

1 *Review*2

IRES trans-acting factors, key actors of the stress 3 response

4 **Anne-Claire Godet, Florian David, Fransky Hantelys, Florence Tatin, Eric Lacazette,
5 Barbara Garmy-Susini, and Anne-Catherine Prats ***

6 UMR 1048-I2MC, Inserm, Université de Toulouse, UT3, Toulouse, France; e-mail@e-mail.com

7 * Correspondence: Anne-Catherine.Prats@inserm.fr; Tel.: +xx-xxx-xxx-xxxx

8

9 **Abstract:** The cellular stress response corresponds to the molecular changes that cell undergoes in
10 response to various environmental stimuli. It induces drastic changes in the regulation of gene
11 expression, at transcriptional and post-transcriptional levels. Actually, translation is strongly
12 affected with a blockade of the classical cap-dependent mechanism, whereas alternative
13 mechanisms are activated to support translation of specific mRNAs. One of the major mechanisms
14 involved in stress-activated translation is the internal ribosome entry site (IRES)-driven initiation.
15 IRESs, first discovered in viral mRNAs, are present in cellular mRNAs coding for master regulators
16 of cell responses, whose expression must be tightly controlled. IRESs allow translation of these
17 mRNAs in response to different stresses, including DNA damage, amino-acid starvation, hypoxia
18 or endoplasmic reticulum stress, as well as to physiological stimuli such as cell differentiation or
19 synapse network formation. Importantly, cellular mRNA IRESs are regulated by IRES trans-acting
20 factor (ITAFs), exerting their action by at least nine different mechanisms. This review presents an
21 update of the reported ITAFs regulating cellular mRNA translation and of the different mechanisms
22 allowing them to control translation initiation in specific conditions. The impact of ITAFs on
23 coordinated expression of mRNA families and consequences in cell physiology and diseases are
24 also highlighted.25 **Keywords:** gene regulation; translation; mRNA; IRES; ITAF; hnRNP; chaperone; stress;
26 nucleocytoplasmic translocation; ribosome; lncRNA; translation initiation factor; P-bodies

27

28

1. Introduction

29 IRESs are translation regulatory elements of cellular mRNAs involved in multiple processes of
30 cell physiology. Until the late 1980s, it was thought that eukaryote mRNAs could not be translated
31 by internal ribosome entry, and that the only mechanism was the cap-dependent process involving
32 the recruitment of the small ribosome subunit at the mRNA 5' end, followed by ribosome scanning
33 [1,2]. This dogma has proven incorrect with the discovery, in 1988, of RNA structural elements
34 present in the mRNA 5' untranslated regions (5'UTR) of two picornaviruses, poliovirus and
35 encephalomyocarditis virus, able to mediate cap-independent translation through internal ribosome
36 entry [3,4]. Picornavirus mRNAs are uncapped, with start codons located several hundreds
37 nucleotides downstream from mRNA 5' end, rendering improbable translation initiation at these
38 AUG codons by the classical cap-dependent scanning mechanism. These ribosome internal entry
39 elements were given the name of “ribosome landing pad” or internal ribosome entry site (IRES) and
40 were shown later to exist in all *Picornaviridae*, as well as in other viruses such as *Retroviridae* [5–8].41 Soon after the finding of the two first IRESs in picornaviruses, two host *trans*-acting factors, La
42 autoantigen and pyrimidine tract binding protein (PTB) were identified as IRES-binding factors
43 required for internal initiation of translation [9,10]. This suggested that the internal initiation process
44 might also concern cellular mRNAs and allow their translation when the cap-dependent process is
45 blocked, which was known to occur during mitosis (G2-M phase) and in stress conditions. Actually,

46 the first IRES mediated by the 5' leader of a cellular mRNA was described in 1991 [11]. Interestingly
47 this messenger codes for the immunoglobulin heavy-chain binding protein (BiP), a chaperone
48 involved in the unfolded protein response occurring during endoplasmic reticulum (ER) stress.
49 Although this first cellular mRNA IRES was indicative of a major role of IRES-dependent translation
50 in the stress response, the physiological relevance of IRESs in the translation of cellular mRNAs was
51 questioned during many years, because these mRNAs are capped, in contrast to the picornavirus
52 mRNAs. Nevertheless, it quickly became clear that the BiP mRNA was not a unique case: IRESs were
53 found in a series of other cellular mRNAs, including transcription factors such as the homeobox (Hox)
54 gene *antennapedia* and the proto-oncogene *c-myc*, angiogenic growth factors such as fibroblast growth
55 factors (FGFs) and vascular endothelial growth factors (VEGFs), as well as many genes coding for
56 master regulators of cell responses [12–19].

57 The physiological relevance of IRESs clearly appeared with the discovery of the X-linked
58 inhibitor of apoptosis (XIAP) mRNA IRES [20]. This IRES was shown to be induced in apoptotic
59 conditions. This observation was also made for other IRESs of mRNAs coding for factors involved in
60 apoptosis, including the apoptotic peptidase activating factor 1 (APAF1), *c-myc* and p53 [21–24].
61 These findings provided the first evidence of a crucial role of IRES-dependent translation for cellular
62 mRNAs. Actually, during apoptosis, the cap-dependent translation process is blocked as it is after
63 picornavirus infection, due to the cleavage of a component of the cap-binding complex, the initiation
64 factor 4G (eIF4G) [25]. XIAP and APAF1 have opposite functions during apoptosis, and their relative
65 level due to the differential activation of their IRESs is determinant in the life/death decision of the
66 cell in the progression of the apoptosis pathway [25].

67 Thereafter, IRES physiological function was evidenced in several reports. First, an important
68 tissue specificity of cellular IRES activities was observed, in contrast to picornavirus IRES activity.
69 This was revealed with the FGF2 IRES in transgenic mice: the IRES was inactive in almost all adult
70 organs, except for brain and testis, where the activity was very strong, much stronger than in cultured
71 cells [26]. Further investigation demonstrated that the FGF2 IRES is a key of FGF2 translational
72 induction during spermatogenesis and during formation of synaptic network between neurons
73 [27,28]. In contrast, the activity of the FGF1 IRES, another member of the FGF family, is strong in
74 skeletal muscle and involved in the control of FGF1 expression during myoblast differentiation and
75 muscle regeneration [29].

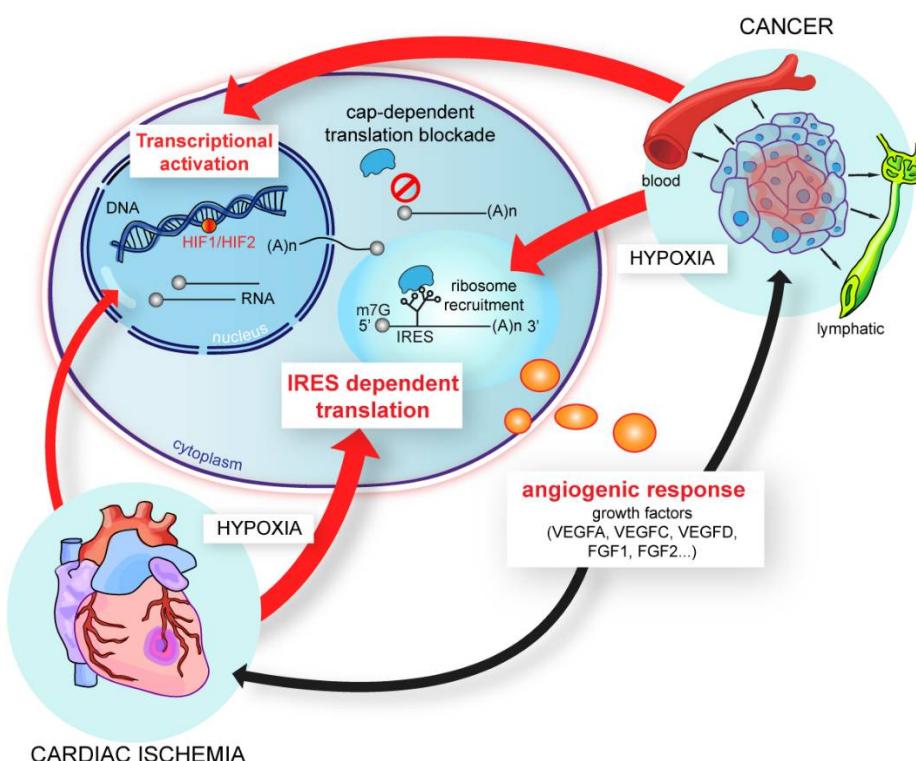
76 In addition to their role in specific adult organs, IRESs are important in the control of gene
77 expression during development. The FGF2 and *c-myc* IRESs were as active as the strong EMCV
78 (encephalomyocarditis virus) IRES in E11 mice embryos in contrast to what was observed in adult
79 [26,30]. The early discovery of an IRES in the mRNA of the homeobox Hox gene *Antennapedia* in
80 Drosophila also argued such an hypothesis, but the proof of concept which definitely demonstrated
81 of the key role of IRESs in development was provided 23 years later by Maria Barna and her
82 collaborators who identified IRESs in four HoxA mRNAs [16,31]. These authors showed that such
83 IRESs are conserved in evolution and demonstrated that these IRESs are essential for mouse
84 development by generating the first targeted mouse knockout of a cellular IRES [31]. Moreover the
85 presence of IRESs in cellular mRNAs was investigated in a high throughput study, which uncovered
86 thousands of sequences allowing cap-independent translation and showed that 10% of the mRNAs
87 harbour cap-independent sequences [32]. In this report, two functional classes of IRESs have been
88 defined: local IRESs that can act with a short sequence motif (18S rRNA or ITAF binding site) and
89 global IRESs whose activity depends on a secondary or tertiary structure.

