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Abstract: In this paper we define a continuous wavelet transform of a Schwartz tempered distribution 
f ∈ S′ (Rn) with wavelet kernel ψ ∈ S(Rn) and derive the corresponding wavelet inversion formula 
interpreting convergence in the weak topology of S′ (Rn). It turns out that the wavelet transform of a 
constant distribution is zero and our wavelet inversion formula is not true for constant distribution, 
but it is true for a non-constant distribution which is not equal to the sum of a non-constant 
distribution with a non-zero constant distribution.

Keywords: Function spaces and their duals; Distributions; Generalized functions; Distribution space; 
Wavelet transform of generalized functions.8

1. Introduction9

As defined in [1,7,8,11–15,18–20]; we define a Schwartz testing function space S(Rn) to consist of
C∞ functions φ defined on Rn and satisfying the conditions

sup
x∈Rn ,k∈Rn

∣∣∣∣∣xmn
n . . . xm2

2 xm1
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∂kn
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∣∣∣∣∣ < ∞ (1)

|m| , |k| = 0, 1, 2, . . . .
The topology over S(Rn) is generated by the sequence of semi-norms {γm,k}∞

|m|,|k|=0
where,
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x∈Rn
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These collections of semi-norms in (2) are separating which means that an element φ ∈ S(Rn) is
non-zero if and only if there exists at least one of the semi-norms γm,k satisfying γm,k(φ) 6= 0. A
sequence {φν}∞

ν=1 in S(Rn) tends to φ in S(Rn) if and only if γm,k(φν − φ)→ 0 as ν goes to ∞ for each
of the subscripts |m| , |k| = 0, 1, 2, . . . , are as defined above. Now one can verify that the function
e−(t

2
1+t2

2+···+t2
n) ∈ S(Rn) and the sequence ν−1

ν e−(t
2
1+t2

2+···+t2
n) → e−(t

2
1+t2

2+···+t2
n) in S(Rn) as ν → ∞.

One can check that δ(t1, t2, . . . , tn) is a continuous linear functional on S(Rn). A regular distribution
generated by a locally integrable function is an element of S

′
(Rn).

Now our objective is to find an element ψ ∈ S(Rn) which is a wavelet so as to be able to define the
wavelet transform of f ∈ S

′
(Rn) with respect to this kernel.

A function ψ ∈ L2(Rn) is a window function if it satisfies the conditions

xiψ(x), xixjψ(x), . . . , x1x2x3 . . . xnψ(x) (3)

belong to L2(Rn). Here i, j, k, . . . all assume values 1,2,3,. . . and all the lower suffixes in a term in (3)
are different. It has been proved by J.N. Pandey et al. [6,8] that a window function which is an element
of L2(Rn) belongs to L1(Rn). It is easy to verify that every element of S(Rn) is a window function.
A window function ψ belonging to L2(Rn) and satisfying the condition

∞∫
−∞

ψ(x1, x2, . . . , xi, . . . , xn)dxi = 0 (4)

for each i = 1, 2, 3, . . . , n satisfies the admissibility condition

∫
Λn

∣∣ψ̂(Λ)
∣∣2

|Λ| dΛ < ∞ (5)

where ψ̂(Λ) = ψ̂(λ1, λ2, . . . , λn), |Λ| = |λ1λ2 . . . λn| and ψ̂(Λ) is the Fourier transform of ψ(x) ≡
ψ(x1, x2, . . . , xn); clearly ψ in (4) is a wavelet [6]. As an example one can easily verify that the function
ψ(x) = x1x2 . . . xne−(x2

1+x2
2+···+x2

n) is a wavelet belonging to S(Rn). Let s(Rn) be a subspace of S(Rn)

such that every element φ ∈ s(Rn) satisfies (4). Clearly every element of s(Rn) is a wavelet [8].
Now if f ∈ S′(Rn) and ψ is a wavelet belonging to S(Rn) the wavelet transform of f can be defined by

W f (a, b) =

〈
f (x),

1√
|a|

ψ(
x− b

a
)

〉

where, (a, b) is argument of W,

ψ(
x− b

a
) = ψ(

x1 − b1

a1
,

x2 − b2

a2
, . . . ,

xn − bn

an
)

ai 6= 0, ∀ i = 1, 2 . . . n.

and
|a| = |a1a2 . . . an|

Our objective is to prove the inversion formula〈
1

Cψ

∫
Rn

∫
Rn

W f (a, b)ψ(
t− b

a
)

dbda√
|a|a2

, φ(t)

〉
→ 〈 f , φ〉 , φ ∈ S(Rn) (6)

interpreting convergence in S′(Rn). Here Cψ = (2π)n ∫
Rn
|ψ̂(∧)|2
|∧| d∧10

11
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The derivation of the inversion formula given by (6) is difficult; we however, make an easy12

approach. The work on the multidimensional wavelet transform with positive scale [a > 0] was done13

by Daubechies 1990 [2], Meyer 1992 [5], Pathak 2009 [9] and some others. Motivated from [12,14,20],14

