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Abstract: It is difficult to capture the real-time online measurement data for biochemical oxygen 

demand (BOD) in wastewater treatment processes. An optimized extreme learning machine (ELM) 

based on an improved cuckoo search algorithm (ICS) is proposed in this paper for the design of soft 

BOD measurement model. In ICS-ELM, the input weights matrices of the extreme learning machine 

(ELM) and the threshold of the hidden layer are encoded as the cuckoo's nest locations. The best 

input weights matrices and threshold are obtained by using the strong global search ability of 

improved cuckoo search (ICS) algorithm. The optimal results can be used to improve the precision 

of forecasting based on less number of neurons of the hidden layer in ELM. Simulation results show 

that the soft sensor model has good real-time performance, high prediction accuracy and stronger 

generalization performance for BOD measurement of the effluent quality compared to other 

modeling methods such as back propagation (BP) network in most cases. 

Keywords: Biochemical oxygen demand (BOD); Cuckoo search algorithm (CSA); Extreme learning 

machine (ELM); Soft sensor; Wastewater treatment process 

 

1. Introduction 

The awareness of environmental protection in the society has been gradually improving due to 

better education on sustainability, and wastewater treatment has become one of the important 

research topics in the field of environmental protection. Biochemical oxygen demand (BOD) is one of 

the major parameters of effluent quality indices of wastewater treatment processes. Real-time and 

accurate monitoring of BOD is the key factor to improve the automatic control of the performance of 

wastewater treatment processes. However, due to the strong nonlinear and time-varying 

characteristics of wastewater treatment processes as well as the capacity of current detection methods 

[1] and measurement accuracies of the sensors and instruments, it is difficult to achieve accurate real-

time and on-line measurement of BOD data; this limits the application of closed-loop control in 

wastewater treatment processes [2]. Hence, there is a great need on how to measure BOD rapidly and 

accurately to control the wastewater treatment processes. 

Recently, the development of soft sensing technology provides a new way of measuring 

variables which are not measurable on-line in real-time. Especially, researchers have applied soft 

sensing technology to model the wastewater treatment processes and have achieved good results. 

Zhang et al [3] considered the inflow(Q) as well as the chemical oxygen demand (COD) , pH, the 

suspended solids (SS) and the total nitrogen (TN) of the influent as the auxiliary variables to model 

a feed-forward three-layer multiple inputs and single output (MISO) neural network, called adaptive 

growing and pruning (AGP) network. The parameters of the neural network were trained by back 
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propagation (BP) algorithm. This soft sensor model was used to predict the BOD concentration of 

effluent in their simulation study. Simple learning algorithm has the greatest advantage as it can 

speed up the measurement, but unfortunately the prediction accuracy is not sufficient for it to be 

applied in real-time. Qiao et al [4] proposed a soft sensor method for the measurement of BOD based 

on a self-organizing neural network with random weights (SNNRW). It used the output weight 

vector to calculate the sensitivity of the hidden layer nodes to the residual. Based on the sensitivity 

analysis, it could remove less sensitive nodes of the hidden layer by itself according to the level of 

the sensitivity. It can achieve higher prediction accuracy while performing much more complex 

calculations. Liu [5] proposed an online soft BOD measurement method based on an echo sound 

network (ESN) algorithm. The weights of the ESN are trained and obtained by online learning 

method. The range of learning rate of ESN network is analyzed and determined by Lyapunov theory, 

which ensured the convergence of the algorithm. This algorithm improved the accuracy of prediction 

and the adaptability of the model, but with high computation load. 

The ELM is a new feed-forward neural network learning algorithm which was originally 

proposed by Professor Huang Guangbin of Nanyang Technological University [6]. It has the 

advantages of simple training process, higher training speed and strong anti-interference ability [7]. 

The training time is greatly reduced compared to other networks, as ELM only needs to set the 

number of hidden layer nodes, and the randomly generated input weights and hidden layer 

thresholds are no longer adjusted in the training process. Through experiments, Han et al [8] 

demonstrated that ELM has higher training speed and better generalization ability than BP neural 

network and support vector machine (SVM). Therefore, soft sensor technology based on ELM 

learning algorithm has been widely applied in industrial process measurement [9,10]. 