90 Dysfunction of IRES-dependent translation has also been related with various pathologies. A
91 single mutation in the *c-myc* IRES is responsible for *c-myc* overexpression in multiple myeloma [33].
92 Also, single mutations in the connexin 32 and VEGFA IRESs have revealed the essential role of IRESs
93 in two severe neurodegenerative diseases, Charcot-Marie-Tooth disease and amyotrophic lateral
94 sclerosis, respectively [34,35]. More recently, an aberrant increase of IRES-dependent translation of
95 key cancer gene mRNAs has been reported in cancer cells, including the major angiogenic factors
96 FGF1, FGF2 and VEGFA, as well as *c-myc* and insulin growth factor-like receptor (IGF1R) [36]. This
97 study deciphered the mechanism of IRES activation resulting from p53 tumor suppressor

98 inactivation, by showing that p53 represses expression of the rRNA methyl-transferase fibrillarin,
99 which modifies the rRNA methylation pattern and generates “cancer ribosomes” that will be
100 preferentially recruited by IRES-containing mRNAs.

101 These different studies of IRES pathophysiological functions demonstrate the key-role of IRES-
102 dependent translation, revealing the coexistence of cap-dependent and independent translation for
103 capped mRNAs containing IRESs.

104 **2. IRES-dependent translation, a pivotal mechanism in the stress response.**


105 Physiological and environmental stresses induce drastic changes in the regulation of gene
106 expression, which permits cell adaptation and survival, or in contrast triggers programmed cell
107 death. It was long believed that such changes mostly occurred at the transcriptional level. For
108 example, hypoxia, which is one of the major physiological stresses during development, generates
109 the stabilization of the hypoxia-induced factor (HIF) which induces the transcription of a series of
110 target genes. However this strong transcriptional response is not the only way to modify gene
111 expression by stress. Several post-transcriptional mechanisms were shown to participate in the
112 hypoxic response, among which translational control plays a key role.

113 Above all, global translation is blocked during stress to save energy, as translation is estimated
114 to consume up to 50% of cellular energy [25]. This translation blockade is observed in most stress
115 conditions including hypoxia, nutrient limitation, temperature changes, ultraviolet irradiation,
116 endoplasmic reticulum stress, oxidative stress, viral infection... The two main locks of this blockade
117 are the translation initiation factors eIF4E and eIF2 α [37]. The first way of inhibiting translation results
118 from mechanistic target of rapamycin (mTOR) kinase inactivation, which induces
119 hypophosphorylation of 4E-binding proteins (4E-BPs). When dephosphorylated, 4E-BP sequesters
120 the cap-binding protein eIF4E, generating a blockade of cap-dependent translation. The second way
121 of translation inhibition by stress is due to eIF2 α phosphorylation, which blocks the exchange of GDP
122 to GTP in the eIF2 complex and prevents the assembly of the ternary complex eIF2-GTP-tRNA_iMet
123 required for binding of the initiator Met-tRNA_iMet to the 40S ribosomal subunit. There are four known
124 stress-responsive eIF2 α kinases able to impact global translation: haem-regulated inhibitor kinase
125 (HRI), protein kinase RNA (PKR), PKR-like endoplasmic reticulum kinase (PERK) and general
126 control non-derepressible-2 (GCN2). These kinases are activated by different stresses that induce a
127 common pathway of translation blockade [25,37]. The subtlety of the eIF2 pathway is that it also
128 induces the selective translation of transcripts, mostly coding for master regulators of the cell
129 responses, including transcription factors, growth factors... Such a selective translation occurs by two
130 main initiation mechanisms: small upstream open reading frame (uORF)-regulated initiation and
131 IRES-driven initiation. The best documented example of translation initiation regulated by uORFs is
132 probably the yeast transcriptional activator GCN4 [38]. The GCN4 mRNA contains four uORFs
133 upstream from the GCN4 ORF. When the ternary complex eIF2-GTP-tRNA_iMet is abundant, uORFs
134 are translated, which prevents translation of the GCN4 ORF. In contrast, if the level of ternary
135 complex is low, under amino-acid starvation, scanning ribosomes fail initiation at uORFs and
136 translate the GCN4 ORF. This mechanism has also been described for the mammalian transcription
137 factor ATF4 [37].

138 The other main mechanism of selective translation upon eIF2 α phosphorylation, IRES-
139 dependent translation, is the focus of the present review. Although eIF2 α is in principle required for
140 both cap-dependent and independent translation, IRES-dependent translation is selectively increased
141 in condition of phosphorylated eIF2 α . This was first observed for the IRES of the Arg/Lys transporter
142 cat-1, as well as for several viral IRESs [39]. Interestingly, the activation of cat-1 IRES observed in
143 response to amino-acid starvation, ER stress and double stranded RNA, requires eIF2 α
144 phosphorylation by GCN2, PERK and PKR, respectively. This suggests that the cat-1 IRES can
145 function efficiently when the level of ternary complex eIF2-GTP-tRNA_iMet is low. This was also
146 observed for BiP, XIAP and other stress-responsive transcript IRESs [40,41]. Two models have been
147 proposed for this intriguing observation: i) ribosome recruitment and formation of the initiation
148 complex utilizes initiation factor 5B (eIF5B) that delivers the tRNA directly into the P site of the

149 ribosome to form a translation-competent initiation complex [41,42], or ii) IRES-dependent
 150 translation is increased following the transcriptional induction of 4E-BP by GCN2 and its
 151 downstream transcription factor, activating transcription factor 4 (ATF4): in conditions of limiting
 152 ternary complex eIF2-GTP-tRNA_{iMet}, a stronger blockade of cap-dependent translation by 4E-BP
 153 results in increased IRES-dependent translation [40].

