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Abstract: It is difficult to capture the real-time online measurement data for biochemical oxygen
demand (BOD) in wastewater treatment processes. An optimized extreme learning machine (ELM)
based on an improved cuckoo search algorithm (ICS) is proposed in this paper for the design of soft
BOD measurement model. In ICS-ELM, the input weights matrices of the extreme learning machine
(ELM) and the threshold of the hidden layer are encoded as the cuckoo's nest locations. The best
input weights matrices and threshold are obtained by using the strong global search ability of
improved cuckoo search (ICS) algorithm. The optimal results can be used to improve the precision
of forecasting based on less number of neurons of the hidden layer in ELM. Simulation results show
that the soft sensor model has good real-time performance, high prediction accuracy and stronger
generalization performance for BOD measurement of the effluent quality compared to other
modeling methods such as back propagation (BP) network in most cases.

Keywords: Biochemical oxygen demand (BOD); Cuckoo search algorithm (CSA); Extreme learning
machine (ELM); Soft sensor; Wastewater treatment process

1. Introduction

The awareness of environmental protection in the society has been gradually improving due to
better education on sustainability, and wastewater treatment has become one of the important
research topics in the field of environmental protection. Biochemical oxygen demand (BOD) is one of
the major parameters of effluent quality indices of wastewater treatment processes. Real-time and
accurate monitoring of BOD is the key factor to improve the automatic control of the performance of
wastewater treatment processes. However, due to the strong nonlinear and time-varying
characteristics of wastewater treatment processes as well as the capacity of current detection methods
[1] and measurement accuracies of the sensors and instruments, it is difficult to achieve accurate real-
time and on-line measurement of BOD data; this limits the application of closed-loop control in
wastewater treatment processes [2]. Hence, there is a great need on how to measure BOD rapidly and
accurately to control the wastewater treatment processes.

Recently, the development of soft sensing technology provides a new way of measuring
variables which are not measurable on-line in real-time. Especially, researchers have applied soft
sensing technology to model the wastewater treatment processes and have achieved good results.
Zhang et al [3] considered the inflow(Q) as well as the chemical oxygen demand (COD) , pH, the
suspended solids (SS) and the total nitrogen (TN) of the influent as the auxiliary variables to model
a feed-forward three-layer multiple inputs and single output (MISO) neural network, called adaptive
growing and pruning (AGP) network. The parameters of the neural network were trained by back
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propagation (BP) algorithm. This soft sensor model was used to predict the BOD concentration of
effluent in their simulation study. Simple learning algorithm has the greatest advantage as it can
speed up the measurement, but unfortunately the prediction accuracy is not sufficient for it to be
applied in real-time. Qiao et al [4] proposed a soft sensor method for the measurement of BOD based
on a self-organizing neural network with random weights (SNNRW). It used the output weight
vector to calculate the sensitivity of the hidden layer nodes to the residual. Based on the sensitivity
analysis, it could remove less sensitive nodes of the hidden layer by itself according to the level of
the sensitivity. It can achieve higher prediction accuracy while performing much more complex
calculations. Liu [5] proposed an online soft BOD measurement method based on an echo sound
network (ESN) algorithm. The weights of the ESN are trained and obtained by online learning
method. The range of learning rate of ESN network is analyzed and determined by Lyapunov theory,
which ensured the convergence of the algorithm. This algorithm improved the accuracy of prediction
and the adaptability of the model, but with high computation load.

The ELM is a new feed-forward neural network learning algorithm which was originally
proposed by Professor Huang Guangbin of Nanyang Technological University [6]. It has the
advantages of simple training process, higher training speed and strong anti-interference ability [7].
The training time is greatly reduced compared to other networks, as ELM only needs to set the
number of hidden layer nodes, and the randomly generated input weights and hidden layer
thresholds are no longer adjusted in the training process. Through experiments, Han et al [8]
demonstrated that ELM has higher training speed and better generalization ability than BP neural
network and support vector machine (SVM). Therefore, soft sensor technology based on ELM
learning algorithm has been widely applied in industrial process measurement [9,10].

