
git • master@Preprints-1.0-0::2510246-2019-01-10 (2019-01-10 07:21Z) • safrank

How to understand common patterns in big data: the case of human collective
memory

Steven A. Frank∗

Simple patterns often arise from complex systems. For example, human perception of similarity decays
exponentially with perceptual distance. The ranking of word usage versus the frequency at which the
words are used has a log-log slope of minus one. Recent advances in big data provide an opportunity to
characterize the commonly observed patterns of nature. Those observed regularities set the challenge
of understanding the mechanistic processes that generate common patterns. This article illustrates the
problem with the recent big data analysis of collective memory. Collective memory follows a simple
biexponential pattern of decay over time. An initial rapid decay is followed by a slower, longer lasting
decay. Candia et al. successfully fit a two stage model of mechanistic process to that pattern. Although
that fit is useful, this article emphasizes the need, in big data analyses, to consider a broad set of
alternative causal explanations. In this case, the method of signal frequency analysis yields several
simple alternative models that generate exactly the same observed pattern of collective memory decay.
This article concludes that the full potential of big data will require better methods for developing
alternative, empirically testable causal models.
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Complex processes often express a simple pattern.
For example, city size1, corporation size2, and word
usage3 follow Zipf’s law, in which a log-log plot for
the rank of size versus size has a slope of minus one.
Simple patterns also arise in human category gen-

eralization4, in the abundance of different species of
ecological samples5, and in the age of onset of the
various causes of human mortality6.
Solving the puzzle of simple regularity from di-

verse complexity is an essential challenge in under-
standing the relation between pattern and process.
The first step for any such puzzle is to see that a

simple common pattern exists. The second step is to
draw up a list of alternative explanations that can be
tested.
A primary challenge recurs. Simple regularity of-

ten arises when diverse processes lead to the same
pattern. One might say that a common pattern is
common because it is the outcome of so many dif-
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ferent underlying processes7,8.
This likely relation between diverse processes and

simple regularity must be kept in mind. There is a
natural tendency to jump toward the first particular
process that matches the regularity that we see.
Big data greatly enhances the opportunity to dis-

cover the simple regularities that characterize partic-
ular problems. So it is timely to consider how we may
raise the standards by which we develop and evaluate
hypotheses of mechanistic process.
I illustrate these issues with the recent big data

characterization of a simple pattern in human col-
lective memory9. The success of human group recall
for past events decays with time. The decay follows
a biexponential pattern. An initial exponential de-
cay happens relatively quickly. A second slower decay
happens relatively slowly.
The biexponential decay pattern characterizes the

collective memory of songs, movies, biographies, and
the citations to academic articles and patents. That
simple regularity exists independently of any partic-
ular mechanistic explanation or interpretation.
The current biological literature follows a standard

approach to puzzles of observed regularity. Propose
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Figure 1: Biexponential decay of a signal in eqn 1. The same parameters are used for the plots on (a)
semi-log axes and (b) log-log axes. The parameters for the curves from top to bottom are: (a,b, c) =
(0.35, 0.005, 0.408), (0.85, 0.005, 0.134), (0.85, 0.05, 0.143), (0.78, 0.05, 0.043). The parameters match Fig. 2 of Can-
dia et al.9, associated with their parameterization given in eqn 2 and the parameter equivalences: a = p + r ; b = q;
c = r/(p − q); and N = 1. The inverse parameter equivalences are also useful: p = (a + bc)/(1 + c); q = b; and
r = c(a − b)/(1 + c).