154 Upregulation of IRES-dependent translation by stress has an impact in various pathologies. For
 155 instance, hypoxia appears in the center of solid tumors exceeding a volume of 2 mm³ which are not
 156 any more irrigated by blood vessels. As the major angiogenic and lymphangiogenic growth factors
 157 of the FGF and VEGF families possess IRESs in their mRNAs, these growth factors are translationally
 158 induced as their IRESs are sensitive to hypoxia [13,43–45]. This results in tumoral angiogenesis and
 159 lymphangiogenesis, two processes that promote tumor cell invasion and metastasis dissemination.
 160 Hypoxic stress also occurs in cardiovascular diseases such as lower limb ischemia and ischemic heart
 161 disease. In these pathologies, cells are subjected to hypoxia due to artery occlusion in ischemic leg or
 162 in infarcted myocard. In particular, chronic heart failure is a public health issue. IRES-dependent
 163 translation plays a major role during ischemia: a very recent mid-scale study show that,
 164 unexpectedly, expression of most (lymph)angiogenic factors is not induced at the transcriptome-, but
 165 at the translatome level in hypoxic cardiomyocytes (Hantelys F. et al., BioRxiv 2018). The same study
 166 indicates that the IRESs of (lymph)angiogenic factors mRNAs, FGF1, FGF2, VEGFA, VEGFC and
 167 VEGFD are activated in early hypoxia, while non angiogenic IRESs such as EMCV or c-myc IRES are
 168 activated in late hypoxia. Furthermore, the FGF1 IRES is also activated in ischemic heart in vivo, in a
 169 mouse model of infarcted myocard [46]. IRES-dependent translation in ischemic myocard thus allow
 170 a rapid angiogenic response participating in cardiomyocyte survival. These data enlighten the strong
 171 pathophysiological impact of IRES-dependent translation to stimulate tumoral and non tumoral
 172 (lymph)angiogenesis in response to hypoxia (Figure 1)

173

174 **Figure 1.** Regulation of (lymph)angiogenic growth factor expression during hypoxia.
 175 (Lymph)angiogenic growth factors are regulated at the transcriptional and/or translational levels
 176 during hypoxia. In conditions of tumoral hypoxia, regulation is both transcriptional and translational
 177 through the IRES-dependent mechanism, whereas during cardiac ischemia, in hypoxic
 178 cardiomyocytes, most regulation is translational. IRESs of (lymph)angiogenic growth factor mRNAs
 179 are activated during early hypoxia by an HIF1-independent mechanism.

180 **2. IRES trans-acting factors, key regulators of cellular IRESs.**

181 Most IRESs, and in particular cellular IRESs, require IRES trans-acting factors (ITAFs) to
 182 function, in addition to several canonical translation initiation factors. Around fifty proteins have
 183 been described for their ability to specifically regulate cellular IRESs, while a single long non coding
 184 RNA (lncRNA), TP53-regulated modulator of p27 (TRMP), is also able to regulate IRES-dependent
 185 translation (Table 1)[47].

186 A near-exhaustive bibliographic analysis of ITAFs controlling cellular IRESs has been performed
 187 here, revealing several classes of ITAFs. The largest class is composed of nuclear proteins able to
 188 shuttle from nucleus to cytoplasm to control IRES-dependent translation. This class contains many
 189 heterogeneous nuclear ribonucleoproteins (hnRNPs), but also other proteins such as nucleolin, HuR
 190 or p54^{nrb}. A second ITAF class is composed of translation machinery associated proteins, with
 191 ribosomal and ribosome-associated proteins as well as translation initiation or elongation factors.
 192 Other cytoplasmic or membrane-associated proteins have been regrouped in a third class but they
 193 share no documented common feature except for being an ITAF. For instance Upstream of N-ras
 194 (Unr) is a cytoplasmic cold shock protein which is also associated to the endoplasmic reticulum,
 195 hepsin is a plasmic membrane-associated protein able to control the Unr mRNA IRES, while
 196 vasohibin 1 (VASH-1) is a mostly cytoplasmic and secreted protein known for its anti-angiogenic and
 197 stress resistance features before being identified as an ITAF (Table 1). A fourth ITAF class contains at
 198 the moment a single member, the 834 nucleotide lnc RNA TRMP, inhibitor of the p27kip IRES [47].
 199 The discovery of an ITAF function exhibited by a lncRNA is very recent, thus one can expect that
 200 TRMP is probably not the only lncRNA to regulate IRES-dependent translation, as many lncRNAs
 201 could serve as assembly platforms for regulatory proteins. Interestingly, TRMP is an inhibitor of the
 202 p27kip IRES, and is a direct transcriptional target of p53, itself regulated at the IRES-dependent level
 203 by sixteen reported ITAFs (Table 1).

204 **Table 1.** An update of reported ITAFs that regulate cellular IRESs. The different reported ITAFs
 205 regulating cellular IRESs are indicated. They are dispatched into four classes (see text). For each ITAF
 206 are shown the regulated IRESs, the type of regulation (activator or inhibitor), the described stimuli
 207 able to trigger their activity, the roles in cell physiology and diseases as well as the corresponding
 208 references.

ITAF	Also known as	Regulated IRESs	Regulation	Stimulus	Roles in cell physiology and diseases	References
Class I: ITAFs with nucleocytoplasmic translocation						
Annexin A2		p53	activator	ER stress	cancer	[72]
CUGBP1	CELF1	SHMT-1, p27kip	inhibitor/activator	UV irradiation	DNA repair, cell proliferation	[85,86]
DAP5	P97, NAT1, eIF4GII	Bcl-2, Bcl-XL, BAX, APAF-1, DAP5, Δ40p53, CDK1, HIAP2, <i>c-myc</i> , XIAP	activator	viral infection, apoptosis, ER stress, serum starvation, γ-irradiation	cell survival or programmed cell death	[75,77,87–94]
FUS		LEF1	activator		Cancer, amyotrophic lateral sclerosis	[95]
GRSF1		<i>c-myc</i> , <i>L-myc</i> , <i>N-myc</i>	activator		cancer	[96]
H-ferritin		SHMT-1	activator	UV irradiation	DNA repair	[85,97]
HDMX		p53	activator	DNA damage	tumour suppression	[98]

hnRNPA1		XIAP, FGF2, Nfil3, SREBP1-a, c-myc, BCL-XL, cyclin D1, APAF-1, sst2, ER- α , HIF1- α	activator/inhibitor	FGF2, lipid accumulation, ER stress, osmotic shock, UV irradiation	multiple myeloma, circadian oscillation	[55,56,58,61, 62,99–104]
hnRNPC	hnRNP C1/C2	p53, IGF1R, unr, c-myc, XIAP	activator	DNA damage, transcription inhibition, growth stimulus, cell cycle	inhibition of apoptosis, cancer	[74,105–108]
hnRNPD	JKTBP1	NRF	activator	UV irradiation	cell survival	[109,110]
hnRNPE	PCBP, alphaCP	c-myc, BAG-1	activator	Chemotoxic stress	cell survival, tumorigenesis	[59,111,112]
hnRNPH2		SHMT1	activator	UV irradiation	DNA repair	[85]
hnRNPK		c-myc	activator		myoblast differentiation, proliferation, tumor progression	[111,113]
hnRNPL		Cat-1, p53, LINE-1	activator	Amino-acid deprivation/DNA damage	transposition inhibition	[114–116]
hnRNPM		FGF1	activator	myoblast differentiation	muscle regeneration	[76]
hnRNPQ	NSAP1	p53, rev-erb-a, Period1, AANAT, Bip, FMRP	activator	apoptosis/ heat shock	circadian oscillation/ cell survival/ axonal growth cone collapse/ Fragile X syndroma, autism	[117–122]
hnRNPR		AANAT	activator		circadian oscillation	[123]
HuR	ELAV1	IGF1R, caspase-2, BcL-XL, XIAP, p27kip, Thrombomodulin	activator/inhibitor	amino-acid deprivation, IL-1b,	cytoprotection, inhibition of apoptosis, cell proliferation, breast cancer	[74,124–129]
La auto antigen		XIAP, Bip, RRBPI	activator/inhibitor	serum starvation, paclitaxel, adriamycin	cell survival, malignancy maintenance, hepatocellular carcinoma	[130–132]
Mdm2	HDM2	p53, XIAP	activator	DNA damage, ionizing radiation	resistance to radiation-induced apoptosis	[98,133]
NF45		iIAP1, XIAP, NRF, ELG	activator	ER stress	polyploidy, senescence	[134]
nPTB		IR	activator	cell density, insulin	cell proliferation	[135]