Compared to BP neural network learning algorithm, ELM can avoid issues such as easy to get 

local optimum solution [11], poor performance indices and low learning rate. However, ELM 

algorithm itself has some shortcomings, such as the random selection of the input weights and hidden 

layer threshold which in general would lead to a poor stability of the network. In order to improve 

the prediction accuracy of the algorithm, it is necessary to increase the number of the hidden layer 

nodes [6], and the increase will inevitably reduce the computing speed of the ELM learning 

algorithm. Thus, the application of ELM has to overcome this contradicting pair of operational needs. 

Researchers have studied and improved the above problems of ELM in recent years. Zhu et al [12] 

introduced differential evolution (DE) algorithm into ELM to obtain the optimal connecting weights 

between the input layer and hidden layer, and the optimal threshold of hidden layer. These optimal 

parameters can improve the stability of the network. Yan et al [13] proposed a regularized extreme 

learning machine (algorithm) based on discriminative information (called IELM), which can 

significantly improve the classification performance and generalization ability of ELM. Kassani et al 

[14] proposed an incremental method for sparsifying the ELM using a newly devised indicator driven 

by the condition number in the ELM design matrix, called sparse pseudoinverse incremental-ELM 

(SPI-ELM), which exhibits better generalization performance and lower run-time complexity 

compared to ELM. Although they improved the computational speed, training accuracy and 

generalization performance of ELM algorithm, the least squares-based ELM algorithm still has the 

problem of randomness of the parameters, which will affect the stability of the network. 

Based on the above evaluation of algorithms that exist, a BOD soft sensor based on an improved 

extreme learning machine is proposed in this paper. Adverse effects of randomness of extreme 

learning parameters on prediction results and stability of the network are considered while 

proposing such soft sensor. The parameters of ELM are coded as the cuckoo nest locations, with the 

corresponding fitness values of the root mean square error (RMSE) between the actual value and the 

prediction value, to obtain the optimal parameters of the ELM by using an improved cuckoo search 

(ICS) algorithm [15]. Fuzzy rough monotone dependence (FRMD) algorithm proposed by Liang et al 

[16] to reduce the dimensionality of the data from the BSM1 simulation model [17,18] is used in 

Matlab simulation. The reduction data is used as the input of the soft sensor and effluent BOD is used 

as the output of it. 

2. Materials and Methods  
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2.1 Extreme learning machine (ELM)  

For N arbitrarily distinct samples of data ( , ) n m

i i  x t R R , where  1 2, , ,
T n

i i i inx x x= x R , 

 1 2, , ,
T m

i i i imt t t= t R , and an infinitely differentiable activation function of any finite interval, 

:g R→R , standard single hidden layer feed-forward networks (SLFNs) with L hidden nodes are 

mathematically modeled as 

1

( ) ( ) , 1, 2, ,
L

j i j i i j

i

y g b j N
=

=  + = =x x w o                        (1) 

where  
T

1 2, , ,i i i inw w w=w  is the connecting weight matrices of the ith hidden node and the input 

nodes;  
T

1 2, , ,i i i in   = is the connecting weight matrices of the ith hidden node and the output 

nodes; and bi is the threshold of the ith hidden node. j ix w is the inner product of jx  and
iw . The 

network topology with linear output nodes is shown in Figure 1.  
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Figure 1. Network topology of a standard single hidden layer feed-forward network (SLFN) 

 

Using the initialized random assignment weights n

i w R and the thresholds
i b R , the 

standard SLFNs can approximate these N samples with zero error means that
1

0
N

j j
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− = o t , i.e., 

there exist βi, 
iw and bi , such that 
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Compact form of Equation (2) can be expressed in matrices as follows: 

 =H T                                     (3) 
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As named in Huang [19], H is called the hidden layer output matrix of the neural network; The 

ith column of H is the ith hidden node output with respect to inputs x1, x2, . . . , xN; The row of matrix 

H represents the hidden layer feature mapping with respect to input xi, that is : ( )i ix h x . 
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If the activation function g is infinitely differentiable and the nodes with parameters of hidden 

layers can be randomly generated, then there is [6] 

Theorem 1. Given an small positive value  (>0), an activation function g: R→R which is infinitely 

differentiable in any interval and, N arbitrary distinct samples ( , ) n m
i ix t R R  , there exists L N  for any 

parameters of the network 1{( , )}L
i i ib =w , according to any continuous probability distribution, then with 

probability one, N L L m N m   − H T . 

