
1 

Monitoring and forecasting the impact of the 2018 summer heatwave on vegetation 

Clément Albergel1, Emanuel Dutra2, Bertrand Bonan1, Yongjun Zheng1, Simon Munier1, Gianpaolo 

Balsamo3, Patricia de Rosnay3, Joaquin Munoz-Sabater3 and Jean-Christophe Calvet1 

1 CNRM - Université de Toulouse, Météo-France, CNRS, Toulouse, France 
2 Instituto Dom Luiz, IDL, Faculty of Sciences, University of Lisbon, Portugal 5 

3 ECMWF, Reading, UK 
corresponding author, Clément Albergel : clement.albergel@meteo.fr 

abstract-This study aims to assess the potential of the LDAS-Monde a land data assimilation 

system developed by Météo-France to monitor the impact of the 2018 summer heatwave over 

western Europe vegetation state. The LDAS-Monde is forced by the ECMWF’s (i) ERA5 10 

reanalysis, and (ii) the Integrated Forecasting System High Resolution operational analysis (IFS-

HRES), used in conjunction with the assimilation of Copernicus Global Land Service (CGLS) 

satellite derived products, namely the Surface Soil Moisture (SSM) and the Leaf Area Index (LAI). 

Analysis of long time series of satellite derived CGLS LAI (2000-2018) and SSM (2008-2018) 

highlights marked negative anomalies for July 2018 affecting large areas of North Western Europe 15 

and reflects the impact of the heatwave. Such large anomalies spreading over a large part of the 

considered domain have never been observed in the LAI product over this 18-yr period. The LDAS-

Monde land surface reanalyses were produced at spatial resolutions of 0.25°x0.25° (January 2008 to 

October 2018) and 0.10°x0.10° (April 2016 to December 2018). Both configuration of the LDAS-

Monde forced by either ERA5 or HRES capture well the vegetation state in general and for this 20 

specific event, with HRES configuration exhibiting better monitoring skills than ERA5 

configuration. The consistency of ERA5 and IFS HRES driven simulations over the common period 

(April 2016 to October 2018) allowed to disentangle and appreciate the origin of improvements 

observed between the ERA5 and HRES. Another experiment, down-scaling ERA5 to HRES spatial 

resolutions, was performed. Results suggest that land surface spatial resolution is key (e.g. 25 

associated to a better representation of the land cover, topography) and using HRES forcing still 

enhance the skill. While there are advantages in using HRES, there is added value in down-scaling 

ERA5, which can provide consistent, long term, high resolution land reanalysis. If the improvement 

from LDAS-Monde analysis on control variables (soil moisture from layers 2 to 8 of the model 

representing the first meter of soil and LAI) from the assimilation of SSM and LAI was expected, 30 

other model variables benefit from the assimilation through biophysical processes and feedbacks in 

the model. Finally, we also found added value of initializing 8-day land surface HRES driven 

forecasts from LDAS-Monde analysis when compared with model only initial conditions. 
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 1  Introduction 

Land surface conditions are critical in the global weather and climate system. Accurate 

characterization and simulation of hydrological and biophysical variables at the land surface 

represent a significant challenge given large spatial heterogeneity and human modifications of the 

land surface. In particular, observing and simulating the response and feedbacks of land surface 40 

conditions to extreme events is crucial in our ability to manage adaptation to climate change 

impacts. Land Surface Model (LSM)’s role has evolved over the years, from the primary goal of 

providing boundary conditions to atmospheric models to being used as monitoring and forecasting 

tools for estimating land surface conditions [1-4]. Modelling of terrestrial variables can be improved 

through the dynamical integration of observations [5-7] and there is a growing emphasis on 45 

constraining the LSM estimates with observational inputs as well as coupling them with other 

models of the Earth system [8-9, 10, 1]. Enhanced estimates of land surface conditions are also 

recognized to lead towards improved forecasts of weather patterns, sub-seasonal temperatures and 

precipitations, agricultural productivity, seasonal streamflow, floods and droughts as well as carbon 

cycle [11-16]. Remote sensing observations are particularly useful in this context as they are now 50 

unrestrictedly available at a global scale with high spatial resolution and with long-term records. 

Many satellite-derived products relevant to the hydrological (e.g. soil moisture, snow depth/cover, 

terrestrial water storage), vegetation (e.g. leaf area index, biomass) and energy (e.g. land surface 

temperature, albedo) cycles are readily available [17]. Data assimilation techniques allow to 

spatially and temporally integrate the observed information into LSMs in a consistent way [5, 18]. 55 

We refer to Land Data Assimilation Systems (LDASs) as the framework where LSMs are driven by 

and/or ingest such observations generating enhanced estimates of the land surface variables (LSVs) 

[10]. Several LDASs now exist from point to regional scale, amongst them are the Gobal Land Data 

Assimilation System (GLDAS, [19]), the Carbon Cycle Data Assimilation System (CCDAS, [20]), 

the Coupled Land Vegetation LDAS (CLVLDAS, [21-22] and more recently the U.S. National 60 

Climate Assessment LDAS (NCA-LDAS, [10]) as well as LDAS-Monde [7, 18] to name a few. 