a plausible mechanistic model. Show that the model
generates the observed pattern. Note that alterna-
tives are possible, but do not consider those alterna-
tives. Let the fit of mechanism to pattern implicitly
express tentative victory in the absence of good alter-
natives.
This approach is not incorrect. But it is almost cer-

tainly wrong. Common patterns are common because
the same simple pattern arises from a diverse set of
underlying processes. We need to understand the
generic aspect that unifies that diverse set of under-
lying processes. Such understanding is not easy to
achieve. But ignoring the real problem does not help.
I do not know exactly how this should be done. I

do know that we need more discussion and thought
devoted to these issues if we are to benefit fully from
the modern opportunities of big data research. There
are already several known approaches that can help.
In this article, I use the simple regularity of collec-

tive memory as an example. I begin with the mecha-
nistic explanation presented by Candia et al.9. I then
show a variety of alternative mechanisms consistent
with the data.
This article is not a criticism of Candia et al.9. Their

characterization of the simple regularity of collective
memory by using a big data approach is a major con-
tribution. Simple patterns set the puzzles that define
disciplines.
Although I will show several alternative explana-

tions that also match the data, in the end, the model

by Candia et al.9 remains as good as any alternative.
But my conclusions differ in two ways.
First, I will provide several potentially testable al-

ternative mechanistic models for the study of human
collective memory. Such alternatives provide the es-
sential next step to move this field ahead.
Second, I argue that the culture of big data analy-

sis and interpretation needs to change. The success of
finding a simple pattern should be followed by the de-
mand for characterizing the set of alternative mecha-
nisms and their generic properties. The fit of a single,
particular mechanistic model typically misleads.

The biexponential pattern

Let the intensity of collective memory bem(t) at time
t . Setm(0) = 1 as the memory intensity at the time of
the initial event. A biexponential pattern arises when
memory decays as the sum of a fast and a slow expo-
nential process

m(t) =
e−at + ce−bt

1 + c
, (1)

in which a describes the initial fast decay, and b de-
scribes the subsequent slow decay, with a > b. The
relative weighting of the processes is c ≥ 0. Figure 1
illustrates the combination of fast and slow memory
decay for various parameters.
Candia et al. show that biexponential decay arises

for the collective memory of several different kinds of
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Figure 2: Alternative models that yield identical biexponential decay. The text describes each panel. The parameters can
be matched to the generic model in eqn 1 with r = c(a − b)/(1 + c).

cultural phenomena. How can we explain that sim-
ple, widespread regularity of pattern?

Candia et al.’s mechanistic model

Candia et al. developed a specific mechanistic model
of collective memory. Their model leads to the biex-
ponential form of eqn 1. However, they interpret the
parameters in terms of their particular mechanistic
model. Their expression for the biexponential pattern
is

m(t) =
N

p + r − q

(
(p − q)e−(p+r )t + re−qt

)
, (2)

in which they use S(t) instead ofm(t) for the memory
signal. Candia et al. obtain this expression by assum-
ing that, after a particular event at t = 0, collective
memory decays by two distinct processes.
At first, decay happens relatively rapidly during a

period dominated by short-lived communicative pro-
cesses, such oral communication or simple messag-

ing communication. The intensity of that first pro-
cess of communication stimulates a second process of
storing cultural memory in written or other relatively
long-lasting forms. Cultural memory then decays over
time, but at a slower rate than communicative mem-
ory.
The diagram in Fig. 2b expresses the dynamics of

their model. External stimulation of memory hap-
pens by an input signal, δ (t). We can often consider
a strong input at the time of a particular event, with
δ large at t = 0 and zero after the initial input.

We then think of the initial event as filtered through
a fast decay process, F , which by itself follows expo-
nential decay, e−at . The output from that fast decay
contributes to the memory signal through two path-
ways.
The lower arrow in Fig. 2b goes directly to the cir-

cle, which denotes the addition of inputs. The upper
arrow feeds into a slow decay process, S , with expo-
nential decay e−bt . The slow process filters the out-
put from the fast process, with a weighting of the fast
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output by the parameter, r . Adding the signal paths
yields the biexponential pattern of memory in eqn 1.

