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Abstract: We derive a concentration inequality for the uncertainty in
stratified random sampling. Minimising this inequality leads to an iterated
online method for choosing samples from the strata. The inequality is ver-
satile and considers a range of factors including: the data ranges, weights,
sizes of the strata, as well as the number of samples taken, the estimated
sample variances and whether strata are sampled with or without replace-
ment. We evaluate the improvement this method reliably offers against
other methods over sets of synthetic data, and also in approximating the
Shapley value of cooperative games. The method is seen to be competitive
with the performance of perfect Neyman sampling, even without prior in-
formation on strata variances. We supply a multidimensional extension of
our inequality and discuss some future applications.
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1. Introduction

Stratified sampling is a statistical method of estimating the mean of a popula-
tion by dividing it into mutually exclusive subgroups (or ‘strata’) and applying
a sampling estimator to each stratum, before weighting these estimates to form
an estimate of the population mean. If the stratum sampling estimator is sim-
ple random sampling, then the resulting stratified sampling is called ‘stratified
random sampling’.

As an example: if we want to poll how much a county’s population supports
a particular government policy, it may make good sense to selectively poll the
different voting blocks within the country. For instance, if we accurately estimate
that blocks A, B and C, containing 10%, 40% and 50% of the population, show
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support of 2%, 70% and 30%, respectively, then we can reliably estimate that
43.2% of the total population supports the policy.

Stratifying the sampling in this way can lead to improved reliability in es-
timation especially under certain conditions, such as when: the population is
easily divided into strata, in which there is less variance in each than across
them; when the size of the strata are reasonably or accurately known or know-
able, and; when it is readily possible to sample selectively between the strata,
as considered by Neyman (1938); Wright (2012). If it is possible to sample se-
lectively between the strata, then there is a further question of how to conduct
that selection most effectively.

In this paper we propose a process of sampling in order to maximally re-
duce the uncertainty in the population estimate, and to do this we develop a
expression associated with that uncertainty. The expression takes the form of a
concentration inequality, developed under the assumption that the data values
have bounded support. This inequality considers factors such as: the sizes of all
the strata and the proportion of each that are sampled, the sample variances of
the samples from each of the strata, the differences in the potential ranges of
data values between the strata, any additional weightings between the strata,
and whether any (or all) of the strata are sampled with or without replacement.

We then propose an online method of sampling in order to maximally-reduce
this inequality in each iteration. Such a sampling method has applications in
selectively sampling from real-world data sets, and moreover, it can also as-
sist in computational tasks. Particularly computational tasks that involve the
calculation of expectation values, as sampling is a straightforward way of ap-
proximating such values. We consider the calculation of the Shapley Value (a
solution concept from cooperative game theory) as a task to which we can apply
our method. And we use the calculation of the Shapley value as an example to
demonstrate our technique.

The remainder of the paper is divided into the following sections:

• Section 2 reviews the background material and gives the context for the
paper,

• Section 3 provides several lemmas that form the components of our deriva-
tion,

• In Section 4 we derive our concentration inequality, which is the main
technical contribution of the paper,

• Section 5 evaluates the effectiveness of minimising our inequality as an
online sampling method, in the context of synthetic data.

• Section 6 we introduce and evaluate the effectiveness of approximating the
Shapley value via our method,

• Section 7 discusses the results and the reasons for the effectiveness of our
method,

• Section 8 gives an easy extension of our method to multidimensional data,
and

• in Section 9 we conclude by hinting at some future applications.
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2. Background

Stratified sampling is a well known sampling technique in statistics and research,
with many applications, including polling (Hillson et al., 2015), auditing (Stark,
2009; Miratrix and Stark, 2009) and medical trials (Hu, Cai and Zeng, 2014;
Prentice, 1986; Borgan et al., 2000).

In practice, stratified sampling is often done as a two-stage process, partic-
ularly when it is unclear what variables the population should be stratified by,
and how large the resultant strata would be. In the first stage, the population
is sampled uniformly at random, and the values of readily observable auxil-
iary variables are collected in order to estimate the sizes of potential strata by
those variables. In the second stage, the strata are sampled with respect to the
information gathered in the first stage, and the total population estimate is
computed; for example, see Legg and Fuller (2009).

One well-known, but basic estimator of strata size is the Horvitz-Thompson
estimator (Horvitz and Thompson, 1952). This estimator is sometimes seen to
perform quite badly in practice, as identified by Saegusa and Wellner (2013);
Breslow, Hu and Wellner (2015). however, even despite such an estimator, there
is the secondary problem of how to optimally break the population into strata
based on the values of the auxiliary variables, identified and addressed by Hillson
et al. (2015); Khan, Ahmad and Khan (2009); Kozak (2004).

However, in other situations, the strata and their sizes are naturally given, or
the first stage may be assumed to have been conducted ideally. Nonetheless, even
in that case there exists a further problem of how to allocate the second-stage
samples between the strata; for instance, one could choose to sample equally
between strata, proportional to the sizes of the strata, or proportional to the
variance of the strata. The last option is often considered in theory and practice,
and is called Neyman allocation (sometimes called ‘optimum’ allocation) (Ney-
man, 1938; Wright, 2012). This approach involves knowledge of the variances
of the strata, which in practice can often only be estimated, either as a prior
step or as the sampling proceeds (Étoré and Jourdain, 2010; O’Brien, Gamal
and Rajagopal, 2015).

However, even once the samples are taken from the various strata, there is
yet another question of how to compute appropriate confidence bounds on the
final estimate. In the voting verification context, there exist some specialised
bounds (for instance see Miratrix and Stark (2009); Bentkus and van Zuijlen
(2003)), but in the more general case there is some degree of discussion of what
bounds should be used, as considered by Stark (2009). The confidence bounds
that are derived critically depend on what assumptions are made about the
underlying populations. For instance, Hoeffding’s inequality (Hoeffding, 1963)
has been used variously as such a bound under the assumption that the un-
derlying population has bounded data values (Bentkus and van Zuijlen, 2003;
Stark, 2009). Hoeffding’s inequality can be used to produce a very conservative
confidence interval that is sensitive only to the width of the data value bounds
and the number of samples taken, and it is also most directly suitable for sam-
pling with replacement. In contrast, other concentration inequalities, such as
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Chebychev’s inequality, are sensitive to the sample variance but not the width
of the data.

Recently, Maurer and Pontil (2009) developed a bound which they named
as an Empirical Bernstein Bound (EBB) as a concentration of measure for the
sample mean of a single (unstratified) population, which is sensitive to the data
width and sample variance (some similar bounds being published around that
time, Audibert, Munos and Szepesvári (2009); Audibert, Munos and Szepesvári
(2007)). EBBs have replaced Hoeffding’s inequality in a number of computa-
tional applications (Rehman, Li and Li, 2012; Mnih, Szepesvári and Audibert,
2008; Thomas, Theocharous and Ghavamzadeh, 2015; Carpentier et al., 2011).
The derivation of the particular EBB in Maurer and Pontil (2009) extended en-
tropic (Maurer, 2006) and Chernoff concentration inequalities, bound together
using union bounds.

