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abstract-This study aims to assess the potential of the LDAS-Monde a land data assimilation
system developed by Météo-France to monitor the impact of the 2018 summer heatwave over
western Europe vegetation state. The LDAS-Monde is forced by the ECMWF’s (i) ERAS
reanalysis, and (i) the Integrated Forecasting System High Resolution operational analysis (IFS-
HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS)
satellite derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI).
Analysis of long time series of satellite derived CGLS LAI (2000-2018) and SSM (2008-2018)
highlights marked negative anomalies for July 2018 affecting large areas of North Western Europe
and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the
considered domain have never been observed in the LAI product over this 18-yr period. The LDAS-
Monde land surface reanalyses were produced at spatial resolutions of 0.25°x0.25° (January 2008 to
October 2018) and 0.10°x0.10° (April 2016 to December 2018). Both configuration of the LDAS-
Monde forced by either ERAS5 or HRES capture well the vegetation state in general and for this
specific event, with HRES configuration exhibiting better monitoring skills than ERAS
configuration. The consistency of ERAS and IFS HRES driven simulations over the common period
(April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements
observed between the ERAS and HRES. Another experiment, down-scaling ERAS5 to HRES spatial
resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g.
associated to a better representation of the land cover, topography) and using HRES forcing still
enhance the skill. While there are advantages in using HRES, there is added value in down-scaling
ERAS, which can provide consistent, long term, high resolution land reanalysis. If the improvement
from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of the model
representing the first meter of soil and LAI) from the assimilation of SSM and LAI was expected,
other model variables benefit from the assimilation through biophysical processes and feedbacks in
the model. Finally, we also found added value of initializing 8-day land surface HRES driven

forecasts from LDAS-Monde analysis when compared with model only initial conditions.
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1 Introduction

Land surface conditions are critical in the global weather and climate system. Accurate
characterization and simulation of hydrological and biophysical variables at the land surface
represent a significant challenge given large spatial heterogeneity and human modifications of the
land surface. In particular, observing and simulating the response and feedbacks of land surface
conditions to extreme events is crucial in our ability to manage adaptation to climate change
impacts. Land Surface Model (LSM)’s role has evolved over the years, from the primary goal of
providing boundary conditions to atmospheric models to being used as monitoring and forecasting
tools for estimating land surface conditions [1-4]. Modelling of terrestrial variables can be improved
through the dynamical integration of observations [5-7] and there is a growing emphasis on
constraining the LSM estimates with observational inputs as well as coupling them with other
models of the Earth system [8-9, 10, 1]. Enhanced estimates of land surface conditions are also
recognized to lead towards improved forecasts of weather patterns, sub-seasonal temperatures and
precipitations, agricultural productivity, seasonal streamflow, floods and droughts as well as carbon
cycle [11-16]. Remote sensing observations are particularly useful in this context as they are now
unrestrictedly available at a global scale with high spatial resolution and with long-term records.
Many satellite-derived products relevant to the hydrological (e.g. soil moisture, snow depth/cover,
terrestrial water storage), vegetation (e.g. leaf area index, biomass) and energy (e.g. land surface
temperature, albedo) cycles are readily available [17]. Data assimilation techniques allow to
spatially and temporally integrate the observed information into LSMs in a consistent way [5, 18].
We refer to Land Data Assimilation Systems (LDASs) as the framework where LSMs are driven by
and/or ingest such observations generating enhanced estimates of the land surface variables (LSVs)
[10]. Several LDASs now exist from point to regional scale, amongst them are the Gobal Land Data
Assimilation System (GLDAS, [19]), the Carbon Cycle Data Assimilation System (CCDAS, [20]),
the Coupled Land Vegetation LDAS (CLVLDAS, [21-22] and more recently the U.S. National
Climate Assessment LDAS (NCA-LDAS, [10]) as well as LDAS-Monde [7, 18] to name a few.
These LDASSs either optimize process parameters (e.g. CCDAS), state variables (e.g. GLDAS,
NCA-LDAS, LDAS-Monde) or both (e.g., CLVLDAS). Assimilated Earth Observations (EOs)
generally include satellite retrieval of surface soil moisture [5, 8, 23-25], snow depth [26-29] and
snow cover [30-31, 9, 27], vegetation [32-35, 7, 18], as well as terrestrial water storage [36-38].
Few studies have included multiple remote sensing measurements. For instance, [10] assimilates

various remote sensing measurements of the terrestrial water cycle within the NCA-LDAS over the

2

d0i:10.20944/preprints201901.0093.v1


http://dx.doi.org/10.20944/preprints201901.0093.v1
http://dx.doi.org/10.3390/rs11050520

Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 10 January 2019 d0i:10.20944/preprints201901.0093.v1

USA while LDAS-Monde [7, 18] considers the joint assimilation of vegetation (Leaf Area Index,
LAI) and surface soil moisture (SSM) measurements. LDAS-Monde is a sequential land data
70  assimilation system with global capacity. It has been evaluated over various domains at various
spatial resolutions including France at 8 km scale [33, 39] forced by the SAFRAN reanalysis of
Météo-France (Systeéme d’Analyse Fournissant des Renseignements Atmosphériques a la Neige,
[40-41], Europe at 0.5°x0.5° [18, 35] forced by ERA-Interim atmospheric reanalysis from the
European Center For Medium Range Weather Forecast (ECMWF) [42], North America [7] and
75 Burkina-Faso in western Africa at 0.25°x0.25° [43] forced by ERAS atmospheric reanalysis [44]. In
those studies, analysis impact was successfully evaluated using several datasets such as (i) in situ
measurements of soil moisture (ii) agricultural statistics, (iii) river discharge, (iv) independent flux
estimates related to vegetation dynamics (evapotranspiration, Sun-Induced Fluorescence (SIF) and
Gross Primary Productivity (GPP)). Albergel et al., [7], highlighted LDAS-Monde capacity to better
80 characterize agricultural droughts (spatial area and intensity) than an open-loop counterpart (i.e.
model without any assimilation of satellite derived measurements) over the continental United
States of America. They found that LDAS-Monde can provide improved initial conditions to
initialize forecast and that its impacts persist through time, also. In the above mentioned study,
LDAS-Monde satellite-derived surface soil moisture dataset (ESA CCI SSM, [45-48] along with
85 satellite derived LAI (GEOV1, http://land.copernicus.eu/global/ last access, June 2018), were