J.N. Pandey et al. [8] did the generalization of these works and extended the multidimensional wavelet15

transform with real scale [a 6= 0]. In the year 1995 Holschneider [3] extended the multidimensional16

wavelet transform to Schwartz tempered distributions with positive scales [a > 0]. Recently F.17

Weisz [16,17] studied the inversion formula for the continuous wavelet transform and found its18

convergence in Lp and Wiener amalgam spaces. Eugene B. Postnikov et al. [10] studied computational19

implementation of the inverse continuous wavelet transform without a requirement of the admissibility20

condition.21

Our objective is to extend the wavelet transform to Schwartz tempered distributions with real scale22

[a 6= 0]. The standard cut off of negative frequencies (which is required to apply continuous wavelet23

transform with a > 0) may result in a loss of information if the transformed functions were non-24

symmetric (in the Fourier space) mixture of real and imaginary frequency components. Our proposed25

and proven inversion formula is free from the mentioned defect. The main advantage of our work is26

a possible further practical utility of the proven result and the simplicity of calculation, besides our27

extension of the multidimensional wavelet inversion formula is the most general. In [8] it is proved28

that a window function ψ(x) ∈ L2(Rn) is a wavelet if and only if the integral of ψ along each of the29

axes is zero; therefore, any ψ(x) ∈ s(Rn) is a wavelet. Hence, the wavelet transform of a constant30

distribution is zero.31

Thus we realize that two elements of S′(Rn) having equal wavelet transform will differ by a32

constant in general. Holschneider uses the wavelet inversion formula for f ∈ S′(Rn) but he does not33

mention the wavelet inversion formula and its convergence in S′(Rn). Perhaps, he takes it for granted,34

as such an inversion formula is valid for elements of L2(Rn) interpreting convergence in L2(Rn) . So35

our objective in this paper is to fill up all these gaps. We will prove the inversion formula (6) in section36

3.37

2. Structure of generalized functions of slow growth38

Elements of S′(Rn) are called tempered distributions or distributions of slow growth.39

Definition 1. A function f (x) is said to be a function of slow growth in Rn if for m ≥ 0 we have∫
Rn
| f (x)| (1 + |x|)−m dx < ∞

and it determines a regular functional f in S′(Rn) by the formula

〈 f , φ〉 =
∫
Rn

f (x)φ(x)dx, φεS(Rn) (7)

It is easy to verify that the functional f defined by (7) exists ∀ φ ∈ S(Rn) and that it is linear as well as40

continuous on S(Rn).41

We now quote a theorem of V.S. Vladimirov proved in his book [14].42

Theorem 1. If f ∈ S′(Rn) then there exists a continuous function g of slow growth in Rn and an integer43

m ≥ 0 such that44

f (x) = Dm
1 Dm

2 ...Dm
n g(x),

∂

∂xi
≡ Di (8)
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The relation (8) can be written as

f (x) = Dmg(x); D = D1D2...Dn (9)

The n-dimensional wavelet inversion formula for tempered distributions will now be proved very45

simply by using the structure formula (9). This structure formula enables us to reduce the wavelet46

analysis problem relating to tempered distributions to the classical wavelet analysis problem of L2(Rn)47

functions. Our wavelet inversion formula of L2(Rn) functions will be used quite successfully to derive48

the wavelet inversion formula for the wavelet transform of tempered distributions.49

3. Wavelet transform of tempered distributions in Rn and its inversion50

From now we assume that a 6= 0 implies each of the component ai 6= 0 for all i = 1, 2, 3, ..., n and51

a > 0 means each of the component ai of a is greater than zero. |a| > ε will mean that |ai| > ε for all52

i = 1, 2, 3, ..., n.53

Let ψ(x) = ψ(x1, x2, ...xn) ∈ S(Rn) then ψ(x) is a window function and is a wavelet if and only if54
∞∫
−∞

ψ(x1, x2, ...xn)dxi = 055

∀i = 1, 2, ...n. (10)

We define ψ
(

x−b
a

)
≡ ψ

(
x1−b1

a1
, x2−b2

a2
, ... xn−bn

an

)
where ai, bi are real numbers and none of the ai is56

zero. The wavelet transform W f (a, b) of f with respect to the Kernel 1√
|a|

ψ
(

x−b
a

)
is defined by57

W f (a, b) =

〈
f (x),

1√
|a|

ψ

(
x− b

a

)〉
(11)

Here |a| = |a1a2...an|; none of ai’s is zero.58

We now prove the following Lemmas to be used to prove the main inversion formula.59

Lemma 3a: Let φ ∈ S(Rn) and ψ be a wavelet belonging to S(Rn), then60

1
Cψ

∫
aεRn

∫
bεRn

∫
tεRn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
ψ

(
x0 − b

a

)
dt db da

a2|a|

= (−Dx)
m φ(x)|x=x0∀ x0 ε Rn [6].

