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Abstract: In this paper, we work with a diffusion-perturbed risk model comprising a surplus generating1

process and an investment return process. The investment return process is of standard Black-Scholes2

type, that is, it comprises a single risk-free asset that earns interest at a constant rate and a single risky3

asset whose price process is modelled by a geometric Brownian motion. Additionally, the company is4

allowed to purchase noncheap proportional reinsurance priced via the expected value principle. Using5

the Hamilton-Jacobi-Bellman approach, we derive a second-order Volterra integrodifferential equation6

which we transform into a linear Volterra integral equation of the second kind. We proceed to solve this7

integral equation numerically using the block-by-block method for the optimal reinsurance retention8

level that minimizes the ultimate ruin probability. The numerical results based on light- and heavy-tailed9

distributions show that proportional reinsurance and investments play a vital role in enhancing the10

survival of insurance companies. But the ruin probability exhibits sensitivity to the volatility of the stock11

price.12

Keywords: ruin probability; jump-diffusion; HJB equation; Volterra equation; block-by-block method;13

proportional reinsurance; investments14

1. Introduction15

The problem of minimizing the ruin probability, when the insurance company is allowed to invest16

part of its surplus in the money and stock markets and to reduce its risk by entering into proportional17

reinsurance treaties, has been extensively studied in different forms since the ground-breaking work18

of Bachelier [1]. Liang and Guo [2] found that the minimal ruin probability maximizes the adjustment19

coefficient γ under proportional reinsurance and that it satisfies the Lundberg inequality ψ(u) ≤ Ce−γu,20

where C is a constant. Wang [3] considered the case of multiple risky assets in an optimal investment21

problem for an insurer whose surplus evolves according to a jump-diffusion process, while Liang22

and Guo [4] considered the optimal reinsurance problem by combining quota-share and excess-of-loss23

reinsurance. The authors derived explicit expressions for the value function and the optimal strategies.24

Kasozi et al. [5] studied the problem of controlling ultimate ruin probability by quota-share25

reinsurance arrangements for an insurer that is allowed to invest part of the surplus in a risk-free and26

risky asset. They found that, for chosen parameter values, the optimal quota-share retention lies in the27

interval (0.2, 0.4), i.e., the company should cede between 60 and 80% of its risks to a reinsurer. This study28

also found that the ruin probabilities increase when stock prices become more volatile. However, while [5]29

assumed cheap reinsurance, in this paper we use noncheap reinsurance. Zhou et al. [6] investigated30

the optimal proportional reinsurance and investment problem for a jump-diffusion surplus process in a31

constant elasticity of variance (CEV) stock market.32
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Liu and Yang [7] revisited the model in Hipp and Plum [8] by incorporating a risk-free interest rate.33

Since they could not obtain closed-form solutions in this case, they provided numerical results for optimal34

strategies for maximizing the survival probability under different claim-size distribution assumptions.35

Schmidli [9] proved the existence and uniqueness of a solution of the ruin probability minimization36

problem in a model compounded by investment and dynamic proportional reinsurance for the case37

λ > 0 and σ = 0, i.e., when there is no diffusion and when F has a bounded density. But while [9] uses38

proportional reinsurance in minimizing ruin probabilities in the Cramér-Lundberg model, this paper39

considers proportional reinsurance and investments of Black-Scholes type in the diffusion-perturbed40

model.41

With the objective of determining the optimal investment and reinsurance strategies, Liang and42

Young [10] studied the problem of minimizing the probability of ruin in the presence of per-loss reinsurance43

for an insurance company whose risk process follows a compound Poisson process or its diffusion44

approximation. Assuming that the financial market in which the company invests follows the Black-Scholes45

model, and under minimal assumptions regarding admissible reinsurance forms, [10] showed that the46

optimal per-loss reinsurance policy is excess-of-loss reinsurance. They found that for cheap reinsurance47

under both models full reinsurance is never optimal, a result consistent with Mossin [11]. While under48

the compound Poisson model it is optimal not to buy reinsurance when the surplus is sufficiently low,49

for the diffusion approximation model the insurer always buys some amount of reinsurance but the50

optimal retention is inversely proportional to the surplus. This is also true of the optimal investment51

level as it decreases with an increase in the surplus. However, [10] concerned itself with excess-of-loss52

reinsurance while this paper explores optimality of noncheap proportional reinsurance and employs53

different numerical methods from those of [10].54

Zhu et al. [12] studied the optimal proportional reinsurance and investment problem in a general55

jump-diffusion financial market. With the objective of maximizing the expected exponential utility of56

terminal wealth, they added a general jump to the price of the risky asset, so that the financial market57

follows a general jump-diffusion model. They also incorporated a reasonable constraint on the proportional58

reinsurance strategy, thus making the model more reasonable and realistic, and derived closed-form59

expressions for the value function and optimal strategy. Glineur and Walhin [13] revisited de Finetti’s60

retention problem for proportional reinsurance by applying the convex optimization method. The authors61

extended the result to variable quota-share and surplus reinsurance with table of lines and showed, by62

means of a numerical example, that neither variable quota share reinsurance nor surplus reinsurance63

with table of lines may be considered as optimal reinsurance structures. They were able to determine64

the optimal quota-share and surplus reinsurance strategies. However, the numerical example also led65

them to the conclusion that there exists no general rule asserting superiority of either quota-share-type or66

surplus-type reinsurance above the other.67

An insurance company is said to have experienced ruin when its surplus becomes negative, thus68

making it impossible for the company to meet its financial obligations (e.g., claims). The time of ruin is69

the first time that the cedent’s surplus process enters (−∞, 0) and the associated probability is referred70

to as the ultimate ruin probability. Ruin is a technical term which does not necessarily mean that the71

company is bankrupt but rather that bankruptcy is at hand and that the company should therefore be72

prompted to take action to improve its solvency status. Thus, insurance companies customarily take73

precautions to avoid ruin. These precautions are referred to as control variables and include investments,74

capital injections or refinancing, portfolio selection, volume control through the setting of premiums and75

reinsurance arrangements, to mention but a few. This study focuses on reinsurance as a risk control76

mechanism for a company that also invests part of its surplus in risk-free and risky assets.77