nucleolin		p53, VEGFD, LINE-1	activator/inhibitor	heat shock, DNA damage	transposition inhibition	[14,115,136, 137]
p54nrb	NONO	c-myc, L-myc, N-myc, APAF1, FGF1	activator	myoblast differentiation, nucleolar stress, apoptosis	muscle regeneration	[76,96,138]
Pdcd4		P53, INR, IGF1R, BcL-XL, XIAP	activator/inhibitor	oxidative stress, absence of DNA damage, S6K2 inactivation, FGF2 pathway inhibition	apoptosis, tumour suppression	[64–67]
PSF	SFPQ	p53, c-myc, L-myc, N-myc, BAG-1, LEF1	activator/inhibitor	nucleolar stress, apoptosis, ER stress	cancer	[72,95, 96,138]
PTB	hnRNPI/ PTBP1	p53, p27kip, PFK1, IR, Cat-1, APAF-1, HIF-1 α , IRF2, rev-erb-a, unr, c-myc, N-myc, BAG-1, Bip, ADAR1	activator/inhibitor	DNA damage, hypoxia, ER stress, amino-acid deprivation, cell density, insulin	circadian oscillation, cell cycle arrest, apoptosis	[50,70,73,96, 108,112,114, 139–147]
RHA	NDH II	p53	activator	DNA damage	tumour suppression	[148]
SMAR 1		p53	activator/inhibitor	glucose deprivation	cancer (tumor suppressor)	[149]
YB1	YBX1	c-myc, L-myc, N-myc, p16INK4	activator	hypoxia	multiple myeloma, cancer	[96,140,150]

Class II: Cytoplasmic ITAFs related to translational machinery

4E-BP1		VEGFA, HIF1a, INR	activator	hypoxia, low nutrients, low insulin	cancer, Parkinson	[44,151]
eeF1A2		utrophin A	activator		muscle regeneration	[152]
eIF4GI		APAF-1, DAP5, Bcl-2, Bip, c-myc, L-myc, N-myc, VEGFA	activator	apoptosis, hypoxia	cancer	[44,92, 146,153]
eL38	Rpl38	Hox	activator		development	[31]
eS19	Rps19	BAG1, CSDE1, LamB1	activator		erythroid differentiation, Diamond-Blackfan anemia	[154]
eS25	Rps25	APAF-1, BAG1, c-myc, L-myc, Myb, p53, Set7	activator	ER stress	multiple myeloma	[52,83,103]
Rack1		IGF1R	activator/inhibitor		Hepatocellular carcinoma	[155]

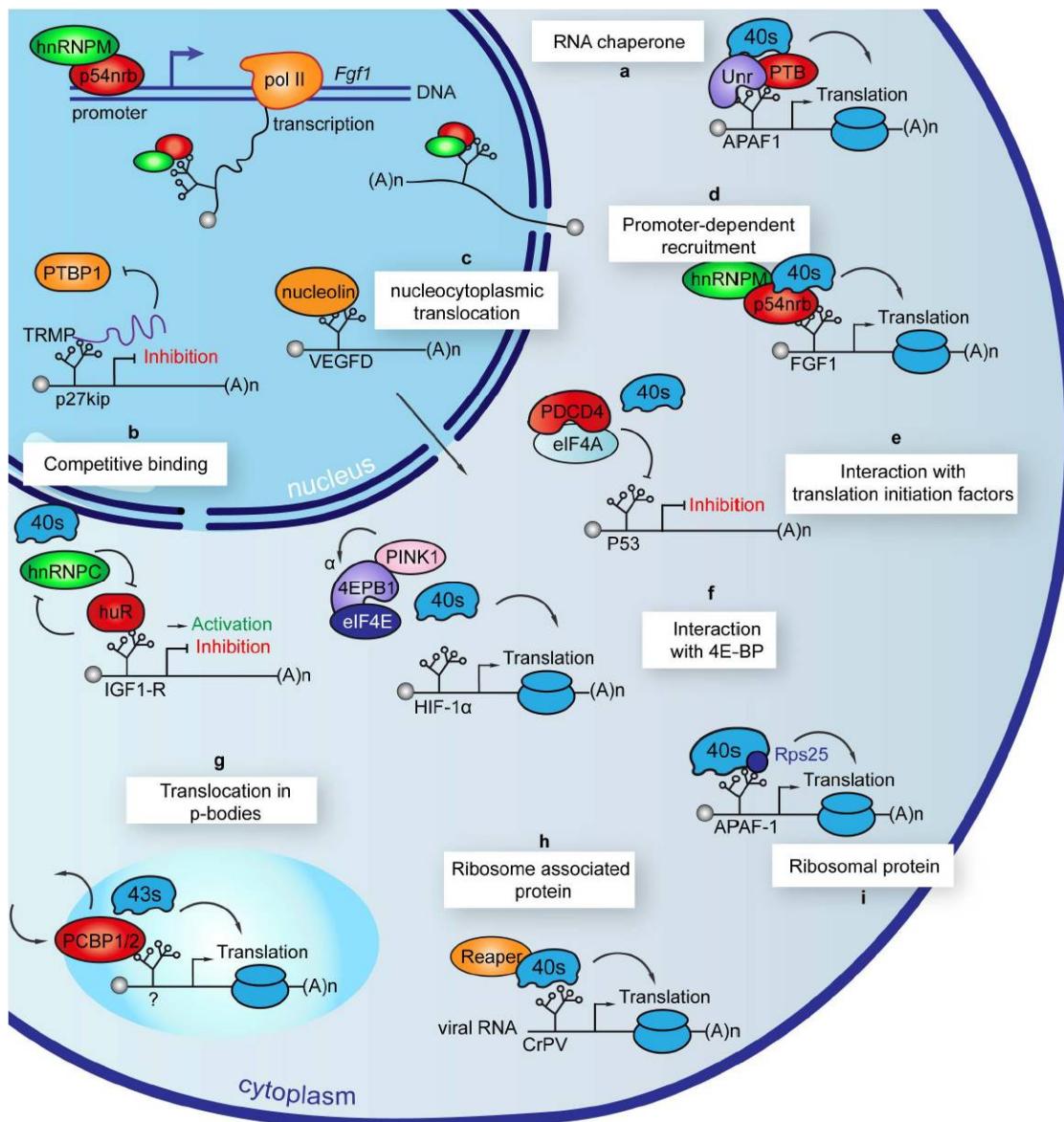
TCP80	NF90, DRBP76	p53	activator	DNA damage	tumour suppression	[148]
uL1	Rpl10A	IGF2, APP, Chmp2A, Bcl-2	activator		Alzheimer, leukemia, mitochondrial dysfunction	[83,84]
uL24	Rpl26	p53	activator	DNA damage	tumour suppression	[136,137]
uL5	Rpl11	BAG1, CSDE1, LamB1	activator		erythroid differentiation, Diamond-Blackfan anemia	[154]
Class III: atypical cytoplasmic ITAFs						
APP (AICD)		Δ40p53	activator		Alzheimer disease	[156]
Hepsin (also in plasmic membrane)		unr	inhibitor		Cell cycle regulation, Prostate cancer	[157]
PINK1 (also mitochondrial)		HIF1	activator	hypoxia	Parkinson	[78]
Unr (also in ER)		APAF-1, unr, c-myc, PITSLRE, CDK11P58	activator/ inhibitor		Cell cycle regulation, apoptosis	[70,108,111, 158,159]
VASH1 (also secreted and nuclear)	Vasohibin 1	FGF1	activator	hypoxia	ischemic heart disease	Hantelys BioRxiv 2018
Class IV: ncRNA-constituted ITAFs						
TRMP		p27kip	inhibitor	induced by p53	inhibition of cell proliferation, tumor suppressor	[47]

209 It has been often reported that viral IRESs harbor specific secondary or tertiary structures with
 210 common domains while it is difficult to identify any structural conservation between different
 211 cellular IRESs [48,49]. Despite of this difference, most reported ITAFs seem to control IRES-
 212 dependent initiation of translation for both cellular and viral IRESs. A well-documented example is
 213 PTB (also known as hnRNPI), first described as an ITAF of the EMCV IRES: this protein is able to
 214 modulate translation of a dozen reported virus IRESs as well as at least fourteen cellular IRESs (Table
 215 1) [50]. This is not limited to the nucleocytoplasmic ITAF class I. In the cytoplasmic ITAF class II, a
 216 good example is provided by the ribosomal protein rps25 (eS25), required for *discitroviridae*,
 217 *flaviviridae*, *picornaviridae* and *retroviridae* IRES activities, as well as for at least ten cellular IRESs (Table
 218 1) [51–53]. In class III, Unr is able to regulate viral IRESs such as poliovirus and human rhinovirus
 219 IRESs, as well as at least five cellular IRESs [48]. These observations suggest that there is no major
 220 mechanistic difference of ITAF mode of action for viral and cellular IRESs. However, it has been
 221 reported that cellular IRESs are more tissue-specific than viral IRESs [26]. One can hypothesize that
 222 cellular IRESs require specific ITAFs in addition to “general” ITAFs. These specific ITAFs could
 223 regulate groups of mRNAs in a coordinated manner, thus defining regulons [31].