These LDASs either optimize process parameters (e.g. CCDAS), state variables (e.g. GLDAS, 

NCA-LDAS, LDAS-Monde) or both (e.g., CLVLDAS). Assimilated Earth Observations (EOs) 

generally include satellite retrieval of surface soil moisture [5, 8, 23-25], snow depth [26-29] and 

snow cover [30-31, 9, 27], vegetation [32-35, 7, 18], as well as terrestrial water storage [36-38]. 65 

Few studies have included multiple remote sensing measurements. For instance, [10] assimilates 

various remote sensing measurements of the terrestrial water cycle within the NCA-LDAS over the 
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USA while LDAS-Monde [7, 18] considers the joint assimilation of vegetation (Leaf Area Index, 

LAI) and surface soil moisture (SSM) measurements. LDAS-Monde is a sequential land data 

assimilation system with global capacity. It has been evaluated over various domains at various 70 

spatial resolutions including France at 8 km scale [33, 39] forced by the SAFRAN reanalysis of 

Météo-France (Système d’Analyse Fournissant des Renseignements Atmosphériques à la Neige, 

[40-41], Europe at 0.5°x0.5° [18, 35] forced by ERA-Interim atmospheric reanalysis from the 

European Center For Medium Range Weather Forecast (ECMWF) [42], North America [7] and 

Burkina-Faso in western Africa at 0.25°x0.25° [43] forced by ERA5 atmospheric reanalysis [44]. In 75 

those studies, analysis impact was successfully evaluated using several datasets such as (i) in situ 

measurements of soil moisture (ii) agricultural statistics, (iii) river discharge, (iv) independent flux 

estimates related to vegetation dynamics (evapotranspiration, Sun-Induced Fluorescence (SIF) and 

Gross Primary Productivity (GPP)). Albergel et al., [7], highlighted LDAS-Monde capacity to better 

characterize agricultural droughts (spatial area and intensity) than an open-loop counterpart (i.e. 80 

model without any assimilation of satellite derived measurements) over the continental United 

States of America. They found that LDAS-Monde can provide improved initial conditions to 

initialize forecast and that its impacts persist through time, also. In the above mentioned study, 

LDAS-Monde satellite-derived surface soil moisture dataset (ESA CCI SSM, [45-48] along with 

satellite derived LAI (GEOV1, http://land.copernicus.eu/global/ last access, June 2018), were 85 

jointly assimilated leading to a quarter degree spatial resolution reanalysis of the LSVs over 2010-

2016. 

Stemming from previous work [7], the present study investigates the capability of LDAS-Monde to 

represent the impact of the summer 2018 heatwave in Europe on vegetation. Spring and summer 

2018 in Europe were marked by unusually hot weather that has led to record-breaking temperatures 90 

in many countries across northern and central Europe. According to ECMWF, near-surface air 

temperature anomaly in Europe in the period of April to August, calculated with respect to the 

1981–2010 average for those months, was much larger in 2018 than in any previous year since 1979 

[49]. According to the National Oceanic and Atmospheric Administration -NOAA- Europe had its 

second warmest July on record. It follows its second warmest June on record (behind 2003), its 95 

warmest May since continental records began in 1910, surpassing the previous record set in 2003: 

the whole summer 2018 was Europe's warmest since continental records began in 1910 at +2.16°C 

(Global Climate Report, https://www.ncdc.noaa.gov/sotc/global/, last access October 2018). 

Northern Hemisphere summer precipitation was generally weaker than normal across central 

Europe. 100 

Such an event is likely to affect land surface conditions. In this study, satellite derived estimates of 
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LAI and SSM as well as LDAS-Monde are used to monitor the impact of the heatwave on 

vegetation, focusing on July 2018. Firstly, we assess the heatwave impact on satellite derived LAI 

and SSM, using time-series over 2000 to 2018 and 2008 to 2018, respectively. Secondly, we 

evaluate the heatwave impact on the simulated LAI from LDAS-Monde forced by ECMWF ERA-5 105 

reanalysis from January 2008 to October 2018 at 0.25°x0.25° and by ECMWF Integrated 

Forecasting System (IFS) high resolution operational analysis (HRES) from April 2016 to 

December 2018 at 0.10°x0.10°. The use of both ERA5 and HRES to force LDAS-Monde enable to 

assess the impact of resolution versus system quality over a common one year period (2017) were 

ERA5 was downscaled to HRES spatial resolution. Another added value of using HRES consists in 110 

its forecast capacity, up to 10 days ahead. Forecast of LAI initialized by LDAS-Monde analysis 

with a leading time up to 8-days is then investigated in order to assess whether or not the heatwave 

impact on land surface conditions could have been anticipated. The remainder of this paper is 

organized as follows: section 2 describes the LDAS-Monde system, the satellite derived estimates 

of LAI and SSM and the ECMWF analysis and reanalysis forcing, results are analyzed and 115 

discussed in sections 3 and 4. 

 2  Material and Methods 

This study assesses the ability of LDAS-Monde sequential assimilation of satellite derived surface 

SSM and LAI to represent the impact of the summer 2018 heatwave in Europe on vegetation. The 

following sections describe LDAS-Monde system as well as 2 other key elements of its setup: 120 

atmospheric forcing (LDAS-Monde being an offline system) and satellite derived observations. 

 2.1  LDAS-Monde 

Within the SURFEX modelling platform of Météo-France (Surface Externalisée, [50], Version 8.1), 

the LDAS [32-33, 34, 39, 51] developed in the research department of Météo-France, the CNRM 

(Centre National de Recherches Météorologiques) permits integrating satellite products into the 125 

ISBA LSM [52-55] using a data assimilation scheme. The LDAS was extended to a global scale 

(LDAS-Monde, [18]). At the same time, the coupling to hydrological models (ISBA-CTRIP for 

ISBA-CNRM-, Total Runoff Integrating Pathways) was consolidated. A full description of the 

ISBA-CTRIP system is presented in [56]. The obtained land surface reanalyses from LDAS-Monde 

account for the synergies of the various upstream products (e.g., model and satellite derived 130 

observations) and are able to provide an improved representation of the LSVs, as well as statistics 

which can be used to monitor the quality of the assimilated observations (e.g. 7, 18, 35). LDAS-

Monde can also be used to calibrate model parameters (e.g., [57] for the soil maximum available 

water content within ISBA). 
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LDAS-Monde uses the CO2-responsive [53-55], multi-layer soil [56-59], version of ISBA. The 135 

later allows to solve the energy and water budgets at the surface level and describes the exchanges 

between the land surface and the atmosphere. Parameters of the ISBA LSM are defined for 12 

generic land surface patches: nine plant functional types (namely: needle leaf trees, evergreen 

broadleaf trees, deciduous broadleaf trees, C3 crops, C4 crops, C4 irrigated crops, herbaceous, 

tropical herbaceous, and wetlands) as well as bare soil, rocks, and permanent snow and ice surfaces. 140 