jointly assimilated leading to a quarter degree spatial resolution reanalysis of the LSVs over 2010-
2016.
Stemming from previous work [7], the present study investigates the capability of LDAS-Monde to
represent the impact of the summer 2018 heatwave in Europe on vegetation. Spring and summer
90 2018 in Europe were marked by unusually hot weather that has led to record-breaking temperatures
in many countries across northern and central Europe. According to ECMWEF, near-surface air
temperature anomaly in Europe in the period of April to August, calculated with respect to the
1981-2010 average for those months, was much larger in 2018 than in any previous year since 1979
[49]. According to the National Oceanic and Atmospheric Administration -NOAA- Europe had its
95 second warmest July on record. It follows its second warmest June on record (behind 2003), its
warmest May since continental records began in 1910, surpassing the previous record set in 2003:
the whole summer 2018 was Europe's warmest since continental records began in 1910 at +2.16°C
(Global Climate Report, https://www.ncdc.noaa.gov/sotc/global/, last access October 2018).
Northern Hemisphere summer precipitation was generally weaker than normal across central
100  Europe.

Such an event is likely to affect land surface conditions. In this study, satellite derived estimates of
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LAI and SSM as well as LDAS-Monde are used to monitor the impact of the heatwave on
vegetation, focusing on July 2018. Firstly, we assess the heatwave impact on satellite derived LAI
and SSM, using time-series over 2000 to 2018 and 2008 to 2018, respectively. Secondly, we
evaluate the heatwave impact on the simulated LAI from LDAS-Monde forced by ECMWF ERA-5
reanalysis from January 2008 to October 2018 at 0.25°x0.25° and by ECMWF Integrated
Forecasting System (IFS) high resolution operational analysis (HRES) from April 2016 to
December 2018 at 0.10°x0.10°. The use of both ERAS5 and HRES to force LDAS-Monde enable to
assess the impact of resolution versus system quality over a common one year period (2017) were
ERAS was downscaled to HRES spatial resolution. Another added value of using HRES consists in
its forecast capacity, up to 10 days ahead. Forecast of LAI initialized by LDAS-Monde analysis
with a leading time up to 8-days is then investigated in order to assess whether or not the heatwave
impact on land surface conditions could have been anticipated. The remainder of this paper is
organized as follows: section 2 describes the LDAS-Monde system, the satellite derived estimates
of LAI and SSM and the ECMWF analysis and reanalysis forcing, results are analyzed and
discussed in sections 3 and 4.
2 Material and Methods
This study assesses the ability of LDAS-Monde sequential assimilation of satellite derived surface
SSM and LAI to represent the impact of the summer 2018 heatwave in Europe on vegetation. The
following sections describe LDAS-Monde system as well as 2 other key elements of its setup:
atmospheric forcing (LDAS-Monde being an offline system) and satellite derived observations.
2.1 LDAS-Monde

Within the SURFEX modelling platform of Météo-France (Surface Externalisée, [50], Version 8.1),
the LDAS [32-33, 34, 39, 51] developed in the research department of Météo-France, the CNRM
(Centre National de Recherches Météorologiques) permits integrating satellite products into the
ISBA LSM [52-55] using a data assimilation scheme. The LDAS was extended to a global scale
(LDAS-Monde, [18]). At the same time, the coupling to hydrological models (ISBA-CTRIP for
ISBA-CNRM-, Total Runoff Integrating Pathways) was consolidated. A full description of the
ISBA-CTRIP system is presented in [56]. The obtained land surface reanalyses from LDAS-Monde
account for the synergies of the various upstream products (e.g., model and satellite derived
observations) and are able to provide an improved representation of the LSVs, as well as statistics
which can be used to monitor the quality of the assimilated observations (e.g. 7, 18, 35). LDAS-
Monde can also be used to calibrate model parameters (e.g., [57] for the soil maximum available

water content within ISBA).
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135 LDAS-Monde uses the COy-responsive [53-55], multi-layer soil [56-59], version of ISBA. The

later allows to solve the energy and water budgets at the surface level and describes the exchanges
between the land surface and the atmosphere. Parameters of the ISBA LSM are defined for 12
generic land surface patches: nine plant functional types (namely: needle leaf trees, evergreen
broadleaf trees, deciduous broadleaf trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous,
140 tropical herbaceous, and wetlands) as well as bare soil, rocks, and permanent snow and ice surfaces.
They are derived from ECOCLIMAP-II, the land cover map used in SURFEX [60]. Atmospheric
and climate conditions drive the dynamic evolution of the vegetation biomass and LAI through
vegetation growth and mortality processes implemented in the form of a nitrogen dilution process -

