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Abstract:  

Smart cities and smart technologies have been incorporated into several axes to increase comfort of 

life. The connected buildings concept was introduced for this reason. However, it was utilized in 

power management the for a better organizing, greater buildings management, and monetary 

savings. Cars technologies and number of vehicles are also involved; Nowadays, each house has at 

least one car. Technological evolution helped to make those cars intelligent and connected. In the 

latest versions, the majority of those cars were equipped with several sensors, several 

communication protocols and a principal electrical control unit (ECU), especially for the electric 

vehicle model. This type or architecture was an essential element in a smart city , thus, it helps to 

manage power and decide when a vehicle needs to be charged. Based on the smart city concept and 

using possible network communication between buildings and vehicles, EVs can share their own 

information related to the power experience on a specific path. This information, can be gathered in 

a gigantic database and used for managing the power inside these vehicles. In this field, we propose 

in this paper a new approach for power management inside an electrical vehicle based on bi-

communication between vehicles and buildings. The proposed approach is founded on two 

essential parts; the first is related to vehicles’ classification and buildings’ recommendation 

according to different car positions. Two algorithms, related to the SVC and neural network was 

employed in this work for implementing the final process. Different possibilities and situations were 

discussed for this approach. The proposed method was tested and validated using Simulink/Matlab 

application. The state of charge of the used battery was compared at the end of this work, for two 

specified cases, for showing the contribution of this approach.  

Keywords: Smart city, energy management, electric vehicle, optimization, classification, state of 

charge, intelligence. 

 

 

1. Introduction 

 

Electrical power is one of the important source of energy in our daily life. It is used in all areas for 

rapid development of the economy. The efficiency of the related production systems and power 

transmission system is very essential for the sustainable development of the economy and 

environmental protection 1. Saving energies is also a goal for consumer and energies producer. Many 

researchers were established in this context. Renewable energy was introduced in this field in order 

to minimize the electrical power production from the combustion based generators. The related 
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technologies were rapidly developed in order to extract the maximum of energies from the natural 

sources in extreme conditions 2.  

 

Electrical energies were also used in transportation systems like high-way train (HWT) and 

electrical vehicles (EVs). Meanwhile, the problem is often related to the electric vehicle and its power 

saving problem. Also, power losses minimization problem inside cars presents a serious challenge 

for the researchers. Even with these problems and according to 3, EVs have gained renewed attention 

in the vehicle market and the global market. EV consumers are expected to reach in 2030 three times 

the amount recorded in 2011. This is due to the high technologies’ performance used for battery and 

its consequence on vehicle autonomy.  Studies were not stopped at EVs development, but aim were 

to make an EV comfort in relation to the autonomy (Au), and this is a serious challenge. Based on 

various statistics about different EVs, as it is exposed in 4, 5 and 6, we present in the table (1) the 

classification for a various EV model in relation to (Au). Even the new statistics compared to a 

previous version, make users afraid when to decide to use EVs for a long distance. According to 

various tests seeking equivalence between the electrical and the combustible energetic ingesting 

inside an EV car, we have concluded that 10 kW-H/100Km is approximately equivalent to 1L/100Km 

and this valid on the high way road. So, saving energy will expand the autonomy and then save 

money. 

 

Table 1. Related autonomy and battery power for various cars type 7 

 

EV Model Autonomy Battery Kw-H/100Km 

Tesla* 542 Km 85 Kw 20.9 

Chevrolet 382 Km 16 Kw 23.5 

Hyundai 200 Km 28 Kw 17.2 

Ford Focus  185 Km 33.5 kW 18.2 

 * the best EV performance in 2018 

To increase the vehicle autonomy, managing the power inside car was a solution to save energy, 

the idea is based on the minimization of the electrical consumed power as much as its permitted 

when the car is in movement 8, 9. Here, authors have exposed a useful solution for managing power, 

their approach consists to provide the EV by a hybrid charging system, which contains an ICE engine 

and an electrical generator. In this case, the battery can be charged even the car is in motion. However, 

the problem is always related to the internal system complexity and the high prices of this car model. 

Another solution was introduced based on renewable energy sources like solar energy 10 or the 

obtained power during deceleration phase called also regenerative braking 11. Those systems were 

proficient but the quantity of the obtained power is not sufficient, especially in a high way road. 

