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Abstract: Diversification is an important strategy for managing risk in agricultural systems. Risk analysis1

can help to support farmers’ diversification strategies, but existing analytical methods are complicated2

and little used. The minimum regret model helps to fill this gap. It provides a simple, transparent3

calculation procedure that can be executed with existing spreadsheet software. Regret is an important4

heuristic in the behavioural sciences and regret-based models are used in finance. The article presents the5

model with a numerical example. It also presents a framework to compare minimum regret portfolios6

with two limit cases (maximum utility and minimax regret). A case study illustrates the use of the model7

and the comparative framework.8
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1. Introduction10

Agricultural diversification is widely practiced by farmers. Diversification can serve as a risk11

management strategy or “natural insurance”, harnessing the buffering effects of different functional12

farm components. Farm components jointly reduce variation if they respond to time-variant biotic and13

abiotic stresses in different, complementary ways. Also, diversification can reduce market risk when14

different products have a low correlation between their respective market prices. Diversification can15

support climate adaptation, resilience and food security [1–3]. Examples of agricultural diversification are16

mixed crop-livestock systems [4], agroforestry [5], field scattering [6], varietal diversification [7,8], crop17

diversification [9], and intercropping [10].18

Diversification for risk management is important enough to merit support from agricultural research19

and advisory services. Support can take the form of targeted introduction of genetic resources, discovering20

practices that use certain risk-reducing elements in farm portfolios, supporting policy design to encourage21

such practices, and opening new marketing channels for alternative products. Diversification does not22

automatically result in risk-reducing portfolios that address goals and concerns that farmers may have.23

Careful analysis is needed to ensure this.24

Despite the importance of diversification for risk management, tools to analyze risk and compose25

risk-reducing portfolios are still seldom used in farm management or agricultural advisory services [11].26

The literature explains the gap between theory and practice by blaming theory rather than practice: tools27

and analyses are generally too complicated, they focus on isolated aspects of farm risk management, lack28

contextual validity, make “heroic” assumptions about statistical distributions and uncertainty, produce29

results that do not match decision-making practice, or lack consideration of communication needs [12–14].30

For practical use in agronomic design and analysis contexts, relatively simple tools are needed that facilitate31

quick assessment of different portfolios. Normally, design of agricultural systems does not achieve a single32

optimal solution but must consider trade-offs between multiple objectives [15]. Farmers will also consider33

the degree of protection against risk from other measures, including financial ones, and shift their farm34
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portfolio accordingly [16]. Therefore, a quick calculation tool, in combination with other tools, would35

allow a systematic initial exploration of the solution space.36

To address the need for a quick calculation tool, I present the minimum regret model [17,18]. Minimum37

regret is a computationally simple model to analyze and design portfolios, deciding about the combinations38

and proportions of the elements to include to reduce risk. The goal of this article is to introduce the39

minimum regret model to agricultural scientists. The focus is practical and the presentation is done40

through numerical examples. Mathematical details are presented in Appendix A. In the following section,41

I present the minimum regret model and discuss its theoretical background. I then probe how minimum42

regret can shed light on land use allocations in a case study on an agricultural system subjected to high43

climate risk. The case study illustrates the potential usefulness of the minimum regret model for portfolio44

analysis and design in agriculture.45

2. Minimum regret model46

The minimum regret model was first presented by Dembo and King [17,18]. The model builds on47

previous theory to construct portfolios, notably Modern Portfolio Theory [19]. It takes into account48

anticipated regret about opportunity loss [20–22]. The focus on regret provides protection against49

“downside risk”, which is especially important when utility distributions are asymmetric [23].50

The procedure behind the minimum regret model is intuitive. The decision-maker imagines plausible51

future scenarios. Then, for each of the scenarios, the decision-maker compares the utility of a given portfolio52

with the best possible choice. This gap in utility is called (opportunity) loss [20]. The decision-maker53

tries to minimize these loss values, giving more weight to the largest losses and to the scenarios that54

are more likely to occur. The combination of expected loss values translates into the decision-maker’s55

anticipated regret. This procedure is cognitively not too taxing, as the decision-maker only compares with56

one imagined best portfolio under each scenario. This can be imagined as making comparisons with a57

neighbouring farmer who is clairvoyant, deciding a portfolio based on a perfect forecast. The scenarios58

are concrete combinations of conditions, which can be based on conditions in the recent past, but can59

also incorporate any other information, such as seasonal climate forecasts, price forecasts, and personal60

hunches about the future.61

3. Computational procedure62

The minimum regret model turns the intuitive procedure of comparing with a clairvoyant63

decision-maker into a sequence of computations. To calculate the value of regret, the model needs64

the following inputs:65

• a payoff matrix that describes the payoff or return of different components when different scenarios66