According to Jang and Kim [14], insurance companies generally face two sources of risk, viz., an78

insolvency risk that arises from unexpectedly large insurance claims, and a market risk that arises from79
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risky investments in financial markets. Reinsurance can help mitigate the insolvency risk, while investing80

in some risk-free assets such as short-term bonds and money market funds could reduce the market risk.81

Reinsurance is the transfer of risk from a direct insurer (the cedent) to a second insurance carrier (the82

reinsurer). It serves the purpose of offering protection to cedents against very large individual claims or83

fluctuations in their aggregate portfolio of risks, as well as diversifying the financial losses caused by it.84

Reinsurance therefore allows the cedent to pass on some of its risk to the reinsurer but at the expense of a85

portion of the aggregate premiums receivable from the policyholders [15].86

Mikosch [16] has pointed out that reinsurance treaties are of two types: Random walk type reinsurance87

which includes proportional, excess-of-loss and stop-loss reinsurance, and extreme value type reinsurance88

which includes largest claims and ECOMOR reinsurance (excédent du coût moyen relatif or ‘excess of89

the average cost’). Proportional, or pro rata, reinsurance is a common form of reinsurance for claims90

of ‘moderate’ size, and requires the reinsurer to cover a fraction of each claim equal to the fraction of91

total premiums ceded to the reinsurer. Proportional reinsurance treaties are traditionally subdivided92

into two forms: quota-share and surplus reinsurance. Quota-share reinsurance is a common type of93

proportional reinsurance in which the cedent and the reinsurer agree to share claims and premiums in94

the same proportion which remains constant throughout the portfolio [17]. With surplus reinsurance the95

reinsurer agrees to accept an individual risk with sum insured in excess of the direct retention limit set by96

the cedent [18].97

It has been noted in [19] that proportional reinsurance is the easiest way of covering an insurance98

portfolio. This paper focuses on quota-share (QS) proportional reinsurance due to its simplicity, but other99

forms of reinsurance could also be used. In addition, the reinsurer pays a ‘ceding commission’ to the100

cedent to compensate for the costs of underwriting the ceded business. This commission is ignored in this101

study. Thus, if a cedent enters into a quota-share reinsurance treaty with a reinsurer, then they will share102

claims and premiums according to a retention level k ∈ [0, 1]. For every claim X that occurs at the time103

where the surplus prior to the claim payment is u, the cedent pays kX while the reinsurer pays (1− k)X.104

Similarly, for every premium amount c received by the insurer, cR = (1− k)c is paid to the reinsurer105

and ck = c− cR is retained by the cedent. Since the factor (1− k) represents the proportion of claims or106

premiums ceded to the reinsurer, it is called the cession level. It should be noted that for cheap reinsurance,107

ck = kc.108

It has been argued in the literature that the Cramér-Lundberg model is somewhat inadequate for109

modelling real-world insurance processes in that it does not account for interest earned on the reserve and110

for long tail business with claims that are settled long after occurrence. Furthermore, it does not include111

time-dependence or randomness of premium income or of the size of the portfolio. For these reasons,112

we make generalisations to the well known Cramér-Lundberg model by adding a diffusion term and113

also allowing the company to invest in the financial markets with returns of Black-Scholes type. Thus,114

this paper focuses on ultimate ruin and considers proportional reinsurance coupled with investments115

as mechanisms for reducing the insurer’s ultimate ruin probability. Reinsurance can protect insurers116

against potentially large losses, while investment of insurance premiums enables insurers to achieve117

certain management objectives, some of the most common of which are the minimization of the ruin118

probability, maximization of expected utility and mean-variance criteria. Li et al. [20] have pointed out119

that insurance companies commonly employ integrated reinsurance and investment strategies to increase120

their underwriting capacity, stabilize underwriting results, protect themselves against catastrophic losses121

and achieve financial growth.122

The remainder of the paper is organized as follows. In Section 2, we present the models to be studied123

and the underlying assumptions. In Section 3, we give the Hamilton-Jacobi-Bellman (HJB) equation and124

verification theorems for the ruin probabilities under proportional reinsurance, as well as the corresponding125

Volterra integrodifferential and integral equations. Section 4 gives a brief outline of the numerical method126
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used for solving the Volterra integral equation. In Section 5, we present numerical results and examples127

based on light- and heavy-tailed distributions. Finally, in Section 6 we give some concluding remarks and128

possible extensions to this work.129

2. The Models130

To give a rigorous mathematical formulation of the problem, we assume that all stochastic quantities
are defined on a complete filtered probability space (Ω,F , {Ft}t∈R+ ,P) satisfying the usual conditions,
i.e. the filtration {Ft}t∈R+ , which represents the information available at time t and forms the basis for
all decision-making, is right-continuous and P-complete. Right-continuity is necessary for ensuring that
the ruin time defined later in this section is a stopping time. The risk process considered in this paper is
made up of two important processes: the insurance process and the investment-generating process. In the
absence of reinsurance, the insurance process {Pt}t∈R+ is given by the diffusion-perturbed model

Pt = ct + σ1W1,t − S, t ≥ 0, (1)

where the process S = {St}t∈R+ defined as

St =

{
∑Nt

i=1 Xi if Nt > 0
0 if Nt = 0

is a compound Poisson process representing the aggregate claims made by policyholders. Here, the131

premiums are assumed to be calculated according to the expected value premium principle and to be132

collected continuously over time at a constant rate c = (1 + η)λµ > 0, where η > 0 is the relative safety133

loading of the insurer. W1 is a one-dimensional standard Brownian motion independent of the compound134

Poisson process St, {Nt} is a homogeneous Poisson process with constant intensity λ and the claim sizes135

{Xi}i∈N are a sequence of strictly positive i.i.d. random variables. We assume that the processes {Xi}i∈N,136