Compared to BP neural network learning algorithm, ELM can avoid issues such as easy to get
local optimum solution [11], poor performance indices and low learning rate. However, ELM
algorithm itself has some shortcomings, such as the random selection of the input weights and hidden
layer threshold which in general would lead to a poor stability of the network. In order to improve
the prediction accuracy of the algorithm, it is necessary to increase the number of the hidden layer
nodes [6], and the increase will inevitably reduce the computing speed of the ELM learning
algorithm. Thus, the application of ELM has to overcome this contradicting pair of operational needs.
Researchers have studied and improved the above problems of ELM in recent years. Zhu et al [12]
introduced differential evolution (DE) algorithm into ELM to obtain the optimal connecting weights
between the input layer and hidden layer, and the optimal threshold of hidden layer. These optimal
parameters can improve the stability of the network. Yan et al [13] proposed a regularized extreme
learning machine (algorithm) based on discriminative information (called IELM), which can
significantly improve the classification performance and generalization ability of ELM. Kassani et al
[14] proposed an incremental method for sparsifying the ELM using a newly devised indicator driven
by the condition number in the ELM design matrix, called sparse pseudoinverse incremental-ELM
(SPI-ELM), which exhibits better generalization performance and lower run-time complexity
compared to ELM. Although they improved the computational speed, training accuracy and
generalization performance of ELM algorithm, the least squares-based ELM algorithm still has the
problem of randomness of the parameters, which will affect the stability of the network.

Based on the above evaluation of algorithms that exist, a BOD soft sensor based on an improved
extreme learning machine is proposed in this paper. Adverse effects of randomness of extreme
learning parameters on prediction results and stability of the network are considered while
proposing such soft sensor. The parameters of ELM are coded as the cuckoo nest locations, with the
corresponding fitness values of the root mean square error (RMSE) between the actual value and the
prediction value, to obtain the optimal parameters of the ELM by using an improved cuckoo search
(ICS) algorithm [15]. Fuzzy rough monotone dependence (FRMD) algorithm proposed by Liang et al
[16] to reduce the dimensionality of the data from the BSM1 simulation model [17,18] is used in
Matlab simulation. The reduction data is used as the input of the soft sensor and effluent BOD is used
as the output of it.

2. Materials and Methods
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2.1 Extreme learning machine (ELM)

For N arbitrarily distinct samples of data (x;,t,) € R"xR™, where X, =[xy, %, X,] €R",
t :[til,tiZ'..-,tim]T eR"™, and an infinitely differentiable activation function of any finite interval,

0:R—>R, standard single hidden layer feed-forward networks (SLFNs) with L hidden nodes are

mathematically modeled as

y(xj):Zﬁig(Xj'Wi-’_bi):Oj’j:1121""N (1)

where W, =[w,, W+, W, ]T is the connecting weight matrices of the /" hidden node and the input
nodes; B =[S, B, B, ]T is the connecting weight matrices of the it hidden node and the output
nodes; and bi is the threshold of the i" hidden node. X;-Ww;is the inner product of X; andw,. The

network topology with linear output nodes is shown in Figure 1.

Figure 1. Network topology of a standard single hidden layer feed-forward network (SLFN)

Using the initialized random assignment weights W, € R" and the thresholds b, eR , the
N

standard SLFNs can approximate these N samples with zero error means that Z"O -t J" =0, ie,
=

there exist i, w; and bi, such that

L
h(x;)=> Ba(x;-w,+b)=t,,j=12-N 2)
i=1
Compact form of Equation (2) can be expressed in matrices as follows:
Hp =T ®)
where,
h(x,) g(x,-w, +b) -+ g(x.-w, +b)
H= : = : : 4)
h(XN) g(XN'W1+b1) g(XN’WL+bL) NxL
A
.
B=\" )
_/?J Lxm
and
ty
tT
T=7 (6)
_tL Nxm