(“states of nature”) occur;67

• the probabilities that each of the scenarios occurs;68

• a portfolio, which is a series of values for relative shares for different portfolio components, which69

should sum to 1.70

With these inputs, the model returns the expectation of the regret that a decision-maker will experience71

in the future. To give more weight to larger losses, regret is a convex function of loss. I follow King [17]72

in using a quadratic function and calculate regret as the root mean square loss (see Appendix A for73

details). The model minimizes the expected regret by choosing optimal portfolio proportions for each74

component, which add up to 1. A simple numerical example will help to explain the minimum regret75

model. Mathematical notation is given in the Appendix.76

Table 1 gives a fictional payoff matrix of two different varieties that are available to a farmer, a modern77

variety (created by specialized plant breeders) and a farmer variety (selected and maintained by farmers).78
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The modern one produces more on average, but its production is lower than the farmer variety in a bad79

year. The farmer variety has a low, stable yield, which is not affected in a bad year. With this input, the80

expected regret can be obtained for different variety portfolios.81

Table 1. Example of a payoff matrix of two varieties for two scenarios and probability of occurrence

Good year Bad year

Modern variety 4 t/ha 1 t/ha
Farmer variety 2 t/ha 2 t/ha

Probability scenario occurs 0.6 0.4

As a first step, the payoff matrix is converted into a loss matrix by subtracting each value from the82

highest value in each column. The loss is the difference with the best possible option under each scenario83

(Table 2).84

Table 2. Absolute loss matrix of two varieties for two scenarios and probability of occurrence.

Good year Bad year

Modern variety 0 t/ha 1 t/ha
Farmer variety 2 t/ha 0 t/ha

Probability scenario occurs 0.6 0.4

From the loss matrix, the expected regret of any portfolio can be calculated. For example, the expected85

regret of a simple 1:1 proportion between the two varieties (weights of 0.5 for each) would give the86

calculation shown in Table 3.87

Table 3. Absolute expected regret calculation for a portfolio of 50% modern variety and 50% farmer variety

Good year Bad year

Modern variety (loss · share) 0 · 0.5 = 0 1 · 0.5 = 0.5
Farmer variety (loss · share) 2 · 0.5 = 1 0 · 0.5 = 0

Total loss (sum of above) 0 + 1 = 1 0.5 + 0 = 0.5

Absolute squared regret (squared total loss · probability) 12 · 0.6 = 0.6 0.52 · 0.4 = 0.1

Summing the quadratic regret values of Table 3 gives a value of 0.7. To obtain a regret value on the88

original scale, the regret is expressed as the root mean square loss:
√

0.7 = 0.84 ton per hectare. The89

minimum regret can be calculated in the same way, changing the relative weight of the varieties in the90

portfolio to obtain the lowest expected regret value. In this case, it is easy to find an analytical solution.91

The sum of the weights should add up to 1, so if w is the weight of the modern variety (a value between 092

and 1), then 1-w is the weight of the farmer variety. We can obtain the minimum regret by minimizing the93

following expression.94 √
0.6 · ((1− w) · 2)2 + 0.4 · (w · 1)2 (1)

This expression has a minimum at w = 0.86. This means that the minimum regret portfolio has 86% of95

the modern variety and 14% of the farmer variety and an expected regret value of 0.59 t/ha. In cases with96
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more than two varieties, the equations become more complicated, but the optimization can be done using97

a generic optimizer, such as the Solver plug-in in Microsoft Excel.98

Until now, I have only discussed absolute regret. The literature also describes relative regret, which is99

regret expressed as a ratio of the reference portfolio [16,22,24]. Both types of regret are potentially valid,100

depending on the context and goals of the decision-maker. Consider two years, one with a top yield of 2101

t/ha and a second year with a top yield of 4 t/ha. An opportunity loss of 1 t/ha would count equally for102

each year under absolute regret. Good years compensate for bad years. This is a plausible perspective103

when the farmer can deal with temporary losses using a loan, savings, stored food or income from other104

sources. Under relative regret, however, an opportunity loss of 1 t/ha would be a much larger loss in105

the first year (50% of the reference) than in the second year (25% of the reference). A loss counts more106

heavily in a bad year than in a good year. Relative regret is applicable when farmers have limited access to107

resources and the farm is their main means of survival. For farmers in these circumstances, loss in a bad108

year is more likely to get the farm in the danger zone than a loss of the same size in a good year.109