NIT option- [53, 55, 61]. Photosynthesis enables vegetation growth resulting from the CO- net
145  assimilation. During the growing phase, enhanced photosynthesis corresponds to a CO, net

assimilation, which results in vegetation growth from the LAl minimum threshold (1 m? m~2 for

coniferous forest or 0.3 m? m 2 for other vegetation types). Vegetation phenology relies on

photosynthesis-driven plant growth and mortality, and photosynthesis is related to the mesophyll

conductance. More information on the CO,-responsive version of ISBA can be found in [62-63],

150 also. The multilayer diffusion scheme described in [58-59] drives transfers of water and heat
through the soil. Finally, the Simplified Extended Kalman Filter Data Assimilation (DA) technique
(SEKF, [18, 32-33, 34, 39, 51] is the main technique available within LDAS-Monde. While
ensemble based DA techniques are currently being tested and implemented [39, 64], to date the
LDAS-Monde SEKF is the more robust. It uses finite differences to compute the flow dependency

155 between the assimilated observations (SSM and LAI) and the analysed variables (soil moisture from
soil layer 2 (1cm to 4cm) to layer 8 (80cm to 100cm), representing the first meter of soil and LA,
see Table I). Further details of the analysis methodology can be found in [34, 18]. While control
variables are directly updated thanks to their sensitivity to the observed variables, expressed by the
SEKF Jacobians [18, 65], other variables are indirectly modified by the analysis through

160  biophysical processes and feedbacks in the model by updates of the control variables.

2.2 Satellite derived observations
Two satellite products from the Copernicus Global Land Service project are used in this study, the
Surface Soil Moisture (SSM) and the Leaf Area Index (LAI) derived from SPOT-VGT (prior to
2014) and PROBA-V (from 2014 onward). The SSM is derived from the Advanced Scatterometer

165 (ASCAT), an active C-band microwave sensor on board the European MetOp polar-orbiting
satellite (METOP-A&B). Information on soil moisture comes from ASCAT radar backscatter

coefficients using a methodology developed at the Vienna University of Technology (TU-Wien)
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based on a change detection approach originally developed for the active microwave instrument
flown on-board the European satellites ERS-1 and ERS-2 [66-67]. The recursive form on an
exponential filter [68] is applied to the soil moisture product to estimate the Soil Wetness Index
(SWI) using a timescale parameter, T, varying between 1 day and 100 days. The result for the top
soil moisture content (<5 cm) is expressed as a degree of saturation and ranges between 0 (dry) and
100 (saturated). In this study, SWI-001 (i.e. T=1 day) is used as a proxy for SSM [69]. It is a global
product at 0.1°x0.1° spatial resolution available daily from 2007. As in [7], pixels whose average
altitude exceeds 1500 m above sea level as well as pixels with urban land cover fractions larger than
15% were discarded as those conditions may affect the retrieval of soil moisture from space. SSM
product has to be transformed into the model-equivalent surface soil moisture for data assimilation
purposes and in order to address possible misspecification of physiographic model parameters (like
the field capacity and the wilting point). Following [18] and [33] a linear re-scaling approach
applied at a seasonal scale over the whole considered periods was used. It makes use of the first two
moments of the cumulative distribution function (CDF) and consists of a linear re-scaling enabling
a correction of the differences in the mean and variance of the distribution.

LAI, defined as one-sided area of green elements of the canopy per unit horizontal ground area is
observable from space and practically quantifies the thickness of the vegetation cover. Several LAI
collections/versions are available from the CGLS project from 1999. They are retrieved from the
SPOT-VGT (from 1999 to 2014) and then from PROBA-V (from 2014 to present) satellite data
according to the methodology proposed by [70]. This study makes use of the GEOV2, 1km spatial
resolution and 10-day steps in near real time product. Its development has followed several steps
including (1) applications of a neural network for providing instantaneous estimates from SPOT-
VGT reflectances, (2) a multi-step filtering approach to eliminate contaminated data (e.g., affected
by atmospheric effects and snow cover), and (3) temporal techniques for ensuring consistency and
continuity as well as short term projection of the product dynamics [71] (LAI Product User Manual,

https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1 PUM_LAI300m-

V1 _11.60.pdf, last access November 2018).

2.3 ECMWF atmospheric forcing
LDAS-Monde is driven by near-surface meteorological fields from both ECMWFs’ reanalysis,
ERAS, released in 2018, as well as its high resolution operational high resolution weather analysis
and forecasts (HRES). ERAS underlying model and data assimilation system are very similar to that
of the operational weather forecast. ERAS production cycle (IFS Cycle 4112) is still close to that of
the HRES (FS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018, more information at

http://www.ecmwf.int/research/ifsdocs/, last access October 2018). The main difference between the
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two is the horizontal resolution with 31 km in ERAS and 9 km in HRES. Another difference is the
data assimilation time window which is from 21:00 UTC to 09:00 UTC in ERAS and from 21:00
UTC to 03:00 UTC in HRES, as it allows more observations to be assimilated in ERAS. The shorter

205 time window in HRES is due to ECMWF operational constraints to deliver timely forecasts.

The ERAS forcing data includes the lowest model level (about 10-meters height) air temperature,
wind speed, specific humidity and pressure and the downwelling fluxes of shortwave and longwave
radiation and precipitation partitioned in solid and liquid phases. ERAS is processed from the
forecasts initialized daily at 00 UTC and 12 UTC using the hourly forecasts from +1 to +12h.