As named in Huang [19], H is called the hidden layer output matrix of the neural network; The
it column of H is the i hidden node output with respect to inputs x1, x2, . . ., x5; The row of matrix
H represents the hidden layer feature mapping with respect to input x;, that is x; : h(X;) .
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If the activation function g is infinitely differentiable and the nodes with parameters of hidden
layers can be randomly generated, then there is [6]

Theorem 1. Given an small positive value & (£>0), an activation function g: R—R which is infinitely
differentiable in any interval and, N arbitrary distinct samples (X,t;) € R" xR™, there exists L<N for any

parameters of the network {(w;,b )}, , according to any continuous probability distribution, then with

HNxLﬁLxm _TNxm
From the point of view of interpolation, the largest number of hidden layer nodes L should be

<&.

probability one,

less than the number of training samples N. In fact, when L is equal to N, the training error will be
zero. According to Theorem 1, when L is less than N, SLENs will approach the training samples with
very little training error, and the matrix H is a non-square matrix, there exists W,,b, 3, so that

equation (7) can be established.
“H(Wl,"',WL’BL"'BL)B_T“ = ng_nﬂ”H(Wl""1WL’bll"'1b|_),B_T" @)

Unlike the traditional function approximation theories, the input weights wi and the hidden
layer biases b: are in fact not necessarily tuned and the hidden layer output matrix H can actually
remain unchanged once random values have been assigned to these parameters in the beginning of
learning, and this makes Equation (7) is considerate as a linear system. The training for SLFNs is

simply equivalent to finding the least squares solution J of the linear equations Hf =T, that is
[ b )3 =T = minf[H(wa w By, b ) B =T ®)

The smallest norm least squares solution of the weights of the above linear system is unique,

which is
p=H'T ©)

where H* is the Moore-Penrose generalized inverse of the matrix H [20,21].

Thus, the main steps of ELM's learning algorithm can be summarized as follows:

With the given training set (x;,t;) € R"xR™, i=1,...,N, the activation function g(x) and the number
of the hidden nodes L,

Step1: Assign input weight, wi and bias of hidden layer, b;, randomly (where i=1,...,L);

Step2: Calculate the hidden layer output matrix, H;

Step3: Calculate the output weight, /3 .

2.2 Improved cuckoo search algorithm-based ELM (ICS-ELM)

2.2.1 Improved cuckoo search (ICS) algorithm

Cuckoo search (CS) algorithm is approved as an efficient optimization method [22,23]. The
principle of CS algorithm is how a cuckoo can find an optimal nest to hatch the eggs by free search
based on the obligate brood parasitism and Lévy flights mechanism which is unique in nature. An
important advantage of this algorithm is its simplicity. In fact, comparing with other population- or
agent-based metaheuristic algorithms such as particle swarm optimization (PSO) and harmony
search, there is essentially only a single parameter p., which represents the probability to be found
by the host, in CS (apart from the population size n). Therefore, it is very easy to implement.

Few parameters, simple operation, easy to realize and good ability to search random paths are
the main advantages of CS algorithm. Therefore, once the CS algorithm was proposed, it has been
rapidly developed and applied to solve a variety of optimization problems. But at the same time,
clearly, CS has some disadvantages such as slow convergence speed and lack of adaptability. We
proposed an improved cuckoo search algorithm, named improved cuckoo search (ICS) algorithm
[15], which introduces the cosine cyclic operator into the CS algorithm to realize the periodic change
of pa and an adaptive dynamic adjustment strategy for the search step size S, which are described as
follows.
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pa (t) = pa,max + pa,min (10)

¥
cos| —t
T

p
S=— " exp| —kx| ——| |+ (11)
bestX, , [

Where, in equation (10), T is the cycle of the periodic operator; ¢ is the evolution generation of
the current iteration; pamax and pamin are the dynamic control parameters of p. which are equal to 0.75
and 0.1 respectively. In equation (11), me (0,1) is a regulatory factor; bestXi1 is the optimal nest

position of the last generation groups; k €[0,1]is the limiting factor; t and ¢max are the current iteration
number and the maximum iteration number; Smin is the minimum search step; p is an integer from 1
to 30.