224 While several IRESs can be regulated by the same ITAF, each IRES can be regulated by several
225 ITAFs, which may be positive or negative regulators. As shown in Table 1, we have listed twelve
226 cellular ITAFs able to inhibit IRES dependent translation. Furthermore, nine of them have the double
227 role of IRES activator or inhibitor, depending on the IRES. Among the best-documented IRESs
228 regulated by several ITAFs are the p53 mRNA IRESs [54]. Two p53 IRESs have been described,
229 controlling expression of either the full-length p53 (FL-p53) or of a p53 isoform devoid of N-terminal
230 domain, Δ N-p53. These two IRESs are induced by genotoxic or cytotoxic stress. In basal non-stressed
231 conditions, the IRES activity is inhibited by two negative ITAFs, nucleolin and Programmed cell
232 death protein 4 (Pcd4), whereas two other ITAFs, translational control protein 80 (TCP80) and RNA
233 helicase A (RHA) are bound to RNA but with an inadequate interaction that cannot activate the IRES.
234 Following stress, the interaction of TCP80 and RHA is increased and several other positive ITAFs
235 including ribosomal protein RPL26 (uL24) and hnRNPQ bind to the IRES, facilitating secondary
236 structure unwinding and enhancing IRES activity. The Δ N-p53 mRNA IRES is activated during stress
237 by several other ITAFs including PTB, death-associated protein 5

238 (DAP5), PTB-associated splicing factor (PSF) and Annexin A2 [54]. In addition, proteins bound
239 to the 3'UTR of the FLp53 mRNA also influence the IRES activity: the protein Quaking has an
240 inhibitory effect on the IRES activity while HuR binds to the 3'UTR during stress, displaces Quaking
241 and activates translation. It is likely that many IRESs, as well as p53 IRESs, are regulated by a protein
242 complex rather than by a single ITAF. The composition of this complex, called the IRESome, varies
243 among IRESs, and is probably a means to regulate IRES activity specifically. The presence of different
244 partners in the complex may also help us to understand why a given ITAF can be either negative or
245 positive depending on the IRES, as shown for at least nine ITAFs (Table 1).

246 3. Multifunctional ITAFs: how are they assigned to the translational function?


247 Strikingly, ITAFs have often other functions in addition to their role in IRES-dependent
248 translation. Most of them have been first discovered for playing roles in alternative splicing
249 (hnRNPs), ribosome biogenesis (nucleolin, TCP80, RHA), mRNA stability (HuR), transcription
250 (p54^{nrb}, hnRNPK, -M, RHA, SMAR1)... The question of how they are assigned to their translational
251 function remains to be investigated. However several reports provide some answers. The first one is
252 the intracellular localization. Numerous multifunctional ITAFs are mainly nuclear proteins that can
253 translocate in the cytoplasm. A well-documented example is hnRNPA1 [55–58]: this protein is
254 relocalized to the cytoplasm in stress conditions, resulting in IRES negative or positive regulations.
255 HnRNPA1 activates FGF2 and sterol regulatory element-binding protein 1 (SREBP-1) IRESs while it
256 inhibits APAF1 and XIAP IRESs. Such a relocalization has been reported for other ITAFs, including
257 PTB and poly r(C) binding protein 1 (PCBP1) that act in concert to activate the Bcl-2-associated
258 athanogene 1 (BAG1) IRES in response to chemotoxic stress [59]. Also, nucleolin is translocated from
259 nucleolus to cytoplasm to activate the VEGFD IRES in response to heat shock [14].

260 ITAF activity is also regulated by various post-translational modifications. This was first
261 demonstrated for RNA-binding motif protein 4 (RBM4), an ITAF described at the moment only for
262 viral IRESs [60]. Following arsenite exposure, RBM4 is phosphorylated, which accompanies its
263 cytoplasmic relocalization and targeting to stress granules. When phosphorylated, RBM4 both
264 inhibits cap-dependent translation and activates IRES-dependent translation. As regards cellular
265 IRESs, hnRNPA1 constitutes a well-documented example for the role of post-translational
266 modifications: its binding to c-myc and cyclin D IRESs is regulated by Akt phosphorylation [61].
267 Furthermore, hnRNPA1 dimethylation on its glycine-arginine-rich (GAR) motif by the type II
268 arginine transferase PRMT5 is required for activation of cyclin D1, c-myc, HIF1 α and estrogen
269 receptor α (ER- α) IRESs [62]. Another ITAF described more recently, the tumor suppressor Pcd4, is
270 phosphorylated by protein kinase S6K1 or Akt and subsequently degraded via the ubiquitin ligase
271 β -TCRP [63–66]. Pcd4, as RBM4, inhibits cap-dependent translation, while it is a negative or positive
272 ITAF depending on the IRES: it is a repressor of p53, Bcl-XL and XIAP and an activator INR and
273 IGF1R IRESs [64,66,67]. Multiple post-translational modifications have been described for hnRNPQ,
274 a protein overexpressed in many cancers [68]. This multifunctional protein is subjected to

275 phosphorylation, methylation, ubiquitination and sumoylation while it interacts with diverse groups
 276 of molecular partners involved in transcription, chromatin remodeling, RNA processing, translation
 277 and signal transduction [69]. hnRNPK sumoylation on a lysine residue promotes its ITAF function
 278 and results in activation of the *c-myc* IRES in Burkitt's lymphoma cells [68].

279 **4. ITAF different mechanisms of action**

280 We have seen above that ITAF activities are regulated by different parameters including
 281 nucleocytoplasmic shuttling, post-translational modifications and interaction with diverse partners.
 282 The question is now: by which mechanisms are ITAFs able to activate or inhibit IRES-dependent
 283 translation? As described below, nine ITAF mechanisms have been documented (Figure 2).

284

285 **Figure 2.** ITAF different mechanisms of action. The different reported mechanisms of ITAFs to
 286 regulate IRES activities are schematized. For each mechanism, an example is shown with the names
 287 of the ITAF and of the IRES. Each mechanism is detailed in the text.

288 **4.1. Chaperones**

289 The first mechanism to be described is a role of chaperone for PTB (and especially its neuronal
 290 form nPTB) and Unr [70]. These two proteins are required for activation of the APAF1 IRES, and act

291 by altering the secondary structure of the IRES. According to the report by Mitchell et al., Unr first
292 bind to two stem loops identified in the IRES, generating a conformational change that renders
293 accessible the nPTB or PTB binding sites [70]. Then a second conformational change occurs, providing
294 the correct conformation for 40S ribosome subunit binding. Cooperation of two or more ITAFs in
295 IRES activation through an RNA conformational change has been described for other IRESs: the BAG-
296 1 IRES is also controlled by a couple of ITAFs, PTB and PCBP1 [71]. Again, there is a successive
297 binding of the two ITAFs, with first PCBP1 that opens the RNA, allowing PTB binding and
298 subsequent 40S recruitment. In these study, PTB appears as an essential part of the preinitiation
299 complex.