They are derived from ECOCLIMAP-II, the land cover map used in SURFEX [60]. Atmospheric 

and climate conditions drive the dynamic evolution of the vegetation biomass and LAI through 

vegetation growth and mortality processes implemented in the form of a nitrogen dilution process -

NIT option- [53, 55, 61]. Photosynthesis enables vegetation growth resulting from the CO2 net 

assimilation. During the growing phase, enhanced photosynthesis corresponds to a CO2 net 145 

assimilation, which results in vegetation growth from the LAI minimum threshold (1 m2 m−2 for 

coniferous forest or 0.3 m2 m−2 for other vegetation types). Vegetation phenology relies on 

photosynthesis-driven plant growth and mortality, and photosynthesis is related to the mesophyll 

conductance. More information on the CO2-responsive version of ISBA can be found in [62-63], 

also. The multilayer diffusion scheme described in [58-59] drives transfers of water and heat 150 

through the soil. Finally, the Simplified Extended Kalman Filter Data Assimilation (DA) technique 

(SEKF, [18, 32-33, 34, 39, 51] is the main technique available within LDAS-Monde. While 

ensemble based DA techniques are currently being tested and implemented [39, 64], to date the 

LDAS-Monde SEKF is the more robust. It uses finite differences to compute the flow dependency 

between the assimilated observations (SSM and LAI) and the analysed variables (soil moisture from 155 

soil layer 2 (1cm to 4cm) to layer 8 (80cm to 100cm), representing the first meter of soil and LAI, 

see Table I). Further details of the analysis methodology can be found in [34, 18]. While control 

variables are directly updated thanks to their sensitivity to the observed variables, expressed by the 

SEKF Jacobians [18, 65], other variables are indirectly modified by the analysis through 

biophysical processes and feedbacks in the model by updates of the control variables. 160 

 2.2  Satellite derived observations 

Two satellite products from the Copernicus Global Land Service project are used in this study, the 

Surface Soil Moisture (SSM) and the Leaf Area Index (LAI) derived from SPOT-VGT (prior to 

2014) and PROBA-V (from 2014 onward). The SSM is derived from the Advanced Scatterometer 

(ASCAT), an active C-band microwave sensor on board the European MetOp polar-orbiting 165 

satellite (METOP-A&B). Information on soil moisture comes from ASCAT radar backscatter 

coefficients using a methodology developed at the Vienna University of Technology (TU-Wien) 
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based on a change detection approach originally developed for the active microwave instrument 

flown on-board the European satellites ERS-1 and ERS-2 [66-67]. The recursive form on an 

exponential filter [68] is applied to the soil moisture product to estimate the Soil Wetness Index 170 

(SWI) using a timescale parameter, T, varying between 1 day and 100 days. The result for the top 

soil moisture content (<5 cm) is expressed as a degree of saturation and ranges between 0 (dry) and 

100 (saturated). In this study, SWI-001 (i.e. T=1 day) is used as a proxy for SSM [69]. It is a global 

product at 0.1°x0.1° spatial resolution available daily from 2007. As in [7], pixels whose average 

altitude exceeds 1500 m above sea level as well as pixels with urban land cover fractions larger than 175 

15% were discarded as those conditions may affect the retrieval of soil moisture from space. SSM 

product has to be transformed into the model-equivalent surface soil moisture for data assimilation 

purposes and in order to address possible misspecification of physiographic model parameters (like 

the field capacity and the wilting point). Following [18] and [33] a linear re-scaling approach 

applied at a seasonal scale over the whole considered periods was used. It makes use of the first two 180 

moments of the cumulative distribution function (CDF) and consists of a linear re-scaling enabling 

a correction of the differences in the mean and variance of the distribution. 

LAI, defined as one-sided area of green elements of the canopy per unit horizontal ground area is 

observable from space and practically quantifies the thickness of the vegetation cover. Several LAI 

collections/versions are available from the CGLS project from 1999. They are retrieved from the 185 

SPOT-VGT (from 1999 to 2014) and then from PROBA-V (from 2014 to present) satellite data 

according to the methodology proposed by [70]. This study makes use of the GEOV2, 1km spatial 

resolution and 10-day steps in near real time product. Its development has followed several steps 

including (1) applications of a neural network for providing instantaneous estimates from SPOT-

VGT reflectances, (2) a multi-step filtering approach to eliminate contaminated data (e.g., affected 190 

by atmospheric effects and snow cover), and (3) temporal techniques for ensuring consistency and 

continuity as well as short term projection of the product dynamics [71] (LAI Product User Manual, 

https://land.copernicus.eu/global/sites/cgls.vito.be/files/products/GIOGL1_PUM_LAI300m-

V1_I1.60.pdf , last access November 2018).  

 2.3  ECMWF atmospheric forcing 195 

LDAS-Monde is driven by near-surface meteorological fields from both ECMWFs’ reanalysis, 

ERA5, released in 2018, as well as its high resolution operational high resolution weather analysis 

and forecasts (HRES). ERA5 underlying model and data assimilation system are very similar to that 

of the operational weather forecast. ERA5 production cycle (IFS Cycle 41r2) is still close to that of 

the HRES (FS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018, more information at 200 

http://www.ecmwf.int/research/ifsdocs/, last access October 2018). The main difference between the 
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two is the horizontal resolution with 31 km in ERA5 and 9 km in HRES. Another difference is the 

data assimilation time window which is from 21:00 UTC to 09:00 UTC in ERA5 and from 21:00 

UTC to 03:00 UTC in HRES, as it allows more observations to be assimilated in ERA5. The shorter 

time window in HRES is due to ECMWF operational constraints to deliver timely forecasts. 205 

The ERA5 forcing data includes the lowest model level (about 10-meters height) air temperature, 

wind speed, specific humidity and pressure and the downwelling fluxes of shortwave and longwave 

radiation and precipitation partitioned in solid and liquid phases. ERA5 is processed from the 

forecasts initialized daily at 00 UTC and 12 UTC using the hourly forecasts from +1 to +12h. 