210 HRES forcing data is processed from the forecasts initialized at 00UTC and 12UTC also using the
forecasts from +1h to 12h. The same downwelling fluxes as in ERAS are used but for HRES we
processed 2-meters temperature and dewpoint temperature and 10-meters wind-speed. Specific
humidity was then calculated from 2-meters temperature and dewpoint temperature. HRES also has
the lowest model level data archived, but due to data storage and access constraints it was more

215 efficient to process the 2-meters temperatures and 10-meters wind speed. Despite the difference in
the processing of the near-surface fields, lowest model level and 2-meters temperature and 10-
meters winds are very similar, and this is not expected to impact substantially the results. In ERAS
and HRES, the +1h to +12h hourly forecasts were concatenated to generate continuous time series
and the data processed in the original resolution was bilinearly interpolated to a regular grid of

220 0.25°x0.25° and 0.1°x0.1°. From the forecast initialized at 00UTC, HRES is also available up to 10-
d ahead. HRES forecast step frequency is hourly up to time step 90, 3-hourly from time-step 93 to
144 and 6-hourly from time-step 150 to 240 (i.e. 10 days). While the original 3-hourly time steps
are used up to day 6 (time step 144), the 6-hourly time steps from day 6 to 10 are interpolated to 3-
hourly frequency.

225 2.4 Experimental setup
Table I presents the different experiments evaluated in this study. LDAS-Monde is first forced by
ERAS from 2008 to October 2018 (LDAS-ERAS) and HRES (LDAS-HRES) from April 2016 to
December 2018 over a western Europe domain (defined as longitudes from 10.5°W-20.5°E,
latitudes from 42°N-59°N). IFS is obtained from frequently updated versions of operational system

230 at ECMWF (including changes in spatial and wvertical resolutions, data assimilation,
parameterizations, and sources of data), while reanalysis like ERAS guarantees a higher level of
consistency (e.g., same model) over long time period because of its frozen configuration. From
April 2016 onward, IFS has a spatial resolution of about 0.1°x0.1° (HRES). Despite the spatial
resolution, ERAS being a recently released dataset, its production cycle (IFS Cycle 4112) is still
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235 close to that of the HRES (IFS Cycle 4112 to 43r3 from 2016 and 45r1 from June 2018). At the
ERAS spatial resolution, large scale, long time experiments are computationally affordable, and
HRES can be used to focus on specific domains or events.

Vegetation outputs from this set of 4 experiments (assimilation of SSM and LAI as well as their
model counterpart, i.e. open-loops without assimilation) are then evaluated. Vegetation from

240 another experiment (model only, without assimilation) is evaluated: ISBA forced by ERAS5 down-
scaled to HRES spatial resolution (from 0.25°x0.25° to 0.10°x0.10°) for 1 year (2017). Additionally
to the LDAS-HRES analysis experiment, daily forecast experiments with 8-day lead time (from
LDAS-HRES analyzed initial conditions) were also performed over 2018. Forecast experiments
with 2 days and 8 days lead time (LDAS fc 2d and LDAS fc 8d, respectively) are evaluated.

245 3 Results

3.1  Monitoring the heatwave impact on LAI and SSM using remote sensing
Time-series on figure 1 illustrate monthly anomalies (difference to the mean scaled by the standard
deviation) for CGLS products GEOV2 LAI (fig.1a) and ASCAT SSM (fig.1b) over the periods 2000
to 2018 and 2008 to 2018, respectively, averaged over the domain (presented by figure 2). On both

250 time-series, July is highlighted in red and the dashed lines represent the value of July 2018. As for
LAI (fig.1a), July 2018 exhibits a large negative anomaly, greater than twice standard deviations
(stdv) on average. Such a low value is not observed in this 19-yr time-series for a month of July and
only one month, in summer 2003: August 2003 presents an anomaly value below than that of July
2018. In 2003, large parts of Europe were affected by record-breaking temperature in summer (e.g.,

255  [72]). June to October 2018 presented negative LAI anomalies, also. Table II presents the fraction
of the considered domain affected by negative anomalies greater than 2 stdv for all months of July
over 2000-2018 for GEOV2 LAI and 2008-2018 for ASCAT SSM. In July 2018, it represents nearly
19% of the domain for LAI, the largest percentage observed in 19-yr. Not only the 2018 summer
heatwave lead to very large negative anomaly values in LAI but it has affected a large part of the

260 domain. Figure 2a shows maps of anomaly for July 2018 for GEOV2 LAL
From fig.2a, it is visible that most of the UK, Northern part of France, Belgium, Netherlands,
Denmark, Germany and Czech-republic present anomaly values greater than -2 stdv. ASCAT SSM
exhibits large negative anomalies for July 2018 (fig.2b), greater than -1, also. Such low values were
also observed in July 2008 and 2015, and it is worth noticing from Table II that in July 2018, 10%

265 of the domain was affected by anomalies greater than -2 stdv, while only 2.2% and ~3% for July
2008 and 2015. From fig.2b (maps on anomaly for July 2018 for ASCAT SSM), it is visible that the
southern part of the domain present large positive anomaly values (e.g., north of Spain, in the

Balkans) as well as the good geographical agreement between GEOV2 LAI and ASCAT SSM
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anomalies. While some winter months show large negative anomaly in ASCAT SSM, e.g.
December 2010, 2011, this might be related to frozen conditions not accounted for and interpreted
as dry conditions.
3.2 Monitoring the heatwave impact on vegetation using LDAS-Monde