Beyond this, sampling without replacement offers the opportunity to fur-
ther sharpen bounds over the sampling-with-replacement case. For example,
the refinement that is possible was first demonstrated by Serfling (1974) with
a martingale argument. More recently, Bardenet and Maillard (2015) improved
on Serfling’s result with a reverse martingale argument, and created an EBB
suitable to the case of sampling without replacement.

Our key observation is that the components of these analyses can be combined
together to create a closed form analytical concentration inequality tailored for
stratified random sampling, which is the subject of this paper.

3. Components of the Bound

In this section, we provide several useful lemmas, which we combine in the
derivation of our concentration inequality. The first is an often used and weak
result between statements of probability:

Lemma 1 (Probability Union). For any random variables a, b, c, the following
holds: P(a > c) ≤ P(a > b) + P(b > c)

Proof. For any events A and B, P(A ∪B) ≤ P(A) + P(B) hence:

P ((a > b) ∪ (b > c)) ≤ P(a > b) + P(b > c).

If a > c, then (a > b) ∪ (b > c) is true irrespective of b, so:

P(a > c) ≤ P ((a > b) ∪ (b > c)) .

This relationship gives us a useful tool for settings where P(a > c) is unknown
but the relationship between a and some b, and also between b and c is known.

The next lemma is a quick result that relates the sample squares about the
mean and the sample variance.

Lemma 2 (Variance Relation). For n samples xi of a random variable X with
mean µ, sample mean µ̂ = 1

n

∑
i xi, biased sample variance σ̂2 = 1

n

∑
i(xi− µ̂)2,

and average of sample squares about the mean σ̂2
0 = 1

n

∑
i(xi − µ)2, are related

such that: σ̂2
0 − σ̂2 = (µ̂− µ)

2
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Proof. By definition:

σ̂2 = 1
n

∑
i

(
xi − 1

n

∑
j xj

)2
= 1

n

∑
i x

2
i − 1

n2

∑
i

∑
j xixj

and:

σ̂2
0 =

1

n

∑
i

(xi − µ)
2

=
1

n

∑
i

x2i −
2µ

n

∑
i

xi + µ2

therefore:

σ̂2
0 − σ̂2 = 1

n2

∑
i

∑
j xixj −

2µ
n

∑
i xi + µ2 =

(
1
n

∑
j xj − µ

)2
This result is used later to create bounds for the sample variance from bounds
on the sample squares about the mean. In order to create such probability
bounds, we make repeated use of the next lemma, which encapsulates a range
of inequalities called Chernoff bounds:

Lemma 3 (Chernoff Bound). For a random variable X then for any s > 0 and
t that: P(X ≥ t) ≤ E [exp(sX)] exp(−st)

Proof. P(X ≥ t) = P (exp(sX) ≥ exp(st)) ≤ E [exp(sX)] exp(−st)
by Markov’s inequality.

Many well-known inequalities follow from upper bounds for E [exp(sX)], also
known as the moment generating function. The next three lemmas give three of
these upper bounds for moment generating functions, from which we create our
probability inequalities of interest. The first is well known and sometimes called
“Hoeffding’s Lemma” (Hoeffding, 1963) and is stated here without proof:

Lemma 4 (Hoeffding’s Lemma). For a random variable X that is bounded on
an interval a ≤ X ≤ b with D = b− a that:

E [exp(s(X − E[x]))] ≤ exp

(
1

8
D2s2

)
The second is very much like Hoeffding’s Lemma, except it involves information
about the variance of the random variable:

Lemma 5. For a random variable X that is bounded on an interval a ≤ X ≤ b
with D = b− a and variance σ2 that:

E [exp(s(X − E[x]))] ≤ exp

((
D2

17
+
σ2

2

)
s2
)

Proof. We assume without loss of generality (and for ease of presentation) that
X is centered to have a mean of zero. Then we construct an upper bound for
E [exp(sX)] in terms of D by a parabola over exp(sX) for the permitted values
of X.

For α, β, γ such that αs2X2 + βsX + γ ≥ exp(sX) for all a ≤ X ≤ b:

E [exp(sX)] ≤ E[αs2X2 + βsX + γ] = αs2 E[X2] + γ = αs2σ2 + γ
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Choosing α, β, γ to minimize the above expression (see appendix) leads to:

E [exp(sX)] ≤
(
σ2

b2
exp

(
s

(
b+

σ2

b

))
+ 1

)
exp

(
−sσ

2

b

)(
σ2

b2
+ 1

)−1
.

This expression is monotonically increasing with b, therefore using the fact that
D > b and rearranging:

log(E [exp(sX)]) ≤ log

(
σ2

D2
exp

(
s

(
D +

σ2

D

))
+ 1

)
− sσ2

D
− log

(
σ2

D2
+ 1

)
(1)

Given that:

log(a exp(x) + 1) ≤ log(a+ 1) +
xa

a+ 1
+ x2

1
17 + a

2

(a+ 1)2
(2)

then:

log(E [exp(sX)]) ≤
(
D2

17
+
σ2

2

)
s2 (3)

We note that the derivation process of fitting a parabola over the exponential
function was indirectly also conducted by Hoeffding (1963) and Bennett (1962).
Our result here is a weakening of theirs, which is more tractable for manipulation
in our subsequent algebra.

The third bound on the moment generating function is similar again, however
this time we consider the random variable X2 instead of X. These three bounds
(lemmas 4,5 and 6) are folded into the derivation of our stratified sampling
concentration inequality in the next Section 4.

Lemma 6. Let X be a random variable that is bounded on an interval a ≤ X ≤ b
with D = b− a and variance σ2 = E[(X − E[x])2] = E[X2]− E[X]2. Then:

E[exp(q(σ2 − (X − E[X])2))] ≤ exp

(
1

2
σ2q2D2

)
Proof. We assume without loss of generality (and for ease of presentation)
that X is centered to have a mean of zero. We construct an upper bound for
E
[
exp(−qX2)

]
in terms of D by a parabola over exp(−qX2) for the permitted

values of X.
For α, γ such that αqX2 + γ ≥ exp(−qX2) then:

E[exp(−qX2)] ≤ αqσ2 + γ.

Choosing an α, γ to minimize this expression irrespective of a, b consistent with
a D, gives γ = 1 and α = (exp(−qD2)− 1)(qD2)−1. Thus:

E[exp(−qX2)] ≤ σ2

D2
exp(−qD2)− σ2

D2
+ 1

≤ exp

(
log

(
σ2

D2
exp(−qD2)− σ2

D2
+ 1

))
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Given that: log (a exp(x)− a+ 1) < ax+ 1
2a(1− a)x2 for negative x:

E[exp(−qX2)] ≤ exp

(
1

2
σ2q2(D2 − σ2)− σ2q

)
≤ exp

(
1

2
σ2q2D2 − σ2q

)
,

and the result follows by multiplying by exp(qσ2)

These three inequalities on the moment generating function are used to create
desirable probability inequalities in our derivation. However, in order to use
them we needed an inequality relating the moment generating function of a
random variable, with the moment generating function of the average of samples
of that random variable. To do this we introduce two inequalities, the first
one (lemma 7) is most appropriate for sampling with replacement, and the
second (lemma 9) can optionally be used in the context of sampling without
replacement.

