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Abstract: Best Management Practices (BMPs) are commonly used to control pollution in the river 
basins. Prioritization of BMPs helps improve the efficiency and effectiveness of pollution reduction, 
especially in Critical Source Areas (CSAs) that produce the highest pollution loads. Recently, the 
Dez River in Khuzestan, Iran, has become highly eutrophic from the overuse of fertilizers and 
pesticides. In this basin, dry and irrigated farming produce 77.34% and 6.3% of the Total Nitrogen 
(TN) load, and 83.56% and 4.3% of the Total Phosphorus (TP) load, respectively. In addition, 
residential, pasture, and forest land uses together account for 16.36% of the TN and 12.14% of the 
TP load in this area. The Soil and Water Assessment Tool (SWAT) was implemented to model the 
Dez River basin and evaluate the applicability of several BMPs, including point source elimination, 
filter strips, livestock grazing, and river channel management, in reducing the entry of pollution 
loads to the river. Sensitivity analysis and calibration/validation of the model was performed using 
the SUFI-2 algorithm in the SWAT Calibration Uncertainties Program (SWAT-CUP). The CSAs were 
identified using individual (sediment, TN, TP) and combined indices, based on the amount of 
pollution produced. Among the BMPs implemented, the 10 m filter strip was most effective in 
reducing TN load (42.61%), and TP load (39.57%). 
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1. Introduction 

With population growth, industrialization, and climate change, water management is a major 
global challenge [1]. In arid and semi-arid areas, this challenge is even more severe [2]. Water 
pollution further reduces the availability of already stressed water resources [3]. Due to water scarcity 
in Iran, the quality of water resources has become one of the major concerns of the country [4]. This 
situation necessitates the development of managerial strategies to identify critical source areas (CSAs) 
that contribute most to pollutant loading. 

Pollution sources are mainly classified into two categories of point and non-point sources. Point 
sources refer to contaminants that are generated from a single identifiable source of pollution, such 
as discharge from wastewater treatment plants. On the other hand, non-point sources refer to 
contaminants that do not have a specific source, such as excess fertilizers, herbicides, and insecticides 
from agricultural land and residential areas. These contaminants are usually transferred to rivers or 
other receiving water bodies through runoff [5,6]. A high concentration of nutrients in water bodies, 
originating from various sources including agriculture, wastewater, stormwater, and fossil fuel 
combustion, leads to eutrophication and blooms of algae in marine habitats. By disrupting the normal 
ecosystem functions, algal blooms can cause many problems, which ultimately threaten the reliable 
supply of drinking water [7–11]. 
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Controlling the entrance of non-point pollutants, which mainly originate from agricultural 
activities, requires specific Best Management Practices (BMPs) [12,13]. Implementation of BMPs in 
watersheds has been recognized as an effective method to reduce the impairment of water quality. 
BMPs are categorized into structural or nonstructural practices, and both have been used extensively 
to control runoff, sediment, and nutrients in watersheds. The literature shows that among common 
BMPs, fertilizer reduction strategies, land use changes, and irrigation management practices provide 
appropriate results [14–18].  

Among BMP evaluation models, the Soil and Water Assessment Tool (SWAT) has been widely 
used in water quality and hydrological studies. In 2006, Arabi et al. [19] used the genetic algorithm 
(GA) and SWAT to study two small watersheds in Indiana in order to optimize the planned BMPs 
for controlling the maximum monthly sediment, as well as phosphorus and nitrogen loads. The 
authors found the optimized solution to be three times more cost-effective than the previously 
planned strategies. In 2012, Ficklin et al. [20] studied water quality in the Sacramento River basin in 
California using the SWAT model. The authors proposed BMPs, such as fertilization restrictions 
during wet seasons, in order to improve the water quality of the basin. Furthermore, the SWAT model 
was successfully used by Zhang and Zhang (2012) [21] for the Orestimba Creek Watershed in 
California, and CSAs were identified in the watershed.  

By determining the trade-off among economic and multiple environmental objectives, and in 
order to minimize diffuse surface water pollution at the catchment scale, a new methodology and an 
associated decision support tool were developed by Panagopoulos et al. (2012) [10], which suggest 
the optimal location for placing BMPs.  