From the point of view of interpolation, the largest number of hidden layer nodes L should be 

less than the number of training samples N. In fact, when L is equal to N, the training error will be 

zero. According to Theorem 1, when L is less than N, SLFNs will approach the training samples with 

very little training error, and the matrix H is a non-square matrix, there exists ˆ ˆˆ , ,i ib w , so that 

equation (7) can be established. 

1 1 1 1
, ,

ˆ ˆ ˆˆ ˆ( , , , , ) min ( , , , , , )
i i

L L L L
b

b b b b


 − = −
w

H w w T H w w T                (7) 

Unlike the traditional function approximation theories, the input weights wi and the hidden 

layer biases bi are in fact not necessarily tuned and the hidden layer output matrix H can actually 

remain unchanged once random values have been assigned to these parameters in the beginning of 

learning, and this makes Equation (7) is considerate as a linear system. The training for SLFNs is 

simply equivalent to finding the least squares solution ̂  of the linear equations H = T, that is 

1 1 1 1
ˆ( , , , , ) min ( , , , , , )L L L Lb b b b


 − = −H w w T H w w T                (8) 

The smallest norm least squares solution of the weights of the above linear system is unique, 

which is 

̂ += H T                                     (9) 

where H+ is the Moore-Penrose generalized inverse of the matrix H [20,21]. 

Thus, the main steps of ELM's learning algorithm can be summarized as follows: 

With the given training set ( , ) n m
i ix t R R  , i=1,…,N, the activation function g(x) and the number 

of the hidden nodes L, 

Step1: Assign input weight, wi and bias of hidden layer, bi, randomly (where i=1,…,L); 

Step2: Calculate the hidden layer output matrix, H; 

Step3: Calculate the output weight, ̂ . 

2.2 Improved cuckoo search algorithm-based ELM (ICS-ELM) 

2.2.1 Improved cuckoo search (ICS) algorithm 

Cuckoo search (CS) algorithm is approved as an efficient optimization method [22,23]. The 

principle of CS algorithm is how a cuckoo can find an optimal nest to hatch the eggs by free search 

based on the obligate brood parasitism and Lévy flights mechanism which is unique in nature. An 

important advantage of this algorithm is its simplicity. In fact, comparing with other population- or 

agent-based metaheuristic algorithms such as particle swarm optimization (PSO) and harmony 

search, there is essentially only a single parameter pa, which represents the probability to be found 

by the host, in CS (apart from the population size n). Therefore, it is very easy to implement. 

Few parameters, simple operation, easy to realize and good ability to search random paths are 

the main advantages of CS algorithm. Therefore, once the CS algorithm was proposed, it has been 

rapidly developed and applied to solve a variety of optimization problems. But at the same time, 

clearly, CS has some disadvantages such as slow convergence speed and lack of adaptability. We 

proposed an improved cuckoo search algorithm, named improved cuckoo search (ICS) algorithm 

[15], which introduces the cosine cyclic operator into the CS algorithm to realize the periodic change 

of pa and an adaptive dynamic adjustment strategy for the search step size S, which are described as 

follows.  
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2
( ) cosa a ap t p t p

T

 
= + 

 
                             (10) 

min

1 max

exp

p

i

m t
S k S

bestX t−

  
 =  −  + 
   

                          (11) 

Where, in equation (10), T is the cycle of the periodic operator; t is the evolution generation of 

the current iteration; pa,max and pa,min are the dynamic control parameters of pa which are equal to 0.75 

and 0.1 respectively. In equation (11), (0,1)m is a regulatory factor; bestXi-1 is the optimal nest 

position of the last generation groups; [0,1]k is the limiting factor; t and tmax are the current iteration 

number and the maximum iteration number; Smin is the minimum search step; p is an integer from 1 

to 30. 