300 *4.2. Competitive binding*

301 The interplay between different ITAFs can be competitive rather than cooperative: it is the case of
302 Annexin A2, PSF, and PTB [72]. Annexin A2 and PSF would act as chaperones or by stabilizing the
303 preinitiation complex as shown for PTB. These three ITAFs are all activators of the second IRES
304 present in the p53 mRNA, between FL-p53 and ΔN-p53 AUG codons [54]. However they compete
305 for IRES binding as they share overlapping binding sites. Annexin A2 binding is calcium dependent
306 whereas PSF binding is not. The authors propose that the accumulation of more calcium ions in the
307 cytoplasm during ER stress would promote Annexin A2 binding to activate the IRES activity,
308 whereas PSF and PTB would play a role in other stress conditions or physiological stimuli. Actually,
309 it has been proposed that PTB regulates the differential expression of p53 isoforms during the cell
310 cycle, and in response to DNA damage [73]. Competitive binding has also been reported for couples
311 of ITAFs harboring opposite activities. HuR and hnRNPC compete for their binding to the IGF1R
312 IRES, which is silenced by HuR and activated by hnRNPC [74]. The lncRNA TRMP inhibits the p27^{kip}
313 IRES activity by competing with the IRES for PTB binding and thus preventing IRES activation
314 mediated by PTB [47].

315 *4.3. Nucleocytoplasmic translocation*

316 The role of nucleocytoplasmic translocation of many ITAFs in IRES activation (Table 1) does not
317 answer the question of ITAF nuclear or cytoplasmic binding. Actually, the ITAF can be translocated
318 to the cytoplasm upon stress and then bind to the IRES-containing mRNA, or it can bind to its target
319 IRES in the nucleus and then be translocated with the IRES-containing mRNA as a ribonucleoprotein.
320 In such a case the ITAF can also play a role in the nuclear retention of the IRES-containing mRNA in
321 the absence of stress [75]. Clearly, the regulation of APAF1 IRES by successive binding of Unr and
322 PTB suggests that PTB binds to this IRES in the cytoplasm, because Unr is cytoplasmic. In contrast, a
323 set of arguments indicates that certain ITAFs bind to the IRES in the nucleus. First, a nuclear event is
324 required for IRES-dependent translation controlled by certain IRESs: this has been shown for *c-myc*
325 and FGF1 IRESs by demonstrating that these IRESs are not able to drive translation when cells are
326 transfected with a bicistronic in vitro-transcribed mRNA, while the same IRESs are active upon DNA
327 transfection implying mRNA transcription in the nucleus [23,76]. In contrast viral HRV and EMCV
328 IRESs exhibit a similar activity following RNA or DNA transfection, showing that the nuclear event
329 is not required for all IRESs.

330 *4.4. Promoter-dependent recruitment*

331 A second argument favoring the existence of nuclear recruitment of ITAFs onto the IRES is
332 brought by the discovery of a mechanism of coupling between translation and transcription for the
333 FGF1 IRES [29]. The activity of FGF1 IRES is promoter-dependent, a mechanism explained by ITAF
334 recruitment onto the promoter that facilitates the recruitment on the mRNA. These two ITAFs,
335 hnRNPM and p54nrb, are able to enhance both transcription and translation: first they activate the
336 FGF1 promoter, then the FGF1 IRES-dependent translation. The proposed hypothesis is that the two
337 ITAFs might be recruited onto the nascent mRNA in a co-transcriptional manner [76].
338

339 *4.5. Interaction with translation initiation factors*

340 Additional ITAF mechanisms of action have been discovered, that strictly occur in the cytoplasm
341 during the translation initiation process. Several ITAFs act by inhibiting translation initiation factors.
342 RBM4 was shown to interact with the initiation factor 4A (eIF4A) in response to arsenite treatment,
343 which promotes the association of eIF4A with the IRES-containing mRNA [60]. By this way, RBM4
344 simultaneously activates IRES- and inhibits cap-dependent translation. Interestingly, this is
345 concomitant with RBM4 targeting into stress granules. It must be noted that RBM4 has not yet been
346 shown to regulate any cellular IRES. However, an interaction with eIF4A and with eIF2 β has been
347 shown for DAP5, an ITAF of the eIF4G family that regulates several cellular IRESs of genes involved
348 in apoptosis as well as its own IRES [77]. Another ITAF acting via eIF4A interaction is the tumor
349 suppressor Pcd4 [65]. Its interaction with eIF4A was demonstrated by crystal structure and
350 mutation analysis, whereas it also interacts directly with the IRES. Pcd4 inhibits cap-dependent
351 translation as RBM4. However, in contrast to RBM4, Pcd4 has been described as a negative ITAF
352 [64]. This reveals that cellular IRESs are also concerned by eIF4A binding mechanism, as Pcd4
353 controls at least the five IRESs present in p53, INR, IGF1R, BcL-XL and XIAP mRNAs (Table 1).

354 *4.6. Interaction with 4E-BP*

355 PTEN-induced putative kinase-1 (PINK1), involved in Parkinson's disease, activates the HIF1 α
356 mRNA translation during hypoxia by acting on 4E-BP1 [44,78]. It has been shown that PINK1
357 stimulates the switch of 4E-BP hyperphosphorylated g form (inactive form) to the
358 hypophosphorylated a form (active form) that sequesters eIF4E and inhibits the cap-dependent
359 translation, while it activates IRES-dependent translation by increasing the availability of eIF4G for
360 IRES-dependent translation. PINK1 acts on 4E-BP1 as well as on 4E-BP2, the predominant 4E-BP
361 protein in brain. The activator effect of PINK1 has been shown only for EMCV IRES, however the
362 decrease of HIF1 α mRNA translation in PINK $^{−/−}$ mouse strongly suggests that PINK1 is also an
363 activator of the HIF1 α IRES [78]. The authors do not rule out that PINK1 could affect the activity of
364 other translation factors such as S6K, eIF4E, eIF4G, eEF2 or eIF2 α .

365 *4.7. Translocation to P-bodies*

366 Translocation between cytoplasm and processing bodies (P-bodies) has been described for
367 PCBP1 and PCBP2 upon stress conditions [79]. These authors suggest that PCBPs could play a role
368 in shifting rapidly certain untranslated mRNAs into a translationally active state. However the link
369 between PCBP this translocation and IRES-dependent translation has not been elucidated yet.

370 *4.8. Association to ribosome*

371 Another cytoplasmic mechanism of IRES regulation concerns ribosome-associated proteins.
372 Reaper, a potent apoptosis inducer, inhibits cap-dependent translation by direct binding to the 40S
373 ribosome subunit, while it allows IRES-dependent translation to occur via the Cricket paralysis
374 (CrPV) IRES [80]. Although Reaper has not yet been documented for its effect on cellular IRESs, one
375 can hypothesize that certain cellular IRESs may also be regulated by this mechanism.

376 *4.9. Ribosome inherent constituent.*

377 Finally, it appears that ribosomal proteins can be directly involved in the control of IRES-
378 dependent translation. The ribosome has been viewed during the last decades as an apparatus able
379 to translate the genetic code without having intrinsic regulatory capacity. However, several reports
380 have shifted the view of ribosome function by revealing the existence of specialized ribosomes with
381 specific features rendering them able to control gene expression ([81]. The first demonstration of a
382 ribosomal protein that is specifically required for IRES-mediated translation initiation, while not
383 necessary for cap-dependent translation, was provided by Landry et al. [82]. These authors showed
384 that rps25 (eS25) is required for activation of CrPV and hepatitis C virus (HCV) IRESs. Additional
385 studies demonstrated that this protein is globally required for viral IRES as well as for cellular IRES

386 activities. Rps25 is an activator of many cellular IRESs including APAF-1, BAG1, *c-myc*, *L-myc*, Myb,
387 p53 and Set7 IRESs (Table 1). Other ribosomal proteins seem to regulate families of messengers, thus
388 defining regulons. It has been documented in a report showing that RPL38 (eL38) is required for
389 ribosome recruitment onto IRESs of the hox gene family, constituted of homeobox genes involved in
390 development [31]. A recent report has definitely demonstrated that heterogeneous ribosomes are able
391 to preferentially translate distinct subpools of mRNAs [83]. This study highlights the role of RPL10A
392 (uL1) in the activation of IGF2, amyloid precursor protein (APP), charged multivesicular body
393 protein 2A (Chmp2A) and Bcl-2 IRESs [83,84]. Such IRES activation would occur by direct interaction
394 of the ribosomal protein with the IRES, resulting in ribosome recruitment.