Moreover, Niraulaa et al. (2013) [9] implemented the SWAT model and Generalized Watershed 
Loading Function (GWLF) models to identify the CSAs of sediment and nutrients in the 
Saugahatchee Creek watershed in east central Alabama. The highest amounts of sediment, Total 
Nitrogen (TN), and Total Phosphorus (TP) loads were observed in the sub-basins dominated by 
urban land use. In order to identify the CSAs that required targeting for the overall reduction of 
sediment, TN, and TP, the authors used a combined index. This study concluded that the choice of 
model would affect the identification of CSAs since slightly different CSAs were identified using 
either the SWAT model or GWLF.  

Using the SWAT model, Liu et al. (2016) [22] showed that nutrient loads, coupled with 
population density and water quality requirements, could be used as multi-factors for identification 
of CSAs in the Xiangxi River basin in China. Based on the results, CSAs occupied 19.7% of the basin 
and accounted for 53% and 54% of TN and TP loads, respectively. 

More recently, using the SWAT model and an optimization model, under constraints of site-
specific water quality standards, Dong et al. (2018) [23] proposed an identification framework for 
Priority Management Areas (PMA), based on the simulation-optimization approach with ideal load 
reduction. The proposed approach was used for the identification of PMAs from diffuse TP in the 
Lake Dianchi watershed in China. Based on the modeling results, the authors found that 85% of 
diffuse TP originated from 30% of the watershed area.  

Using SWAT, Qiu et al. (2018) [24] modeled the Miyun Reservoir watershed in China. 
Considering the tradeoffs between economic costs and water quality responses, the authors 
developed a Markov Chain-based multi-objective optimization program to explore optimal BMPs. 
The authors explored the potential effectiveness of BMPs under two scenarios: Scenario 1 considered 
that national grants were the source of funding for BMP implementation, and the target was to reach 
high water quality standards; Scenario 2 assumed funding was provided by farmers, and targeted 
water quality that met the drinking water standards. The authors found substantial discrepancies 
between the two scenarios, concerning the types and spatial configurations of BMPs and associated 
economic costs. These findings highlighted the need to reconcile the concerns of the various 
stakeholders in order to arrive at a BMP plan that all parties will agree upon.  

In recent years, the growth of algae as a sign of eutrophication in the Dez River in Khuzestan 
province in Iran has heavily increased. Due to the warm climate in this region, agricultural products 
are cultivated several times a year and high levels of fertilizers and pesticides are used to produce 
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high yields of crops, which pollutes water supplies. To cope with the existing conditions, and in order 
to improve the trophic status of the river, BMPs must be implemented in the basin. 

Limitations in the direct measurement of physical parameters, such as streamflow and sediment, 
as well as nitrogen and phosphorus loads and concentrations, necessitate the implementation of 
computer models. Additionally, for cost-effective implementation of BMPs, identification of the CSAs 
that are generating most of the pollutants in the basin is crucial. This process is often done through 
watershed modeling. 

In this regard, the SWAT model Ver. 2012.10.15 was implemented in this study in order to 
identify CSAs based on individual and combined pollution load indices, and to evaluate the 
applicability of BMPs in the Dez River basin. Moreover, The SUFI-2 (Sequential Uncertainty FItting, 
Ver. 2) module of the SWAT-CUP software Ver. 2012 was utilized for sensitivity analysis, calibration, 
and validation of the SWAT model. The following flowchart summarizes the main steps in this study 
(Figure 1). 

 
Figure 1. The flowchart of this study. 

2. Materials and Methods 

2.1. Study Area and Data 

The Dez River basin (556,008 ha) is located in the province of Khuzestan in Iran (Figure 2). Based 
on the meteorological records (1990–2014), the area receives an average precipitation of 376 mm/year, 
and the average air temperature in the basin is 25.6 °C. Arable lands constitute 200,000 ha of the 
region, of which 150,000 ha can be irrigated, and 50,000 ha are cultivated under dryland farming [25]. 
The major agricultural products in the basin are wheat, sugar cane, and corn, which are cultivated 
two to three times a year.  
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Figure 2. The geographic location of the Dez River basin. 