HRES forcing data is processed from the forecasts initialized at 00UTC and 12UTC also using the 210 

forecasts from +1h to 12h. The same downwelling fluxes as in ERA5 are used but for HRES we 

processed 2-meters temperature and dewpoint temperature and 10-meters wind-speed. Specific 

humidity was then calculated from 2-meters temperature and dewpoint temperature. HRES also has 

the lowest model level data archived, but due to data storage and access constraints it was more 

efficient to process the 2-meters temperatures and 10-meters wind speed. Despite the difference in 215 

the processing of the near-surface fields, lowest model level and 2-meters temperature and 10-

meters winds are very similar, and this is not expected to impact substantially the results. In ERA5 

and HRES, the +1h to +12h hourly forecasts were concatenated to generate continuous time series 

and the data processed in the original resolution was bilinearly interpolated to a regular grid of 

0.25°x0.25° and 0.1°x0.1°. From the forecast initialized at 00UTC, HRES is also available up to 10-220 

d ahead. HRES forecast step frequency is hourly up to time step 90, 3-hourly from time-step 93 to 

144 and 6-hourly from time-step 150 to 240 (i.e. 10 days). While the original 3-hourly time steps 

are used up to day 6 (time step 144), the 6-hourly time steps from day 6 to 10 are interpolated to 3-

hourly frequency.  

 2.4  Experimental setup 225 

Table I presents the different experiments evaluated in this study. LDAS-Monde is first forced by 

ERA5 from 2008 to October 2018 (LDAS-ERA5) and HRES (LDAS-HRES) from April 2016 to 

December 2018 over a western Europe domain (defined as longitudes from 10.5°W-20.5°E, 

latitudes from 42°N-59°N). IFS is obtained from frequently updated versions of operational system 

at ECMWF (including changes in spatial and vertical resolutions, data assimilation, 230 

parameterizations, and sources of data), while reanalysis like ERA5 guarantees a higher level of 

consistency (e.g., same model) over long time period because of its frozen configuration. From 

April 2016 onward, IFS has a spatial resolution of about 0.1°x0.1° (HRES). Despite the spatial 

resolution, ERA5 being a recently released dataset, its production cycle (IFS Cycle 41r2) is still 
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close to that of the HRES (IFS Cycle 41r2 to 43r3 from 2016 and 45r1 from June 2018). At the 235 

ERA5 spatial resolution, large scale, long time experiments are computationally affordable, and 

HRES can be used to focus on specific domains or events.  

Vegetation outputs from this set of 4 experiments (assimilation of SSM and LAI as well as their 

model counterpart, i.e. open-loops without assimilation) are then evaluated. Vegetation from 

another experiment (model only, without assimilation) is evaluated: ISBA forced by ERA5 down-240 

scaled to HRES spatial resolution (from 0.25°x0.25° to 0.10°x0.10°) for 1 year (2017). Additionally 

to the LDAS-HRES analysis experiment, daily forecast experiments with 8-day lead time (from 

LDAS-HRES analyzed initial conditions) were also performed over 2018. Forecast experiments 

with 2 days and 8 days lead time (LDAS_fc_2d and LDAS_fc_8d, respectively) are evaluated.  

 3  Results  245 

 3.1  Monitoring the heatwave impact on LAI and SSM using remote sensing 

Time-series on figure 1 illustrate monthly anomalies (difference to the mean scaled by the standard 

deviation) for CGLS products GEOV2 LAI (fig.1a) and ASCAT SSM (fig.1b) over the periods 2000 

to 2018 and 2008 to 2018, respectively, averaged over the domain (presented by figure 2). On both 

time-series, July is highlighted in red and the dashed lines represent the value of July 2018. As for 250 

LAI (fig.1a), July 2018 exhibits a large negative anomaly, greater than twice standard deviations 

(stdv) on average. Such a low value is not observed in this 19-yr time-series for a month of July and 

only one month, in summer 2003: August 2003 presents an anomaly value below than that of July 

2018. In 2003, large parts of Europe were affected by record-breaking temperature in summer (e.g., 

[72]). June to October 2018 presented negative LAI anomalies, also. Table II presents the fraction 255 

of the considered domain affected by negative anomalies greater than 2 stdv for all months of July 

over 2000-2018 for GEOV2 LAI and 2008-2018 for ASCAT SSM. In July 2018, it represents nearly 

19% of the domain for LAI, the largest percentage observed in 19-yr. Not only the 2018 summer 

heatwave lead to very large negative anomaly values in LAI but it has affected a large part of the 

domain. Figure 2a shows maps of anomaly for July 2018 for GEOV2 LAI.  260 

From fig.2a, it is visible that most of the UK, Northern part of France, Belgium, Netherlands, 

Denmark, Germany and Czech-republic present anomaly values greater than -2 stdv. ASCAT SSM 

exhibits large negative anomalies for July 2018 (fig.2b), greater than -1, also. Such low values were 

also observed in July 2008 and 2015, and it is worth noticing from Table II that in July 2018, 10% 

of the domain was affected by anomalies greater than -2 stdv, while only 2.2% and ~3% for July 265 

2008 and 2015. From fig.2b (maps on anomaly for July 2018 for ASCAT SSM), it is visible that the 

southern part of the domain present large positive anomaly values (e.g., north of Spain, in the 

Balkans) as well as the good geographical agreement between GEOV2 LAI and ASCAT SSM 
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anomalies. While some winter months show large negative anomaly in ASCAT SSM, e.g. 

December 2010, 2011, this might be related to frozen conditions not accounted for and interpreted 270 

as dry conditions. 