This is called point wise convergence of the wavelet inversion formula.61

Lemma 3b: Let φ ∈ S (Rn) and ψ be a wavelet belonging to S (Rn), then62

1
Cψ

∫
a ε Rn

∫
b ε Rn

∫
tε Rn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
ψ

(
x− b

a

)
dt db da

a2|a|

converges to (−Dm
x ) φ(x) uniformly ∀ x ∈ Rn.63

Proof: Let F(∧) = 1
(2π)

n
2

∫
Rn

(−Dt)
m φ(t) e−i ∧.t dt, be the Fourier transform of (−Dt)

m φ(t) then

it follows that in the sense of L2(Rn) convergence

1
Cψ

∫
a ε Rn

∫
b ε Rn

∫
c ε Rn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
ψ

(
x− b

a

)
dt db da

a2|a|

=
1

(2π)
n
2

∫
∧n

F(∧)ei∧.xd∧ = (−Dx)
m φ(x) [9].
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This convergence is also uniform by Weierstrass M-test because∣∣∣∣∣∣ 1

(2π)
n
2

∫
Rn

F(∧) ei∧.x d∧

∣∣∣∣∣∣ ≤ 1

(2π)
n
2

∫
|F(∧)|d∧ < ∞

F(∧) ∈ S(Rn).

Theorem 2. Let f ∈ S′(Rn) and W f (a, b) be its wavelet transform defined by

W f (a, b) =

〈
f (x),

1√
|a|

ψ

(
x− b

a

)〉
.

Then 〈
1

Cψ

∫
Rn

∫
Rn

W f (a, b)ψ
(

t− b
a

)
db da√
|a|a2

, φ(t)

〉
= 〈 f , φ〉 (12)

∀ f ∈ S′(Rn), φ ∈ S(Rn).

Proof: Using the structure formula for f we have64

W f (a, b) =

〈
Dm

x g(x),
1√
|a|

ψ

(
x− b

a

)〉

=

〈
g(x), (−Dx)

m 1√
|a|

ψ

(
x− b

a

)〉
by distributional differentiation

Here,65

(−Dx) = (−Dx1) (−Dx2) ... (−Dxn)

Dxi ≡
∂

∂xi
, i = 1, 2, ...n.

So,66

W f (a, b) =

〈
g(x), (Db)

m 1√
|a|

ψ

(
x− b

a

)〉

Db =
∂

∂b1

∂

∂b2
...

∂

∂bn
.

So, the L.H.S. expression in (12) can be written as67

1
Cψ

∫
tεRn

∫
aεRn

∫
bεRn

∫
xεRn

g(x)Dm
b

1√
|a|

ψ̄

(
x− b

a

)
ψ

(
t− b

a

)
φ̄(t)dx db da dt

=
1

Cψ

∫
tεRn

∫
aεRn

∫
xεRn

g(x)

 ∫
bεRn

{
Dm

b ψ̄

(
x− b

a

)}
ψ

(
t− b

a

)
db

 φ̄(t) dx da dt
a2|a| . (13)

We now integrate the integral in the big bracket by parts to get (13)68
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=
1

Cψ

∫
tεRn

∫
aεRn

∫
xεRn

g(x)

 ∫
bεRn

ψ̄

(
x− b

a

)
(−Db)

m ψ

(
t− b

a

)
db

 φ̄(t) dx da dt
a2|a|

=
1

Cψ

∫
tεRn

∫
aεRn

∫
xεRn

g(x)

 ∫
bεRn

ψ̄

(
x− b

a

)
(+Dt)

m ψ

(
t− b

a

)
db

 φ̄(t)da dt
a2|a|

By switching the order of integration in a and t we have (13)

=
1

Cψ

∫
aεRn

∫
tεRn

∫
bεRn

∫
xεRn

g(x)ψ̄
(

x− b
a

)
dx Dm

t ψ

(
t− b

a

)
dbφ̄(t)

dt da
|a|2|a| (14)

=
1

Cψ

∫
aεRn

∫
bεRn

∫
xεRn

g(x)ψ̄
(

x− b
a

)
dx

∫
tεRn

ψ

(
t− b

a

)
db (−Dt)

m φ̄(t)
dt da
|a|2|a|

To justify the switch in the order of integration with respect to a and t we perform the integration69

in the region [(a, t) : |a| > ε, a, t ∈ Rn] and then switch the order of integration and then let ε → 0.70

This existence of the n-triple integral in terms of b, a and t in (14) is proved by using Plancherel71

theorem with respect to the variable b and, using Cψ = (2π)n ∫
∧n

|ψ̂(∧)|2
|∧| d∧ we notice that the variable a72

disappears from the denominator and every calculation goes on smoothly. Since the functions φ and ψ73

are elements of S(Rn), the Fubini’s theorem can be applied to justify the above switches in order of74

integration.75

Now, (14) can be written as76

〈
g(x),

1
Cψ

∫
aεRn

∫
bεRn

∫
tεRn

(−Dt)
m φ(t)ψ̄

(
t− b

a

)
dt ψ

(
x− b

a

)
db da
|a|2|a|

〉
(15)

77

=
〈

g(x), (−Dx)
m φ(x)

〉
. (16)

By the wavelet inversion formula in Rn [8] and Lemma 3b.78

79

Note that the triple integral in (15) converges uniformly to (−Dx)
m φ(x)∀ x ∈ Rn. So (15)80

becomes (16).81

=
〈
(Dx)

m g(x), φ(x)
〉

= 〈 f (x), φ(x)〉 .

82
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