Alternative mechanistic models

Candia et al. showed that the data form a pattern
consistent with biexponential decay. Their particular
mechanistic model in Fig. 2b leads to the biexponen-
tial pattern.
That fit between observed pattern and explanatory

causal process is useful. However, if we are to make
sense of the patterns in big data, then we must start
with the set of alternative causal models that fit the
data. Typically, many alternative causal schemes fit a
simple, widely observed pattern.
Once we have a clear set of alternatives, we can

then consider how test which are most likely. We
can also consider the extent to which various alter-
natives arise in different circumstances, all leading to
the same observed final pattern.
The block diagrams in Fig. 2 provide a simple way

in which to study alternative mechanistic models with
the same biexponential dynamics of decay. Each dia-
gram shows how to trace an input signal, δ , through
a variety of processes that filter, transform, and com-
bine the system’s internal signals to produce the final
output signal,m.
My purpose is to show how easily one can generate

alternative causal models. I do not argue in favor of
any particular alternative. The data in Candia et al.
do not discriminate between these alternatives. My
point is that the first step in testing among alterna-
tives is figuring out what those alternatives might be.

Structure of alternative process

Figure 2a shows the structure of all models. The in-
put, δ , represents the external signals that stimulate
the system’s memory. Such signals include the initial
publication of an article, the filing a patent, or the
initial release of a song. Any additional external pro-
cesses that influence memory also enter through δ .
The block G describes all of the system’s internal

processes. The system takes input, δ , and produces
output memory, m. Any system that transforms in-
puts to outputs in the sameway has the samememory
dynamics. Thus, we can search for alternative models

by considering the variety of processes that together
have the same G.
In this case, we want the system, G, to match Can-

dia et al.’s model in Fig. 2b. The theory of signal
processing provides a convenient way to express that
model10–12. The dynamics of fast exponential decay,
e−at , has Laplace transform F = 1/(s + a). The dy-
namics of slow exponential decay, e−bt , has Laplace
transform S = 1/(s + b).
With Laplace transforms, we can follow a signal

through a cascade of processes. For each separate
process, we multiply the signal going into each pro-
cess block by the Laplace transform of the process
within that block. The output for that block may then
be used as the input for another block.
In Fig. 2b, the lower path is F . The upper direct

path from input, δ , to output,m, is the product rFS .
So the overall transformation is

G = F + rFS = F (1 + rS).

To obtain equivalent system dynamics, we can search
for alternative systems in which the overall internal
processing equals G.

Additive parallel model

Figure 2c presents the simplest alternative model.
The input stimulates two independent exponential
decay processes, F and S . Those processes act in par-
allel. Their outputs combine additively to yield the
final memory signal, which is equivalent to the mem-
ory output signal of the original model in Fig. 2b. To
match the parameters of the original model, we use
the fact that

G = F (1 + rS) =
F + cS

1 + c
,

in which the right side expresses the additive parallel
model. It is easy to see that the inverse Laplace trans-
form of the right side takes us back to the expression
for the dynamics of collective memory in eqn 1.
The data in Candia et al. do not discriminate be-

tween the models in Fig. 2b and c. The same final
pattern of collective memory arises if, as in Fig. 2b,
the initial fast process of communicative memory di-
rectly influences the slower cultural memory process
or if, as in Fig. 2c, the slow and fast processes act in-
dependently.

4
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Some studies from the prior literature on collective
memory favor Candia et al.’s model over the additive
parallel model13–16. However, the data do not dis-
criminate between these alternative models. Other
prior studies discuss various alternative processes17.
Those earlier studies have typically not been devel-
oped into simple models that compare easily with the
patterns in the big data analysis.

Multiplicative series model

In Figure 2d, the input is first transformed by a pro-
cess, H . That initial transformed signal then passes
through the slow exponential decay process, S . Be-
cause signals multiply, the overall system is G = HS .
To match G, the first process must be H = G/S .
The following section on the frequency analysis of

signals discusses how to interpret H and other com-
ponents in these models. Before turning to interpre-
tation, consider the final alternative explanation.