Lemma 7 (Replacement Bound). Let X be a random variable that is bounded
a ≤ X ≤ b with a mean of zero, with D = b − a and variance σ2. Let Ξm =
1
m

∑m
i=1Xi be the average of m independently drawn (with replacement) samples

of this random variable. If there exists an α, β ≥ 0 such that for any s > 0 that
E[exp(sX)] ≤ exp((αD2 + βσ2)s2) then:

E[exp(sΞm)] ≤ exp(αs2D2 1
m + βs2σ2 1

m ) = exp((αD2Ωnm + βσ2Ψn
m)s2)

where Ωnm = Ψn
m = 1

m

Proof. By the independence of samples, we have:

E[exp(sΞm)] = E

[
exp

(
s

m

m∑
i=1

Xi

)]
=

m∏
i=1

E
[
exp

( s
m
X
)]

Thus:

E[exp(sΞm)] ≤ exp

(
m∑
i=1

(
αD2 + βσ2

) s2
m2

)
These inequalities are sufficient for all the further derivations that we conduct.

However, for the case of sampling without replacement, there is an alternative
and directly substitutable result, lemma 9, which can be somewhat sharper.
We give its form and derivation in the next subsection, which is included for
completeness but is not part of the main results presented in the paper.

Before this, particular note must be made that the inequality above, lemma
7 can be used in the context of either sampling with or without replacement. In
contrast, the inequality in the next subsection can only be used when sampling
without replacement. This distinction was shown to be true by Hoeffding (1963),
and is stated here without proof:

Lemma 8 (Hoeffding’s reduction). let X = (x1, . . . , xn) be a finite population
of n real points, let X1, . . . , Xn denote a random sample without replacement
from X and Y1, . . . , Yn denote a random sample with replacement from X. If
f : R→ R is continuous and convex, then:

E [f (
∑m
i=1Xi)] ≤ E [f (

∑m
i=1 Yi)]
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3.1. Preliminary results for sampling without replacement

In this subsection we state an inequality regarding the moment generating func-
tion of the average of samples taken without replacement.

When the sampling takes place without replacement the inequality of lemma
7 can potentially be improved to take advantage of the finiteness of the data
set. This inequality extends an important martingale inequality from Bardenet
and Maillard (2015):

Lemma 9 (Martingale Bound). For finite data x1, x2, . . . xn that is bounded
a ≤ xi ≤ b, and has a mean of zero and variance σ2 = 1

n

∑n
i=1 xi, denote

X1, X2, . . . , Xn the random variables corresponding to the data sequentially drawn
randomly without replacement, and Ξm the average of the first m of them. If for
any random variable Z with a mean of zero such that a ≤ Z ≤ b and D = b−a,
with variance σ2

Z that there exists an α, β ≥ 0 such that for any s > 0 that
E[exp(sZ)] ≤ exp((αD2 + βσ2

Z)s2) then:

E[exp(sΞm)] ≤ exp

(
αs2D2

n−1∑
k=m

1

k2
+ βs2σ2

n−1∑
k=m

n

k2(k + 1)

)
≤ exp((αD2Ω̄nm + βσ2Ψ̄n

m)s2)

where Ω̄nm =
∑n−1
k=m

1
k2 ≈

(m+1)(1−m/n)
m2 and Ψ̄n

m =
∑n−1
k=m

n
k2(k+1) ≈

n+1−m
m2 .

Proof. Observe that:

Ξm =
1

m

m∑
i=1

Xi = Ξm+1 +
1

m
(Ξm+1 −Xm+1)

= (Ξm − Ξm+1) + (Ξm+1 − Ξm+2) + · · ·+ (Ξn−1 − Ξn)

=
1

m
(Ξm+1 −Xm+1) +

1

m+ 1
(Ξm+2 −Xm+2) + · · ·+ 1

n− 1
(Ξn −Xn).

Then because:

exp(sΞm) =

n−1∏
k=m

exp
( s
k

(Ξk+1 −Xk+1)
)
,

we also have that:

E[exp(sΞm)] = E

[
n−1∏
k=m

E
[
exp

( s
k

(Ξk+1 −Xk+1)
)
|Ξk+1 . . .Ξn

]]
by repeated application of the Law of total expectation. Since:

E[Xk+1|Ξk+1 . . .Ξn] = Ξk+1,

then Ξk+1 − Xk+1 is a random variable with a mean of zero bounded within
width D, and it also has a variance given by:

σ2
k+1 =

nσ2 −
∑n
j=k+1X

2
j

n− (n− k − 1)
− Ξ2

k ≤
nσ2

k + 1
(4)
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by application of lemma 2. Therefore:

E[exp(sΞm)] ≤ exp

(
n−1∑
k=m

(
αD2 + β

nσ2

k + 1

)
s2

k2

)

This martingale result relates the moment generating function bound of the
average of finite variables relative to their mean, to the moment generating
function bounds of the differences of the incremental averages relative to their
mean. It is pertinent to note that this result could be made much stronger by
working around Equation (4), but this comes at a cost of increased mathematical
complexity.

Since lemmas 9 and 7 share a common form, and because of Hoeffding’s
reduction (lemma 8), all the derivations that follow that invoke lemma 7 have
direct analogues using lemma 9 for the context of sampling without replacement.
Note, however, that the bound without replacement (lemma 9) may or may-
not be tighter than the bound with replacement (lemma 7), so the process of
substituting one for the other should be done judiciously on a case-by-case basis
to create the tightest possible bound. All the results in this paper (relevant to
sampling without replacement) have been produced with this judicious choice
been conducted.

4. The Stratified Finite Empirical Bernstein Bound

In this section we derive a novel probability bound for the error of the stratified
random sampling estimate. We begin by precisely defining the context of our
derivation and to which our bound applies.

Definition 1 (Problem context). Let a population consist of n number of strata
of finite data points, where ni is the number of data points in the ith stratum.
All values in a stratum are bound within a finite support of width Di. Denote the
mean and variance of the ith stratum µi and σ2

i , respectively. In this context,
if Xi,1, Xi,2, . . . , Xi,ni are random variables corresponding to those data values
randomly and sequentially drawn (with or without) replacement, then Ξi,mi

=
1
mi

∑mi

j=1Xi,j is the average of the first mi of these random variables. And σ̂2
i =

1
mi

∑mi

j (Xi,j − Ξi,mi
)2 is the biased sample variance of the first mi of these

samples. And ˆ̂σ2
i = miσ̂

2
i /(mi − 1) is the unbiased sample variance of the first

mi of these samples.