According to 12, regenerative braking systems can’t pass 5% of the battery needed power when it will 

be fully charged.  New charging systems based on Wireless circuit founded a suitable solution on 

high way road case. In 13 authors expose this system and describe its advantages and inconveniences. 

The problems are also related to car speed and charging system’s complexity. The recharge level 

depends on the car speed and road length. All these technics for charging vehicles were acceptable 

and efficient, however, the same problem remains always attached to each model and its relation to 

system complexity.  

Related to the autonomy amelioration objective, several software approaches and strategies 

were proposed in the literature in order to improve the energetic performance of the vehicle. In 14 

authors used intelligent technics for power optimizing in a hybrid vehicle. Also, in 15, authors’ work 

was based on fuzzy technics for online power managing inside vehicle. An important review was 

exposed in 16 where authors developed used control strategies into two categories: the first one is 

based on fix rules and the second focuses on optimization method. Related to same context, our 

proposed approach is introduced and its main idea is power optimization.  

The added value of this approach is that the searched optimum parameter will be calculated 

outside the vehicle taking advantage of smart city. The high technologies used inside a smart city will 
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be a benefit for our proposed technic. Installed equipment such as sensors, cameras, antennas and 

the network communication capability were important for security, building management and power 

control. For example, in Singapore, smart city helped saving 5 to 50% of the used power and this is 

according to 17. Referring to 1 and 18 ,smart cities can be a benefit to save energy in relation to EVs 

application. Taking advantage of smart cities and possible network communication between 

buildings and vehicles, it is possible to save energy inside EV also.  

 If each vehicle can be identified and shares their parameters related to the weight, speed, state 

of charge of the battery, driving method, vehicle position on map and some other information, we 

can gather all of those data and classify these vehicles in specific classes. It is possible then to build 

the “energetic experience” of each vehicle on a specific road. According to those data, we can calculate 

and identify the optimum case. In this specific road, the existing building can record data, classify it 

and calculate optimal parameters. Then, each building can determine optimal driving method 

according to the closet road condistions as hill climb, bends, traffic jam etc.…  

Hundreds of vehicles can drive every day in front of those buidings. If we gather all driving 

information we can calculate the optimal driving solution according to each specific situation. Then 

each building informs the vehicle with best decisions, which is equivalent to the optimum relation 

between energy and acceleration. That information can be exchanged between buildings to obtain 

optimal control method for long distance and, thus, we optimize the energy of the vehicle. Each 

vehicle can also optimize its own control system. The driver control method is not the same for all 

the drivers. The total energy consumption is related to driver habits. In relation to the vehicle position 

on the road, as bends or hill climbs, the driving mode will have a direct impact on energetic efficiency 

and on the vehicle autonomy. Essentially, two algorithms will be used in this work, first one will be 

related to the vehicles classification and second will define optimum solution according to the 

existing database.  

The proposed approach was tested on a simulation work and the obtained results showing an 

energetic gain with this novel methodology. 

The paper is therefore organized as follow. After this introduction section, the electrical vehicle 

model is exposed defining interior components and the objective energetic expressions. Next, the 

problem is formulated and the proposed solution is detailed and explained. In this section, the 

relation of the smart city concept and the vehicle power management is summarized. Before the 

conclusion and in the light of this circumstance and for proven the successes of the proposed 

approach we have presented simulation results for a simple example of six vehicles placed in a smart 

city.  

 

2. Electrical vehicle and the basic components  

Electrical vehicles were classified into two categories, the hybrid, and the pure electric vehicle. 

Each model was characterized by its advantages and problems. Refers to 19 the pure electrical vehicles 

are more friendly to the environment. In this way, the world tendency is using these EV categories. 

Therefore, researches were not stopped here, and the new EV versions are aiming to optimizing 

battery technologies, charge technics, than main motors and to the internal control algorithms. The 

objective is maximizing injected power from the external sources and for minimizing energy losses 

inside car. So, we will focus in this paper on pure EV model. Figure (1), exposes this EV and its 

components. The basic version is composed of batteries system which will be connected to inverter 

to feed the motor. A principle controller organizes this overall system. 
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Figure 1. EV and its basic components 

This controller is the supervisor of the power source inside the car. It will calculate the needed 

and used power based on real time driver demand. Referring to various researches, the needed and 

the consumed power can be evaluated or estimated using the analytical models of the car 

components. Several other sensors were used in the new version of EV and their role is very 

important for finishing the car control phase.  