 3.2  Monitoring the heatwave impact on vegetation using LDAS-Monde 

LDAS-Monde being an offline reanalysis of the land surface variables, it is forced by atmospheric 

datasets: ERA5 and HRES in this study. Using both datasets to force LDAS-Monde produces a long 

reanalysis of the LSVs (from the use of ERA5) with real-time and even forecast capacity (from the 275 

use of HRES). As ERA5 is available with a large temporal extent (from 2000 at the time of study) it 

offers the possibility to analyse climatic signals. Anomaly time-series of air temperature and 

precipitation from ERA5 are presented in figure 3. While it is not our intention to repeat the study 

from [49] on predicting the summer 2018 heatwave it is however interesting to highlight that the 

April to August period in 2018 exhibits rather large positive anomaly values of air temperature 280 

(fig.3a) with July 2018 being the highest value observed between January 2001 and October 2018. 

For precipitation, all months from May to October 2018 present large negative anomalies with July 

2018 being the third lowest within the considered period. One may also note the coherence between 

air temperature and precipitation from ERA5 and the satellite derived observation presented above 

for this 2018 heatwave event, particularly for LAI. As seen from figures 3 and 1a, large positive 285 

anomalies of air temperature are associated with large negative anomalies of precipitation as well as 

large negative anomalies of LAI. In the beginning of 2007 temperature and precipitation show 

positive anomalies which reflect on LAI presenting large positive anomalies. While in the 

beginning of 2013, both air temperature and LAI show negative anomalies. 

When LDAS-Monde is driven by ERA5 and integrates LAI and SSM through data assimilation, 290 

those anomalies should be reflected on analyzed land surface conditions and their impact 

propagated to other land surface variables through biophysical processes and feedbacks in the 

model. Figure 4a illustrates observed CGLS GEOV2 Leaf Area Index (LAI), over 2008-2018 as 

well as LDAS-Monde LAI time-series forced by either ERA5 (LDAS-ERA5 hereafter) over 

January 2008-October 2018 or HRES (LDAS-HRES hereafter) over April 2016-December 2018. 295 

Figure 4b shows the same as fig.4a for the common April 2014 to October 2018 period. From figure 

4 one may notice the good agreement between the analyzed LAI and the observed annual cycle. 

While neither the open-loop nor the analysis capture the maximum LAI peak well (as already 

observed by [18]), the analysis efficiently corrects for the open-loop delay during the senescence 

phase. Considering the period where both ERA5 and HRES are available to force LDAS-Monde 300 

(April-2016 to October 2018), one may notice the relative good agreement between LDAS-ERA5 
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and LDAS-HRES, both in the open-loops and analyses. The senescence phase being remarkably 

picked-up by LDAS-HRES analysis (which failed capturing the LAI peak intensity though). 

Upper panel of figure 5 illustrates seasonal RMSD (fig5.a) and correlation (fig5.b) values between 

LAI from the model forced by either ERA5 (LDAS-ERA5 Open-loop) or HRES (LDAS-HRES 

Open-loop), the analysis forced by either ERA5 (LDAS-ERA5 Analysis) or HRES (LDAS-HRES 

Open-loop) and GEOV2 LAI estimates from CGLS from April 2016 to October 2018. Figure 5 

lower panel shows the same between modelled/analysed soil moisture from the second layer of soil 

(1-4cm) and ASCAT surface soil moisture estimates from CGLS, also (and converted into the 

model space, in m
3

m
-3

, as detailed in section 2.1). From figure 5 (all panels), one may see that 

LDAS-ERA5 and LDAS-HRES open-loops are quite comparable, LDAS-HRES open-loop being 

slightly better than LDAS-ERA5 open-loop in representing both LAI and soil moisture. It is also 

visible that the analyses add skill to both open-loops for both variables, which indicates the healthy 

behavior from the land data assimilation system. Over the whole common period (from April 2016 

to October 2018), averaged R and RMSD values for LDAS-ERA5 open-loop (analysis) are 

0.575(0.798) and 1.215 m
2

m
-2 

(0.796 m
2

m
-2

) for LAI, 0.748(0.772) and 0.038 m
3

m
-3 

(0.035 

m
3

m
-3

) for soil moisture, respectively. For LDAS-HRES, they are 0.601(0.808) and 1.150 m
2

m
-2 

(0.772m
2

m
-2

) for LAI and 0.750(0.772), 0.038 m
3

m
-3

 (0.036m
3

m
-3

), respectively. 

Finally, figure 6 shows LAI for the month of July 2018 from the open-loop, observations, analysis 

as well as LAI differences (analysis minus open-loop) for LDAS-ERA5 (upper panels, 0.25°x0.25° 305 

spatial resolution) and LDAS-HRES (lower panels, 0.10°x0.10° spatial resolution). From the two 

open-loops, one can see that LDAS-ERA5 and LDAS-HRES overestimate LAI with respect to the 

observations. LDAS-HRES open-loop is however in better agreement with the observations than 

LDAS-ERA5 open-loop, particularly over the area most affected by the heatwave (e.g over 

Belgium, the Netherlands, Germany and Poland). While the assimilation is efficiently reducing LAI 310 

in both LDAS-ERA5 and LDAS-HRES analyses, the latter is in better agreement with the 

observations than LDAS-ERA5 analysis, also. Despite their spatial resolution differences, ERA-5 

and HRES results present similar LAI patterns. They both underestimate the amplitude and spatial 

extent of the drought in the open-loop, and for both the analysis effectively improves the particular 

LAI conditions associated to the 2018 heatwave. Furthermore, due to the large-scale nature of the 315 

drought event the spatial resolution differences between ERA5 and HRES do not affect significantly 

the simulations. 
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Figure 7 represents maps of monthly anomaly from LDAS-ERA5 for July 2008, 2010, 2012, 2014, 

2016 and 2018 for soil moisture in the fourth layer of soil (wg4, between 20 cm and 40cm) as well 

as drainage, runoff and evapotranspiration over most of the UK. While wg4 is one of the control 320 

variables (i.e. directly impacted by the analysis), drainage, runoff and evapotranspiration are only 

indirectly impacted by the analysis through model feedbacks. July 2018 presents the strongest 

negative anomalies. It is worth mentioning the positive anomaly values for July 2012, particularly 

in runoff and drainage responding to persistent rain during the first weekend of July that had led to 

flooding in many part of the UK (https://www.metoffice.gov.uk/learning/learn-about-the-325 

weather/weather-phenomena/case-studies/july-2012-flooding, last access November 2018). 