Based on the above analysis and improvements, the improved cuckoo search (ICS) algorithm
steps can be described as follows:

Step1: Set the objective function and initialization function; generate initial population of n host
nests xi (i =1, 2, ..., n); set the size of population, the dimension of independent variables, the
maximum iteration number, the maximum and minimum probability of being detected.

Step2: Calculate the current optimal nest position by putting x: into the objective function.

Step3: Record the location of the nest, and use equation (11) to calculate the current step size S,
then use equation (12) to update the location of the nest.

Xt =x+a®S,i=12,,n (12)
where, the product of @ is a kind of calculation means entrywise multiplications; a>0 is a step size
control factor.

Step4: Compare the current value of the objective function with the last value; Update the value
if the function value is better than the previous one; otherwise, keep it unchanged.

Step5: After updating the nest location, choose a random number ¢ €[0,1], which obeys a

uniform distribution; if ¢ > pa, randomly change the value of X*; otherwise leave as it is. Keep the

optimal nest position at last.

Step6: Return to Step2 if the iteration number has not reached the maximum iteration number;
otherwise, continue to the next step.

Step7: Output the optimal nest location.

You can find more details of the ICS algorithm in Du et al [15].

2.2.2 ICS-based ELM

When the structure of ELM has been fixed, the network needs to be trained offline first before
using the soft sensor online. To improve the prediction accuracy, the input weights wi and the hidden
layer biases bishould be optimized through the training process by ICS algorithm.

The root mean square error (RMSE) of the actual value and the predicted value is taken as the
fitness value of the nest of each group, shows in equation (13).

Niin ~ _m

DY B (wixx;+) =t [l

f(a) = (13)

train

Where, Nuain is the number of training samples; m is the number of the hidden nodes; fis the
fitness function.

2.3 Experimental data processing

2.3.1 Acquisition of experimental data from BSM1

The experimental data used in our research are obtained from the outputs of a 14-day simulation
on the benchmark simulation model No.1 (BSM1) [17] developed by International Water Association
(IWA). Data set provided by the European Co-operation in the field of Scientific and Technical
Research (COST) based on the actual water quality of the influent of the wastewater treatment plant
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was used as the simulation input for the experimental process. The data represented four conditions
namely steady state as well as dry, rainy and stormy weathers. The plant consists of 5 bioreactors and
a ten-layer secondary settler which is shown in Figure 2.

Biological reactors Secondary settler
Unit 1 Unit 2 Unit 3 Unit 4 Unit5
Wastewater | |
» - - Zof’ (Z)oo 200 (;oo
T Anoxic zone Aerated zone Internal
recycle
External recycle Wastage

-

Figure 2. Schematic representation of the benchmark simulation model No.1 (BSM1)

The initial conditions of the operating parameters of the main executor in BSM1 are set as

follows:
Table 1. Parameters of BSM1
Parameters Values Units Descriptions
KLas3, KLa4 240  mg/day Oxygen transfer coefficient of the 3rd and 4th bioreactors
KLas 83 mg/day Oxygen transfer coefficient of the 5th bioreactor
Qint 55338 md¥/day Internal recirculation flow rate
Qr 18446 m?3/day Returned sludge flow rate
Qw 385 m?/day Waste sludge flow rate

Steps to obtain the experimental data:

Stepl: Run a 100-day steady state simulation and repeat until the system achieves steady
stability;

Step2: Run a 14-day simulation with the input data representing dry weather conditions and
repeat until the system achieves dynamic stability;

Step3: Simulate BSM1 to obtain experimental data using the influent data mentioned above.

The 2-week data (1344 groups in total with a sampling time of 15 minutes,
4 groups x 24 hours x14 days = 1344 groups ), of the wastewater treatment process was finally obtained.

The compositions of wastewater are shown in Table 2.