Dry and irrigated farming produce 77.34% and 6.3% of the TN load, and 83.56% and 4.3% of the 
TP load in the basin, respectively. Moreover, residential, pasture, and forest land uses together 
account for 16.36% of the TN and 12.14% of the TP load in the basin. Three cities of Dezful, 
Andimeshk, and Shush are located in this basin. Additionally, many villages have been built in the 
vicinity of the Dez River, and their sewage drains directly into the river. To address these pollution 
sources, only the city of Dezful has a wastewater treatment plant, which treats 70% of the city’s 
wastewater. Moreover, three factories in the basin significantly influence the water quality status of 
the river.  

Water quality data scarcity was one of the constraints in this study. In this basin, streamflow 
data were available at the Dezful and Harmaleh hydrometric stations (Figure 3), while water quality 
data were only available at the Dezful station. 

 

Figure 3. Hydrometric stations. 

In order to set up the SWAT model of the Dez River basin, the data presented in Table 1 were 
used. 
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Table 1. The The Soil and Water Assessment Tool (SWAT) model input data. 

Data Source 
Digital Elevation Model (DEM)-2011 United States Geological Survey (USGS) 

Soil map-2011 FAO Soils Portal 

Land use map-2006 Iran’s Forests, Range and Watershed 
Management Organization 

Meteorological data-(1991–2014) I.R. of Iran Meteorogical Organization 
Hydrometric and sediment data-(1991–2014) Khuzestan Water and Power Authority 

Water quality and point source pollution data-2012 Directorate General of Environmental 
Protection of Khuzestan Province 

Management and agricultural data Royan Consulting Engineers 

2.2. SWAT and SWAT-CUP 

The SWAT model is a conceptual, semi-distributive, and continuous river basin scale model [26]. 
This model requires input data such as topography, soil, and land use maps, as well as meteorological 
data (precipitation, temperature, wind speed, relative humidity, and solar radiation), inter-basin 
water transfer data, point source pollution data, and land management practices, in order to simulate 
the physical processes within a watershed [27]. Based on the soil type, land use, and slope, the SWAT 
model divides the basin into Hydrological Response Units (HRUs) and runs the simulations at the 
HRU level [28]. 

Prior to model calibration, more sensitive parameters have to be identified. Sensitivity analysis 
is the process of determining the significance of the impact of one parameter, or a combination of 
parameters, on the output of a model. The SWAT-CUP program has been developed for calibration, 
validation, and sensitivity analysis of the SWAT model parameters, and uses five different calibration 
procedures: SUFI-2, Particle Swarm Optimization (PSO), Generalized Likelihood Uncertainty 
Estimation (GLUE), Parameter Solution (ParaSol), and Markov Chain Monte Carlo (MCMC). For 
large-scale models, in which the calibration process can be very time-consuming, the semi-automated 
SUFI-2 is quite efficient. In the SWAT-CUP, the sensitivities of parameters are measured by t-stat 
values and p-values. Parameters that show higher t-stat values and p-values closer to 0 are more 
sensitive, and the effect of varying the parameter will be more significant on the target variable [29]. 

Calibration means adjusting the model input parameters with the goal of achieving the best fit 
between the observed and simulated values. In the SWAT-CUP, the goodness of calibration is 
measured using p-factor (the fraction of the data in the range of 95% prediction uncertainty (95ppu)) 
and r-factor (the average thickness of the 95ppu band, divided by the standard deviation of the 
observed data). The p-factor is a value between 0 to 1, and the r-factor has a range of 0 to ∞. When 
the p-factor = 1 and the r-factor = 0, the simulated model is precisely in accordance with observed 
data. p-factors greater than 0.7 and r-factors smaller than 1.5 show satisfactory calibration and 
validation results. 

Another means for evaluation of the goodness of calibration and validation are the coefficient of 
determination (R2) (Equation 1) and the Nash-Sutcliffe (NS) model efficiency coefficient (Equation 2): 

ܴଶ =	
[∑ (ܳ௠,௜ି௜ തܳ௠)(ܳ௦,௜ − തܳ௦)]ଶ

∑ (ܳ௠,௜ି തܳ௠)ଶ∑ (ܳ௦,௜ − തܳ௦)ଶ௜௜
 (1)

ܰܵ = 1 −	
∑ |ܳ௠ −	ܳ௦|௜ଶ௜

∑ หܳ௠,௜ −	 തܳ௠ห௜
ଶ

௜

 (2)

where Q is the variable, such as streamflow or sediment; the indices m, and s, represent the observed 
and simulated values; and Qavg is the mean of the measured variables.  