 3.3  Resolution vs. System evaluation 

Results presented above showed that driving the LDAS by either ERA5 or HRES lead to good 

results monitoring the impact of the summer 2018 heatwave on vegetation, with HRES providing 

better results. In an attempt to investigate if the improvement from the use of ERA5 to HRES is due 330 

to the resolution only (e.g. better representation of land cover) or the forcing quality (or both), 

another experiment was carried out for 2017 (see Table I). ERA5 was downscaled from 0.25°x0.25° 

to 0.10°x0.10° (ERA5_010) spatial resolution to force ISBA and outputs were compared to those of 

LDAS_HRES open-loop (ran for 2017, with similar initial conditions). A bilinear interpolation from 

the native grid to the regular grid was made. Figure 8 illustrates monthly scores (R and RMSD 335 

values over 2017) for LAI from 2 experiments, namely ERA_010 and LDAS_HRES open-loop. 

From the two panels of figure 8, one may appreciate the score similarities between ERA5_010 and 

LDAS_HRES open-loop. The later only performs slightly better than ERA5_010, respectively, from 

July onward for both R and RMSD values. HRES was upscaled to ERA5 spatial resolution to run 

ISBA and outputs where compared to those of LDAS-ERA5 open-loop (ran for 2017, with similar 340 

initial conditions), also, and similar results as discussed above were obtained (not shown). Although 

longer time period would be required to further test these configurations, it is very interesting to 

notice than when ERA5 forcing is downscaled to 0.10°x0.10° to force ISBA, it performs almost as 

good as the operational forcing, HRES. These results could justify running longer periods of time of 

ERA5 at 0.10°x0.10° when the operational forcing is not available (e.g., prior to April 2016). 345 

 4  Discussions 

Both LDAS-Monde forced by either ERA5 or HRES lead to an accurate representation of 

vegetation during the summer 2018 heatwave and in general. HRES configuration presents slightly 

better results over the common period investigated. HRES being obtained from frequently updated 

versions of the IFS it is not a fixed system in time, while reanalysis like ERA5 guarantees a higher 350 

level of consistency because of its frozen configuration. ERA5 has a coarser spatial resolution than 
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the HRES. Its spatial resolution allows however LDAS experiments to be long term and affordable 

at large scale. With ERA5 available back to 1950 and covering near real-time needs with the 

ERA5T (https://climate.copernicus.eu/climate-reanalysis), an LDAS-ERA5 would be able to 

provide a model climate as reference for anomalies of the land surface conditions. Significant 355 

anomalies could then be used to trigger more detailed monitoring and forecasting activities for a 

region of interest using, for example the LDAS-HRES. Both LDAS-Monde forced by either ERA5 

or HRES lead to an accurate representation of vegetation during the summer 2018 heatwave and in 

general. HRES configuration presents slightly better results over the common period investigated. 

HRES being obtained from frequently updated versions of the IFS it is not a fixed system in time, 360 

while reanalysis like ERA5 guarantees a higher level of consistency because of its frozen 

configuration. ERA5 has a coarser spatial resolution than the HRES. Its spatial resolution allows 

however LDAS experiments to be long term and affordable at large scale. With ERA5 available 

back to 1950 and covering near real-time needs with the ERA5T 

(https://climate.copernicus.eu/climate-reanalysis), an LDAS-ERA5 would be able to provide a 365 

model climate as reference for anomalies of the land surface conditions. Significant anomalies 

could then be used to trigger more detailed monitoring and forecasting activities for a region of 

interest using, for example the LDAS-HRES.  

 4.1  Are LAI and SSM relevant indicators? 

The Summer 2018 heatwave clearly had an impact on vegetation and soil moisture, as seen using 370 

satellite derived estimates of LAI and SSM. Those satellite estimates are very useful to monitor 

extreme events impacts but their use is limited by their temporal frequency of few days at best. If 

microwave remote sensing provides a way to quantitatively describe the water content of a shallow 

near-surface soil layer, [73], the variable of interest for applications in short- and medium-range 

meteorological modeling and hydrological studies over vegetated areas is the root-zone soil 375 

moisture content which controls e.g. plant transpiration [68]. Similarly, estimates of above-ground 

biomass might be more useful than LAI for application linked to agriculture. Integration of these 

satellite derived dataset into LSMs through data assimilation is therefore of paramount importance 

to improve monitoring accuracy of extreme events impacts on LSVs. Not only the representation of 

LAI and SSM in such system will be improved but other model variables will benefit from the 380 

assimilation through biophysical processes and feedbacks in the model too [7, 10, 18, 74]. 

 4.2  Can the impact of heat waves on vegetation be anticipated? 

Two other experiment are presented in order to (i) study the possibility of forecasting the impact of 

extreme events on vegetation few days in advance and (ii) highlighting the fact that a forecast 

initialized by an analyzed state can have more skills than an open loop. For the whole 2018 and for 385 
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each daily analysis from LDAS-HRES, 2 forecast experiments (2-day and 8-day forecast, see Table 

I) were conducted. The atmospheric forcing forecast is coming from HRES, as described in the 

materials and methods sections. For sake of clarity only forecast with lead time of 2 and 8 days are 

presented (LDAS_fc_d2 and LDAS_fc_d8, respectively). Figure 9a illustrates LAI time-series from 

the open-loop, the analysis (ran for 2018, only) as well as the 2 forecast experiments (LDAS_fc_d2 390 

and LDAS_fc_d8) for 2018 averaged over a domain defined as: longitudes from 4°W to 15°E and 

latitudes from 48°N to 55°N. According to figure 2, this domain was more severely affected by the 

heatwave, it represented by figure 9c. Firstly, the large error between all the experiments and the 

observations for the start of the growing season is noticeable. From March to June LDAS_HRES 

analysis as wells as LDAS_fc_d2 and LDAS_fc_d8 are slightly correcting this issue, only. This is a 395 

known issue as already mentioned by [18], the CO
2

-responsive version of ISBA is such that during 

the growing phase, enhanced photosynthesis corresponds to a CO2 uptake, which results in 

vegetation growth from a prescribed LAI minimum threshold (1 m2 m−2 for coniferous forest or 

