from data–driven off–line simulations, but the406

training stage can be computationally heavy. Finally, concerning the standard PID control strategy, it407

is rather simple and straightforward. Obviously, the achievable performances are quite limited when408

applied to nonlinear dynamic processes. Note that they were proposed as baseline control solutions409

for the considered processes. It can be thus concluded that the proposed data–driven self–tuning410

approaches seem to represent powerful techniques able to cope with uncertainty, disturbance and411

variable working conditions. Note finally that the plant simulators, the control solutions, and the data412

exploited for the analysis addressed in this paper are directly and freely available from the authors.413

5. Conclusions414

The work considered two renewable energy conversion systems, such as a wind turbine415

benchmark and a hydroelectric plant simulator, together with the development of proper data–driven416

control techniques. In particular, the three–bladed horizontal axis wind turbine benchmark417

reported in this work consisted of simple models of the gear–box, the drive–train, and the electric418

generator/converter. On the other hand, the hydroelectric plant simulator included a high water419

head, a long penstock with upstream and downstream surge tanks, and a Francis hydraulic turbine.420
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Standard PID governors were earlier developed for these processes, which were rather simple and421

straightforward, but with limited achievable performances. Therefore, the paper proposed different422

control strategies mainly relying on data–driven approaches. Their performances were analysed423

first. Then, the reliability and robustness of these solutions were also verified and validated with424

respect to parameter variations of the plant models and measurement errors, via the Monte–Carlo425

tool. The achieved results highlighted that data–driven approaches, such as the fuzzy regulators were426

able to provide good tracking performances. However, they were easily outperformed by adaptive427

and model predictive control schemes, representing data–driven solutions that require optimisation428

stages, adaptation procedures and disturbance compensation methods. Future investigations will429

consider the verification and the validation of the considered control techniques when applied to430

higher fidelity simulators of energy conversion systems.431

Sample Availability: The software codes for the proposed control strategies, the simulated benchmarks and the432

generated data are available from the authors on demand in the Maltab and Simulink environments.433
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