395 5. Conclusion

396 This update highlights the discovery of about fifty ITAFs able to regulate IRES-dependent
397 translation of cellular mRNAs. This indicate that the control of gene expression by the IRES-
398 dependent process is far from marginal. These different ITAFs play a key role in many physiological
399 processes including development, cell differentiation, cell cycle regulation, apoptosis or circadian
400 oscillation. Furthermore, they are pivotal in the cell response to all possible stress conditions (Table
401 1). Given that ITAFs regulate expression of families of genes involved in these processes, they have a
402 strong impact in different pathologies. ITAFs are important actors in many cancers, but also in
403 cardiovascular diseases such as ischemic heart disease and neurodegenerative diseases including
404 Parkinson's disease, Alzheimer disease or amyotrophic lateral sclerosis. Thus ITAFs provide
405 important perspectives to find new targets to block translation of specific genes or gene networks in
406 a therapeutic objective.

407 **Conflicts of Interest:** The authors declare no conflict of interest.

408 Abbreviations

IRES	Internal ribosome entry site
ITAF	IRES trans-acting factor
UTR	Untranslated region
PTB	Pyrimidine tract binding protein
ER	Endoplasmic reticulum
FGF	Fibroblast growth factor
VEGF	Vascular endothelial growth factor
XIAP	X-linked inhibitor of apoptosis
APAF1	Apoptotic peptidase activating factor 1
HIF	Hypoxia-inducible factor
mTOR	Mechanistic target of rapamycin
4E-BP	4E binding protein
HRI	Haem-regulated inhibitor kinase
PERK	PKR-like endoplasmic reticulum kinase
PKR	Protein kinase RNA
GCN2	General control non-derepressible 2
GCN4	General control non-derepressible 4
uORF	Upstream open reading frame
ATF4	Activating transcription factor 4
eIF	Eukaryotic initiation factor
EMCV	Encephalomyocarditis virus
TRMP	TP53-regulated modulator of p27
hnRNP	Heterogeneous nuclear ribonucleoprotein
Unr	Upstream of N-ras
VASH-1	Vasohibin 1
BAG1	Bcl-2-associated athanogene 1
SREBP-1	sterol regulatory element-binding protein 1

RBM4	RNA-binding motif protein 4
BiP	Immunoglobulin heavy-chain binding protein
Pdcd4	Programmed cell death protein 4
TCP80	translational control protein 80
RHA	RNA helicase A
DAP5	Death-associated protein 5
PSF	PTB-associated splicing factor
PRMT5	Protein arginine methyltransferase
PCBP	poly r(C) binding protein
IGF1R	insulin growth factor-like receptor
PINK1	PTEN-induced putative kinase-1
CrPV	Cricket paralysis virus
APP	amyloid precursor protein
Chmp2A	charged multivesicular body protein 2A
HCV	hepatitis C virus
CUGBP1	CUG triplet repeat RNA-binding protein 1
SHMT-1	serine hydroxymethyltransferase 1
NAT-1	N-acetyltransferase 1
ER	Estrogen receptor
CDK1	Cyclin-dependent kinase 1
HIAP2	Human inhibitor of apoptosis 2
FUS	Fused in sarcoma
LEF1	Lymphoid enhancer binding factor 1
GRSF1	G-rich RNA sequence binding factor 1
AANAT	arylalkylamine N-acyltransferase
FMRP	fragile X mental retardation protein
RRBP1	ribosome binding protein 1
NSAP	nephritis strain-associated protein
ELAV	embryonic lethal abnormal vision
ELAV1	ELAV-like protein 1
NRF	NFKB repressing factor
IR	Insulin receptor
ELG	Elongatus
CSDE1	Cold shock domain containing E 1
ADAR1	Adenosine deaminase RNA specific 1
IRF2	Interferon regulatory factor 2
Hox	Homeobox

409 **References**

410 1. Kozak, M., Inability of circular mRNA to attach to eukaryotic ribosomes. *Nature* **1979**, *280* (5717), 82-5.

411 2. Kozak, M., The scanning model for translation: an update. *J Cell Biol* **1989**, *108* (2), 229-41.

412 3. Jang, S. K.; Krausslich, H. G.; Nicklin, M. J.; Duke, G. M.; Palmenberg, A. C.; Wimmer, E., A segment of the
413 5' nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in
414 vitro translation. *J Virol* **1988**, *62* (8), 2636-43.

415 4. Pelletier, J.; Sonenberg, N., Internal initiation of translation of eukaryotic mRNA directed by a sequence
416 derived from poliovirus RNA. *Nature* **1988**, *334* (6180), 320-5.

417 5. Balvay, L.; Lopez Lastra, M.; Sargueil, B.; Darlix, J. L.; Ohlmann, T., Translational control of retroviruses.
418 *Nat Rev Microbiol* **2007**, *5* (2), 128-40.

419 6. Berlioz, C.; Darlix, J. L., An internal ribosomal entry mechanism promotes translation of murine leukemia
420 virus gag polyprotein precursors. *J Virol* **1995**, *69* (4), 2214-22.

421 7. Kwan, T.; Thompson, S. R., Noncanonical Translation Initiation in Eukaryotes. *Cold Spring Harb Perspect
422 Biol* **2018**.

423 8. Vagner, S.; Waysbort, A.; Marenda, M.; Gensac, M. C.; Amalric, F.; Prats, A. C., Alternative translation
424 initiation of the Moloney murine leukemia virus mRNA controlled by internal ribosome entry involving
425 the p57/PTB splicing factor. *J Biol Chem* **1995**, *270* (35), 20376-83.

426 9. Hellen, C. U.; Witherell, G. W.; Schmid, M.; Shin, S. H.; Pestova, T. V.; Gil, A.; Wimmer, E., A cytoplasmic
427 57-kDa protein that is required for translation of picornavirus RNA by internal ribosomal entry is identical
428 to the nuclear pyrimidine tract-binding protein. *Proc Natl Acad Sci U S A* **1993**, *90* (16), 7642-6.

429 10. Meerovitch, K.; Pelletier, J.; Sonenberg, N., A cellular protein that binds to the 5'-noncoding region of
430 poliovirus RNA: implications for internal translation initiation. *Genes Dev* **1989**, *3* (7), 1026-34.

431 11. Macejak, D. G.; Sarnow, P., Internal initiation of translation mediated by the 5' leader of a cellular mRNA. *Nature* **1991**, *353* (6339), 90-4.

432 12. Huez, I.; Creancier, L.; Audigier, S.; Gensac, M. C.; Prats, A. C.; Prats, H., Two independent internal
433 ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. *Mol
434 Cell Biol* **1998**, *18* (11), 6178-90.

435 13. Morfoisse, F.; Kuchnio, A.; Frainay, C.; Gomez-Brouchet, A.; Delisle, M. B.; Marzi, S.; Helfer, A. C.; Hantelys,
436 F.; Pujol, F.; Guillermet-Guibert, J.; Bousquet, C.; Dewerchin, M.; Pyronnet, S.; Prats, A. C.; Carmeliet, P.;
437 Garmy-Susini, B., Hypoxia induces VEGF-C expression in metastatic tumor cells via a HIF-1alpha-
438 independent translation-mediated mechanism. *Cell reports* **2014**, *6* (1), 155-67.