The NS function has a range of -∞ to 1. NS = 1 corresponds to a perfect match of simulated values 
to the observed data. The values between 0 and 1 indicate that the simulated and observed values are 
close to each other, whereas values less than 0 show that the model has no predictive power [30]. The 
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following shows the different work steps in SUFI-2 followed in this study to reduce the parameter 
uncertainty and to calibrate the model [31]: 

 Step 1: The objective function is defined and the absolute range of parameters, based on the 
recommended values in the software, is set. 

 Step 2: Absolute sensitivity analysis is carried out, using Latin Hypercube sampling. The 
objective function is computed. 

 Step 3: The sensitivity matrix of the objective function is calculated. Equivalent of the Hessian 
matrix is formulated. 

 Step 4: High order derivatives are neglected. Based on the Cramer Rao Theorem, an estimate 
of lower bound of parameter covariance is computed. 

 Step 5: Parameter sensitivity is analyzed using multiple regression. 
 Step 6: Uncertainty measures (p-factor and r-factor) are computed. 

In this study, all of the observed data were used for calibration. Afterward, to validate the 
calibrated model, while keeping all calibrated parameters constant, the model was run for the last 
third period of the year (September, October, November, and December). 

2.3. Identification of CSAs 

The CSAs are areas that produce the highest pollution loads in the basin, and are identified at 
the sub-basin level [32]. In order to identify the CSAs, sediment and nutrient yields from each sub-
basin have to be analyzed based on loads per unit area (tons per hectare per year). Afterward, sub-
basins will be ranked in descending order based on yields (the sub-basin with the highest yield will 
be ranked first). Moving from the highest ranking to the lowest, and based on the analysis of 
management practices and operational costs, sub-basins that contribute from 5% to 8% (based on the 
literature) of the sedimentary, TN, or TP loads in the basin will be considered as the CSAs [9]. 

Combined indices can also be implemented to identify the sub-basins, which can be considered 
as CSAs. In this method, the CSAs are defined by multi-factors. These factors include a weighted 
combination of TN, TP, and sediment loads [22]. The combined index can help identify the areas that 
are critical for multiple stressors, where the implementation of BMPs will be more economical. This 
index is given by: 

( )i i ijG G  (3)

min

max min

i
i

G GNG
G G





 (4)

where Gi is the combined index for sub-basin i; Gij is an index for TN (j = 1); TP (j = 2); and sediment 
(j = 3). In Equation (4), NGi is the normalized evaluation variable for the sub-basin i; and Gmin and Gmax 
are the lowest and highest ranks for constituent i for the entire basin. 

In managerial tasks where the priority of one variable is higher than the others, the variable can 
be weighted in Equation (3), using the coefficient ω. The weight is subjectively chosen and assigned 
to each Gi based on its importance, where ∑ω୧ = 1 [9]. 

2.4. BMPs and Pollution Load Indices 

In this study, in order to reduce pollution entry into the Dez River, the following BMPs were 
implemented: point source pollution elimination (treating the wastewater from residential areas and 
the effluent of the factories); implementation of 5 m and 10 m filter strips in residential and 
agricultural lands; a 20% and 50% reduction in livestock grazing in the basin; and management of the 
main river channel. 

Filter strips are vegetated areas that are situated between surface water bodies and cropland, 
grazing land, forestland, or disturbed land. They are generally used in locations where runoff water 
leaves a field, with the intention that sediment, organic material, nutrients, and chemicals can be 
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filtered from the runoff water. They are also known as vegetative filter or buffer strips. This practice 
is primarily used with agricultural fields to control non-point source pollution. In this method, by 
reducing the velocity of the surface runoff and the deposition of particles, the pollutants, including 
soil and organic material, are removed. Edge-of-field filter strips are defined in an HRU. Sediment, 
nutrient, pesticide, and bacteria loads in surface runoff are reduced as the surface runoff passes 
through the filter strip. In this study, 5 m and 10 m filter strips were used in areas with irrigated 
farming, and 5 m filter strips were used in residential and dryland farming areas. Equations 5 to 10 
represent how the filter strips reduce runoff, sediment load, and nutrient loads in the SWAT model: 