Exponential decay with feedback

The model in Fig. 2e assumes that fast exponential
decay, F , sets the baseline response. That fast decay
is modulated by a feedback process. The final output
from the fast decay, the memory signal,m, returns as
an additional input into the system. The actual input
at any time is the feedback difference between the
external signal and the output, e(t) = δ (t) −m(t).
When the memory output signal is larger than the

current input, then memory tends to decay. When the
current input is larger than the current memory, then
that stimulation tends to increase the memory signal.
Such self-correcting feedback control is a natural as-
pect of many systems that respond to external inputs.
The component C represents the process by which

the system filters the feedback input signal. For exam-
ple, the system might tend to enhance certain types
of feedback input. Such enhancement would increase
the memory of events with certain characteristics,
while perhaps ignoring events with other kinds of sig-
nal characteristics.
In this case, we can find the process,C, that makes

the overall feedback process equivalent to Candia et
al.’s model. The logic of block diagrams and Laplace
transforms requires that C take on the value given in

the box of Fig. 2.

Frequency interpretation of process

The Laplace transform approach has two benefits.
First, we can easily compare different causal schemes
with the same overall dynamics. Second, we can in-
terpret the various component causes within a model
in terms of how they respond to different frequencies
of inputs.
Engineers often use frequency response as a tool

to analyze how a system works10–12. In this section,
I provide a rough intuitive summary of the general
principles. I then apply the method to the analysis of
collective memory. The frequency approach provides
an additional method for empirical tests that can dis-
criminate between alternative models.

Exponential decay as a low pass filter

A component with exponential decay dynamics,
λe−λt , has Laplace transform L = λ/(s + λ). Roughly
speaking, we can think of s as the frequency of fluctu-
ations in the input signal to this process. The output
is a signal with the same frequency of fluctuations,
with the intensity of the signal multiplied by L.
The process L acts as a low pass filter on input sig-

nals. For low input frequency, s → 0, the value of
L is close to one. In other words, L passes through
low frequency inputs with little change. For high in-
put frequency, with large s, the value of L declines.
In other words, L reduces or blocks high frequency
inputs.
The gold curve in Figure 3a illustrates the relatively

fast exponential decay process, F = 1/(s+a), as a low
pass filter. The green curve shows the relatively slow
process, rS = r/(s +b), weighted by the parameter, r .
If exponential decay is slow, then a boost from a

large input takes a long time to decay away. If the
decay is fast, then previous boosts from input rapidly
decay, and the process more closely tracks recent fluc-
tuations. Thus, relatively faster exponential decay,
with a > b, associates with closer tracking and pass
through of signal fluctuations at higher frequencies.
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Figure 3: Frequency response of alternative models that yield identical biexponential decay. Each curve shows the relation
between the frequency of input and the gain, which is the amount by which a process multiplies an input signal. The
parameters match the red curve of Fig. 1. The blue curve is the response of the total system, G, which is the same in
all cases. The gain expresses the classic signal processing scale of 20 log10(gain). A value of zero corresponds to gain of
one, which means that the process passes the signal without change. Values of less than zero reduce the signal intensity,
and values above zero enhance the signal intensity. (a) The combination of two low pass filters in Candia et al.’s model
of Fig. 2b. A similar pattern describes the additive parallel model in Fig. 2c. (b) The combination of high and low pass
pass filters in series in Fig. 2d. (c) A low pass filter in green combined in a self-correcting feedback loop with a filter that
enhances intermediate resonant frequencies in gold.

Combining low pass filters

Candia et al.’s model in Fig. 2b combines the rela-
tively fast, F , and slow, S , low pass filters shown in
Fig. 3a. The additive parallel model in Fig. 2c com-
bines the same two low pass filters in a different way.
Both combinations yield the same overall system dy-
namics, shown as the blue curve in Fig. 3a.
These models can be distinguished by reducing or

blocking F . In Candia et al.’s model, reducing F will
proportionally reduce the total output. In the additive
parallel model, reducing F will not alter the slower,
long term decay dynamics of S . Such a test would
probably require a controlled experiment or an un-
usual situation that blocks one process but not the
other.
The Laplace frequency analysis makes it easier to

understand how component processes combine. In
this case, the simple structure of these models would
allow one to compare them without detailed fre-
quency analysis. The next two models illustrate a
more direct role for frequency analysis in comparing
different processes.