{Nt}t∈R+ and {W1,t}t∈R+ are mutually independent. We denote by F the distribution function of Xi, by137

µ = E[Xi] its first moment and by MX(t) = E
[
etXi
]

its moment-generating function. We will assume that138

F(0) = 0 and that at least one of σ1 or λ is non-zero.139

The diffusion term σ1W1 in the basic model (1) has been interpreted in a two-fold manner in the140

literature. On the one hand, σ1W1 could be understood as standing for the uncertainty or random141

fluctuations associated with the insurance process at time t (the U-S case). This means that the aggregate142

claims up to time t are given by the compound Poisson process St. On the other hand, σ1W1 could143

represent the additional small claims which account for uncertainty associated with the insurance market144

or the economic environment (the A-C case), so that the aggregate claims process is Ŝt = St − σ1W1,t (see,145

e.g., [6]). It should be noted that, given an initial surplus u, when there is no volatility in the surplus and146

claim amounts (i.e., when σ1 = 0), Equation (1) becomes the well-known classical risk process (or the147

Cramér-Lundberg model).148

Given that the insurer controls its insurance risk by taking QS proportional reinsurance at a retention
level k ∈ [0, 1], the insurance process in the presence of QS reinsurance is now

Pk
t = ckt + kσ1W1,t − kS (2)

with dynamics
dPk

t = ckdt + kσ1dW1,t − kdS. (3)

If k = 0 then there is full reinsurance, i.e., the entire portfolio of risks is ceded to the reinsurer, whereas149

if k = 1 then there is no reinsurance. The case k = 1 is precisely the model considered in [21,22]. In this150
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study, we assume noncheap reinsurance, meaning that the reinsurer uses a higher safety loading than the151

insurer. Otherwise, the insurance company can take full reinsurance and receive a positive return without152

any risk, which is undesirable from the reinsurer’s standpoint, as was demonstrated in [23]. Thus, if153

cR = (1− k)(1 + θ)λµ is the reinsurance premium to be paid for the QS reinsurance, then the insurance154

premium rate is ck = c− cR = [k(1 + θ)− (θ − η)]λµ, where θ ∈ (η, ∞) is the reinsurer’s safety loading.155

In order for the net profit condition (NPC) to be fulfilled, that is,156

[k(1 + θ)− (θ − η)]λµ− kλµ > 0,

we need157

k > k = 1− η

θ
, (4)

otherwise ruin is certain for any initial capital u > 0. Note that in noncheap reinsurance the fraction of158

the premiums diverted to the reinsurer is larger than that of each claim covered by the reinsurer. The159

classical risk process with noncheap reinsurance was also studied by, among others, Ma et al. [24] who160

obtained the minimal probability of ruin as well as the optimal proportional reinsurance strategy using the161

dynamic programming approach, while cheap reinsurance (i.e., θ = η) was considered in Schmidli [25]162

who allowed for investment in a risky asset and obtained, by means of an HJB equation, the optimal163

reinsurance and investment strategies for minimizing the ultimate ruin probability.164

Suppose the insurer invests part of its surplus, into say, a risk-free asset (a bond) and a risky asset
(stocks) as in [7]. Let the return on investments process be:

Rt = rt + σ2W2,t, t ≥ 0, R0 = 0, (5)

where r is the risk-free interest rate, so that Rt = rt implies that one unit invested now will be worth
ert at time t; W2 is another one-dimensional Brownian motion independent of the surplus-generating
process P and σ2 is the volatility of the stock price, so that the diffusion term σ2W2 accounts for random
fluctuations in the investment returns. Equation (5) is actually the famous Black-Scholes option pricing
formula according to which the price of a stock is assumed to follow the stochastic differential equation

Yt = Y0 +
∫ t

0
YsdRs, (6)

where Y0 is the stock price at t = 0. The process Y is a geometric Brownian motion. The solution to (6) is165

the value of the stock at time t and is given by Yt = Y0 exp{(r− 1
2 σ2

2 )t + σ2W2,t}.166

The risk process is therefore made up of a combination of the surplus-generating process compounded
by proportional reinsurance (2) and the investment-generating process (5). Thus, the insurance portfolio is
represented by the risk process Uk = {Uk

t }t∈R+ which has dynamics

dUk
t = dPk

t + Uk
t−dRt. (7)

A reinsurance strategy k is said to be admissible if it is Ft-progressively measurable and takes values from
the setR = [0, 1]. Thus, given an admissible reinsurance strategy k ∈ R, and assuming that the mutually
independent processes P and R belong to the rather general class of semimartingales, then under some
weak additional assumptions the risk process Uk is mathematically the solution of the linear SDE

Uk
t = u + Pk

t +
∫ t

0
Uk

s−dRs, (8)
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where Uk
0 = u > 0 is the initial surplus of the insurance company, Pk

t is the basic insurance (or
surplus-generating) process in equation (2), Rt the investment-generating process in equation (5) and Uk

t−

denotes the insurer’s surplus (incorporating both proportional reinsurance and investments) just prior to
time t. Paulsen [26], gave the solution of (8) as

Uk
t = Rt

(
u +

∫ t

0
R−1

s dPk
s

)
, (9)

where167

Rt = exp
{(

r− 1
2 σ2

2

)
t + σ2W2,t

}
, t ≥ 0168

is the geometric Brownian motion so extensively used in mathematical finance and is the solution of the169

SDE dRt
Itô
= rRtdt + σ2RtdW2,t, with R0 = 1.170

Since both P and R have stationary independent increments, Ut is a homogeneous strong Markov171

process. We define the value function of this optimization problem as172

ψk(u) = P(Uk
t ≤ 0 for some t ≥ 0|Uk

0 = u) = P(τk < ∞|Uk
0 = u),

where ψk(u) is the ultimate ruin probability under the reinsurance policy k when the initial surplus is u173

and τk = inf{t > 0|Uk
t < 0} is the time of ruin, with τk = ∞ if Uk

t remains positive. Then the objective is174

to find the optimal value function, i.e., the minimal ruin probability175

ψ(u) = inf
k∈R

ψk(u) (10)

and the optimal policy k∗ such that ψk∗(u) = ψ(u), considered optimal if k∗ minimizes the ruin probability.176