We are interested in the average of the means of the strata as weighted
by constant positive factors {τi}i∈{1,...,n}. In our derivation, we also consider
intermediary weights {θi}i∈{1,...,n}.

The bound is now developed in four theorems, which build on each other
in sequence. The first is an expression for a probability bound on the absolute
error of the weighted stratified sample means about the weighted strata means.
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Theorem 1 (SEBM* bound). Assuming the context given in Definition 1, and
let Ωni

mi
and Ψni

mi
be given as in lemma 7, then:

P

∣∣∣∣∣
n∑
i=1

τi(Ξi,mi
− µi)

∣∣∣∣∣ ≥
√√√√4 log(2/t)

n∑
i=1

(
1

17
D2
iΩ

ni
mi +

1

2
σ2
iΨni

mi

)
τ2i

 ≤ t
(5)

Proof. Applying Lemma 3:

P

(
n∑
i=1

τiΞi,mi
−

n∑
i=1

τiµi ≥ t

)
≤ E

[
exp

(
n∑
i=1

τis (Ξi,mi
− µi)

)]
exp(−st)

=

n∏
i=1

E [exp (τis (Ξi,mi
− µi))] exp(−st)

by independence of the sampling between the strata. This form is sufficient for
Lemma 7 with Lemma 5 to apply, resulting in a double-sided tail bound:

P

(∣∣∣∣∣
n∑
i=1

τi(Ξi,mi
− µi)

∣∣∣∣∣ ≥ t
)
≤ 2 exp

(
n∑
i=1

(
1

17
D2
iΩ

ni
mi

+
1

2
σ2
iΨni

mi

)
τ2i s

2 − st

)

Minimising with respect to s and rearranging gives result.

In most cases, the weights τi can be considered as the probability weights
τi = ni/(

∑n
j=1 nj), and in this context this probability bound can be used as-is

for a measure of uncertainty in stratified random sampling if the true variances
(or alternatively, upper bounds on the true variances) of the strata are known.
However, in other contexts the sum of variances must be estimated from the
data collected, and to rectify this, we develop and incorporate a probability
bound for the estimate of the sum of variances, as follows.
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Theorem 2. Assuming the context given in Definition 1. Then with Ψni
mi

per
lemma 7:

P

 n∑
i=1

θi(σ
2
i − σ̂2

i − (µi − Ξi,mi)
2) ≥

√√√√2 log(1/y)

n∑
i=1

σ2
i θ

2
iD

2
iΨ

ni
mi

 ≤ y (6)

Proof. To create a probability bound for the sum of variances (weighted by
arbitrary positive θi), we consider the average square of samples about the
strata means. Applying lemma 3 gives:

P

 n∑
i=1

θi(σ
2
i −

1

mi

mi∑
j=1

(Xi,j − µi)2) ≥ y


≤ E

exp

 n∑
i=1

sθi

σ2 − 1

mi

mi∑
j=1

(Xi,j − µi)2
 exp(−sy)

= exp(−sy)

n∏
i=1

E

exp

sθi
mi

mi∑
j=1

(σ2 − (Xi,j − µi)2)


by independence of the sampling between the strata. This is sufficient for lemma
7 with lemma 6 to apply giving:

P

 n∑
i=1

θi(σ
2
i −

1

mi

mi∑
j=1

(Xi,j − µi)2) ≥ y

 ≤ exp

(
1

2

n∑
i=1

σ2
i θ

2
i s

2D2
iΨ

ni
mi
− sy

)

Minimising with respect to s, rearranging, applying lemma 2 gives result.

This inequality gives the probability bound between the weighted variances of
the strata, the weighted (biased) sample variances and the weighted square error
of the sample means. Although we anticipate that the weighted square error of
the sample means goes to zero rather fast as additional samples are taken,
we nonetheless wish to develop and incorporate another probability bound to
eliminate the specific consideration of it.
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Theorem 3. Assuming the context given in Definition 1. Then with Ωni
mi

per
lemma 7:

P

(
n∑
i=1

θi(µi − Ξi,mi)
2 ≥ log(2n/r)

2

n∑
i=1

θiD
2
iΩ

ni
mi

)
≤ r (7)

Proof. We consider the weighted square error of the sample means:

P

(
n∑
i=1

θi(µi − Ξi,mi
)2 ≥ r

)
≤ 1−

n∏
i=1

P
(
θi(µi − Ξi,mi

)2 ≤ ri
)

= 1−
n∏
i=1

(
1− P

(
µi − Ξi,mi

≥
√
ri
θi

)
− P

(
Ξi,mi − µi ≥

√
ri
θi

))
,

such that
∑
ri = r, by independence of the sampling and probability comple-

mentaries. This is sufficient for us to apply lemma 3 together with lemma 7 and
lemma 4, giving:

P

(
n∑
i=1

θi(µi − Ξi,mi)
2 ≥ r

)
≤ 1−

n∏
i=1

(
1− 2 exp

(
− 2ri
θiD2

iΩ
ni
mi

))
Next, choosing ri to minimise this expression gives:

ri =
rθiD

2
iΩ

ni
mi∑

j θjD
2
jΩ

nj
mj

Thus:

P

(
n∑
i=1

θi(µi − Ξi,mi
)2 ≥ r

)
≤ 1−

n∏
i=1

(
1− 2 exp

(
−2r∑

j θjD
2
jΩ

nj
mj

))

Using the knowledge that log(1 − (1 − exp(x))n) ≤ x + log(n) for negative x,
and rearranging, gives result.

This theorem bounds the weighted square error of the sample means. In the
next, and final, step we combine the inequalities of Equations (5), (6) and (7)
together, to complete our derivation.
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Theorem 4 (SEBM bound). Assuming the context given in Definition 1. Then
with Ωni

mi
,Ψni

mi
per lemma 7:

P

(
|
∑n
i=1 τi(Ξi,mi − µi)|√

log(6/p)
≥
√
αni
mi +

(√
βni
mi +

√
γni
mi

)2)
≤ p (8)

where:

αni
mi

=

n∑
i=1

4

17
Ωni
mi
D2
i τ

2
i

βni
mi

= log(3/p)
(

max
i
τ2i Ψni

mi

2D2
i

)
γni
mi

=2

n∑
i=1

τ2i Ψni
mi

(mi − 1)ˆ̂σ2
i /mi + log(6n/p)

∑
i

τ2i D
2
iΩ

ni
mi

Ψni
mi

+ log(3/p)
(

max
i
τ2i Ψni

mi

2D2
i

)
Proof. By widening the bound of Equation (6) we get:

P
(∑n

i=1 θiσ
2
i −

∑n
i=1 θi(σ̂

2
i + (µi − Ξi,mi)

2) ≥√
2 log(1/y)(maxi θiD2

iΨ
ni
mi)

∑n
i=1 θiσ

2
i

)
≤ y.