0.3 m2 m−2 for other vegetation types). These thresholds are probably too low and are currently 

being revisited using the CGLS LAI long term dataset. This is expected to lead to better 400 

representation of LAI during the vegetation growing phase [75]. However, during the senescence 

phase (see zoom on figure 9b), the analysis is quite efficient reducing the differences with the 

observed LAI and it is quite interesting to notice that so are the 2-d and 8-d forecasts of LAI 

initialized by the analysis suggesting that the impact of assimilating satellite observations in LDAS-

Monde has the capacity to mitigate model deficiencies, leading to better estimates of the system 405 

states and that this impact last in time. From all panels of figure 9, one may see that LDAS_fc_d2 

and LDAS_fc_d8 are closer to the observations than the open-loop. Figure 9c represents RMSD 

values between the open-loop (ran for 2018, only) and the LAI GEOV2 observations and figure 9d 

the RMSD differences between the open-loop (analysis) and the LAI GEOV2. Negative (blue) 

values indicate areas where the analysis has smaller (i.e. better) RMSD values than the open-loop. 410 

Figure 9d is dominated by negative (blue) values showing the added value of the analysis over the 

open-loop. Finally figure 9e presents RMSD differences between the open-loop (LDAS_fc_d8) and 

the LAI GEOV2 observations and it is very interesting to notice than an 8-day forecast initialized 

by an analysis presents better skills in capturing LAI than an open-loop for most of the domain.  

This result is emphasized by figure 10 showing monthly RMSD and R values between LAI from 415 

the 4 above-mentioned experiments (LDAS-HRES open-loop and analysis, LDAS_fc_d2 and 

LDAS_fc_d8) and the GEOV2 observations over 2018. RMSD and R values from LDAS_fc_d2 

and LDAS_fc_d8 experiments are better that the open-loop, all year long. They are closer to those 
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from LDAS-HRES analysis than its open-loop counterpart. As seen on figure 10b, it is from July 

2018 that the differences between the open-loop and the analysis are the strongest. Impact of 420 

assimilating LAI and SSM estimates has a time persistence of at least 8 days on LAI. Future work 

will focus on giving more statistical strength to those results in particular by considering a longer 

time period as well as looking at other LSVs. 

 5  Conclusions and perspectives 

This study has investigated the capability of LDAS-Monde offline land data assimilation system to 425 

represent the impact of the summer 2018 heatwave on vegetation. Satellite derived leaf area index 

and surface soil moisture have been assimilated in LDAS-Monde forced by either ERA5 reanalyses 

(0.25°x0.25° spatial resolution) or the IFS HRES operational product (0.10°x0.10° spatial 

resolution) from ECMWF. Both analysis experiments were able to represent the impact of the 

heatwave on vegetation well. If there is a surface physiography and modeling advantage of the 430 

HRES configuration, there is added value in down-scaling ERA5 to HRES spatial resolution, too. It 

would allow consistent, long term and high-resolution reanalysis of the LSVs. The possibility of 

forecasting LSVs has been successfully implemented and shows that forecast of LAI from analyzed 

initial conditions has more skills than an open-loop (with a persistence of at least 8 days). 

Combining ERA5 atmospheric re-analysis, HRES analysis and its forecast within LDAS-Monde is 435 

highly relevant to foster research for land applications at various timescales from daily to annual. 

The use of HRES data to force LDAS-Monde is very promising and it can be complemented by 

ECMWF 51-member ensemble forecasts (~18 km spatial resolution). Moreover, one member of the 

ensemble is similar to HRES at a coarser spatial resolution, and as the ensemble is available up to 

15-days lead time (twice a day and up to 45 days twice a week) it can be used to test longer forecast 440 

of LSVs than when using HRES. Use of the ECMWF ensemble in LDAS-Monde could help 

capturing uncertainties in the representation of LSVs. It would open the possibility to anticipate the 

impact of heatwaves at monthly temporal scales using a probabilistic method. 

One of the limitations to the use of the discussed land data assimilation system at a high spatial 

resolution, for example using grid cells of 1 km or 300 m, is that analyzed atmospheric forcing are 445 

not available at these scales. If downscaling atmospheric forcing like the IFS HRES (e.g. from 

0.1°x0.1° to 0.01°x0.01° spatial resolution) is likely to add uncertainties, their impact on the 

representation of the LSVs can be reduced through the dynamic integration of satellite-derived LAI 

observations at fine scale like the 300m spatial resolution product from Copernicus Global Land 

Service. For the meteorological forcing the use of AROME (Application de la Recherche à 450 

l'Opérationnel à Méso-Échelle) operational numerical prediction model from Météo-France 

atmospheric variables to drive the LDAS will also be investigated as its spatial resolution is already 
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of 1.3 km x1.3 km over France. The process of comparing Land Surface Models and observations, 

e.g. through data assimilation, permits to highlight model deficiencies, also. It is likely that the 

model would benefit from new LAI minimal values parameterization that are currently being 455 

revisited at Météo-France using the long-term CGLS data-set including more than 18-yr of LAI 

data.  
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Tables 

Table I: Set up of the experiments used in this study 

Experiments 
(time period) Model 

Domain  
& spatial resolution 

 
Atm. forcing DA 

method 
Assimilated 
observations 

Observations 
operators Control variables 

LDAS-ERA5 
(2008-10/2018) 

ISBA 
Multi-layer 
soil model 

CO2-
responsive 

version 
(Interactive 
vegetation) 

 

Western Europe 
defined as longitudes 

from 10.5°W to 
20.5°E, latitudes 

from 42°N to 59°N 
 
 
 
 
 
 
 

North Western 
Europe defined as 

gongitudes from 5°W 
to15°E, latitudes 

from 48°N to 55°N 

ERA5 
 

SEKF 

SSM  
(ASCAT) 