Since the ultimate survival probability φk(u) = P(τk = ∞|Uk
0 = u) = 1− ψk(u), we may alternatively177

find the value of k∗ which maximizes φ(u), so that the optimal value function becomes178

φ(u) = sup
k∈R

φk(u). (11)

3. HJB, Integrodifferential and Integral Equations179

In this section, we derive the HJB equation for the problem and the corresponding integrodifferential
and integral equations. Since the investment-generating process Rt follows (5), it follows that under weak
assumptions the ruin probability ψ(u) is twice continuously differentiable on (0, ∞) and is a solution to
the equation (see [27])

Aψ(u) = −λF(u), (12)

where F(u) = 1− F(u), with boundary conditions limu→∞ ψ(u) = 0 and ψ(u) = 1 if σ1 > 0 (see Theorem 1180

below). Here A is the integrodifferential operator181

Ag(u) =
1
2

(
σ2

2 u2 + k2σ2
1

)
g′′(u) + (ru + ck)g′(u) + λ

∫ ∞

0
(g(u− kx)− g(u)) dF(x) (13)

Sometimes it is more convenient, as we do in this paper, to work with the survival probability φ(u) =
1− ψ(u), in which case (12) becomes

Aφ(u) = 0.
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The integrodifferential operator (13), which is the infinitesimal generator for the process Uk
t , does not182

easily give rise to closed-form solutions, hence the need for the use of numerical methods. The following183

theorem is proved in [27].184

Theorem 1. Let τk = inf{t > 0|Uk
t < 0} be the ruin time, with τk = ∞ if Uk

t ≥ 0 ∀ t. Assume that the185

equation Aφ(u) = 0 has a bounded, twice continuously differentiable solution (once continuously differentiable if186

σ1 = σ2 = 0) that satisfies the boundary conditions187

φ(u) = 0 on u < 0,

φ(0) = 0 if σ2
1 > 0, (14)

lim
u→∞

φ(u) = 1

Then φ(u) = 1− ψ(u) is the survival probability.188

We now present the HJB equation for this optimization problem.189

Theorem 2. Assume that the survival probability φ(u) defined by (11) is twice continuously differentiable on190

(0, ∞). Then φ(u) satisfies the HJB equation191

sup
k∈R

{
1
2

(
σ2

2 u2 + k2σ2
1

)
φ
′′
(u) + (ru + ck)φ

′
(u) + λ

∫ u

0
(φ(u− kx)− φ(u)) dF(x)

}
= 0 (15)

for u > 0, whereR = [0, 1].192

Proof. See [28].193

The function φ(u) will satisfy the HJB equation (15) only if it is strictly increasing, strictly concave,194

twice continuously differentiable and satisfies φ(u)→ 1 for u→ ∞ [8]. In the following, therefore, φ(u)195

will be assumed to be strictly increasing. This is consistent with the smoothness assumption and the196

intuition that the more wealth there is (through investment), the higher the probability of survival of the197

insurance company. It will also be assumed that φ(u) is concave. To ensure smoothness and concavity, the198

claim density function must be locally-bounded [7].199

The following verification theorem, whose proof is similar to that of Theorem 2 in Kasumo et al. [23],200

is essential for solving the associated control problem as it leads to the integrodifferential equation for the201

problem.202

Theorem 3. Suppose Φ ∈ C2 is an increasing strictly concave function satisfying the HJB Equation (15) subject to
the boundary conditions

Φ(u) = 0 on u < 0

Φ(0) = 0 if σ2 > 0

lim
u→∞

Φ(u) = 1
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for 0 < u ≤ ∞. Then the maximal survival probability φ(u) given by (11) coincides with Φ. Furthermore, if k∗

satisfies

1
2

(
σ2

2 u2 + k∗2σ2
1

)
Φ
′′
(u) + (ru + ck∗)Φ

′
(u) + λ

[∫ u

0
Φ (u− k∗x) dF(x)−Φ(u)

]
= 0 (16)

when 0 ≤ u < ∞, where ck∗ = [k∗(1 + θ) − (θ − η)]λµ, then the policy k∗ is an optimal policy, that is,203

Φ(u) = φ(u) = φk∗(u).204

The integrodifferential equation for the survival probability φ(u), which follows immediately from
Theorem 3, is of the form Aφ(u) = 0 (since, by (14), φ(u) = 0 for u < 0), where A is the infinitesimal
generator (13) of the underlying risk process, that is,

1
2

(
σ2

2 u2 + k2σ2
1

)
φ
′′
(u, k) + (ru + ck)φ

′
(u, k) + λ

∫ u

0
φ(u− kx, k)dF(x)− λφ(u, k) = 0, (17)

for 0 < u ≤ ∞. (17) can be rewritten as

1
2

(
σ2

2 u2 + k2σ2
1

)
φ
′′
(u) + (ru + ck)φ

′
(u) + λ

∫ u

0
φ(u− kx)dF(x)− λφ(u) = 0, (18)

for 0 < u ≤ ∞. Equation (18) is a second-order Volterra integrodifferential equation (VIDE) which is easily205

transformed, using successive integration by parts, into a linear Volterra integral equation of the second206

kind (VIE-2) to be used in this study. This leads to the following theorem which is our main result.207

Theorem 4. The integrodifferential equation (18) can be represented as a VIE-2

φ(u) +
∫ u

0
K(u, x)φ(x)dx = α(u) (19)

with u ∈ [0, ∞), where K : [0, ∞) × [0, ∞) → R and α : [0, ∞) → R are two known continuous functions,208