Completing the square gives for
√∑n

i=1 θiσ
2
i gives:

P


√√√√ n∑

i=1

θiσ2
i ≥

√∑n
i=1 θi(σ̂

2
i + (µi − Ξi,mi)

2)

+ log(1/y)
2

(
maxi θiD

2
iΨ

ni
mi

)
+
√

log(1/y)
2 (maxi θiD2

iΨ
ni
mi)

 ≤ y.
Combining with Equation (7) with a union bound (lemma 1) gives:

P


√√√√ n∑

i=1

θiσ2
i ≥

√∑n
i=1 θiσ̂

2
i + log(2n/r)

2

∑
i θiD

2
iΩ

ni
mi

+ log(1/y)
2

(
maxi θiD

2
iΨ

ni
mi

)
+
√

log(1/y)
2 (maxi θiD2

iΨ
ni
mi)

 ≤ y + r

Which is a bound for the weighted sum variances in terms of the sample vari-
ances. Letting θi = 1

2τ
2
i Ψni

mi
and combining with (5) with a union bound (lemma

1) and assigning r = t = y = p/3 and rewriting in terms of unbiased sample
variance gives the result.

This completes the derivation. In Equation (8), we have a concentration
inequality for the sum of weighted strata sample mean errors. In this con-
text, the weights τi are flexible but would naturally be the probability weights
τi = ni/(

∑n
j=1 nj), in which case the inequality gives us a measure of accuracy

in stratified random sampling.
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We propose an online process of choosing additional samples from the strata
in order to to minimise this bound, which we henceforth refer to as the stratified
empirical Bernstein method, or SEBM as shorthand.

Additionally, we note that for any strata i that is sampled without replace-
ment, the associated Ωni

mi
and Ψni

mi
may be substituted for Ω̄ni

mi
and Ψ̄ni

mi
to po-

tentially tighten the bound. This corresponds to optional substitution of lemma
9 for lemma 7 at various points in the derivation.

5. Numerical Evaluation

In this section we consider the utility of minimising this concentration inequality
as a method of choosing samples from the strata. First we outline the bench-
marks used to evaluate our method’s performance. Then we describe two syn-
thetic data sets and report the distribution of errors under our method and the
benchmarks. Following this, in Section 6, our method is evaluated in an example
application — that of calculating the Shapley value of a cooperative game.

5.1. Benchmarks algorithms

In the numerical evaluations, we compare the following sampling methods:

• SEBM-WO (Stratified empirical Bernstein method without replacement):
our method of iteratively choosing samples from strata to minimize our
concentration inequality, Equation (8). An initial sample of two data
points from each strata is used to initialise the sample variances of each,
with additional samples made to maximally minimise the inequality at
each step, before recomputing sample variances. All samples are drawn
without replacement, and the inequality used involved the judicious use of
martingale inequality lemma 9 (see the notice in Section 3.1).

• SEBM-W (Stratified empirical Bernstein method with replacement): as
above, with the exception that all samples are drawn with replacement,
and consequently the inequality does not utilize the martingale inequality
given in lemma 9.

• Sim-WO (Simple random sampling without replacement): simple random
sampling from the population irrespective of strata without replacement.

• Sim-W (Simple random sampling with replacement): simple random sam-
pling from the population irrespective of strata with replacement.

• Ney-WO (Neyman sampling without replacement): the method of max-
imally choosing samples without replacement from strata proportional to
the strata variance.

• Ney-W (Neyman sampling with replacement): the method of choosing
samples with replacement proportional to the strata variance.

• SEBM* (Stratified empirical Bernstein method with variance informa-
tion): the method of iteratively choosing samples without from strata to
minimize (5), judiciously using martingale lemma 9
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Note that the last three methods assume prior perfect knowledge of the variance
of each of the strata, and that in Equations (8) and (5) we selected for minimising
a 50% confidence interval (i.e. p = 0.5 and t = 0.5 respectively).

Between these methods there are compared different factors such as the dy-
namics of sampling: with and without replacement, with stratification and with-
out, between our method and Neyman sampling, and with and without perfect
knowledge of stratum variances. For these methods we consider the effectiveness
against Beta distributed data and Uniform & Bernoulli data.

5.2. Synthetic Data

The first way we demonstrate the efficacy of our method is to generate sets of
synthetic data, and then numerically examine the distribution of errors gen-
erated by different methods of choosing finite sequences of samples. In this
subsection, we described the two types of synthetic data sets used in this eval-
uation, namely: (i) beta distributed stratum data, and (ii) a particular form of
uniform and Bernoulli distributed stratum data.

5.2.1. Beta-Distributed Data

The first pool of synthetic data sets are intended to be representative of potential
real-world data. These sets have between 5 and 21 strata, with the number of
strata drawn with uniform probability, and each strata sub-population has sizes
ranging from 10 to 201, also drawn uniformly. The data values in each strata
are drawn from beta distributions:

φ(x){α,β} =
Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1

with α and β parameters drawn uniformly between 0 and 4 for each stratum.
Figure 1 compares the distribution of absolute error achieved by each of the

sampling methods over 5000 rounds of these data sets. Each quadrant presents
the results that the methods achieve for a given budget of samples, expressed
as a multiple of the number of strata (noting that data sets where the sampling
budget exceeded the volume of data were excluded). From the results of data
in Figure 1, we can see that our sampling technique (SEBM-WO and SEBM-
W) performs comparably to Neyman sampling (Ney-WO and Ney-W) despite
not having access to knowledge of stratum variances. Also, there is a notable
similarity between SEBM* and SEBM-WO. As expected, sampling without re-
placement always performs better than sampling with replacement for the same
method, and this difference is magnified as the number of samples grows large
in comparison to the population size. Finally, simple random sampling almost
always performs worst, because it fails to take advantage of any variance in-
formation. These results and their interpretation are discussed and detailed in
Section 7 along with results from the other test cases discussed below.
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Fig 1: Distribution of numerical absolute errors across 5000 rounds of beta-
Distributed data, for different methods of stratified sampling. Each plot shows
absolute errors for different numbers of samples multiplied by the number of
strata, N , e.g. 10N samples means that the test problem has a sample budget of
ten times the number of strata. The whiskers show the 9th and 91st percentiles,
data points outside this range are not shown.
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5.2.2. A Uniform and Bernoulli Distribution

The aim of this section is to examine cases of distributions in which our sam-
pling method (SEBM-WO) performs poorly, particularly compared to Neyman
sampling (Ney-WO). For this purpose, a data set with two strata is generated,
with each stratum containing 1000 points. The data in the first stratum is uni-
form continuous data in range [0, 1], while the data in the second is all zeros
except for a specified small number, a, of successes with value one. For this
estimation problem, we conduct stratified random sampling with a budget of
300 samples, comparing the SEBM*, SEBM-WO and Ney-WO methods. The
average error returned by the methods across 20000 realisations of this problem,
plotted against the number of sucesses a, are shown as a graph in Figure 2.