High pass filters ignore slowly changing inputs

The model in Fig. 2d processes input through a pair
of sequential filters. One filter, S , passes low fre-
quencies. This filter reduces the collective memory
induced by high frequency, rapidly changing stim-

uli. Events that change rapidly often appear as back-
ground noise without a meaningful signal. Figure 3b
shows this low pass filter in the green curve.
The other filter, H = G/S , passes high frequencies.

This filter reduces the collective memory induced by
low frequency, slowly changing stimuli. Events that
change slowly may appear as a nearly constant back-
ground, which does not produce sufficient stimulus to
register as a meaningful signal. Figure 3b shows this
high pass filter in the gold curve.
The height of the curves is on a log scale. So mul-

tiplying the filters corresponds to adding the heights
of the two curves. The sum yields the overall system
response,G, in the blue curve. That curve is the same
in all three panels.
If data could be obtained while bypassing one of

the two processes, then the characteristics of the re-
maining component could be analyzed by measuring
its frequency response.

Feedback and resonant frequencies

The model in Fig. 2e has a primary fast exponential
decay of memory by the process, F . The input into
this feedback system is the difference between the
current stimulus and the current memory, e = δ −m.
When the current stimulus is greater than the cur-

rent memory, the self-correcting feedback system re-
sponds by increasing its memory. Similarly, when
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the current stimulus is less than the current memory,
feedback reduces memory.
To match exactly to the system dynamics of the

Candia et al. model, the feedback system filters the
input difference signal by the process, C. The gold
curve in Fig. 3c shows that the filtering process has
a resonant frequency peak. A resonant peak means
that the filter enhances the input difference signal, e,
when that signal has an intermediate frequency.
Enhancement of the difference input causes the

self-correcting feedback system to reduce the differ-
ence more rapidly. In other words, the system moves
its memory level more rapidly toward the current ex-
ternal stimulus level. The intermediate resonant peak
causes the system to track more closely to external
signals that are neither too slow nor too fast.
It maymake sense for memory to track most closely

to signals of intermediate frequency. Fast signals of-
ten arise from noisy fluctuations with little informa-
tion. Slow signals set a background that can easily be
tracked without rapid self-correcting adjustment.
Ideal tests would measure the response of the indi-

vidual component processes or would block the feed-
back loop to measure the direct response of the CF
pathway.

Conclusions

Candia et al.’s big data analysis focuses attention on
a simple common pattern. That pattern sets the key
challenge for understanding the mechanisms that in-
fluence collective memory.
In many fields of study, big data provide similar op-

portunities to characterize simple common patterns.
Those patterns set the key challenge for the under-
standing of mechanistic process.
For the study of common patterns to mature, we

require a stronger analytic approach to process. The
first step should be consideration of the generic fea-
tures of the pattern and the associated generic fea-
tures that an explanatory model must have. The set
of alternatives provides the basis for further empirical
study.
I showed how a basic frequency response charac-

terization of dynamics led immediately to four alter-
native models of process. By focusing on frequency,

the models provide a potential approach to discrimi-
nate between the alternatives.
At present, there is no consistent and widely un-

derstood approach to forming a set of alternative ex-
planations that can be tested empirically. I presented
frequency analysis to illustrate how one method can
help to form alternative explanations.
Big data will continue to characterize the com-

monly observed patterns of nature. Deriving insight
from those patterns will require a broader under-
standing of how the commonly observed patterns
arise. Better methods for generating and evaluating
alternative mechanistic explanations will be crucial.
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