LDAS-Monde being an offline reanalysis of the land surface variables, it is forced by atmospheric
datasets: ERAS and HRES in this study. Using both datasets to force LDAS-Monde produces a long
reanalysis of the LSVs (from the use of ERAS5) with real-time and even forecast capacity (from the
use of HRES). As ERAS is available with a large temporal extent (from 2000 at the time of study) it
offers the possibility to analyse climatic signals. Anomaly time-series of air temperature and
precipitation from ERAS are presented in figure 3. While it is not our intention to repeat the study
from [49] on predicting the summer 2018 heatwave it is however interesting to highlight that the
April to August period in 2018 exhibits rather large positive anomaly values of air temperature
(fig.3a) with July 2018 being the highest value observed between January 2001 and October 2018.
For precipitation, all months from May to October 2018 present large negative anomalies with July
2018 being the third lowest within the considered period. One may also note the coherence between
air temperature and precipitation from ERAS and the satellite derived observation presented above
for this 2018 heatwave event, particularly for LAI. As seen from figures 3 and la, large positive
anomalies of air temperature are associated with large negative anomalies of precipitation as well as
large negative anomalies of LAI. In the beginning of 2007 temperature and precipitation show
positive anomalies which reflect on LAI presenting large positive anomalies. While in the
beginning of 2013, both air temperature and LAI show negative anomalies.

When LDAS-Monde is driven by ERAS5 and integrates LAI and SSM through data assimilation,
those anomalies should be reflected on analyzed land surface conditions and their impact
propagated to other land surface variables through biophysical processes and feedbacks in the
model. Figure 4a illustrates observed CGLS GEOV2 Leaf Area Index (LAI), over 2008-2018 as
well as LDAS-Monde LAI time-series forced by either ERAS (LDAS-ERAS5 hereafter) over
January 2008-October 2018 or HRES (LDAS-HRES hereafter) over April 2016-December 2018.
Figure 4b shows the same as fig.4a for the common April 2014 to October 2018 period. From figure
4 one may notice the good agreement between the analyzed LAI and the observed annual cycle.
While neither the open-loop nor the analysis capture the maximum LAI peak well (as already
observed by [18]), the analysis efficiently corrects for the open-loop delay during the senescence
phase. Considering the period where both ERAS and HRES are available to force LDAS-Monde
(April-2016 to October 2018), one may notice the relative good agreement between LDAS-ERAS
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and LDAS-HRES, both in the open-loops and analyses. The senescence phase being remarkably
picked-up by LDAS-HRES analysis (which failed capturing the LAI peak intensity though).

Upper panel of figure 5 illustrates seasonal RMSD (fig5.a) and correlation (fig5.b) values between
LAI from the model forced by either ERAS (LDAS-ERAS Open-loop) or HRES (LDAS-HRES
Open-loop), the analysis forced by either ERAS (LDAS-ERAS Analysis) or HRES (LDAS-HRES
Open-loop) and GEOV2 LAI estimates from CGLS from April 2016 to October 2018. Figure 5
lower panel shows the same between modelled/analysed soil moisture from the second layer of soil
(1-4cm) and ASCAT surface soil moisture estimates from CGLS, also (and converted into the

3 -3
model space, in m m , as detailed in section 2.1). From figure 5 (all panels), one may see that

LDAS-ERAS and LDAS-HRES open-loops are quite comparable, LDAS-HRES open-loop being
slightly better than LDAS-ERAS open-loop in representing both LAI and soil moisture. It is also
visible that the analyses add skill to both open-loops for both variables, which indicates the healthy
behavior from the land data assimilation system. Over the whole common period (from April 2016
to October 2018), averaged R and RMSD values for LDAS-ERAS open-loop (analysis) are

2 -2 2 -2 3 -3
0.575(0.798) and 1.215 m m (0.796 m m ) for LAI, 0.748(0.772) and 0.038 m m (0.035

3 3 2 -2
m m ) for soil moisture, respectively. For LDAS-HRES, they are 0.601(0.808) and 1.150 m m

(0.772m2m-2) for LAI and 0.750(0.772), 0.038 m3m-3 (0.036m3m-3), respectively.

Finally, figure 6 shows LAI for the month of July 2018 from the open-loop, observations, analysis
as well as LAI differences (analysis minus open-loop) for LDAS-ERAS (upper panels, 0.25°x0.25°
spatial resolution) and LDAS-HRES (lower panels, 0.10°x0.10° spatial resolution). From the two
open-loops, one can see that LDAS-ERAS and LDAS-HRES overestimate LAI with respect to the
observations. LDAS-HRES open-loop is however in better agreement with the observations than
LDAS-ERAS open-loop, particularly over the area most affected by the heatwave (e.g over
Belgium, the Netherlands, Germany and Poland). While the assimilation is efficiently reducing LAI
in both LDAS-ERAS5 and LDAS-HRES analyses, the latter is in better agreement with the
observations than LDAS-ERAS analysis, also. Despite their spatial resolution differences, ERA-5
and HRES results present similar LAI patterns. They both underestimate the amplitude and spatial
extent of the drought in the open-loop, and for both the analysis effectively improves the particular
LAI conditions associated to the 2018 heatwave. Furthermore, due to the large-scale nature of the
drought event the spatial resolution differences between ERAS5 and HRES do not affect significantly