φ : [0, ∞)→ R is the unknown function to be determined, and209

1. For the case without diffusion (i.e., when σ2
1 = σ2

2 = 0), the kernel and forcing function are given, respectively,
by

K(u, x) = − r + λF(u− kx)
ru + ck ,

α(u) =
ck

ru + ck φ(0),
(20)

with F(x) = 1− F(x).210

2. For the case with diffusion (i.e., when σ2
1 + σ2

2 > 0), the kernel and forcing function are, respectively,

K(u, x) = 2
(2r− 3σ2

2 + λ)kx + ck + λG(u− kx)− (r− σ2
2 + λ)u

σ2
2 u2 + k2σ2

1
,

α(u) =


2ck

σ2
2 u

φ(0) if σ2
1 = 0,

σ2
1 u

σ2
2 u2+k2σ2

1
φ′(0) if σ2

1 > 0,

(21)

with G(x) =
∫ x

0 F(v)dv211
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Setting k = 1 in both of the above cases gives the VIE-2 for the case without reinsurance, while setting σ2
2 = r = 0212

leads to the VIE-2 for the case without investments.213

Proof. Integrating Equation (18) by parts with respect to u on [0, z] gives214

0 =
1
2

∫ z

0

(
σ2

2 u2 + k2σ2
1

)
φ′′(u)du +

∫ z

0
(ru + ck)φ′(u)du− λ

∫ z

0
φ(u)du

+λ
∫ z

0

∫ u

0
φ(u− kx)dF(x)du

=
1
2

(
σ2

Rz2 + σ2
P

)
φ′(z)− 1

2
σ2

Pφ′(0) +
∫ z

0
[(r− σ2

R)u + ck]φ′(u)du− λ
∫ z

0
φ(u)du

+λ
∫ z

0

∫ u

0
φ(ν) f (u− ν)dνdu (ν := u− kx) (22)

Evaluating the third term in (22) by integrating by parts yields215

0 =
1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)− 1

2
σ2

1 φ′(0) + [(r− σ2
2 )z + ck]φ(z)− ckφ(0)

−(r− σ2
2 + λ)

∫ z

0
φ(ν)dν + λ

∫ z

0
F(z− ν)φ(ν)dν

Integrating (23) by parts over [0, u] with respect to z gives216

0 =
∫ u

0

1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)dz +

∫ u

0
[(r− σ2

2 )z + ck]φ(z)dz−
(

1
2

σ2
1 φ′(0) + ckφ(0)

)
u

−(r− σ2
2 + λ)

∫ u

0

∫ z

0
φ(ν)dνdz + λ

∫ u

0

∫ z

0
F(z− ν)φ(ν)dνdz

=
1
2

(
σ2

2 z2 + k2σ2
1

)
φ′(z)

∣∣∣∣u
0
− σ2

2

∫ u

0
zφ(z)du +

∫ u

0
[(r− σ2

2 )z + ck]φ(z)dz

−
(

1
2

σ2
1 φ′(0) + ckφ(0)

)
u− (r− σ2

2 + λ)
∫ u

0

∫ u

ν
dzφ(ν)dν + λ

∫ u

0

∫ u

ν
F(z− ν)dzφ(ν)dν (23)

The above is obtained by simplifying the double integrals in the last two terms by using integration by217

parts again and switching the order of integration using Fubini’s Theorem [29]. Recall that F(0) = 0 and218

F(x−) = F(x) for x ∈ R, F being absolutely continuous with respect to Lebesgue measure. Thus, further219

simplification yields220

0 =
1
2

(
σ2

2 u2 + k2σ2
1

)
φ(u)− 1

2
σ2

1 (φ(0) + uφ′(0))− ckuφ(0)

+
∫ u

0

[(
2r− 3σ2

2 + λ
)

z + ck + λG(u− z)−
(

r− σ2
2 + λ

)
u
]

φ(z)dz, (24)

where G(x) =
∫ x

0 F(v)dv. Replacing z with x gives221

0 =
1
2

(
σ2

2 u2 + k2σ2
1

)
φ(u)− 1

2
σ2

1 (φ(0) + uφ′(0))− ckuφ(0)

+
∫ u

0

[(
2r− 3σ2

2 + λ
)

x + ck + λG(u− x)−
(

r− σ2
2 + λ

)
u
]

φ(x)dx. (25)

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 14 January 2019                   doi:10.20944/preprints201901.0121.v1

http://dx.doi.org/10.20944/preprints201901.0121.v1


10 of 20

Equation (25) can be written as222

φ(u) + 2
∫ u

0

(
2r− 3σ2

2 + λ
)

x + ck + λG(u− x)−
(
r− σ2

2 + λ
)

u
σ2

2 u2 + k2σ2
1

φ(x)dx

=
σ2

1 (φ(0) + uφ′(0)) + 2ckuφ(0)
σ2

2 u2 + k2σ2
1

(26)

which is a VIE-2. Replacing x with kx gives the kernel and forcing function as

K(u, x) = 2
(2r− 3σ2

2 + λ)kx + ck + λG(u− kx)− (r− σ2
2 + λ)u

σ2
2 u2 + k2σ2

1
,

α(u) =


2ck

σ2
2 u

φ(0) if σ2
1 = 0,

σ2
1 u

σ2
2 u2+k2σ2

1
φ′(0) if σ2

1 > 0,

(27)

This is simply Equations (19) and (21) (the diffusion case). The case without diffusion is really the223

Cramér-Lundberg model with a reinsurance retention and a constant force of interest, that is, the IDE is224

(ru + ck)φ′(u) + λ
∫ u

0
[φ(u− kx)− φ(u)]dF(x) = 0 (28)

It is known that φ(u) = 0 for u < 0, and that limu→∞ φ(u) = 1. Integrating (28) by parts on [0, z] with
respect to u and replacing x with kx transforms the IDE into a VIE of the second kind with kernel and
forcing function given, respectively, by