2.1. Modeling of principal components for an electric vehicle 

In this work all, the results are obtained after using the mathematical models of the EV 

components and related to vehicle torque “Cv”, total Mass “Mv”, electric motor power “Pm”, battery 

Power “Pbatt”, battery current “Ibatt” and instantaneous battery state of charge “SOC(K)”, respectively 

in equations (1) to (6).  

 ,                       (1) 

   ,                                  (2) 

  ,                                    (3) 

 ,                                  (4) 

   ,                               (5) 

  ,                             (6) 

All of the used notation was summarized in Appendix A 

2.2. Related Energy expressions for an electric vehicle 

 

Refers to 20, the state of charge of an electric vehicle is related to several parameters and the driver 

acceleration form will affect battery SOC. Authors proved in this reference, that the acceleration is 

inversely proportional to the remaining battery SOC. Equation (7) presents the percentage of the state 

of charge of a lithium battery, fully charged at the departure, in function of an acceleration value, 

noted by (Acc). We indicate by SOC(0), the initial state of charge of the used battery. bat is related to 

the battery model.  

  SOC(k) = -a
bat

(Acc(k)) + SOC(0)  ,                          (7)  

Also in 21, authors presented a mathematical equation, which proves that the needed power for 

driving an electric vehicle compose the vehicle speed factor and then this expression can be 

presented using the vehicle acceleration factor. Equation (8), presents the power expression to drive 

the vehicle at speed Vv. We indicate by Ft, the total propulsion force. This variable holds a lot of 

factors related to the vehicle weight, external forces and other as it is exposed in equation (9). More 

explanation is given in the joined reference 22. 
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It is clear that needed electrical power for driving the vehicle can be expressed also with the 

vehicle acceleration ratio. In the table (2), we present an example of the propulsion power needed 

for a car acceleration, weighted 500Kg, from 0Km/h to 70Km/h in two different acceleration ratios. 

 

Table 2. Propulsion Power of an example of a vehicle of 500Kg with two different accelerations ratio 

 

Vehicle Mass 500 kg 500 kg 

Acceleration 0 to 70Km/h at   7 m/s2 3,5 m/s2 

Air density 1,225 kg/m3 1,225 kg/m3 

Wind speed 0 m/s 0 m/s 

The coefficient of rolling resistance 0 0 

Aerodynamic drag coefficient 0.3 0.3 

Average needed power 47,3 kW 43,1 kW  

Initial State of charge 100% 100% 

Final State of charge  99.97% 99.99% 

 

From table (2), we can conclude that more the acceleration ratio is important, more needed 

power increase and then the state of charge of the battery decrease. So, in a city where a traffic jam is 

frequent and nervous driving is common, we can decrease rapidly the battery state of charge without 

an efficient output. Also, for some specific bends, a high acceleration form is not recommended 

because it is useless due to security bending limits.  

3. Proposed Power management approach for an EV in a relation to the Smart city concept  

The smart city concept has been introduced for several objectives. The principle impartial is 

related to the energetic optimization.  Supervising and controlling the electrical power inside the 

cities can be a benefit for managing the generation part 23. Researchers have used the “smart” 

expression due to the possibility of exchanging information between houses and buildings. This is 

due to the several sensors and camera used in the cities and due to the internet network connection 
24. 

Referring to various researchers as 17, 25 and 26, smart city concept is characterized by numerous 

advantages, related to the energy saving and the security optimizing, however, the principle 

disadvantages is attached to the public provision of the own data on the internet network. 

Based on smart city specifications, the idea is to use the possible network connections between 

buildings for helping electrical vehicle saving energy on the road and then increasing their battery 

autonomy. Sharing specific data from vehicles and from the building will be the key to optimizing 

the power inside cars.  

In figure (1), we expose three specific road signs which indicate that the car must minimize its 

speed which means that high acceleration form is not recommended. If we suppose that in each 

signed zone we have a supervision system which takes vehicle speed and all related information, to 

build a database of information specific for this zone. This database will be then used for any special 

objective. Our objective here is to find the optimal energetic experience form.   