Based on the above analysis and improvements, the improved cuckoo search (ICS) algorithm 

steps can be described as follows:  

Step1: Set the objective function and initialization function; generate initial population of n host 

nests xi (i = 1, 2, ..., n); set the size of population, the dimension of independent variables, the 

maximum iteration number, the maximum and minimum probability of being detected. 

Step2: Calculate the current optimal nest position by putting xi into the objective function. 

Step3: Record the location of the nest, and use equation (11) to calculate the current step size S, 

then use equation (12) to update the location of the nest. 
1 , 1,2, ,t t

i ix x S i n+ = +  =                                  (12) 

where, the product of   is a kind of calculation means entrywise multiplications; α>0 is a step size 

control factor. 

Step4: Compare the current value of the objective function with the last value; Update the value 

if the function value is better than the previous one; otherwise, keep it unchanged.  

Step5: After updating the nest location, choose a random number [0,1]  , which obeys a 

uniform distribution; if ε > pa, randomly change the value of 1t

ix + ; otherwise leave as it is. Keep the 

optimal nest position at last. 

Step6: Return to Step2 if the iteration number has not reached the maximum iteration number; 

otherwise, continue to the next step. 

Step7: Output the optimal nest location. 

You can find more details of the ICS algorithm in Du et al [15]. 

2.2.2 ICS-based ELM 

When the structure of ELM has been fixed, the network needs to be trained offline first before 

using the soft sensor online. To improve the prediction accuracy, the input weights wi and the hidden 

layer biases bi should be optimized through the training process by ICS algorithm. 

The root mean square error (RMSE) of the actual value and the predicted value is taken as the 

fitness value of the nest of each group, shows in equation (13). 

( )
( )

train

2

2

1 1

train

|| ||
N m

i i j i j

j i

i

g b

f
mN

= =

 + −

=

  w x t

                              (13) 

Where, Ntrain is the number of training samples; m is the number of the hidden nodes; f is the 

fitness function. 

2.3 Experimental data processing 

2.3.1 Acquisition of experimental data from BSM1 

The experimental data used in our research are obtained from the outputs of a 14-day simulation 

on the benchmark simulation model No.1 (BSM1) [17] developed by International Water Association 

(IWA). Data set provided by the European Co-operation in the field of Scientific and Technical 

Research (COST) based on the actual water quality of the influent of the wastewater treatment plant 
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was used as the simulation input for the experimental process. The data represented four conditions 

namely steady state as well as dry, rainy and stormy weathers. The plant consists of 5 bioreactors and 

a ten-layer secondary settler which is shown in Figure 2.  

Wastewater

Anoxic zone Aerated zone
Internal 

recycle

External recycle Wastage

To river

Unit 1 Unit 2 Unit 3 Unit 4 Unit 5

Biological reactors Secondary settler

 
Figure 2. Schematic representation of the benchmark simulation model No.1 (BSM1) 

 

The initial conditions of the operating parameters of the main executor in BSM1 are set as 

follows: 

Table 1. Parameters of BSM1 

Parameters Values Units Descriptions 

KLa3, KLa4 240 mg/day Oxygen transfer coefficient of the 3rd and 4th bioreactors 

KLa5 83 mg/day Oxygen transfer coefficient of the 5th bioreactor 

Qint 55338 m3/day Internal recirculation flow rate 

Qr 18446 m3/day Returned sludge flow rate  

Qw 385 m3/day Waste sludge flow rate 

 

Steps to obtain the experimental data: 

Step1: Run a 100-day steady state simulation and repeat until the system achieves steady 

stability; 

Step2: Run a 14-day simulation with the input data representing dry weather conditions and 

repeat until the system achieves dynamic stability; 

Step3: Simulate BSM1 to obtain experimental data using the influent data mentioned above. 