the simulations.
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Figure 7 represents maps of monthly anomaly from LDAS-ERAS for July 2008, 2010, 2012, 2014,
2016 and 2018 for soil moisture in the fourth layer of soil (wg4, between 20 cm and 40cm) as well
320 as drainage, runoff and evapotranspiration over most of the UK. While wg4 is one of the control
variables (i.e. directly impacted by the analysis), drainage, runoff and evapotranspiration are only
indirectly impacted by the analysis through model feedbacks. July 2018 presents the strongest
negative anomalies. It is worth mentioning the positive anomaly values for July 2012, particularly
in runoff and drainage responding to persistent rain during the first weekend of July that had led to
325 flooding in many part of the UK (https://www.metoffice.gov.uk/learning/learn-about-the-
weather/weather-phenomena/case-studies/july-2012-flooding, last access November 2018).
3.3  Resolution vs. System evaluation
Results presented above showed that driving the LDAS by either ERAS or HRES lead to good
results monitoring the impact of the summer 2018 heatwave on vegetation, with HRES providing
330 better results. In an attempt to investigate if the improvement from the use of ERAS to HRES is due
to the resolution only (e.g. better representation of land cover) or the forcing quality (or both),
another experiment was carried out for 2017 (see Table I). ERAS5 was downscaled from 0.25°x0.25°
to 0.10°x0.10° (ERAS5 _010) spatial resolution to force ISBA and outputs were compared to those of
LDAS HRES open-loop (ran for 2017, with similar initial conditions). A bilinear interpolation from
335 the native grid to the regular grid was made. Figure 8 illustrates monthly scores (R and RMSD
values over 2017) for LAI from 2 experiments, namely ERA 010 and LDAS HRES open-loop.
From the two panels of figure 8, one may appreciate the score similarities between ERA5 010 and
LDAS HRES open-loop. The later only performs slightly better than ERAS5 010, respectively, from
July onward for both R and RMSD values. HRES was upscaled to ERAS spatial resolution to run
340 ISBA and outputs where compared to those of LDAS-ERAS open-loop (ran for 2017, with similar
initial conditions), also, and similar results as discussed above were obtained (not shown). Although
longer time period would be required to further test these configurations, it is very interesting to
notice than when ERAS forcing is downscaled to 0.10°x0.10° to force ISBA, it performs almost as
good as the operational forcing, HRES. These results could justify running longer periods of time of
345 ERAS at 0.10°x0.10° when the operational forcing is not available (e.g., prior to April 2016).
4 Discussions
Both LDAS-Monde forced by either ERAS5 or HRES lead to an accurate representation of
vegetation during the summer 2018 heatwave and in general. HRES configuration presents slightly
better results over the common period investigated. HRES being obtained from frequently updated
350 versions of the IFS it is not a fixed system in time, while reanalysis like ERAS5 guarantees a higher

level of consistency because of its frozen configuration. ERAS has a coarser spatial resolution than
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the HRES. Its spatial resolution allows however LDAS experiments to be long term and affordable
at large scale. With ERAS available back to 1950 and covering near real-time needs with the
ERAST (https://climate.copernicus.eu/climate-reanalysis), an LDAS-ERAS would be able to

355 provide a model climate as reference for anomalies of the land surface conditions. Significant
anomalies could then be used to trigger more detailed monitoring and forecasting activities for a
region of interest using, for example the LDAS-HRES. Both LDAS-Monde forced by either ERAS
or HRES lead to an accurate representation of vegetation during the summer 2018 heatwave and in
general. HRES configuration presents slightly better results over the common period investigated.

360 HRES being obtained from frequently updated versions of the IFS it is not a fixed system in time,
while reanalysis like ERAS guarantees a higher level of consistency because of its frozen
configuration. ERAS has a coarser spatial resolution than the HRES. Its spatial resolution allows
however LDAS experiments to be long term and affordable at large scale. With ERAS available
back to 1950 and  covering near real-time needs with the  ERAST

365 (https://climate.copernicus.eu/climate-reanalysis), an LDAS-ERAS would be able to provide a
model climate as reference for anomalies of the land surface conditions. Significant anomalies
could then be used to trigger more detailed monitoring and forecasting activities for a region of
interest using, for example the LDAS-HRES.

4.1  Are LAI and SSM relevant indicators?

370 The Summer 2018 heatwave clearly had an impact on vegetation and soil moisture, as seen using
satellite derived estimates of LAI and SSM. Those satellite estimates are very useful to monitor
extreme events impacts but their use is limited by their temporal frequency of few days at best. If
microwave remote sensing provides a way to quantitatively describe the water content of a shallow
near-surface soil layer, [73], the variable of interest for applications in short- and medium-range

375 meteorological modeling and hydrological studies over vegetated areas is the root-zone soil
moisture content which controls e.g. plant transpiration [68]. Similarly, estimates of above-ground
biomass might be more useful than LAI for application linked to agriculture. Integration of these
satellite derived dataset into LSMs through data assimilation is therefore of paramount importance
to improve monitoring accuracy of extreme events impacts on LSVs. Not only the representation of

380 LAI and SSM in such system will be improved but other model variables will benefit from the
assimilation through biophysical processes and feedbacks in the model too [7, 10, 18, 74].

4.2 Can the impact of heat waves on vegetation be anticipated?
Two other experiment are presented in order to (i) study the possibility of forecasting the impact of
extreme events on vegetation few days in advance and (ii) highlighting the fact that a forecast

385 initialized by an analyzed state can have more skills than an open loop. For the whole 2018 and for
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each daily analysis from LDAS-HRES, 2 forecast experiments (2-day and 8-day forecast, see Table
I) were conducted. The atmospheric forcing forecast is coming from HRES, as described in the
materials and methods sections. For sake of clarity only forecast with lead time of 2 and 8 days are
presented (LDAS fc d2 and LDAS fc d8, respectively). Figure 9a illustrates LAI time-series from
390 the open-loop, the analysis (ran for 2018, only) as well as the 2 forecast experiments (LDAS fc d2
and LDAS fc d8) for 2018 averaged over a domain defined as: longitudes from 4°W to 15°E and
latitudes from 48°N to 55°N. According to figure 2, this domain was more severely affected by the
heatwave, it represented by figure 9c. Firstly, the large error between all the experiments and the
observations for the start of the growing season is noticeable. From March to June LDAS HRES
395 analysis as wells as LDAS fc d2 and LDAS fc d8 are slightly correcting this issue, only. This is a

known issue as already mentioned by [18], the CO -responsive version of ISBA is such that during
2

the growing phase, enhanced photosynthesis corresponds to a CO, uptake, which results in

vegetation growth from a prescribed LAl minimum threshold (1 m? m~2 for coniferous forest or