 

 
Figure 1. Three Road signs which significate that the high acceleration form is useless 

Bends Hill climb Traffic Jam
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3.1. Problem formulation 

 

As it is mentioned in the previous section, the needed electrical power for an electric vehicle is 

related to the acceleration form and this component will affect the state of charge of used battery. In 

the given example in table (2), we have exposed two different cases. In first case, driver can reach the 

needed speed in 10 s however in second case, the driver can reach the same speed after 20 s. In some 

areas, the vehicle speed is not useful. As in a traffic jam, the vehicle speed is not important and it can 

be classified as a minor speed. However, the driver can give several high accelerations forms. This is 

will cost power loss and this driving form will harm the battery autonomy. Also, in other situations 

and in a hill climb, the driver can give some high acceleration form without an immediate speed 

variation. This case will also degrade the battery state of charge. In some additional cases, where we 

road gets some bends, high speed can be dangerous and a high acceleration form is not accepted. 

This driving mode will also affect the battery state of charge without an efficient output from the 

vehicle. Figure (2), exposes an example of six vehicles placed a road which contains the three 

describer previous zones. In each specific zone, we have located a proportional building.   

 

 
 

Figure 2. Three different cases for a useless high acceleration form on the road 

 

As it is indicated in the figure (2), the six cars pass through three specific road situations as it is 

indicated before. Supposing, that sixth, fifth, fourth and third car pass through this trajectory every 

day and drivers know bends and hill climb positions. The driver’s methods will be updated 

automatically every day. The speed and the acceleration form for each driver will be adjusted 

according to the known situation on the road and then the energetic consumption will be different 

according to this driving modification. However, for the second and the first car, the drivers do not 

know this trajectory and they can give some useless acceleration form.   

If the drivers of the first and the second cars, know the driving method of the other cars, they 

will follow this form, because it is the optimal driving method by the other drivers and it is the 

economic one. 

In the table (3), we give an example of the acceleration and speeds ratio for the common driving 

methods for a similar case on a road. Those statistics were taken from 27, 28. 
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Table 3: Maximum speeds and acceleration values in a various road situation in a city 

 Acceleration ratio Speed value 

Traffic jam 3 m/s2 15 Km/H 

Bends of 30 ° 2m/s2 60 km/H 

Bends of 60° 2 m/s2 40 Km/H 

Hill climb of 20 % 1 m/s2 30 Km/H 

Hill climb of 10 % 2 m/s2 40 km/H 

  

So, if a vehicle is driven with a highest speed or acceleration values in a similar condition, more 

energy will be extracted from source without a perceptible reaction from the vehicle. So, to minimize 

the quantity of used battery power, we must control the acceleration form as it is exposed previously. 

The objective function, that will be optimized is related to equation (10). 

J * = min òPbatt (t)dt = min ò f (Acc(t),t)dt                    (10) 

3.2. Explanation of the Proposed solution  

 

As we have explained previously, we can conclude that the two parameters related to speed and 

to vehicle acceleration must be controlled or supervised in order to control the quantity of used 

energy inside vehicle and to guarantee the driver safety. In general, the driving standards law forces 

the driver to follow the road signs. This will guarantee the driver safety on the road, but those signs 

will not recommend the driver to use the economic driving method.  

According to the latest technologies used inside electric vehicles, such as smart sensors, GPS 

antennas, smart cameras, the advanced connection technologies as high-speed Bluetooth 5.0, wireless 

technology, direct Wi-Fi and high-speed calculator, the proposed solution is built.  

Effectively, the idea is based on the information shared between vehicles and buildings. If each 

vehicle shares their own energetic experience and driving method information, the other cars can use 

those data for adjusting their own parameters. Then, each vehicle can operate with the best driving 

method, which is equivalent to the optimum energetic consumption form in a specific place. 

Referring to figure (2), the cars numbered from six to four share their data, the first and the 

second cars will use the best performance related to one of four previous cars. 

The best car performance will be related to the optimum consumed energy and this will be 

obtained only after two specific steps. The first one is related to the vehicle classification and the 

second one will be related to the optimization phase. More explanation for those steps will be 

uncovered next.   

3.2.1. Vehicle classification 

As we focus on the energetic consumption mode, the proposed method will pass firstly by a 

classification phase. This step will classify vehicles according to several parameters about the vehicle 

status. In Table (4), we explain and code those data. We have considered four different parameters, 

related to speed, acceleration ratios, weight of the vehicle and to the consumed power. As we have 

present in equation (9), the weight of the vehicle and the external forces can increase the demand of 

power by the vehicle. 