The 2-week data (1344 groups in total with a sampling time of 15 minutes, 

4 groups 24 hours 14 days = 1344 groups  ), of the wastewater treatment process was finally obtained. 

The compositions of wastewater are shown in Table 2.  

Table 2. Components of wastewater 

Component Unit Description 

Si mg COD /L Soluble inert organic matter 

Ss mg COD/L Readily biodegradable substrate 

Xi mg COD /L Particulate inert organic matter 

Xs mg COD/L Slowly biodegradable substrate 

Xbh mg COD /L Active heterotrophic biomass 

Xba mg COD/L Active autotrophic biomass 

Xp mg COD /L Particulate product arising from biomass decay 

So mg -COD/L Oxygen (negative COD) 

Sno mg N/L Nitrate and nitrite nitrogen 

Snh mg N/L NH4+ and NH3 nitrogen 

Snd mg N/L Soluble biodegradable organic nitrogen 

Xnd mg N/L Particulate biodegradable organic nitrogen 

Salk mole/m3 Alkalinity 

TSS mg SS/L Total amount of solids 

Q m3/day Influent flow rate 

2.3.2 Fuzzy rough monotone dependence algorithm for data processing 
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Obviously, the reaction mechanisms of activated sludge process is very complex, and the process 

parameters involved are numerous, and therefore the dimension of the obtained wastewater data is 

too high. This will not only lead to the occurrence of over fitting, but also cause the dimension 

disaster. In order to avoid these problems and not to affect the accuracy of model prediction, it is 

necessary to find out the parameters which have great influence on the BOD of the effluent. Therefore, 

the fuzzy rough monotone dependence (FRMD) [16,24] algorithm is used for processing the data to 

reduce the attribute. 

It can be shown that there is a monotonic dependence between conditional attributes and 

decision attributes. Based on the FRMD algorithm, the steps of attribute reduction for wastewater 

data are as follows: 

Step1: Define and initialize a two-dimensional array D[n,m] for the decision table, where the mth 

column is the decision attribute (that is, the data of effluent water quality), and 1st to the (m-1)th 

columns are the conditional attributes (that is, the data of the wastewater influent); 

Step2: Arrange the decision attribute values in ascending order, and exchange the rows of the 

conditional attributes corresponding to the ordered decision attribute; 

Step3: Make a circular study of the fuzzy rough monotone dependence relation between each 

condition attribute value and decision attribute value; Obtain the membership function values; 

Step4: If the membership degree function in the set is monotonically increasing, output is the 

maximum value of them; otherwise, output is 0. 

After the attribute reduction, if the membership degree is 0, the conditional attribute will be 

discarded. The remaining conditional attributes are considered as influential to the BOD, and will be 

used as the input of the soft sensor to predict BOD.  

3. Results and discussion 

3.1 Data attribute reduction 

Using fuzzy rough monotone dependence (FRMD) algorithm to do the data attribute reduction 

process, BOD is taken as the decision attribute, and components in Table 2 are taken as the conditional 

attributes. The membership function degrees of each conditional attribute to the BOD are shown in 

Figure 2. Among them, conditional attributes whose membership degrees are equal to 0 have been 

discarded. 

 
Figure 3. Membership degrees of each conditional attribute to BOD 

 

Figure 3 shows the membership degrees between BOD and the components parameters; the 

conditional attributes which have zero degree are not shown in Figure 3. Nine attributes are shown 

in Figure 3, but we can clearly see that the degrees of Xnd and TSS are much closer to zero than 

others. Therefore, for reducing the complexity of the system, those two attributes were not taken into 

account in the next simulation. The remaining seven attributes were taken as the inputs of the ELM 

soft sensor.  

3.2 Comparison and discussion of simulation results 
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The effectiveness of the ICS-based ELM BOD soft sensing model was verified based on the data 

attribute reduction results; Ss, Xi, Xs, Xbh, Snh and Snd of the influent and the flow rate Q are used as 

the auxiliary variables for the network input, so the ICS-based ELM network structure had 7 input 

nodes, 40 hidden nodes and one output node (7-40-1). The 1344 groups of data are randomly divided 

into training datasets (500 groups), verifying datasets (460 groups) and testing datasets (384 groups) 

for the simulation. The training accuracy and prediction accuracy of the soft sensor model are 

represented by mean square error (MSE). 