0.3 m? m 2 for other vegetation types). These thresholds are probably too low and are currently

400 Dbeing revisited using the CGLS LAI long term dataset. This is expected to lead to better
representation of LAI during the vegetation growing phase [75]. However, during the senescence
phase (see zoom on figure 9b), the analysis is quite efficient reducing the differences with the
observed LAI and it is quite interesting to notice that so are the 2-d and 8-d forecasts of LAI
initialized by the analysis suggesting that the impact of assimilating satellite observations in LDAS-

405 Monde has the capacity to mitigate model deficiencies, leading to better estimates of the system
states and that this impact last in time. From all panels of figure 9, one may see that LDAS fc d2
and LDAS fc d8 are closer to the observations than the open-loop. Figure 9c represents RMSD
values between the open-loop (ran for 2018, only) and the LAI GEOV?2 observations and figure 9d
the RMSD differences between the open-loop (analysis) and the LAI GEOV2. Negative (blue)

410 values indicate areas where the analysis has smaller (i.e. better) RMSD values than the open-loop.
Figure 9d is dominated by negative (blue) values showing the added value of the analysis over the
open-loop. Finally figure 9e presents RMSD differences between the open-loop (LDAS fc d8) and
the LAI GEOV2 observations and it is very interesting to notice than an 8-day forecast initialized
by an analysis presents better skills in capturing LAI than an open-loop for most of the domain.

415  This result is emphasized by figure 10 showing monthly RMSD and R values between LAI from
the 4 above-mentioned experiments (LDAS-HRES open-loop and analysis, LDAS fc d2 and
LDAS fc d8) and the GEOV2 observations over 2018. RMSD and R values from LDAS fc d2
and LDAS fc d8 experiments are better that the open-loop, all year long. They are closer to those
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from LDAS-HRES analysis than its open-loop counterpart. As seen on figure 10b, it is from July
420 2018 that the differences between the open-loop and the analysis are the strongest. Impact of
assimilating LAI and SSM estimates has a time persistence of at least 8§ days on LAI. Future work
will focus on giving more statistical strength to those results in particular by considering a longer
time period as well as looking at other LSVs.
5 Conclusions and perspectives
425 This study has investigated the capability of LDAS-Monde offline land data assimilation system to
represent the impact of the summer 2018 heatwave on vegetation. Satellite derived leaf area index
and surface soil moisture have been assimilated in LDAS-Monde forced by either ERAS reanalyses
(0.25°x0.25° spatial resolution) or the IFS HRES operational product (0.10°x0.10° spatial
resolution) from ECMWFE. Both analysis experiments were able to represent the impact of the
430 heatwave on vegetation well. If there is a surface physiography and modeling advantage of the
HRES configuration, there is added value in down-scaling ERAS to HRES spatial resolution, too. It
would allow consistent, long term and high-resolution reanalysis of the LSVs. The possibility of
forecasting LSVs has been successfully implemented and shows that forecast of LAI from analyzed
initial conditions has more skills than an open-loop (with a persistence of at least 8 days).
435 Combining ERAS atmospheric re-analysis, HRES analysis and its forecast within LDAS-Monde is
highly relevant to foster research for land applications at various timescales from daily to annual.
The use of HRES data to force LDAS-Monde is very promising and it can be complemented by
ECMWEF 51-member ensemble forecasts (~18 km spatial resolution). Moreover, one member of the
ensemble is similar to HRES at a coarser spatial resolution, and as the ensemble is available up to
440 15-days lead time (twice a day and up to 45 days twice a week) it can be used to test longer forecast
of LSVs than when using HRES. Use of the ECMWF ensemble in LDAS-Monde could help
capturing uncertainties in the representation of LSVs. It would open the possibility to anticipate the
impact of heatwaves at monthly temporal scales using a probabilistic method.
One of the limitations to the use of the discussed land data assimilation system at a high spatial
445  resolution, for example using grid cells of 1 km or 300 m, is that analyzed atmospheric forcing are
not available at these scales. If downscaling atmospheric forcing like the IFS HRES (e.g. from
0.1°x0.1° to 0.01°x0.01° spatial resolution) is likely to add uncertainties, their impact on the
representation of the LSVs can be reduced through the dynamic integration of satellite-derived LAI
observations at fine scale like the 300m spatial resolution product from Copernicus Global Land
450 Service. For the meteorological forcing the use of AROME (Application de la Recherche a
I'Opérationnel a Méso-Echelle) operational numerical prediction model from Météo-France

atmospheric variables to drive the LDAS will also be investigated as its spatial resolution is already
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465