Table 2. Components of wastewater

Component Unit Description

Si mg COD /L Soluble inert organic matter

Ss mg COD/L  Readily biodegradable substrate

Xi mg COD /L  Particulate inert organic matter

Xs mg COD/L  Slowly biodegradable substrate

Xbh mg COD /L Active heterotrophic biomass

Xba mg COD/L  Active autotrophic biomass

Xp mg COD /L Particulate product arising from biomass decay
So mg -COD/L  Oxygen (negative COD)

Sno mg N/L Nitrate and nitrite nitrogen

Snh mg N/L NH4+* and NHs nitrogen

Snd mg N/L Soluble biodegradable organic nitrogen
Xnd mg N/L Particulate biodegradable organic nitrogen
Salk mole/m3 Alkalinity
TSS mg Ss/L Total amount of solids

Q m?3/day Influent flow rate

2.3.2 Fuzzy rough monotone dependence algorithm for data processing
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Obviously, the reaction mechanisms of activated sludge process is very complex, and the process
parameters involved are numerous, and therefore the dimension of the obtained wastewater data is
too high. This will not only lead to the occurrence of over fitting, but also cause the dimension
disaster. In order to avoid these problems and not to affect the accuracy of model prediction, it is
necessary to find out the parameters which have great influence on the BOD of the effluent. Therefore,
the fuzzy rough monotone dependence (FRMD) [16,24] algorithm is used for processing the data to
reduce the attribute.

It can be shown that there is a monotonic dependence between conditional attributes and
decision attributes. Based on the FRMD algorithm, the steps of attribute reduction for wastewater
data are as follows:

Step1: Define and initialize a two-dimensional array D[#n,m] for the decision table, where the mt
column is the decision attribute (that is, the data of effluent water quality), and 1%t to the (m-1)t
columns are the conditional attributes (that is, the data of the wastewater influent);

Step2: Arrange the decision attribute values in ascending order, and exchange the rows of the
conditional attributes corresponding to the ordered decision attribute;

Step3: Make a circular study of the fuzzy rough monotone dependence relation between each
condition attribute value and decision attribute value; Obtain the membership function values;

Step4: If the membership degree function in the set is monotonically increasing, output is the
maximum value of them; otherwise, output is 0.

After the attribute reduction, if the membership degree is 0, the conditional attribute will be
discarded. The remaining conditional attributes are considered as influential to the BOD, and will be
used as the input of the soft sensor to predict BOD.

3. Results and discussion

3.1 Data attribute reduction

Using fuzzy rough monotone dependence (FRMD) algorithm to do the data attribute reduction
process, BOD is taken as the decision attribute, and components in Table 2 are taken as the conditional
attributes. The membership function degrees of each conditional attribute to the BOD are shown in

Figure 2. Among them, conditional attributes whose membership degrees are equal to 0 have been
discarded.

0.25 T

Membership degree

Q Ss Snd Xi Snh Xs Xbh TSS Xnd
Conditional attributes

Figure 3. Membership degrees of each conditional attribute to BOD

Figure 3 shows the membership degrees between BOD and the components parameters; the
conditional attributes which have zero degree are not shown in Figure 3. Nine attributes are shown
in Figure 3, but we can clearly see that the degrees of Xnd and TSS are much closer to zero than
others. Therefore, for reducing the complexity of the system, those two attributes were not taken into
account in the next simulation. The remaining seven attributes were taken as the inputs of the ELM
soft sensor.

3.2 Comparison and discussion of simulation results
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The effectiveness of the ICS-based ELM BOD soft sensing model was verified based on the data
attribute reduction results; Ss, Xi, Xs, Xbh, Snh and Snd of the influent and the flow rate Q are used as
the auxiliary variables for the network input, so the ICS-based ELM network structure had 7 input
nodes, 40 hidden nodes and one output node (7-40-1). The 1344 groups of data are randomly divided
into training datasets (500 groups), verifying datasets (460 groups) and testing datasets (384 groups)
for the simulation. The training accuracy and prediction accuracy of the soft sensor model are
represented by mean square error (MSE).

MSE =13 (Y ()Y () (14)

Where, Y(n) is the predicted output of the model; Y*(n) is the actual measured value; N is the
sample size number.