This figure demonstrates that SEBM-WO and SEBM* perform poorly when
the strata contain only very small numbers of sucesses. This under-performance
is not simply a result of the SEBM-WO method oversampling in a process of
learning the stratum variances, as the under-performance is present in SEBM*
as well. The reasons for this under-performance are discussed in conjunction
with other results in more detail in Section 7.

Next, we considered the calculation of the Shapley value as an example ap-
plication of our stratified sampling method.
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0.5

0.6

0.7

0.8

0.9

1
·10−2
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Performance for rare-events

SEBM*

SEBM-WO

Ney-WO

Fig 2: Average error of three stratified random sampling methods for the
Uniform-Bernoulli data sets of Section 5.2.2, plotted against success parame-
ter a, across 20000 rounds.
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6. Shapley Value Approximation

The Shapley value is a cornerstone measure in cooperative game theory. It is
an axiomatic approach to allocating a divisible reward or cost between partici-
pants, where there is a clearly defined notion of how much reward any group (or
‘coalition’) of participants could achieve by themselves (Chalkiadakis, Elkind
and Wooldridge, 2012). The Shapley value has many applications, including
analysing the power of voting blocks in weighted voting games (Bachrach et al.,
2009), in cooperative cost and surplus division problems (Aziz et al., 2016;
Chapman, Mhanna and Verbič, 2017), and as a measure of network centrality
(Michalak et al., 2013).

Formally, a cooperative game, (N, v) ∈ GN , comprises a set of n players,
N = {1, 2, . . . , n}, and a characteristic function, v : S ⊂ N → R, which is a
function specifying the reward which can be achieved if a subset of the players
S ⊂ N cooperate, where v(∅) = 0. In this context the Shapley value is a unique
allocation which satisfies the following set of natural axioms:

• Efficiency: That the total reward is divided up:
∑
i ψ(〈N, v〉)i = v(N)

• Symmetry: If two players i and j are totally equivalent ‘substitutes’ then
the receive the same reward: ie. if v(S ∪ i) = v(S ∪ j) ∀S ⊆ N \ {i, j},
then ψ(〈N, v〉)i = ψ(〈N, v〉)j

• Null Player: If the addition of a player i to any coalition brings nothing,
and is a ‘null player’, then it receives reward of zero: i.e if v(S ∪ i) =
v(S) ∀S ⊆ N then ψ(〈N, v〉)i = 0

• Additivity: That for any two games the reward afforded each player is
each is the sum of the games considered together: i.e. for any v1 and v2,
that: ψ(〈N, v1 + v2〉) = ψ(〈N, v1〉) + ψ(〈N, v2〉)

Specifically, the Shapley value is a mapping from cooperative games to the player
rewards: Sh,GN → Rn, given by:

Shi((N, v)) =
∑

S⊂N,i/∈S

(n− |S| − 1)! |S|!
n!

(v(S ∪ {i})− v(S)) (9)

That is, under the Shapley value each player is afforded their average marginal
contribution across every possible sequence of player join orderings. Alterna-
tively, if vi,k is the average marginal contribution of player i across coalitions of
size k:

vi,k =
∑
S⊂N

|S|=k, i/∈S

(n− |S| − 1)! |S|!
n!

(v(S ∪ {i})− v(S)), (10)

then the Shapley value can be expressed as:

Shi((N, v)) =
1

n

n−1∑
k=0

vi,k (11)
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Though the Shapley value is conceptually simple, its use is hampered by the fact
that its total expression involves exponentially many evaluations of the charac-
teristic function (there are n× 2n−1 possible marginal contributions between n
players).

However, since the Shapley value is expressible as an average over averages
by Equation (11), it is possible to approximate these averages via sampling tech-
niques, and particularly so as these averages are naturally stratified by size. In
previously published literature, other techniques have been used to allocate sam-
ples in this context, particularly simple sampling (Castro, Gómez and Tejada,
2009), Neyman allocation (Castro et al., 2017; O’Brien, Gamal and Rajagopal,
2015), and allocation to minimize Hoeffding’s inequality (Maleki et al., 2013).
We assess the benefits of using our bound by comparing its performance to
the approaches above in the context of some example cooperative games, as
described below.

Example Game 1 (Airport Game). An n = 15 player game with characteristic
function:

v(S) = max
i∈S

wi

where w = {w1, . . . , w15} = {1, 1, 2, 2, 2, 3, 4, 5, 5, 5, 7, 8, 8, 8, 10}. The maximum
marginal contribution is 10, so we assign Di = 10 for all i.

Example Game 2 (Voting Game). An n = 15 player game with characteristic
function:

v(S) =

{
1, if

∑
i∈S wi >

∑
j∈N wj/2

0, otherwise

where w = {w1, . . . , w15} = {1, 3, 3, 6, 12, 16, 17, 19, 19, 19, 21, 22, 23, 24, 29}. The
maximum marginal contribution is 1, so we assign Di = 1 for all i.

Example Game 3 (Simple Reward Division). An n = 15 player game with
characteristic function:

v(S) =
1

2

(∑
i∈S

wi
100

)2

where w = {w1, . . . , w15} = {45, 41, 27, 26, 25, 21, 13, 13, 12, 12, 11, 11, 10, 10, 10}
The maximum marginal contribution is 1.19025, so we assign Di = 1.19025 for
all i.

Example Game 4 (Complex Reward Division). An n = 15 player game with
characteristic function:

v(S) =

(∑
i∈S

wi
50

)2

−

⌊∑
i∈S

wi
50

⌋2

where w = {w1, . . . , w15} = {45, 41, 27, 26, 25, 21, 13, 13, 12, 12, 11, 11, 10, 10, 10}
In this game, we assign Di = 2 for all i.
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For each game, we compute the exact Shapley value, and then the average
error in the approximated Shapley value for a given budget m of samples. The
results are shown in Table 1, where the average absolute error in the Shapley
value is computed by sampling with Maleki’s method (Maleki et al., 2013) is
denoted eMa, esim is Castro’s simple sampling method (Castro, Gómez and
Tejada, 2009), eCa is Castro’s Neyman sampling method (Castro et al., 2017),
and eSEBM is the error associated with our method, SEBM-WO. The results in
Table 1 show that our method performs well across the benchmarks. A discussion
of all of the results is considered in the next section.