of 1.3 km x1.3 km over France. The process of comparing Land Surface Models and observations,
e.g. through data assimilation, permits to highlight model deficiencies, also. It is likely that the
model would benefit from new LAI minimal values parameterization that are currently being
revisited at Météo-France using the long-term CGLS data-set including more than 18-yr of LAI
data.
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Tables
Table I: Set up of the experiments used in this study
. Domain . .
EX perlme‘nts Model & spatial resolution | Atm. forcing DA Ass1mlla‘ted Observations Control variables
(time period) method | observations | operators
LDAS-ERAS Rescaled
ERAS SSM
(2008-10/2018) de}?:le:;e;:lf:;;l:li:les (ASCAT) ‘Ya(;ezr(ifzz;‘ld Layers of soil 2 to 8 (WG2 to WGS, 1-100cm)
LDAS_HRES from 10.5°W to SEKF LAI (1-4cm)) LAI
(04/2016-2018 20.5°E, latitudes | ypg HRES (GEOV2)
2018) ISBA from 42°N to 59°N LAI
Multi-layer
soil model ERAS
CO2- 12-month model run
ES_010 responsive downscaled
(2017) version to
(Interactive 0.10°x0.10°
vegetation) IFS HRES
LDé?ﬁgc)_dZ ENOTth (\;Vie-stegn d_ay ) 12-month model run, every day a 2-day forecast initialized by an analysis is ran
urope defined as
gongitudes from 5°W forecast
LDAS fc d8 to15°E, latitudes IFS_HRES o .
( 20_18)_ from 48°N to 55°N day 8 12-month model run, every day an 8-day forecast initialized by an analysis is ran
forecast
710
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720
Table II: Percentage of the domain with monthly anomalies lower than -2 stdv for satellite derived GEOV2 Leaf Area Index, ASCAT surface soil

moisture. Only months of July are represented.

July July July July July July July July July July July July July July July July July July July
2000 2001 2002 | 2003 | 2004 | 2005 2006 | 2007 | 2008 | 2009 | 2010 | 2011 2012 | 2013 | 2014 | 2015 2016 | 2017 | 2018

GEOV2
Leaf
Area

Index

ASCAT
SWI

5 0.4 0.25 5 0.6 0.8 1.84 1.14 0.22 0.03 0.67 0.70 0.28 0.7 0.25 2 0.10 0.6 18.8

N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.2 0.04 1.75 0.17 1.5 0.5 0.06 3.02 0.01 10.
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Figure 1: Monthly Anomaly time-series (scaled by the standard deviation) of satellite derived (a)
GEOV2 Leaf Area Index over 2000-2018 and (b) Surface Soil Moisture over 2008-2018 from the
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Figure 2: Monthly anomalies (scaled by standard deviation, expressed in units of standard
deviation) maps for July 2018 for (a) GEOV2 Leaf Area Index with respect to 2000-2018 and (b)
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LDAS-ERA5: Open-loop Analysis
LDAS-HRES: : 0 Analysis

a) * Obs. I

Figure 4: a) Observed CGLS GEOV2 Leaf Area Index (LAI) (green stars) over January 2008 to
December 2018 as well as LDAS-Monde LAI time-series forced by either ERAS5 (Open-loop is in
blue, analysis is in red) over January 2008-October 2018 or HRES (Open-loop is in cyan, analysis
is in orange) over April 2016-December 2018. b) Same as a) over LDAS-HRES and LDAS-ERAS5

common period (April 2016 to October 2018). Data are averaged over the domain illustrated by
fiourve 2 dnched line venvesents the date from when HRES i< availahle (Anvil 2016) and the date un
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Figure 5: Upper panel, seasonal (a) RMSD and (b) correlation values between leaf area index
(LAI) from the model forced by either ERA5 (LDAS-ERAS5 Open-loop in blue) or HRES (LDAS-
HRES Open-loop in cyan), the analysis forced by either ERA5 (LDAS-ERAS5 Analysis in red) or
HRES (LDAS-HRES Open-loop in pink) and GEOV2 LAI estimates from the Copernicus Global
Land Service project from 04/2016 to 10/2018. Lower panel, same as upper panel between
modelled/analysed soil moisture from the second layer of soil (1-4cm) and ASCAT surface soil
moisture estimates from the Copernicus Global Land Service project.
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Figure 6: Upper panel, Leaf Area Index from (a) LDAS-ERAS5 Open-loop, (b) the observations, (c)
LDAS-ERAS Analysis and (d) differences between LDAS-ERAS Analysis and LDAS-ERAS5 Open-
loop for July 2018. Lower panel, same as upper panel for LDAS-HRES. Spatial resolution of upper
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llustration 7: Maps of monthly anomalies (expressed in units of standard deviation) from LDAS-
ERAS5 analysis for July 2008, 2010, 2012, 2014, 2016 and 2018 with respect to the 2008-2018
period (from left to right) for the following variables: soil moisture form the fourth layer of soil
(between 20 cm and 40cm), drainage, runoff and evapotranspiration (from top to bottom)
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Figure 8: Monthly (a) RMSD and (b) correlation values between leaf area index (LAI) from the
model forced by either HRES 010 or ERA5 010 (ERAS forcing down-scaled to HRES spatial

resolution) and GEOV?2 LAI estimates from the Copernicus Global Land Service project for the
year 2017.
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Figure 9: (a) LAI time serie from the model (LDAS-HRES Open-loop in blue), the analysis (LDAS-
HRES Analysis in red), the 2-d and 8-d forecasts from the analysis (LDAS Fc d2 in green ,
LDAS Fc d8 in cyan respectively) as well as the observations from the Copernicus Global Land
Service (LAl GEOV?2, red stars) for 2018. (b) same as (a) focusing on the June-December period.(c)
RMSD values between LDAS-HRES Open-loop ran over 2018 and LAl GEOV2, (d) RMSD
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Figure 10: Monthly (a) RMSD and (b) R values between LAI from the model (LDAS-HRES open-
Inon in hlue) analveic (TNAS-HRES Analvcic in ved) the D-d and 8-d fovecacst exnevimente
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