RR = 75.8 – 10.8 ln(RL) + 25.9 ln(KSAT) (5)

SR(%) = 79.0 – 1.04 SL + 0.213RR (6)

TNR = 0.036SR1.69 (7)

NNR = 39.4 + 0.584RR (8)

TPR = 0.90SR (9)

DPR = 29.3 + 0.51RR (10)

where RR is the runoff reduction (%); RL is the runoff loading (mm); KSAT is the saturated hydraulic 
conductivity (mm h−1); SR is the predicted sediment reduction (%); SL is sediment loading (kg/m2); 
TNR is the total nitrogen reduction (%); NNR is the nitrate nitrogen reduction (%); TPR is the total 
phosphorus reduction (%); and DPR is the dissolved phosphorus reduction (%) [33]. 

Livestock grazing, which causes damage to plants and production of fertilizer, highly affects the 
amount of nutrient entry through runoff from rangelands to receiving water bodies. Managing the 
timing of livestock grazing, reducing the number of livestock, and preventing livestock grazing are 
among the most popular practices for livestock grazing management. In this study, 20% and 50% 
reductions in the number of livestock were used as BMPs, and introduced into the model through 
the Grazing Management Operation in the SWAT model. 

Management of the river main channel is done by controlling erosion in the channel wall 
through mulching, and controlling the amount of vegetation in the channel wall using dense 
vegetation cover. 

Individual and combined indices were used in this study to identify the CSAs. Using individual 
indices, areas contributing the most to TN, TP, and sediment loads were identified individually. In 
the next step, by using combined indices, the CSAs for TN + TP, TN + TP + sediment, and TN + TP + 
0.1 sediment were identified. 

3. Results and Discussion 

3.1. Sensitivity Analysis 

In order to find the most effective parameters affecting the yields of runoff, sediment, TN, and 
TP, the sensitivity analysis was performed on each variable separately. In this regard, the sensitivity 
analysis was performed on runoff parameters. The results of the sensitivity analysis and the 
calibrated values are presented in Table 2. In this study, nitrate and phosphate were 
calibrated/validated as proxies representing TN and TP, respectively. 
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Table 2. Sensitive parameters, and the calibrated values for runoff, sediment, phosphate, and 
nitrate. 

Parameter Definition Calibrated Value t-stat p-value 
Parameters Affecting Streamflow 

ALPHA_BF.gw Baseflow alpha factor (1/days) 0.0037 −10.35 0 

CH_K2.rte 
Effective hydraulic conductivity in main channel 

alluvium (mm/h) 352.12 4.15 0 

OV_N.hru Manning's "n" value for overland flow 12.41 2.41 0.016 

SOL_AWC.sol 
Available water capacity of the soil layer (mm 

H2O/mm soil) 0.214 1.83 0.067 

GW_REVAP.gw Groundwater "revap" coefficient 0.092 −1.73 0.085 
CANMX.hru Maximum canopy storage (mm H2O) 53.74 −1.63 0.104 

CH_S2.rte 
Average slope of main channel along the 

channel length (m/m) 6.7 1.59 0.112 

GW_DELAY.gw Ground water lag time 108.7 −1.48 0.14 
Parameters Affecting Sediment Load 

SPCON.bsn 
The linear parameter for calculating the 

maximum amount of sediment that can be 
reentrained during channel sediment routing 

0.00116 −41.45 0 

SPEXP.bsn 
Exponent parameter for calculating sediment 

reentrained in channel sediment routing 1.015 6.73 0 

CH_ERODMO.rte Erosion rate of the channel 0.457 1.49 0.136 

ADJ_PKR.bsn Peak rate adjustment factor for sediment routing 
in the sub-basin (tributary channels) 

0.907 −0.67 0.5 

Parameters Affecting Phosphate Load 

ERORGP.hru Phosphorus enrichment ratio for loading with 
sediment 

2.52 −3.43 0 

ORGP_con.hru Organic phosphorus concentration in runoff, 
after urban BMP is applied 