   

Table 4: Shared data type and proportional class 

 

Data Classification C 1 C2 C3 C4 C5 

 

 

 

 

C77 C78 C79 C80 C81 

Acc % 

Acc1 0  0.3 

 

0.70 1 

          

Acc2           

Acc3           

P (kW) 
P1 <20 

20 < ..<50 

          

P2           
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P3 >50      C6 

… 

C76 

 

 

 

 

 

 

     

Speed 

(Km/h) 

V1 <40 

40<..<70 

>70 

          

V2           

V3           

Weight 

(Kg) 

W1 
<600 

 

>1000 

          

W2           

W3           

 

We indicate by C1 to C81, the classes which correspond to each possible case. We divided all 

these parameters into three intervals. For the acceleration form, we coded by “Acc1” the interval of 

acceleration between 0 % and 30%. We have coded by “P1” the quantity of power less than 20Kw/h. 

If the car speed is superior then 70(Km/h) the corresponding code is “V3” and by “V1” if the vehicle 

speed is under 30(Km/h), else, the speed code is V2. We have coded the vehicle weight by “W1” to 

“W3” if the vehicle weight increases from 600Kg to more than 1000Kg.  

All of those data will be shared by each car and then it is possible to build a big database which 

contains the energetic experience of each car.   

3.2.2. Vehicle and building communication: the principle of operation and explanation  

As it is described before, each vehicle will share their own data to a specific destination in order 

to use that information for adjusting some energetic experiences for other EVs. The principle of the 

proposed idea is based on the advantages of the smart city, where each building can connect to the 

other using the internet connection. Refers to figure (2), building A, B and C can connect and exchange 

information.  

For example, if building “A” detects the vehicle number “1” and calculate its speed, building 

“B” can identify the arrival time of this vehicle. This is possible only if building “A” informs building 

“B” about this information. Basing on this principle, we can use the building for informing vehicles 

about the optimal energy form for a specific condition.  

 

Figure 3. The communication protocol between buildings about changing information related to the 

vehicles 

In figure (3), we explain the communication protocol between two buildings and the possibility 

to generalize this principle on other houses. However, there is a specific condition that must be 

verified. This condition is related to the building position and if it is important. Here we are interested 

only by the building which are close to the bends, hill climbs and where there is a traffic jam as 

schools, industry, etc...   
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We suppose that the white vehicle direction is from the first building “B.1” to the second “B.2”. 

This car is a new one in the database it is unknown by the two structures. For this vehicle trajectory, 

this car will be detected firstly by “B.1” and then a software application will code and identify it. Then 

this car will be classified into the corresponding class according to the table (4). Finally, the software 

application will find the optimal energetic form for this case. The car class or category will be shared 

with the other buildings, that have information about the future status of the road. Then it is possible 

to recommend for this vehicle the best driving method in each critical road position.  

Referring to figure (2), building “A” will detect and identify the car number “1”. Those results 

will be sent to the building “B” and “C”. Building “B” will find, from the existing database, the best 

driving method which is equivalent to the optimal energetic form for driving through the bend. 

Building “C” will recommend to this vehicle the best driving method corresponding to the hill climb. 

We notice that in each phase, the database will be updated according to the novel status of each car. 

3.2.3. Algorithm running principle  

We have transformed this idea into a flowchart for describing the principle of this concept. 

Figure (4), explains the idea. If the running vehicle is detected by a building “i”, this structure will 

ask the vehicle parameters and information.  

 

Figure 4. Flowchart of the proposed algorithm  

 

It is possible that this vehicle is in the database list and it is classed before, then it is simple to 

find the vehicle recommendation according to the vehicle trajectory, "each building can calculate the 

best solution according to the road situation for each vehicle class". Else, the new vehicle will be 

added to the database and it will be classified. In the same time, the database will be adjusted 

automatically and the new optimal solution for each class will be adjusted by a specific algorithm 

using neural network technics. The new solution will be also classified for each specific case and 

transferred to the buildings for any possible request. Specific 
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3.2.4. The principle of vehicle information treatment for the learning phase  

The vehicle data will be enormous and the management of this amount of data will be difficult 

and needs powerful calculators. Therefore, each building will focus on its specific zone information. 