K(u, x) = − r + λF(u− kx)
ru + ck ,

α(u) =
ck

ru + ck φ(0)
(29)

which is the case without diffusion (that is, when σ2
1 = σ2

2 = 0), as given by Equations (19) and (20)225

above.226

The following theorem has been proved in [30] for k = 1.227

Theorem 5. Let φ(u) be the survival probability and assume that ck > 0, λ > 0 and r > 0. Then φ(0) > 0 ∀ u > 0228

iff r > 1
2 σ2

2 , and in this case φ(∞) = 1. When r ≤ 1
2 σ2

2 , φ(u) = 0 ∀ u.229

4. Numerical Methods230

This section discusses the numerical method to be applied in finding numerical solutions of the
survival probability φ(u) using a fixed grid u = 0, h, 2h, . . .. The assumptions of Theorem 1 are assumed
to hold throughout. For this to happen, by Theorem 4, it is necessary that Theorem 5 also holds. The
numerical solution of the general linear VIE-2

φ(u) +
∫ u

0
K(u, x)φ(x)dx = α(u), (30)
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where the kernel K(u, x) and the forcing function β(u) are known functions and φ(u) is the unknown
function to be determined, is of the form

φn + h
n

∑
i=1

wiKn,iφi = αn, (31)

where φi is the numerical approximation to φ(ih), Kn,i = K(nh, ih), φn = φ(nh) and αn = α(nh). The wi231

are the integration weights. Here, the block-by-block method will be used in conjunction with Simpson’s232

Rule of integration, known to have an error of order 4, to obtain solutions in blocks of two values (see233

Theorem 6 and Remark 1). A comprehensive description of the block-by-block method can be found in234

[22,28,31,32].235

Definition 1. (Convergence) Let φ0(h), φ1(h), . . . denote the approximation obtained by a given method using236

step-size h. Then a method is said to be convergent iff237

|φi(h)− φ(ui)| → 0, f or i = 0, 1, 2, . . . , N

as h→ 0, N → ∞, s.t. Nh = a.238

Definition 2. (Order of convergence) A method is said to be of order q if q is the largest number for which there239

exists a finite constant C s.t.240

|φi(h)− φ(ui)| ≤ Chq, i = 0, 1, 2, . . . , for all h > 0

We need to show that the method we use converges and also establish its order of convergence. The241

following lemma given by [31] is required as it forms the basis for the theorem that follows.242

Lemma 1. If |ξn| ≤ A
n−1

∑
i=0
|ξi|+ B, A > 0, B > 0 then |ξn| ≤ B(1 + A)n

243

The proof follows immediately by induction. As a corollary we have that, if A = hK and u = nh, then244

|ξn| ≤ BeKu (32)

Theorem 6. The block-by-block method is convergent and its order of convergence is four.245

The proof of Theorem 6 is given by Linz [31].246

Remark 1. By Theorem 3.1 in [22] and from results in Chapter 7 of Linz [32], it follows that for a fixed u so
that nh = u, the solution satisfies

|φn − φ(u)| = O(h4), (33)

provided that g is four times continuously differentiable as is the case here by Theorem 2.4 in [22]. On the247

other hand, for the block-by-block method |φ2m+2 − φ2m+1| = O(h4) as well.248

5. Numerical Results249

We now present some numerical results and study the impact of the volatility of stock prices on the250

ruin probability. We assume that the small claim sizes are exponentially distributed and the large ones are251

Pareto distributed. The merits of using these two distributions for modelling insurance claims are briefly252
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well articulated in [33]. The VIE (19) was solved using the fourth-order block-by-block method described253

in Section 4.254

Exp(β) refers to the exponential density f (x) = βe−βx. The exponential distribution has distribution255

function F(x) = 1− e−βx from which the tail distribution is F(x) = 1− F(x) = e−βx. Its mean excess256

function is eF(x) = 1
µ , so that G(x) = x− 1

β F(x). The Pareto distribution is commonly used for modelling257

large claims. The probability density function of the Pareto distribution is f (x) = ακα

(κ+x)α+1 where α > 0,258

κ = α− 1 > 0 and the distribution function F(x) = 1−
(

κ
κ+x
)α. Hence the tail distribution is F(x) =259 (

κ
κ+x
)α. Also, G(x) = x− 1 +

(
κ

κ+x
)κ . Note also that the Pareto distribution has a mean excess function260

eF(x) = κ+x
α−1 (or 1 + x

κ ), meaning that G(x) can alternatively be written as x−
(
1 + x

κ

)
F(x).261

A step-size of h = 0.01 was used throughout. All numerical simulations in this section were performed262

using a Samsung Series 3 PC with an Intel Celeron CPU 847 at 1.10GHz and 6.0GB internal memory.263

The block-by-block method was implemented using the FORTRAN programming language and taking264

advantage of its Double Precision feature to obtain satisfactory accuracy. Slower programs such as R,265

MATLAB, Maple or Mathematica could, of course, have been used but at the expense of considerably266

longer computing time. Although Theorem 4 deals with the survival probability φ(u) as the value function,267

the programs have been adjusted to output infinite ruin probabilities (since ψ(u) = 1− φ(u)). Since the268

block-by-block method does not require special starting procedures, it can be initiated using any value269

of φ(0). The values stabilize at g(∞) which is used for scaling the probabilities. For φ(u− 999h) to be270

virtually equal to 1, the corresponding upper bound u should be sufficiently large. Without reinsurance,271

the results for ruin probabilities have been published widely (see, e.g., [22] and the references therein). The272

graphs were constructed using MATLAB R2016a. Five cases will now be presented by way of illustration.273

Without loss of generality, we use the parameter values shown in Table 1 in the numerical examples that274

follow.275

Table 1. Model parameter values.