Given a loss matrix, the relative expected regret can be calculated in a similar way as demonstrated110

above for absolute regret. The result is shown in Table 4. The only difference is that the total regret value111

of each year is divided by the square of the top yield for that same year. For this portfolio, the relative112

expected regret of the portfolio with equal proportions of the two varieties is
√
(0.0375 + 0.025) = 0.25.113

This is to be interpreted as a proportion or percentage (“relative regret of 25%”).114

Table 4. Relative expected regret calculation for a portfolio of 50% modern variety and 50% farmer variety

Good year Bad year

Modern variety (loss · share) 0 · 0.5 = 0 1 · 0.5 = 0.5
Farmer variety (loss · share) 2 · 0.5 = 1 0 · 0.5 = 0

Total loss (sum of above) 0 + 1 = 1 0.5 + 0 = 0.5

Relative squared regret (12 / 42) · 0.6 = 0.0375 (0.52 / 22) · 0.4= 0.025
(squared total loss / squared top yield) · probability

The variety portfolio can also be optimized for relative regret. The resulting portfolio has 60% of115

the high-yielding variety and 40% of the high-yielding variety and has a relative expected regret of 24%.116

We can also calculate the absolute regret of this portfolio, which is 0.73 t/ha. Minimizing the relative117

regret implies a sub-optimal absolute regret. The decision-maker must determine which type of regret118

corresponds to the context in which the portfolio should function.119

4. Comparative framework120

Real portfolios will deviate from ideal minimum-regret portfolios. In some cases, deviations will be121

due to external factors, including imperfect knowledge, technical constraints, or resource constraints. In122

other cases, however, deviations will may be inherent to decision-making and due to more relaxed or123

more conservative approaches to regret and downside risk. To cover these cases, I present two other types124

of models and their corresponding portfolios, which are limit cases of a more general model of regret.125

Together with the minimum regret model, they provide a mathematically coherent set of models (see126

Appendix A).127

The first additional model is maximum expected utility, which does account for regret and just128

optimizes the long-term average outcome. This model corresponds to a decision-maker who is indifferent129

to risk or regret, focuses on long-term return and has capital or other income to survive bad years. The130

other model, minimax regret, represents the opposite extreme. Here the decision-maker focuses on the131
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worst-case scenario and minimizes regret for this scenario. It represents a model with infinite regret,132

focusing exclusively on reducing the worst cases. It represents a farmer whose main worry is the survival133

of the farm, has no other ways to compensate losses and therefore avoids downside risk at all cost.134

Infinite regret does not consider the different probabilities of scenarios. This is appropriate under absolute135

uncertainty. Generally, farmers take into account the relative frequency of events for decision-making, so136

infinite regret can safely be considered a limit case. The role of the minimax model is therefore diagnostic137

or comparative but not prescriptive.138

Minimum regret is in-between these two limit cases. This means that deviations towards weaker or139

stronger regret aversion can be interpreted in reference to these additional portfolios. Table 5 presents the140

resulting five scenarios and five metrics in an overview for the fictional case of the two-variety portfolio.141

Each portfolio optimizes one metric (shown in bold), but the same metric is also presented for the other142

portfolios. The expected utility of the regret-based portfolios is substantially below the optimum, showing143

that avoiding downside risk has a cost in the long term. However, even in the most extremely conservative144

approach to risk, the long-term utility would only be 0.4 t/ha lower than the optimum of 2.8 t/ha, a 14%145

reduction. Clearly, no metric would suggest that a farmer should ever plant less than 50% of land with146

the modern variety. It is evident that relative regret is a much more conservative criterion than absolute147

regret. In this example, minimum relative regret is even more conservative than minimax absolute regret.148

The potential reduction in expected absolute regret seems minimal, however, at most 0.04 t, but expected149

relative regret can be reduced by 25%. Minimax relative regret is a very extreme position, as it recommends150

growing equal quantities of the two varieties, whereas intuitively it would make sense to grow some more151

of the modern variety, especially since good years are more frequent than bad years.152

Table 5. Five diagnostic portfolios of two varieties with performance metrics. Values in bold are those
optimized (minimized or maximized) by the respective model. Values for one hectare of land.