26.95 2.84 0.004 

PSP.bsn Phosphorus availability index 0.44 0.92 0.42 

SOLP_con.hru Soluble phosphorus concentration in runoff, 
after urban BMP is applied 

0.231 −0.33 0.73 

Parameters Affecting Nitrate Load 
SOLN_con.hru Concentration of nitrogen soluble in runoff 0.132 −3.64 0 
NPERCO.bsn Nitrate percolation coefficient 0.172 −2.05 0.172 

ERORGN.hru Organic N enrichment ratio for loading with 
sediment 

2.81 0.119 0.9 

K_N.wwq Michaelis-Menton half-saturation constant for 
nitrogen (mg N/L) 

0.174 0.058 0.953 

The results show that the parameters ALPHA_BF (baseflow alpha factor), CH_K2 (effective 
hydraulic conductivity in main channel alluvium), and OV_N (Manning’s “n” value for overland 
flow) had the most significant impact on runoff yield.  

In addition, other parameters with the highest sensitivity on sediment, phosphate, and nitrate 
yields were SPCON (linear parameter for calculating the maximum amount of sediment that can be 
re-entrained during channel sediment routing), ERORGP (phosphorus enrichment ratio for loading 
with sediment), and SOLN_con (concentration of soluble nitrogen in runoff). 

3.2. Calibration and Validation 

The calibration and validation of the model were performed in four steps. First, the runoff was 
calibrated and validated based on the observed data from the Dezful and Harmaleh hydrometric 
stations. In the next step, nitrate and phosphate were calibrated and validated for the Dezful station. 
The objective functions of NS, R2, p-factor, and r-factor were then used to evaluate the goodness of 
fit between the simulated and observed values. The results and time series of the simulated data and 
observational data are presented in Figures 4–8. 
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Figure 4. Calibration (1993–2005) and validation (2006–2014) of monthly streamflow in Dezful station. 

 

Figure 5. Calibration (1993–2005) and validation (2006–2014) of monthly streamflow in Harmaleh station. 

 
Figure 6. Calibration and validation of monthly sediment load in Dezful station (2012–2013). 
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Figure 7. Calibration and validation of monthly phosphate concentration in Dezful station (2012–2013). 

 
Figure 8. Calibration and validation of monthly nitrate concentration in Dezful station (2012–2013). 

According to criteria set by Moriasi et al. (2007) [31] for evaluating model performance in 
calibration and validation, an NS value between 0.50 and 0.65 is considered “satisfactory,” a value 
between 0.65 and 0.75 is rated as “good,” and “very good” is attributed to values between 0.75 and 
1.00. In the calibration process, the sediment calibration was the most difficult. Despite numerous 
trials on sediment calibration in the model, the peaks could not be simulated. Through field surveys, 
it was discovered that the locals exploit the river materials, which causes abrupt fluctuations in the 
sediment load time series. Therefore, high NS values could not be obtained for the sediment during 
calibration and validation periods. Subsequently, since phosphorus has a tendency to stick to 
sediment particles, due to uncertainties and limitations in sediment calibration, the simulated 
phosphate does not show a perfect match with the observed values. However, the NS and R2 values 
are almost in the satisfactory range, both for phosphate and nitrate concentrations. 

3.3. Identifying the CSAs 

Figure 9 shows the delineated Dez River basin in the SWAT model. 
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Figure 9. The delineated Dez River basin in the SWAT model. 

Figure 10 shows the results of each analysis using individual indices. Based on the simulation 
results, the highest erosion rates occurred in the upstream of the basin. Contrary to sediment load, 
TN and TP loads were higher downstream of the dam, as well as in areas where agricultural activities 
and population densities are higher, and areas where nomads are located and livestock graze. TN 
and TP loads upstream of the basin, which is more mountainous and has less agricultural activity 
than the plains, were much lower than in the downstream area. Sugar cane farms and a factory are 
located in sub-basin number 25. Therefore, in this sub-basin, the burden of pollution was higher than 
in the other sub-basins.  
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Figure 10. The Critical Source Areas (CSAs) in the basin, identified using individual indices. 