 
LAI 

(GEOV2) 
 

Rescaled 
WG2 (Second 
layer of soil 

(1-4cm)) 
 

LAI 
 

Layers of soil 2 to 8 (WG2 to WG8, 1-100cm) 
 

LAI 
 

LDAS_HRES 
(04/2016-2018 

2018) IFS_HRES 

E5_010 
(2017) 

ERA5 
downscaled 

to 
0.10°x0.10° 

12-month model run 
 

LDAS_fc_d2 
(2018) 

IFS_HRES 
day 2 

forecast 
12-month model run, every day a 2-day forecast initialized by an analysis is ran 

LDAS_fc_d8 
( 2018) 

IFS_HRES 
day 8 

forecast 
12-month model run, every day an 8-day forecast initialized by an analysis is ran 

 710 

 
 
 
 
 715 
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 720 
Table II: Percentage of the domain with monthly anomalies lower than -2 stdv for satellite derived GEOV2 Leaf Area Index, ASCAT surface soil 
moisture. Only months of July are represented. 
 

 July 
2000 

July 
2001 

July 
2002 

July 
2003 

July 
2004 

July 
2005 

July 
2006 

July 
2007 

July 
2008 

July 
2009 

July 
2010 

July 
2011 

July 
2012 

July 
2013 

July 
2014 

July 
2015 

July 
2016 

July 
2017 

July 
2018 

GEOV2 
Leaf 
Area 
Index 

5  0.4  0.25 5  0.6  0.8  1.84 1.14 0.22 0.03 0.67 0.70 0.28 0.7  0.25 2 0.10 0.6  18.8 

ASCAT 
SWI N/A N/A N/A N/A N/A N/A N/A N/A N/A 2.2 0.04 1.75 0.17 1.5 0.5 0.06 3.02 0.01 10. 
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Figures 

 725 

 

 

 

 

 730 

 

Figure 1: Monthly Anomaly time-series (scaled by the standard deviation) of satellite derived (a) 
GEOV2 Leaf Area Index over 2000-2018 and (b) Surface Soil Moisture over 2008-2018 from the 
Copernicus Global Land Service averaged over the domain (presented by figure 2). Months of July 
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 735 

 

 

Figure 2: Monthly anomalies (scaled by standard deviation, expressed in units of standard 
deviation) maps for July 2018 for (a) GEOV2 Leaf Area Index with respect to 2000-2018 and (b) 
Surface Soil Moisture with respect to 2008-2018 from the Copernicus Global Land Service. 
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 Figure 3: Monthly Anomaly time-series (scaled by the standard deviation, expressed in units of 
standard deviation) of air temperature (a) and precipitations from ERA5 atmospheric reanalysis 
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 740 

 

Figure 4: a) Observed CGLS GEOV2 Leaf Area Index (LAI) (green stars) over January 2008 to 
December 2018 as well as LDAS-Monde LAI time-series forced by either ERA5 (Open-loop is in 
blue, analysis is in red) over January 2008-October 2018 or HRES (Open-loop is in cyan, analysis 
is in orange) over April 2016-December 2018. b) Same as a) over LDAS-HRES and LDAS-ERA5 
common period (April 2016 to October 2018). Data are averaged over the domain illustrated by 
figure 2, dashed line represents the date from when HRES is available (April 2016) and the date up 
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 745 

 Figure 5: Upper panel, seasonal (a) RMSD and (b) correlation values between leaf area index 
(LAI) from the model forced by either ERA5 (LDAS-ERA5 Open-loop in blue) or HRES (LDAS-
HRES Open-loop in cyan), the analysis forced by either ERA5 (LDAS-ERA5 Analysis in red) or 
HRES (LDAS-HRES Open-loop in pink) and GEOV2 LAI estimates from the Copernicus Global 
Land Service project from 04/2016 to 10/2018. Lower panel, same as upper panel between 
modelled/analysed soil moisture from the second layer of soil (1-4cm) and ASCAT surface soil 
moisture estimates from the Copernicus Global Land Service project. 
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Figure 6: Upper panel, Leaf Area Index from (a) LDAS-ERA5 Open-loop, (b) the observations, (c) 
LDAS-ERA5 Analysis and (d) differences between  LDAS-ERA5 Analysis and LDAS-ERA5 Open-
loop for July 2018. Lower panel, same as upper panel for LDAS-HRES. Spatial resolution of upper 
panel is 0.25°x0.25°, spatial resolution of lower panel is 0.10°x0.10°. 

 

Illustration 7: Maps of monthly anomalies (expressed in units of standard deviation) from LDAS-
ERA5 analysis for July 2008, 2010, 2012, 2014, 2016 and 2018 with respect to the 2008-2018 
period (from left to right) for the following variables: soil moisture form the fourth layer of soil 
(between 20 cm and 40cm), drainage, runoff and evapotranspiration (from top to bottom) 
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Figure 8: Monthly (a) RMSD and (b) correlation values between leaf area index (LAI) from the 
model forced by either HRES_010 or ERA5_010 (ERA5 forcing down-scaled to HRES spatial 
resolution) and GEOV2 LAI estimates from the Copernicus Global Land Service project for the 
year 2017.  
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Figure 9: (a) LAI time serie from the model (LDAS-HRES Open-loop in blue), the analysis (LDAS-
HRES Analysis in red), the 2-d and 8-d forecasts from the analysis (LDAS_Fc_d2 in green , 
LDAS_Fc_d8 in cyan respectively) as well as the observations from the Copernicus Global Land 
Service (LAI GEOV2, red stars) for 2018. (b) same as (a) focusing on the June-December period.(c) 
RMSD values between LDAS-HRES Open-loop ran over 2018 and LAI GEOV2, (d) RMSD 
differences between LDAS-HRES Analysis (Open-loop) and LAI GEOV2, (e) same as (d) for 
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Figure 10: Monthly (a) RMSD and (b) R values between LAI from the model (LDAS-HRES open-
loop in blue), analysis (LDAS-HRES Analysis in red), the 2-d and 8-d forecast experiments 
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