The principle of using vehicle info will be as it is described in figure (5). As we have used a neural 

network algorithm for the learning phase, the data that will be used must be related to the specific 

zone and handled by building "i" and the zone before. After the learning phase, a reference 

mathematical model “optimal model” will be generated and it is possible to estimate the best 

acceleration form in the desired zone from the vehicle information before entrance in the specific 

structure limit. 

 

 
Figure 5. The principle of the learning phase and vehicle zone recommendation  

4. Results 

In this part, we expose the simulation results related to the presented work. To prove the 

effectiveness of this approach we have taken an example of six vehicles who will across a specific 

region which contains three specific situations as traffic jam, bends, and a hill climb. In the results, 

we will expose the difference between the two cases. The first case which corresponding to one 

vehicle which doesn't use the energetic recommendation. The second case is for the same vehicle 

which accepts the energetic recommendation. We indicate by the energetic recommendation, the best 

driving method which is equivalent to the optimal energetic consumption form.  

This section will be divided into four subsections. In the first one, we will detail the classification 

phase results. Next, we will present the user database. The next section exposes the learning phase 

results and shows the optimal solution for a specific class. In this final section, we detail the energetic 

gain according to one example of vehicle. 

4.1. Classification Problem 

As it is mentioned in the flowchart, the first and the final step that will be executed by the 

algorithm related to the vehicle and the results classification. In this example, we used the support 

vector classification (SVC) theory due to the application rapidity needed. Similar works prove the 

SVC rapidity for a comparable application 29, 30. 

For this demonstration, we have used four cars as it is mentioned in the table (5). In the same 

table, we have presented the classification results related to each vehicle in each specific position. The 

classification scores were related to the first classification problem in the proposed flowchart. 

 

Table 5: Used cars parameters and related classification results 

 

  Vehicle 3 Vehicle 4 Vehicle 5 Vehicle 6 

Used data for 

classification 

Weight (kg) 600 550 580 600 

speed In figure (6) 

Power In Figure (6) 

Specific zone related to batiment "i"

Zone start End of zone

Information shared  for 

the learning phase

Before entrance in the zone  Car need recommendation

Output of neural network

Input of neural 

network

Optimal model

Vehicles who build the database

Vehicle who need 

recommendation

vehicle recommendation
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Acceleration In Figure (6) 

SVC-class 

according to 

each building 

B1 C1 C1 C1 C1 

B2 C1 C4 C1 C1 

B3 C1 C1 C1 C1 

 

All of these vehicles were classified in C1 for the three buildings, however, the vehicle number 

four is classed in two different class C1 and C4 and this is due to the vehicle-related battery injected 

power. 

4.2. Database form 

Due to the big database we obtain, we cannot expose all data, therefore, in this part, we present 

an example of data for four vehicles. Referring to figure (2), those vehicles had numbers from six to 

three. The corresponding speed, acceleration, and used battery power are as presented in figure (6). 

We suppose that each vehicle has a unique driving method for three specific situations. ZA 

correspond to the traffic jam situation and this part is related to the building A. ZB corresponds to the 

bend situation and ZC corresponds to the rest of road which contains a hill climb situation 

corresponding to the period of time [70s 90s]. 

  

  

 
Figure 6. Related speed, acceleration form, and the corresponding battery outputted power for the four 

cars  

As it is mentioned in figure (2), we have supposed that each building (A, B and C), are near to 

each specific case ( the traffic jam, the left bend and to the hill climb). The given vehicle parameters 

will be used for the learning phase in the next step. 

4.2. Learning phase 

After classifying four cars, the software application will update its own optimum energetic form 

according to this database. For this step, the neural network algorithm is used for identifying the 

optimum acceleration form which corresponds to the optimum energetic consumption. This step is 

very particular. The optimum energetic consumption can be obtained by an acceleration form close 

to zero. Our approach does not force the driver to drive with a specified form, but the obtained neural 

result will limit the acceleration form of the driver in order to obtain the best energetic form. In this 

situation, we obtain two different cases. 
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• In first case: if the given acceleration form is highest then the optimal one. The 

acceleration form will follow the optimal one. 

• In second case: if the given acceleration form is less than the given one. The existing 

form will be conserved. 

 

The learning phase was obtained by a neural network bloc composed by 4 neurons in the input 

layers, 3 neurons in the hidden layer and one output neuron in the output layer. The sigmoid function 

is used as the activation function.  

In the given example, three cars were classified in C1, those data were used for the learning 

phase and the optimal acceleration form according to this data is exposed in figure (7). 