Portfolio Proportion Proportion Expected Expected Expected Worst Worst
modern farmer utility (t) absolute relative absolute relative
variety variety regret (t) regret regret (t) regret

Maximum
expected utility 1.00 0.00 2.80 0.63 0.32 1.00 0.50

Minimum
absolute regret 0.86 0.14 2.69 0.59 0.28 0.86 0.43

Minimum
relative regret 0.60 0.40 2.48 0.73 0.24 0.80 0.30

Minimax
absolute regret 0.67 0.33 2.53 0.67 0.25 0.67 0.33

Minimax
relative regret 0.50 0.50 2.40 0.84 0.25 1.00 0.25

5. Potential contribution of the minimum regret model153

Minimum regret is an attractive model for several reasons. The first reason is that it has154

support in theory. Anticipated regret is an important heuristic that explains experimental results from155

decision-making experiments [21,22]. Such heuristics have become more central in recent research on156

human decision-making, which studies heuristics as cost-effective shortcuts to reach rational decisions157

[25,26]. Minimizing expected regret is a rational way to think about risk and has an important role in158

financial risk management [27,28]. It has been shown to be equivalent to Conditional Value-at-Risk, a159

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   doi:10.20944/preprints201901.0092.v1

http://dx.doi.org/10.20944/preprints201901.0092.v1


6 of 12

“coherent” state-of-the-art risk metric in finance [29,30], which has already been applied in agriculture to160

generate variety portfolio recommendations [31].161

Minimum regret is also attractive because of its simple calculation procedure. The scenario-based162

focus of the minimum regret model as presented here stays close to the input data [32]. It does not reduce163

the uncertainty in the input data, but it makes the modelling process highly transparent (visible on a164

spreadsheet), so that the limitations are relatively easy to understand. In many cases, a simple model with165

known limitations is a better starting point than a more comprehensive model that is more difficult to166

understand and contextualize. Applications of insights from portfolio construction exercises are unlikely167

to be straightforward, as decisions will often be constrained by farm-specific factors or informed by168

local knowledge and innovative solutions that are difficult to foresee [33,34]. A simple calculation tool169

should help decision-makers to move between analysis and synthesis quickly, focusing on risk as one170

of several aspects. For risk analysis, the minimum regret model would serve as a quick calculation tool.171

For other aspects, decision-makers could use similar calculation tools, rules of thumb, and qualitative172

assessments, especially in the first steps of the design process. DeKay and Brown [35] argue that in173

bioclimatic architecture 80% of the energy savings are made in the first sketch, which therefore needs to be174

supported by broad-ranging, quick analyses. Similarly, in agricultural systems design, simple calculation175

tools serve to explore a broad range of options that would be difficult to assess with more demanding176

modelling tools. Another advantage of analytical simplicity is that the results are easy to communicate.177

Despite this aim for initial analytical simplicity, there is nothing holding back the analyst from178

extending the minimum regret model with more sophisticated methods. For example, bootstrapping can179

serve to assess uncertainty in estimated parameters and portfolios, as is done with comparable data-driven180

methods [11]. Therefore, the minimum regret model could be gradually extended and provide a bridge181

between practical agronomic decision-making and more sophisticated modelling exercises.182

6. Case study: Crop portfolio for inter-annual rainfall variation183

As a first illustration of the minimum regret model and the comparative framework, I focus on an184

agricultural system in which climate risk is a main factor for farmers’ crop portfolio decisions. The case185

study is based on information provided by Matsuda [36], who did a detailed quantitative study of a186

farming system in the central part of Myanmar. In this area, farming households grow a diverse portfolio187

of cash crops and use the income to buy rice grown elsewhere. Agricultural diversification characterizes188

these highly commercial farming systems. The analysis will focus on how farmers construct farm portfolios189

of three main cropping systems: (1) cotton-pigeonpea, (2) sesame, and (3) legumes (excluding pigeonpea).190

There was generally no double cropping in the area, so each year land is assigned to one of these cropping191

systems.192

Matsuda provides data on crop allocations, yields and market prices for 7 years (2002-2008) [36]. My193

analysis uses these past years as equiprobable scenarios that inform farmers’ portfolios. In other words, I194

assume that farmers create portfolios to face a year that is randomly drawn from the previous 7 years. To195

obtain a consistent payoff table, I calculated revenue per unit of land for the three cropping systems and196

corrected revenues for inflation (Appendix B). Variations in revenue reflect the combination of variation197

in both yield and market prices, but yield variation dominates due to the high seasonal variability in198

rainfall. Table 7 shows the revenue data. Initially, the analysis makes the simplifying assumption that199

farmers allocate land to different cropping systems considering only crop revenue and its variation. The200

calculations can be reproduced with the Excel spreadsheets provided as Supplementary Information.201
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Table 6. Revenue for three cropping systems in Central Myanmar, derived from data in [36]. In euro per
hectare (2009 inflation-corrected prices).