Parameters are set as follows: For the ICS algorithm, the population size n is 25, the maximum
and the minimum probability to be discovered by the host bird are 0.75 and 0.1 respectively; for the
adaptive step length control parameters m = 0.8, k=0.2, p = 25, Smin=0.01.

When the number of iterations # = 100, the iteration will be terminated; the curve of the
optimization process is shown in Figure 4. The prediction results and errors of ICS-based ELM soft
sensor for effluent BOD are shown in Figure 5.

0.35

03

0.25

Best fitness

0.2

0.15

0'10 20 40 60 80 100

Iteration
Figure 4. Optimization process
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Figure 5. Compared prediction results of ICS-ELM and basic ELM under dry weather condition, (a)
Effluent BOD concentration, (b) Error in predicting the measured effluent BOD

It can be seen from the results, the ICS-based ELM has a better prediction accuracy than the basic
ELM. To verify the advantage of the ICS-based ELM, a comparison studies are simulated with the
other five models, which are extreme learning machine (ELM), cuckoo search (CS)-based ELM,
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relevance vector machine (RVM), back-propagation (BP) neural network and least squares support
vector machines (LS-SVM), with the same influent data under dry weather condition. The MSE
results are shown in Table 3, and the prediction results are shown in Figure 5. Clearly, the MSE from
ICS-based ELM are much smaller than the other five models. But the training process will take a
slightly longer computer time than for the basic ELM because of the optimization process of the input
weights wi and the hidden layer biases b.

Table 3. Prediction results of the six soft sensor models

model MSE Hidden nodes Training time (sec)

ELM 1.3011 40 1.78
CS-ELM  0.0640 15 76.67
RVM! 0.0513 - -
BP! 0.0909 25 -
LS-SVM!'  0.0865 - -
ICS-ELM  0.0254 40 61.4
0.4

35F Measure Data

«—BP 03 i
——LS-SVM )

*— ELM 024 J
—+—CS-ELM

—+—ICS-ELM

error(mg/L)

——BP
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—— ELM B
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—+— CS-ELM |
—— CS-ELM

r

0 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400

r r
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(a) Prediction results (b) Prediction errors

Figure 6. Prediction of effluent BOD under dry weather condition using five soft sensors, (a) Effluent BOD
concentration, (b) Error in predicting the measured effluent BOD

To further verify the anti-interference ability of the ICS-based ELM prediction model, rainy and
stormy weather conditions are considered as the disturbances of the system to simulate the BOD as
shown in Figure 7 and Figure 8.

15 T : = : T : T
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~—BP
454 ——LS-SVM 1 1
s ELM
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o
>
£
a —~
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= = L
.g 3k @ ;
S [<5)
§ ——BP
S 25 1+ ——LS-SVM
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2k -151 t —+— CS-ELM 4

= |CS-ELM
15 : : : : : : : 2 : : : : : : :
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(a) Prediction results (b) Prediction errors

Figure 7. Prediction of effluent BOD concentration under rainy condition, (a) Effluent BOD concentration,
(b) Error in predicting the measured effluent BOD

! The blanks in the table mean that they are not mentioned in Xu et al (2014).
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Figure 8. Prediction of effluent BOD under stormy weather condition with a storm event, (a) Effluent BOD
concentration, (b) error in predicting the measured effluent BOD

As can be seen from the results shown in Figure 7 and Figure 8, no matter how the weather
condition changes, a well-trained ICS-based ELM still can predict the effluent BOD with smaller
errors compared to other five models considered in this paper.

4. Conclusions

In this paper, an ICS-based ELM is applied to BOD soft sensing modeling to predict the effluent
water quality. It overcomes low prediction accuracy and poor stability of basic ELM algorithm with
an improved cuckoo search algorithm. The input weights and the hidden layer biases of ELM are
optimized with an offline training process. Results show that ICS-based ELM BOD soft sensing model
can improve the accuracy of the prediction with better anti-interference and generalization abilities
than basic ELM algorithm. Because of the accurately prediction of the BOD in the process, it would
be helpful to the energy saving in the aeration operation in the future research.
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