Parameter Value Source/Reference

θ 0.8 Cheng and Zhao [34]
η 0.5 Cheng and Zhao [34]
σ1 0.001 Kasozi et al. [5]
σ2 0.001 Kasozi et al. [5]
r 0.05 Kasozi et al. [5]
λ 2 Kasumo et al. [23]
µ 1.5 Estimated

From the net profit condition (4), we must use QS retention values k in the set (k, 1], where k =276

1− η
θ = 1− 0.5

0.8 = 0.375. In addition, we will take β = 0.5 as the parameter of the exponential distribution,277

and α = 3, κ = 2 as the parameters of the Pareto distribution.278

5.1. Proportional Reinsurance in the Cramér-Lundberg Model279

When σ2
1 = σ2

2 = r = 0 and 0 ≤ k ≤ 1, then the SDE (8) takes the form of the classical risk process
compounded by proportional reinsurance

Uk
t = u + ckt−

Nt

∑
i=1

kXi
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By Itô’s formula, the infinitesimal generator for the process Uk is given by

Ag(u) = ckg′(u) + λ
∫ u

0
[g(u− kx)− g(u)]dF(x)

from which the VIDE corresponding to the survival probability φ(u) follows as

ckφ′(u) + λ
∫ u

0
[φ(u− kx)− φ(u)]dF(x) = 0 (34)

This VIDE reduces to an ordinary VIE of the second kind with kernel K(u, x) = − λF(u−kx)
ck , where280

F(x) = 1− F(x), and forcing function α(u) = φ(0). This is simply (19) and (20) with r = 0.281

282

Example 1. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5.283

Since the ruin probability is a function of the initial surpus u, we observe from Figure 1a that the284

ruin probability reduces as the initial surplus increases. We also note that the higher the cession level285

1− k for QS reinsurance, the lower the ruin probability. From the results presented in Figure 1, we see286

that the lowest value of k that satisfies the NPC (4) and at the same time gives the minimal ultimate ruin287

probability is 0.376. Thus, the optimal retention for QS reinsurance is k∗ = 0.376. This means that the288

company should cede about 62.4% of its risks to a reinsurer.289
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Figure 1. Ultimate ruin probabilities for the CLM compounded by proportional reinsurance. (a) CLM with
QS reinsurance: Exp(0.5) claims. (b) CLM with QS reinsurance: Par(3,2) claims.

Example 2. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5.290

The ultimate ruin probabilities for large claims reduce more when QS reinsurance is applied to the291

portfolio of risks as shown in Figure 1b. As for the small claim case, the optimal QS retention level in the292

large claim case is k∗ = 0.376.293
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5.2. Proportional Reinsurance in the Cramér-Lundberg Model under Interest Force294

Here we consider the case when σ2
1 = σ2

2 = 0, r > 0 and 0 ≤ k ≤ 1 which leads to the CLM
compounded by proportional reinsurance and a constant force of interest

Uk
t = u + ckt−

Nt

∑
i=1

kXi + r
∫ t

0
Usds

The survival probability satisfies the VIDE

(ru + ck)φ′(u) + λ
∫ u

0
[φ(u− kx)− φ(u)]dF(x) = 0 (35)

which reduces to a linear VIE of the second kind with kernel and forcing function given in (20).295

296

Example 3. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05.297

The comments made under Example 1 apply here as well and the optimal QS reinsurance policy in298

this case is again k∗ = 0.376 (see Figure 2a).299
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Figure 2. Ultimate ruin probabilities for the CLM compounded by proportional reinsurance and a constant
force of interest. (a) CLM with interest force: Exp(0.5) claims. (b) CLM with interest force: Par(3,2) claims.

Example 4. Pareto distribution with λ = 2, α = 3, κ = 2, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05.300

The comments made under Example 2 apply to this case also. Again, the optimal QS reinsurance301

policy is k∗ = 0.376 as shown in Figure 2b.302
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5.3. Proportional Reinsurance in the Diffusion-Perturbed Model303

When σ2
1 > 0, σ2

2 = r = 0 and 0 ≤ k ≤ 1, then we have the diffusion-perturbed model (DPM)
compounded by proportional reinsurance

Uk
t = u + ckt + kσ1W1,t −

Nt

∑
i=1

kXi

In this case, the associated VIE has kernel and forcing function given, respectively, by K(u, x) =304

2[ck−λ(u−kx)+λG(u−kx)]
k2σ2

1
and α(u) = u

k2 φ′(0). This is simply (21) with σ2
2 = r = 0.305

Example 5. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = σ2 = 0, σ1 = 0.001.306

It can be seen from Figure 3a that k∗ ≈ 0.9 for u ∈ [0, 15] and k∗ = 0.95 for u > 15. It is expected that307

when u is sufficiently large, it is optimal for the company not to reinsure, i.e., k∗ = 1.308
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Figure 3. Ultimate ruin probabilities for the DPM compounded by proportional reinsurance. (a) DPM with
QS reinsurance: Exp(0.5) claims. (b) DPM with QS reinsurance: Par(3,2) claims.

Example 6. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5, r = σ2 = 0, σ1 = 0.001.309

For the large claim cases in the DPM, the ruin probabilities increase instead of reducing with the310

application of proportional reinsurance, as can be seen from Figure 3b. We can therefore conclude that it is311

optimal not to reinsure, i.e., k∗ = 1.312

5.4. Proportional Reinsurance in the Perturbed Model under Interest Force313

This is the case when σ2
1 > 0, σ2

2 = 0, r > 0 and 0 ≤ k ≤ 1, then we have the DPM compounded by
proportional reinsurance and a constant force of interest

Uk
t = u + ckt + kσ1W1,t −

Nt

∑
i=1

kXi + r
∫ t

0
Usds
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The corresponding VIE has kernel and forcing function given in (21) with σ2
2 = 0.314

Example 7. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05, σ1 =315

0.001, σ2 = 0.316

For the DPM under interest force, it is evident from Figure 4a that for exponentially distributed claim317

sizes the optimal QS reinsurance retention k∗ ∈ (0.85, 0.9) since the graph for k = 0.85 is slightly higher for318

the first time than that for k = 0.9. Thus, the optimal policy is to reinsure 10% of the risks, i.e., k∗ ≈ 0.9.319
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Figure 4. Ultimate ruin probabilities for the DPM compounded by proportional reinsurance and a constant
force of interest. (a) DPM with interest force: Exp(0.5) claims. (b) DPM with interest force: Par(3,2) claims.