Year Cotton- Sesame Legumes
pigeonpea (except

pigeonpea)

2002 30 154 40
2003 218 207 97
2004 230 93 184
2005 151 117 109
2006 289 48 244
2007 420 217 248
2008 171 204 150

From the payoff data in Table 6, I generated five diagnostic portfolios, shown in Table 7. Table202

7 compares these theoretical predictions with the empirical data (“Average observed portfolio” in the203

bottom row). The diagnostic portfolios all correctly predict that cotton-pigeonpea is the most important204

cropping system. The regret-based portfolios correctly assign a non-zero share to sesame, which is omitted205

completely in the maximum utility model. None of the portfolios, however, includes a substantial share206

for legumes. Only the minimax absolute regret model gives it a small share, yet much lower than observed.207

It is easy to trace back this pattern to the payoff table. In none of the years, legumes outperform both208

cotton-pigeonpea and sesame at the same time. A combination of cotton-pigeonpea and sesame protects209

well against risk.210

Table 7. Five diagnostic portfolios of two varieties with performance metrics. Values in bold are those
optimized (minimized or maximized) by the respective model. Values for one hectare of land.

Portfolio Proportion Proportion Proportion Expected Expected Expected Worst Worst
cotton- sesame legumes utility (t) absolute relative absolute relative

pigeonpea (except regret regret regret (t) regret
pigeonpea)

Maximum
expected utility 1.00 0.00 0.00 216 49 0.31 124 0.81

Minimum
absolute regret 0.88 0.12 0.00 208 46 0.28 109 0.71

Minimum
relative regret 0.66 0.34 0.00 193 55 0.25 82 0.53

Minimax
absolute regret 0.60 0.33 0.07 189 59 0.26 83 0.54

Minimax
relative regret 0.51 0.49 0.00 183 74 0.27 118 0.41

Average
observed portfolio 0.51 0.25 0.24 184 61 0.28 92 0.60

The underprediction of the share of legumes probably implies that these crops are not included in211

the system to reduce the risk of revenue per hectare. A possible reason for the prominence of legumes in212

the portfolio is that they help to distribute labour demand more evenly across the year and/or help to213

reduce overall labour demand. Legumes have a short production cycle and can be sown at different times,214

avoiding the harvest period of the other crops, as shown by the cropping calendar presented by Matsuda215

[36].216
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Assuming that legumes are included in the portfolio for reasons unrelated to revenue risk217

management, I fixed the proportion of legumes at the observed value of 24% and then reran the218

optimizations (Table 8). With this constraint added, the minimum absolute regret model predicts that 74%219

land will be planted to cotton-pigeonpea and 2% will be under sesame, far from the observed values. For220

the minimum relative regret model, this is 49% for cotton-pigeonpea and 27% for sesame, close to reality.221

This suggests minimum relative regret best reflects farmers’ choices. Relative regret is reasonable in this222

context, as the possibility from inter-annual risk transfer is limited. Compared to maximum utility, the223

observed portfolio achieves a reduction in both expected and worst relative regret, but not in expected224

absolute regret (Table 7).225

Table 8. Constrained minimum regret portfolios, following the same procedure as in Table 7, but setting
the proportion of legumes to 0.24.

Portfolio Proportion Proportion Proportion Expected Expected Expected Worst Worst
cotton- sesame legumes utility (t) absolute relative absolute relative

pigeonpea (except regret regret regret (t) regret
pigeonpea)

Minimum
absolute regret 0.74 0.02 0.24* 199 52 0.31 119 0.77

Minimum
relative regret 0.49 0.27 0.24* 182 96 0.28 96 0.57
*Fixed, non-optimized value.

Additional explorations can further improve understanding of farmer decision-making. Farmers can226

be presented with different crop portfolios to choose from and explain their considerations on climate and227

price risk, jointly with other factors that influence crop choices such as labour requirements, availability228

and costs throughout the year and land suitability. Similar elicitation exercises can also explore the effects229

of other risk management measures such as climate forecasts, crop insurance, crop storage, stress-tolerant230

varieties, and new crops. These new measures can be evaluated by repetitively changing the payoff matrix231

and rerunning the optimization.232

7. Discussion233

The case study shows how the minimum regret model can serve as a relatively simple calculation tool234

for an exploratory analysis of diversified portfolios. Data for a limited period of seven years was available.235

A more definitive analysis would need a comprehensive set of scenarios and calibrated probabilities. More236

data would also be needed to provide evidence on the relative adequacy of minimum regret versus other237

theories of risk in this case. Such data are rarely at hand for practical decision-making situations, however.238

The case study example shows that even without precise calibration or a comprehensive representation239

of the farming system, insights on the crop portfolio can be extracted from the data. The comparative240

framework confirmed that the observed deviations are not due to different degrees of regret aversion, but241

to other reasons. On the basis of this, specific hypotheses can be formulated that can guide next steps in242

an iterative exploration. The case study illustrates how minimum regret can be a useful addition to the243

toolbox of agricultural systems analysts. As analysts gain more experience with the model in practical244

contexts, its usefulness should become clearer, specifically in relation to the practical reasoning of farmers245

to analyse risks and select diversified portfolios.246
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8. Materials and Methods247