Using the combined indices, sub-basins 25 and 17 were identified as the most critical. These sub-
basins are located downstream, where the sugar cane factory is located. Subsequently, sub-basins 2 
and 8, representing livestock grazing and nomadic settlement sites, were ranked next. By examining 
the combined indices, it was observed that only introducing nutrient parameters does not provide 
proper identification of CSAs. By adding sediment to TN and TP, sub-basins 1, 3, 5, and 7 were 
identified as CSAs due to high sediment loads (because of steep slopes upstream of the river). After 
applying the 0.1 weight to the sediment, sub-basins 1, 2, 5, 8, and 25 were identified as CSAs. The 
results of this section are presented in Figure 11. 

 

Figure 11. The CSAs in the basin, identified using combined indices. 
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3.4. Evaluation of the BMPs 

After identifying the CSAs, the BMPs were implemented in the model to evaluate their 
applicability in reducing pollution loads. The results of the contaminant reduction, after utilizing 
BMPs, are presented in Table 3 and Figure 12. 

Table 3. Pollution loads reduction after implementation (%) of Best Management Practices (BMPs). 

BMP ORG_N NO3 NO2 NH4 TN ORG_P MIN_P TP 
Point source pollution elimination 10.28 14.4 23.53 13.16 16.21 6.07 12.46 12.98 
5 m filter strip (irrigated farming) 18.21 48.51 18.95 18.68 31.48 32.4 41.38 33.28 
10 m filter strip (irrigated farming) 20.26 58.92 29.41 29.85 42.61 43.77 51.94 39.57 
5 m filter strip (dryland farming) 17.79 41.47 19.71 21.58 29.34 31.09 38.31 29.09 

5 m filter strip (residential) 9.62 22.48 14.32 13.81 16.75 16.76 19.18 17.98 
20% reduction in livestock 3.37 5.23 0.31 1.02 3.12 0.57 0.54 0.29 
50% reduction in livestock 8.71 14.21 0.48 3.94 6.34 0.97 0.96 0.43 

Mulching the channel walls 0.1 0.08 0.03 0.07 0.43 0.19 0.58 0.62 
Fixing the channel walls 26.1 43.4 9.12 7.37 41.78 29.56 22.96 30.01 

 

Figure 12. Reduction in pollution loads after utilizing the BMPs. 

Removing point source pollution by constructing a treatment plant reduced the nitrite (23.53%) 
and ammonia (13.16%) from the domestic and industrial sewage in the river. The highest reduction 
in pollution load was achieved by implementing filter strips in the agricultural areas. Under this 
BMP, the highest reduction in pollutants was observed for nitrate (58.92%). Furthermore, the results 
indicated that by increasing the length of the filter strips, the TN load was reduced more than the TP. 
Reductions of 20% and 50% in the number of livestock were more effective in reducing the amount 
of nitrate (5.23% and 14.21%) and organic nitrogen (3.37% and 8.71%), compared to the other 
nutrients. However, this BMP did not show a significant impact on the amount of phosphorous 
compounds. 

River channel wall mulching had little impact on reducing the nutrients, and only decreased the 
amount of sediment input into the river. Due to the tendency of phosphorus to stick to sediment 
particles, the only observed effect of this strategy was in reducing the phosphorous compounds in 
the river. 

4. Conclusions 

In this study, the Dez River basin in Iran was modeled using the SWAT model, and the 
sensitivity analysis and calibration/validation of the model were performed using the SUFI-2 
algorithm of the SWAT-CUP software. After delineation of the basin, the CSAs were identified based 
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on the amount of pollution produced in each sub-basin, using individual and combined indices. 
Moreover, several BMPs, including source elimination, filter strips (5 m and 10 m), livestock grazing 
management, and river channel management were implemented to evaluate their applicability in 
reducing the entry of pollutants to the river. The following are the main findings of this study: 

 A significant decrease in TN (42.61%) and TP (39.57%) loads were observed in areas with 
irrigated farming where 10 m filter strips were implemented. 

 Reducing the number of livestock was not effective in reducing phosphorous compounds. 
 The mulching of the river channel walls did not have much impact on reducing pollution. 
 Using combined indices to identify CSAs without weighting variables is not desirable, and CSAs 

should be weighed according to the priority of the variables. 

For future studies, considering climate change and its consequences, the researchers recommend 
evaluating the management practices by changing inputs such as precipitation, relative humidity, 
and solar radiation, and then reassessing the adequacy of these practices in future studies. 
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