Example 8. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5, r = 0.05, σ1 = 0.001, σ2 = 0.320

For the large claim case in the DPM with interest force, Figure 4b shows that the optimal QS retention321

k∗ ∈ (0.9, 0.95) since the graph for k = 0.9 is higher for the first time than that for k = 0.95. In this case, the322

company should cede only about 5% of its risks to a reinsurer since k∗ ≈ 0.95.323

5.5. Proportional Reinsurance with Investments of Black-Scholes Type324

When we have stochastic return on investments, the model takes the form325

Uk
t = u +

∫ t

0

(
rUk

s + ck
)

ds +
∫ t

0

√
σ2

1 + σ2
2
(
Uk

s
)2dWs − S, Uk

0 = u > 0

Theorem 2, together with the integrodifferential operator (13), gives the corresponding326

integrodifferential equation for the survival probability φ(u) as327

1
2
(σ2

2 u2 + k2σ2
1 )φ

′′
(u) + (ru + ck)φ

′
(u) + λ

∫ u

0
φ(u− kx)dF(x)− λφ(u) = 0 (36)

for 0 ≤ u ≤ ∞, which is a second-order Volterra integrodifferential equation (VIDE). Repeated integration328

by parts transforms this into a VIE of the second kind with kernel and forcing function as given in (21).329
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Example 9. Exponential distribution with λ = 2, β = 0.5, µ = 1.5, θ = 0.8, η = 0.5, r = 0.05, σ1 = σ2 =330

0.001.331

This is the small claim case assuming that, in addition to purchasing noncheap proportional332

reinsurance, the insurance company invests part of its surplus in risk-free and risky assets according to the333

Black-Scholes options pricing formula. As shown in Figure 5a, the optimal QS retention k∗ ∈ (0.8, 0.85).334

From the graph, we see that k∗ ≈ 0.85, meaning that the company should reinsure about 15% of its risks.335
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Figure 5. Ultimate ruin probabilities for the DPM compounded by proportional reinsurance and
investments of Black-Scholes type. (a) DPM with stochastic interest: Exp(0.5) claims. (b) DPM with
stochastic interest: Par(3,2) claims.

Example 10. Pareto distribution with λ = 2, α = 3, κ = 2, θ = 0.8, η = 0.5, r = 0.05, σ1 = σ2 = 0.001.336

For the large claim case in the model involving investments of Black-Scholes type, k∗ ∈ (0.9, 0.95) as337

shown in Figure 5b. In fact, k∗ ≈ 0.95.338

5.6. Sensitivity of Ruin Probability to Volatility of Stock Prices339

Figure 6 shows the effect of volatility of stock prices on the ultimate ruin probability. Evidently,340

as stock prices become more volatile (that is, as σ2 increases), the ruin probability also increases, and341

vice versa. Volatility is actually a measure of the riskiness of a stock. If the volatility of the stock price342

increases but the expected rate of return of the stock stays the same, then the insurer will find the reward343

for accepting the risk unattractive and would rather invest less in stocks and more in bonds. Conversely,344

a decrease in the volatility of the stock price enables the insurer to receive the same return but with a345

lower risk. For this reason, the company will find that it makes economic sense to invest in the stock. This346

applies to both the exponential and Pareto distributions as Figure 6 makes abundantly clear.347
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Figure 6. Effects of volatility of stock prices on the ultimate ruin probability in the small and large claim
cases. (a) Effect of volatility coefficient on ψ(u): Exp(0.5) claims. (b) Effect of volatility coefficient on ψ(u):
Par(3,2) claims.

However, we also observe from Figure 6 that the ruin probabilities for large claims are much lower348

than those for small claims.349

6. Conclusion350

It is evident from the research findings that in the CLM, the ruin probabilities keep reducing as k351

reduces up to the smallest k that satisfies the NPC, so that the optimal QS retention level for both small352

and large claim cases in the CLM with and without a constant force of interest is k∗ = 0.376. However,353

for the DPM the ruin probabilities keep reducing up to a given retention level, after which they begin to354

increase. This is true for both small and large claim cases. This means that the optimal retention level355

for proportional reinsurance lies somewhere around the point at which the ruin probabilities begin to356

rise again after consistently falling with a reduction in k. This is in line with our expectation that the ruin357

probabilities should keep reducing as the quota-share retention level reduces and then start rising again358

after a certain k, giving an indication of where the optimal retention k∗ lies. The results from the previous359

section indicate that proportional reinsurance does have a positive impact on the survival of insurance360

companies as it minimizes their ultimate ruin probabilities.361

Overall, the results for the DPM show that in the small claim case the optimal policy is k∗ ≥ 0.85,362

while in the large claim case it is k∗ ≥ 0.95. This means that an insurance company should reinsure up to363

about 15% of its portfolio in the small claim case and only up to about 5% of its risks in the large claim case.364

The reason for this difference is that since large claims are also extremal and therefore rare the company365

can afford to retain more of its large-scale risks.366

The results presented in this paper indicate that investment of the surplus plays an important role367

in the survival of insurance companies as it significantly drives down the ultimate ruin probabilities.368

Noncheap proportional reinsurance also has an impact on the minimization of the ultimate ruin369

probabilities of insurance companies, thus enhancing their chances of survival in the market. Possible370

extensions of this work include the use of other forms of reinsurance arrangements (e.g., surplus,371

excess-of-loss or stop-loss) as well as inclusion of jumps in the investment process.372
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Abbreviations377

The following abbreviations are used in this paper:378

379

CLM Cramér-Lundberg Model
DPM Diffusion-Perturbed Model
NPC Net Profit Condition
SDE stochastic differential equation
HJB Hamilton-Jacobi-Bellman
VIDE Volterra integrodifferential equation
VIE Volterra integral equation
VIE-2 Volterra integral equation of the second kind
QS quota-share
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