All data for the case study were derived from [36]. In the study area, farmers mainly grow the248

following crops: pigeonpea, cotton, sesame, and several minor pulses, including suntani/suntapya/butter249

beans (Phaseolus lunata), green gram (Vigna radiata), chickpea (Cicer arietinum), and lablab (Lablab purpurea).250

Farmers generally intercrop cotton and pigeonpea, so data for these two crops were combined to analyse it251

as a single cropping system. The minor pulses were also considered as one cropping system, following252

[36].253

Inflation influenced market prices strongly in this period, precluding a direct comparison between254

years. Rice prices increased more than fourfold during this period. Since buying rice is a main livelihood255

goal for farmers in the area, I used the rice price reported by [36] as an index to standardize the revenue256

data. I divided the revenue by the rice price of the corresponding year, which expressed the revenue in257

units of rice. I then multiplied this with the rice price of 2009 and converted to euros per hectare. Two data258

points for the price of legumes were missing. I imputed these values with zero-intersect linear regression,259

using the strong correlation between legumes and pigeonpea market prices in the other years (r=0.99). I260

combined price data from each year with the yield data from the previous year. The calculation can be261

traced in the Supplementary Information (Excel file).262
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Appendix269

Minimum regret is calculated following equations A1 (absolute regret) and A2 (relative regret).270

arg min
wi

E (Rabs) = ∑
s∈S

ps ·
(

∑
i∈N

wi · (max {rs,1, rs,2, rs,3, . . . , rs,n} − rs,i)

)2

(A1)

arg min
wi

E (Rrel) = ∑
s∈S

ps ·
(∑i∈N wi · (max {rs,1, rs,2, rs,3, . . . , rs,n} − rs,i))

2

max {rs,1, rs,2, rs,3, . . . , rs,n}2 (A2)

(A1) and (A2) subject to ∑
i∈N

wi = 1 wi ≥ 0 ∑
s∈S

ps = 1

E(Rabs) is the expected (quadratic) absolute regret.271

E(Rrel) is the expected (quadratic) relative regret.272

s is a scenario from the set of scenarios S.273

Set S contains all possible future scenarios.274

i is one of the n portfolio elements in set N.275

wi is the weight of the ith element.276

rs,i is the return (yield, revenue, profit) of element i under scenario s.277

ps is the probability that scenario s occurs.278

For practical use of regret-based portfolios, I focus on this version, which uses a quadratic transform279

of loss [17,18,37]. I report regret as the square mean root expected regret:
√
(E(Rabs)) and

√
(E(Rrel)).280

The use of quadratic loss functions has been criticized as convexity is not always desirable (having larger281

losses count more heavily) ([38], Section 2.4.2.1). In this context, however, the convexity of the loss282
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function is inherent to the focus on regret. A linear loss function corresponds to the expected utility. A283

quadratic function is an obvious choice, because it has a close conceptual link with the mean-variance284

model in Modern Portfolio Theory [17]. Geometrically, the root mean square loss can be understood as the285

downward Euclidean distance from a "clairvoyant" portfolio (in analogy to the standard deviation as the286

Euclidean distance of a sample from the mean). The quadratic loss function should be easy to understand287

for those who are familiar with the root mean square error (RMSE). Expressing regret as the root mean288

square loss transforms it back to the same scale as the variable in the payoff matrix in the case of absolute289

values (revenue, yield per hectare, etc.).290

The minimum regret model can be extended with several parameters. Hayashi [39] proposes a291

“smooth” model that leaves the exponent as a free parameter (α) Equation A3 shows this model, following292

the same notation as for equations A1 and A2.293

arg min
wi

E (Rabs,α) = ∑
s∈S

∑
i∈N

ps · (wi · (max {rs,1, rs,2, rs,3, . . . , rs,n} − rs,i))
α (A3)

subject to ∑
i∈N

wi = 1 wi ≥ 0 ∑
s∈S

ps = 1 α ≥ 1

So instead of having α = 2 to obtain King’s [17] version of minimum regret, Hayashi’s [39] model294

changes the value of α according to the preference of the decision-maker. Presenting a series of295

portfolios based on different intermediate parameter values, however, has limited value in facilitating296

decision-making. It is difficult for a decision-maker to define a priori an optimal or desirable level of regret297

aversion, or to attach a common-sense meaning to an intermediate value of a rather abstract parameter.298