Each building recognizes now the optimal acceleration form that will save energy and those 

results will be uploaded to the corresponding vehicle if need. 

 

 

 
 

Figure 7. Optimal acceleration form for class C1 

4.3. Energetic gain 

After having those optimal results, the new vehicle on the road, numbered “vehicle 2” which 

will pass from building “A” to building “C”, will change its acceleration form according to the 

building recommendation and the new statistics about energy will be as presented in table (6).  

The driver was applying an acceleration form as presented in figure (8). If the vehicle is driven 

in the economic mode, each building will inform the vehicle with optimal solution. 

If the vehicle follows this recommendation and does not exceed the optimal solution, then the 

energetic form will be optimal. For this example, it is clear that the actual acceleration form still under 

the optimal solution suggested by the algorithm and this is located in the part associated to building 

“C” and in another section associated to building “A”. Consequently, the vehicle acceleration form is 

conserved in these two regions. However, the reference acceleration form in a special part linked to 

building “B” is not recommended and then the new acceleration form (optimal one) will be used. The 

same application occurs near to building “A”.  According to this situation, the energy gain will be 

only in the special parts related to building “B” and “A” as it is exposed in figure (8). 

The new vehicle experience will be conserved and then the database will be updated and new 

learning phase will start for updating the new optimal results.   
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Figure 8. Actual, optimal and novel acceleration form for the vehicle “2” and related energetic gain 

 

The same test will be applied on the first vehicle called vehicle “1”. However, this vehicle 

acceleration form will be different from the first case. The driver drives its car with a nervous 

acceleration form as it is represented in figure (9). In this case, the car will hold two different classes, 

C1 and C2. Two different acceleration forms will be recommended for this vehicle according to the 

exit data. The vehicle will transit from C1 to C2 in the building “A” region. This transaction form will 

affect the battery power form as it is presented in the joined results. It is true that, this form is not 

being recommended. It can be optimized if the classification phase will be extended to more than 

three categories for each data. 

However, if we emphasis on the global energetic form we conclude that the new form is more 

economic.  
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Figure 9. Actual, optimal and novel acceleration form for the vehicle “1” and the according to the injected 

battery power  

 

 

The provision of this approach can be clearly observed if we focus on the state of charge of the 

used battery. Therefore, we present in the table (6) the SOC of each car before and after using building 

recommendations. It is clear that for the two cases, the novel SOC is better than the first situation.  

 

Table 6: SOC before and after the recommendation 

 
Initial SOC 

Actual SOC 

 Before recommendation After recommendation 

Vehicle 2 100% 99,1% 99,3% 

Vehicle 1 100% 97,9% 97,5% 

  

4. Drawbacks of this approach 

Referring to the obtained results, the proposed approach can improve the energy level inside the 

battery and then the vehicle autonomy. However, this advantage can’t hide the drawback of this 

approach related to several points; To perform such application, we need high power calculators 

installed in each building and in vehicles. Communication problems can happen between the two 

systems and redundancy backup system is required for a flawless operation. Finally, a 

standardization on vehicle's software is needed so more vehicles can be used and more specific 

energetic date can be collected; more vehicles will define more classes and more efficient and precise 

Energy optimization.  

5. Conclusions 

Smart cities and efficient transport systems were two specials objectives to develop our daily 

life. Effectively, increasing electrical vehicle autonomy, force researchers to develop intelligent and 

robust solutions. Making an intelligent and robust communication system can be seen as a serious 

objective. In this background, we have developed a novel approach which helps saving energy inside 

an electrical vehicle. The idea was based on communication between buildings and cars. Indeed, each 

car will share its own data and each building will transmit to this car the optimal solution which is 

equivalent to the optimal energetic form. Based on Matlab software we have exposed some results 

for a specific case and we have shown that with this novel approach an energetic gain can occur.  
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Appendix A 

fr The rolling resistance Cd Drag coefficient mvo Vehicle mass 

Mv Mass of the vehicle  Air density mba Battery mass 

g Gravitational acceleration Av Frontal area of the vehicle mem Electric motor mass 

wm Motor speed Qc Battery capacity Ibatt Battery current 

m Motor efficiency Voc Battery voltage Rbatt Battery resistance 

 Road grade Vv Vehicle speed Cm Motor torque 

fm Mass factor     
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