2

1

1
( ( ) ( ))

N

i

MSE Y i Y i
N



=

= −                             (14) 

Where, Y(n) is the predicted output of the model; Y*(n) is the actual measured value; N is the 

sample size number. 

Parameters are set as follows: For the ICS algorithm, the population size n is 25, the maximum 

and the minimum probability to be discovered by the host bird are 0.75 and 0.1 respectively; for the 

adaptive step length control parameters m = 0.8, k = 0.2, p = 25, Smin = 0.01.  

When the number of iterations t = 100, the iteration will be terminated; the curve of the 

optimization process is shown in Figure 4. The prediction results and errors of ICS-based ELM soft 

sensor for effluent BOD are shown in Figure 5. 

 

 
Figure 4. Optimization process 

 

  
(a) Prediction results                         (b) Prediction errors 

Figure 5. Compared prediction results of ICS-ELM and basic ELM under dry weather condition, (a) 

Effluent BOD concentration, (b) Error in predicting the measured effluent BOD 

 

It can be seen from the results, the ICS-based ELM has a better prediction accuracy than the basic 

ELM. To verify the advantage of the ICS-based ELM, a comparison studies are simulated with the 

other five models, which are extreme learning machine (ELM), cuckoo search (CS)-based ELM, 
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relevance vector machine (RVM), back-propagation (BP) neural network and least squares support 

vector machines (LS-SVM), with the same influent data under dry weather condition. The MSE 

results are shown in Table 3, and the prediction results are shown in Figure 5. Clearly, the MSE from 

ICS-based ELM are much smaller than the other five models. But the training process will take a 

slightly longer computer time than for the basic ELM because of the optimization process of the input 

weights wi and the hidden layer biases bi. 

Table 3. Prediction results of the six soft sensor models 

model MSE Hidden nodes Training time (sec) 

ELM 1.3011 40 1.78 

CS-ELM 0.0640 15 76.67 

RVM1 0.0513 - - 

BP1 0.0909 25 - 

LS-SVM1 0.0865 - - 

ICS-ELM 0.0254 40 61.4 

  
(a) Prediction results                        (b) Prediction errors 

Figure 6. Prediction of effluent BOD under dry weather condition using five soft sensors, (a) Effluent BOD 

concentration, (b) Error in predicting the measured effluent BOD  

 

To further verify the anti-interference ability of the ICS-based ELM prediction model, rainy and 

stormy weather conditions are considered as the disturbances of the system to simulate the BOD as 

shown in Figure 7 and Figure 8. 

 
(a) Prediction results                        (b) Prediction errors 

Figure 7. Prediction of effluent BOD concentration under rainy condition, (a) Effluent BOD concentration, 

(b) Error in predicting the measured effluent BOD 

 

                                                 
1 The blanks in the table mean that they are not mentioned in Xu et al (2014). 
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(a) Prediction results                        (b) Prediction errors 

Figure 8. Prediction of effluent BOD under stormy weather condition with a storm event, (a) Effluent BOD 

concentration, (b) error in predicting the measured effluent BOD 

 

As can be seen from the results shown in Figure 7 and Figure 8, no matter how the weather 

condition changes, a well-trained ICS-based ELM still can predict the effluent BOD with smaller 

errors compared to other five models considered in this paper.  

4. Conclusions 

In this paper, an ICS-based ELM is applied to BOD soft sensing modeling to predict the effluent 

water quality. It overcomes low prediction accuracy and poor stability of basic ELM algorithm with 

an improved cuckoo search algorithm. The input weights and the hidden layer biases of ELM are 

optimized with an offline training process. Results show that ICS-based ELM BOD soft sensing model 

can improve the accuracy of the prediction with better anti-interference and generalization abilities 

than basic ELM algorithm. Because of the accurately prediction of the BOD in the process, it would 

be helpful to the energy saving in the aeration operation in the future research. 
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