Instead, I focus on two limit cases. One limit case is obtained when the parameter α in Hayashi’s [39]299

model is set to 1. This results in linear loss minimization, which is equivalent to the maximum expected300

utility model. In this model, regret does not play a role. The other limit case would be to let parameter301

α approach infinity (∞). This is equivalent to minimax regret, which focuses on limiting regret in the302

worst-case scenario [20,40]. Minimax regret does not consider the probabilities of the different scenarios,303

since it gives only weight to the worst-case scenario. For both models, an absolute and a relative loss304

function can be used. Together, these different values of α produce a set of mathematically coherent,305

discrete portfolios. The following formulas correspond to maximum utility (A4), minimax absolute regret306

(A5) and minimax relative regret (A6).307

arg max
wi

E (U) = ∑
s∈S

∑
i∈N

ps · wi · rs,i (A4)

arg min
wi

E (Rabs,max) = max
s∈S

∑
i∈N

wi · (max {rs,1, rs,2, rs,3, . . . , rs,n} − rs,i) (A5)

arg min
wi

E (Rrel.max) = max
s∈S

∑
i∈N

wi ·
max {s,1, rs,2, rs,3, . . . , rs,n} − rs,i

max {rs,1, rs,2, rs,3, . . . , rs,n}
(A6)

(A4) - (A6) subject to ∑
i∈N

wi = 1 wi ≥ 0 ∑
s∈S

ps = 1

308

1. Kremen, C.; Iles, A.; Bacon, C. Diversified farming systems: an agroecological, systems-based alternative to309

modern industrial agriculture. Ecology and Society 2012, 17, 44.310

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   doi:10.20944/preprints201901.0092.v1

http://dx.doi.org/10.20944/preprints201901.0092.v1


11 of 12

2. Waha, K.; Fritz, S.; See, L.; Thornton, P.K.; Wichern, J.; Herrero, M. Agricultural diversification as an important311

strategy for achieving food security in Africa. Global Change Biology 2018.312

3. Hansen, J.; Hellin, J.; Rosenstock, T.; Fisher, E.; Cairns, J.; Stirling, C.; Lamanna, C.; van Etten, J.; Rose, A.;313

Campbell, B. Climate risk management and rural poverty reduction. Agricultural Systems.314

4. Thornton, P.K.; Herrero, M. Climate change adaptation in mixed crop-livestock systems in developing countries.315

Global Food Security 2014, 3, 99–107.316

5. Blandon, P. Agroforestry and portfolio theory. Agroforestry Systems 1985, 3, 239–249.317

6. Goland, C. Field scattering as agricultural risk management: A case study from Cuyo Cuyo, Department of318

Puno, Peru. Mountain Research and Development 1993, 13, 317–338.319

7. Di Falco, S.; Chavas, J.P.; Smale, M. Farmer management of production risk on degraded lands: the role of320

wheat variety diversity in the Tigray region, Ethiopia. Agricultural Economics 2007, 36, 147–156.321

8. Nalley, L.L.; Barkley, A.P. Using portfolio theory to enhance wheat yield stability in low-income nations: An322

application in the Yaqui valley of northwestern Mexico. Journal of Agricultural and Resource Economics 2010,323

334-347.324

9. Lin, B.B. Resilience in agriculture through crop diversification: adaptive management for environmental325

change. Bioscience 2011, 61, 183–193. doi:10.1525/bio.2011.61.3.4.326

10. Raseduzzaman, M.; Jensen, E.S. Does intercropping enhance yield stability in arable crop production? A327

meta-analysis. European Journal of Agronomy 2017, 91, 25–33.328

11. Hardaker, J.B.; Lien, G.; Anderson, J.R.; Huirne, R.B. Coping with Risk in Agriculture: Applied Decision Analysis;329

CABI, 2015.330

12. Pannell, D.J.; Malcolm, B.; Kingwell, R.S. Are we risking too much? Perspectives on risk in farm modeling.331

Agricultural Economics 2000, 23, 69–78.332

13. Selley, R.A.; Wilson, P.N. Risk research and public outreach: A tale of two cultures? Journal of Agricultural and333

Resource Economics 1997, 22, 222–232.334

14. Patrick, G.F.; DeVuyst, E.A. Whence and whither in farm management risk research and extension delivery.335

Canadian Journal of Agricultural Economics 1995, 43, 1–14.336

15. Klapwijk, C.J.; van Wijk, M.T.; Rosenstock, T.S.; Van Asten, P.J.A.; Thornton, P.K.; Giller, K.E. Analysis337

of trade-offs in agricultural systems: current status and way forward. Current Opinion in Environmental338