(a) Airport Game average errors

m/n2 10 50 100 500 1000

eMa 298.36 133.07 99.639 41.963 29.257
esim 357.84 146.09 106.22 44.545 36.333
eCa 325.65 115.73 75.85 31.014 22.115
eSEBM 259.24 73.754 54.756 7.7099 1.3038

(b) Voting Game average errors

m/n2 10 50 100 500 1000

eMa 130.98 57.775 41.522 18.657 13.178
esim 145.72 59.716 40.306 17.563 12.835
eCa 142.1 47.35 31.048 14.08 9.7998
eSEBM 122.79 47.435 33.179 8.5464 1.9953

(c) Simple Reward Division Game average errors

m/n2 10 50 100 500 1000

eMa 25.678 11.615 7.7921 3.4805 2.2904
esim 22.102 9.0445 6.2178 2.6419 1.9379
eCa 22.367 8.925 6.6915 2.7267 1.9402
eSEBM 19.254 7.0441 5.1578 1.1825 0.28173

(d) Complex Reward Division Game average errors

m/n2 10 50 100 500 1000

eMa 276.13 118.88 86.993 40.148 27.44
esim 251.44 107.97 78.628 34.639 26.821
eCa 290.51 116.5 81.819 35.702 26.501
eSEBM 214.21 78.467 54.101 12.447 2.7109

Table 1: Average absolute errors in the Shapley value calculation across all
players in the four cooperative games (units in 10−4), for the different sampling
schemes with different sampling budgets m per number of strata (with n2 = 152

for all).
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7. Discussion

From the results across Figures 1 and 2 and Table 1, the main observation is that
our sampling technique, SEBM-WO or SEBM-W, performs competitively to
Neyman sampling (Ney-WO or Ney-W). This is despite SEBM not having access
to knowledge of strata variances, which the Neyman methods do. If instead we
compare SEBM*, which has access to strata variances, and Ney-WO then both
methods use the same information, and the results are even more positive for our
method. The reasons for this performance are interesting, and we now discuss
them in more detail.

To begin, from Figure 1, observe that sampling without replacement always
performs better than sampling with replacement for the same method. This
improvement is magnified as the number of samples grows large relative to the
size of the population. At the same time, simple random sampling almost always
performs worst, because it fails to take advantage of any variance information.
These results are as expected.

Next, note that the results of Figure 1 show that there is a mid-range of
sample sizes where choosing a different method can have a greater impact on
sampling efficiency and rate of average error reduction than the difference be-
tween sampling with or without replacement. This is an important insight, as
sampling real-world data (e.g. surveys, polling, destructive testing, etc) can be
an expensive and slow process. Accordingly an appropriate method of choosing
numbers of samples can lead to a material difference in cost for the same accu-
racy. There is also a slight decrease in the performance of SEBM* in comparison
with Ney-WO in the case of high number of samples and sampling without re-
placement, as illustrated in Figure 1. This potentially indicates that lemma 9
can be improved — as noted in Section 3.1.

Furthermore, if the data features very rare events, then SEBM-WO and
SEBM* seem to perform in a manner less than ideal. These condition are il-
lustrated in Figure 2, where the more rare the Bernoulli variable successes, the
worse our methods perform in comparison with Neyman sampling (Ney-WO).
This shortcoming can be partly explained by noting that SEBM-WO unnec-
essarily wastes samples on the Bernoulli stratum of rare events in the process
of learning that the variance is almost zero, whereas Ney-WO can avoid this
because it has prior knowledge of the variances to begin with. As such, this
factor accounts for the difference between the performance of SEBM-WO and
SEBM* in the context of Figure 1 and also in Figure 2. What is surprising is
how small the difference in performance between SEBM-WO and SEBM* is.
This indicates that as additional samples are taken that uncertainty about the
strata variances have less and less effect upon the total numbers of samples that
are eventually drawn from each of the strata.

However, the performance difference between SEBM* and Ney-WO in Fig-
ure 2 is not explained by this argument, as they use the same information.
Instead, reason for this difference in performance is found by considering the
simplifying approximation of Equation (2). Specifically, (2) introduces a par-
ticular distortion into the shape of Equation (8) which our sampling seeks to
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Fig 3: The plots against σ2 of
P(X ≥ t) ≤ mins E[exp(sX)] exp(−st)
with E[exp(sX)] via Equations (1) (black)
and (3) (blue) with D = 1. Note that
Equation (3) generally captures the rele-
vant shape and magnitude of the more ac-
curate equation except in region of small
σ2 where the bound is overly weakened.

minimise. Figure 3 illustrates how the approximation (2) loosens the bound with
respect to the variance. Observe that when the variances are very small that
Equation (3) overly loosens the bounds, causing oversampling of strata with very
small variances. It appears that this factor is at play in the under-performance
shown in Figure 2 and also the slight under-performance of our method in the
Voting Game in Table 1b. We note that there may be other corner-cases where
our method also under-performs.

In comparison to existing approaches to approximating the Shapley value, our
sampling method shows improved performance on almost all accounts, as shown
in Table 1. This was particularly the case in the context of large sample budgets,
as our method (SEBM-WO, with error eSEBM ) sampled without replacement,
while the other methods sampled with replacement. However it would be remiss
not to mention the computational overhead of iteratively minimising (one sam-
ple at a time) our inequality in the context of our simple example games. This
overhead can, in practice, reduce the benefit of using a more efficient sampling
method. However, on more complicated games where the characteristic function
is slower to calculate, any overhead associated with the sampling choice will be
much less relevant. We also note that our method’s performance could poten-
tially be further improved by selecting more refined Di values for our example
games.

One primary limitation of our method is that it rests on assumption of known
data widths Di (and in the case of sampling-without-replacement, also on strata
sizes Ni), which may not be exactly known in practice. One way to overcome
this may be to use our method with a reliable overestimate these parameters (by
expert opinion or otherwise). This approximation or estimation may itself open
consideration of other probability bounds and/or sampling methods, however
we have not investigated this line of inquiry.

In practice, it may be advisable to run our method with an underestimate of
the data widths, as the sampling process is fundamentally sensitive the the shape
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of the inequality and not necessarily its magnitude or accuracy as a bound. Our
concentration inequality, Equation (8), is derived by a combination of Chernoff
bounds fused together with probability unions, so it is expected to give con-
servative confidence intervals on the error of the estimate in stratified random
sampling, which may be useful outside of the context of sampling decisions.

8. Multidimensional Extension

The method of choosing samples can be extended to multidimensional data by
a simple modification.

Specifically, instead of considering data that is single-valued, we consider data
points that are vectors. Formally, for n strata of finite data points which are all
vectors of size M , let ni be the number of data points in the ith stratum. Let
the data in the ith stratum have a mean vector values µi (with µi,j for the jth
component of the vector), which are value bounded within a finite width Di,j ,
and have vector value variances σ2

i,j . Given this, if Xi,1, Xi,2, . . . , Xi,ni
(with

Xi,1,j being the jth component of such a vector) are vector random variables
corresponding to those data values randomly and sequentially drawn (with or
without) replacement, then denote the average of the first mi of these random
variables by Ξi,mi = 1

mi

∑mi

j=1Xi,j (with Ξi,mi,j being the jth component of

that vector average). Let ˆ̂σ2
i,j = i

mi−1
∑mi

k=1(Xi,k,j − Ξi,mi,j)
2 be the unbiased

sample variance of the first mi of these random variables in the jth component.
And again, assume we have weights τi for each stratum.
In this context we have the following theorem:

Theorem 5 (Vector SEBM bound). In the context above, then with Ωni
mi
,Ψni

mi

per lemma 7:

P

∑M
j=1 (

∑n
i=1 τi(Ξi,mi,j − µi,j))

2 ≥

log(6/p)
∑M
j=1

(
αni
mi,j

+
(√

βni
mi,j

+
√
γni
mi,j

)2) ≤Mp (12)

where:

αni
mi,j

=

n∑
i=1

4

17
Ωni
mi
D2
i,jτ

2
i

βni
mi,j

= log(3/p)
(

max
i
τ2i Ψni

mi

2D2
i,j

)
γni
mi,j

=2

n∑
i=1

τ2i Ψni
mi

(mi − 1)ˆ̂σ2
i,j/mi + log(6n/p)

∑
i

τ2i D
2
i,jΩ

ni
mi

Ψni
mi

+ log(3/p)
(

max
i
τ2i Ψni

mi

2D2
i,j

)
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Proof. Squaring (8) and applying it specifically to the jth component of all the
vectors gives:

P

(
(
∑n
i=1 τi(Ξi,mi − µi))

2

log(6/p)
≥ αni

mi,j
+
(√

βni
mi,j

+
√
γni
mi,j

)2)
≤ p

Taking a series of union bounds (lemma 1) over j gives result.