Sustainability 2014, 6, 110–115.339

16. Baumgärtner, S.; Quaas, M.F. Agro-biodiversity as natural insurance and the development of financial insurance340

markets. In Agrobiodiversity, Conservation and Economic Development; Andreas Kontoleon, Unai Pascual, M.S.,341

Ed.; 2009; pp. 293–317.342

17. King, A.J. Asymmetric risk measures and tracking models for portfolio optimization under uncertainty. Annals343

of Operations Research 1993, 45, 165–177.344

18. Dembo, R.S.; King, A.J. Tracking models and the optimal regret distribution in asset allocation. Applied345

Stochastic Models and Data Analysis in Business and Industry 1992, 8, 151 – 157.346

19. Markowitz, H. Portfolio selection. The Journal of Finance 1952, 7, 77–91.347

20. Savage, L.J. The theory of statistical decision. Journal of the American Statistical Association 1951, 46, 55–67.348

21. Loomes, G.; Sugden, R. Regret theory: An alternative theory of rational choice under uncertainty. The Economic349

Journal 1982, 92, 805–824.350

22. Bell, D.E. Regret in decision making under uncertainty. Operations Research 1982, 30, 961–981.351

23. Harlow, W.V. Asset allocation in a downside-risk framework. Financial Analysts Journal 1991, 47, 28–40.352

24. Borodin, A.; El-Yaniv, R. Online Computation and Competitive Analysis; Cambridge University Press, 2005.353

25. Gigerenzer, G.; Brighton, H. Homo heuristicus: Why biased minds make better inferences. Topics in Cognitive354

Science 2009, 1, 107–143.355

26. Jekel, M.; Glöckner, A.; Fiedler, S.; Bröder, A. The rationality of different kinds of intuitive decision processes.356

Synthese 2012, 189, 147–160.357

27. Dembo, R.S.; Freeman, A. Seeing Tomorrow: Rewriting the Rules of Risk; Wiley: John and Sons, 2001.358

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   doi:10.20944/preprints201901.0092.v1

https://doi.org/10.1525/bio.2011.61.3.4
http://dx.doi.org/10.20944/preprints201901.0092.v1


12 of 12

28. Michenaud, S.; Solnik, B. Applying regret theory to investment choices: Currency hedging decisions. Journal of359

International Money and Finance 2008, 27, 677–694.360

29. Testuri, C.E.; Uryasev, S. On relation between expected regret and Conditional Value-at-Risk. In Handbook of361

Computational and Numerical Methods in Finance; Rachev, S.T., Ed.; Springer: Boston, MA, 2004; pp. 361–372.362

30. Szegö, G. Measures of risk. European Journal of Operational Research 2005, 163, 5–19.363

31. Sukcharoen, K.; Leatham, D. Mean-Variance Versus Mean-Expected Shortfall Models: An Application To364

Wheat Variety Selection. Journal of Agricultural and Applied Economics 2016, 48, 148–172.365

32. Dembo, R.S. Scenario optimization. Annals of Operations Research 1991, 30, 63–80.366

33. Suppe, F. The limited applicability of agricultural research. Agriculture and Human Values 1987, 4, 4–14.367

34. Fujisaka, S. Research: help or hindrance to good farmers in high risk systems? Agricultural Systems 1997,368

54, 137–152.369

35. DeKay, M.; Brown, G.Z. Sun, Wind, and Light: Architectural Design Strategies; Wiley: John & Sons, 2013.370

36. Matsuda, M. Upland farming systems coping with uncertain rainfall in the central dry zone of Myanmar:371

how stable is indigenous multiple cropping under semi-arid conditions? Human Ecology 2013, 41, 927–936.372

doi:http://dx.doi.org/10.1007/s10745-013-9604-x.373

37. Hennig, C.; Kutlukaya, M. Some thoughts about the design of loss functions. REVSTAT-Statistical Journal 2007,374

5, 19–39.375

38. Berger, J.O. Statistical Decision Theory and Bayesian Analysis; Springer: Science & Business Media, 2013.376

39. Hayashi, T. Regret aversion and opportunity dependence. Journal of Economic Theory 2008, 139, 242–268.377

40. Hayashi, T. Context dependence and consistency in dynamic choice under uncertainty: the case of anticipated378

regret. Theory and Decision 2011, 70, 399–430.379

Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   Preprints (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 10 January 2019                   doi:10.20944/preprints201901.0092.v1

https://doi.org/http://dx.doi.org/10.1007/s10745-013-9604-x
http://dx.doi.org/10.20944/preprints201901.0092.v1

	Introduction
	Minimum regret model
	Computational procedure
	Comparative framework
	Potential contribution of the minimum regret model
	Case study: Crop portfolio for inter-annual rainfall variation
	Discussion
	Materials and Methods
	
	References