The left hand side of the inequality in (12) is the square euclidean distance
between our weighted stratified sample vector estimate

∑n
i=1 τiΞi,mi

and the
true mean stratified vector

∑n
i=1 τiµi. In this context a sampling process consists

(the same as before) of sampling to maximally minimise the right hand side of
the inequality. This formulation can potentially be applied to more involved
computational tasks and sampling data with multiple features.

9. Future Work and Applications

We begin this section with a discussion of the relationship of our bound to
existing concentration inequalities, and some opportunities for future improve-
ments. The derivation of our inequality extends from consideration of Chernoff
bounds and probability unions in a similar vein to other EBB derivations (Mau-
rer and Pontil, 2009; Bardenet and Maillard, 2015). However, the bounds on the
moment generating functions that we developed in Section 3 are rife with loos-
ening approximations, and stronger and/or more representative bounds could
be developed at the cost of greater mathematical complexity. Alternatively, the
approach used to derive the Entropic (Boucheron, Lugosi and Massart, 2003)
or Effron-Stein methods (Efron and Stein, 1981) could result in different and
possibly tighter results.

Additionally, although our method works generally, there may be better or
more appropriate sampling methods in the event that there is more information
known about the underlying distributions. It is sometimes possible to derive
ideal concentration inequalities in restricted circumstances, and more broadly
there exist some computational methods to numerically derive ideal bounds
(Owhadi et al., 2013; Han et al., 2015). Using these techniques it may be possible
to derive ideal numerical bounds, particularly for bounds considering very small
numbers of samples.

We now consider two prospective applications of our existing method. First,
the approach derived in this paper was motivated by the problem of approx-
imating the Shapley value of cooperative games defined over complicated op-
timization problems (i.e. with characteristic functions given by the solution to
non-trivial optimization problems). One example of this is the problem of pric-
ing access and services in electricity networks. An electricity network is com-
plicated systems used to transport electrical power from generators to loads,
subject to the physical and operational constraints of the system’s components.
With the emergence of new technologies, electricity is now generated, monitored
and used on neighborhood distribution networks by devices that are increasingly
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responsive and interconnected to the network. Because of this, there are various
emerging schemes of how a future distribution-network energy market platform
might be designed. Within this context, the Shapley value has been proposed
as a fair mechanism for the allocation of resources and costs on such networks.
The Shapley value has been considered in different ways as a mechanism for
pricing demand response (O’Brien, Gamal and Rajagopal, 2015), demand or
load (Chapman, Mhanna and Verbič, 2017), supply or generation (Acuña et al.,
2018), and potentially all simultaneously (Burgess, Chapman and Scott, 2018).
Although computing the Shapley value exactly is impractical in these contexts,
sample-based approximations are a promising avenue for implementing Shapely
value pricing schemes in real-world electricity systems.

Second, a potential use of our stratified sampling method is in improving the
performance of stochastic gradient decent (SGD) methods for training neural
networks (Ruder, 2016). Neural networks are trained by iteratively refining their
parameters — the weights and biases of the network — against a cost function
of the network’s performance against training data. One common method of
training neural networks is gradient decent (GD). In each iteration of GD, the
derivative of how much a change in any parameter would influence the average
performance of the network across the training data is calculated as a gradient
vector. Once this vector is calculated, each network parameter takes a small
step in the direction of this gradient, to incrementally increase the performance
of the network, and through many of these steps the network becomes trained.

However in many cases, the entire corpus of training data is not used in
each iteration but only a fraction of the corpus is sampled (as a ‘batch’ or
‘minibatch’), and the average gradient vector of improved performance across
the samples of the batch is calculated as an approximation of the true gradient
vector. This iterative process can be broadly called SGD, where one of the
hyperparameters is the size of the batches, see Keskar et al. (2017); Smith,
Kindermans and Le (2018). In the context of supervised learning, each element
of the training data is labelled with the desired output of the neural network
for it, and these labels can serve to naturally stratify the training data; or the
data can be stratified by other means too (Zhang, Kjellström and Mandt, 2017;
Zhang et al., 2019; Zhao and Zhang, 2014). In this setting, Equation 12 may
be used to choose between samples of labelled training data, in order to sample
batches that more-efficiently estimate of the performance gradient, and hence
improve the efficiency of neural network training procedure. This idea of ‘smart
sampling’ for neural network training is not particularly new, and our method
is compatible with other performance-enhancing techniques in the literature on
neural networks (Papa, Bianchi and Clémençon, 2015; Clmenon et al., 2015).

Full exploration of these potential applications are beyond the scope of this
document and are left for future work. However, at present, we are pleased to
present our analytic concentration inequality (Equation 8) as an immediately
computable expression and practical method for choosing samples from strata,
and all sourcecode is available at:
https://github.com/Markopolo141/Stratified Empirical Bernstein Sampling
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Fig 4: fitting a parabola above an exponential curve for all c ≤ x ≤ d

Appendix A: Parabola Fitting

In selecting an α, β, γ as the parameters1 of a parabola αx2 + βx+ γ ≥ exp(x)
for all c ≤ x ≤ d which minimises zα+ γ for constants c, d, z.
We witness that such a parabola may tangentially touch the exponential curve
at one point (at x = f < d) and intersect it at another (at x = d), as illustrated
in Figure 4.

The parabola’s intersection at x = d and its tangential intersection at x = f
can be written in matrix algebra:αβ

γ

 =

d2 d 1
f2 f 1
2f 1 0

−1 exp(d)
exp(f)
exp(f)


which gives our parabola parameters α, β, γ in terms of f and d, hence our
objective function zα+ γ can be written as:

zα+ γ =
((z + fd− d)(f − d− 1)− d)ef + (f2 + z)ed

(d− f)2

since d is fixed, minimising with respect to f gives f = −z
d where our objective

function becomes:

zα+ γ =
zed + d2e−z/d

z + d2
.

1Here we carry the derivation with the explicit dependence on the s (seen in lemma 5)
removed for simplicity.
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