439 14. Morfoisse, F.; Tatin, F.; Hantelys, F.; Adoue, A.; Helfer, A. C.; Cassant-Sourdy, S.; Pujol, F.; Gomez-Brouchet,
440 A.; Ligat, L.; Lopez, F.; Pyronnet, S.; Courty, J.; Guillermet-Guibert, J.; Marzi, S.; Schneider, R. J.; Prats, A.
441 C.; Garmy-Susini, B. H., Nucleolin Promotes Heat Shock-Associated Translation of VEGF-D to Promote
442 Tumor Lymphangiogenesis. *Cancer Res* **2016**, *76* (15), 4394-405.

443 15. Nanbru, C.; Lafon, I.; Audigier, S.; Gensac, M. C.; Vagner, S.; Huez, G.; Prats, A. C., Alternative translation
444 of the proto-oncogene c-myc by an internal ribosome entry site. *J Biol Chem* **1997**, *272* (51), 32061-6.

445 16. Oh, S. K.; Scott, M. P.; Sarnow, P., Homeotic gene Antennapedia mRNA contains 5'-noncoding sequences
446 that confer translational initiation by internal ribosome binding. *Genes Dev* **1992**, *6* (9), 1643-53.

447 17. Prats, A. C.; Prats, H., Translational control of gene expression: role of IRESs and consequences for cell
448 transformation and angiogenesis. *Prog Nucleic Acid Res Mol Biol* **2002**, *72*, 367-413.

449 18. Stoneley, M.; Paulin, F. E.; Le Quesne, J. P.; Chappell, S. A.; Willis, A. E., C-Myc 5' untranslated region
450 contains an internal ribosome entry segment. *Oncogene* **1998**, *16* (3), 423-8.

451 19. Vagner, S.; Gensac, M. C.; Maret, A.; Bayard, F.; Amalric, F.; Prats, H.; Prats, A. C., Alternative translation
452 of human fibroblast growth factor 2 mRNA occurs by internal entry of ribosomes. *Mol Cell Biol* **1995**, *15* (1),
453 35-44.

454 20. Holcik, M.; Lefebvre, C.; Yeh, C. L.; Chow, T.; Korneluk, R. G., A new internal-ribosome-entry-site motif
455 potentiates XIAP-mediated cytoprotection. *Nat Cell Biol* **1999**, *1* (3), 190-192.

456 21. Coldwell, M. J.; Mitchell, S. A.; Stoneley, M.; MacFarlane, M.; Willis, A. E., Initiation of Apaf-1 translation
457 by internal ribosome entry. *Oncogene* **2000**, *19* (7), 899-905.

458 22. Ray, P. S.; Grover, R.; Das, S., Two internal ribosome entry sites mediate the translation of p53 isoforms. *Embo Rep* **2006**, *7* (4), 404-410.

459 23. Stoneley, M.; Chappell, S. A.; Jopling, C. L.; Dickens, M.; MacFarlane, M.; Willis, A. E., c-Myc protein
460 synthesis is initiated from the internal ribosome entry segment during apoptosis. *Molecular and Cellular
461 Biology* **2000**, *20* (4), 1162-1169.

462 24. Yang, D. Q.; Halaby, M. J.; Zhang, Y., The identification of an internal ribosomal entry site in the 5'-
463 untranslated region of p53 mRNA provides a novel mechanism for the regulation of its translation
464 following DNA damage. *Oncogene* **2006**, *25* (33), 4613-4619.

465 25. Holcik, M.; Sonenberg, N., Translational control in stress and apoptosis. *Nat Rev Mol Cell Biol* **2005**, *6* (4),
466 318-27.

467 26. Creancier, L.; Morello, D.; Mercier, P.; Prats, A. C., Fibroblast growth factor 2 internal ribosome entry site
468 (IRES) activity ex vivo and in transgenic mice reveals a stringent tissue-specific regulation. *J Cell Biol* **2000**,
469 *150* (1), 275-81.

470 27. Audiger, S.; Guiramand, J.; Prado-Lourenco, L.; Conte, C.; Gonzalez-Herrera, I. G.; Cohen-Solal, C.;
471 Recasens, M.; Prats, A. C., Potent activation of FGF-2 IRES-dependent mechanism of translation during
472 brain development. *Rna* **2008**, *14* (9), 1852-64.

473

474

475 28. Gonzalez-Herrera, I. G.; Prado-Lourenco, L.; Pileur, F.; Conte, C.; Morin, A.; Cabon, F.; Prats, H.; Vagner, S.; Bayard, F.; Audigier, S.; Prats, A. C., Testosterone regulates FGF-2 expression during testis maturation by an IRES-dependent translational mechanism. *Faseb J* **2006**, *20* (3), 476-8.

476 29. Conte, C.; Ainaoui, N.; Delluc-Clavieres, A.; Khoury, M. P.; Azar, R.; Pujol, F.; Martineau, Y.; Pyronnet, S.; Prats, A. C., Fibroblast growth factor 1 induced during myogenesis by a transcription-translation coupling mechanism. *Nucleic Acids Res* **2009**, *37* (16), 5267-78.

477 30. Creancier, L.; Mercier, P.; Prats, A. C.; Morello, D., c-myc Internal ribosome entry site activity is developmentally controlled and subjected to a strong translational repression in adult transgenic mice. *Mol Cell Biol* **2001**, *21* (5), 1833-40.

478 31. Xue, S.; Tian, S.; Fujii, K.; Kladwang, W.; Das, R.; Barna, M., RNA regulons in Hox 5' UTRs confer ribosome specificity to gene regulation. *Nature* **2015**, *517* (7532), 33-8.

479 32. Weingarten-Gabbay, S.; Elias-Kirma, S.; Nir, R.; Gritsenko, A. A.; Stern-Ginossar, N.; Yakhini, Z.; Weinberger, A.; Segal, E., Systematic discovery of cap-independent translation sequences in human and viral genomes. *Science* **2016**, *351* (6270).

480 33. Chappell, S. A.; LeQuesne, J. P. C.; Paulin, F. E. M.; deSchoolmeester, M. L.; Stoneley, M.; Soutar, R. L.; Ralston, S. H.; Helfrich, M. H.; Willis, A. E., A mutation in the c-myc-IRES leads to enhanced internal ribosome entry in multiple myeloma: A novel mechanism of oncogene de-regulation. *Oncogene* **2000**, *19* (38), 4437-4440.

481 34. Hudder, A.; Werner, R., Analysis of a Charcot-Marie-Tooth disease mutation reveals an essential internal ribosome entry site element in the connexin-32 gene. *Journal of Biological Chemistry* **2000**, *275* (44), 34586-34591.

482 35. Lambrechts, D.; Storkebaum, E.; Morimoto, M.; Del-Favero, J.; Desmet, F.; Marklund, S. L.; Wyns, S.; Thijs, V.; Andersson, J.; van Marion, I.; Al-Chalabi, A.; Bornes, S.; Musson, R.; Hansen, V.; Beckman, L.; Adolfsson, R.; Pall, H. S.; Prats, H.; Vermeire, S.; Rutgeerts, P.; Katayama, S.; Awata, T.; Leigh, N.; Lang-Lazdunski, L.; Dewerchin, M.; Shaw, C.; Moons, L.; Vlietinck, R.; Morrison, K. E.; Robberecht, W.; Van Broeckhoven, C.; Collen, D.; Andersen, P. M.; Carmeliet, P., VEGF is a modifier of amyotrophic lateral sclerosis in mice and humans and protects motoneurons against ischemic death. *Nat Genet* **2003**, *34* (4), 383-394.

483 36. Marcel, V.; Ghayad, S. E.; Belin, S.; Therizols, G.; Morel, A. P.; Solano-Gonzalez, E.; Vendrell, J. A.; Hacot, S.; Mertani, H. C.; Albaret, M. A.; Bourdon, J. C.; Jordan, L.; Thompson, A.; Tafer, Y.; Cong, R.; Bouvet, P.; Saurin, J. C.; Catez, F.; Prats, A. C.; Puisieux, A.; Diaz, J. J., p53 acts as a safeguard of translational control by regulating fibrillarin and rRNA methylation in cancer. *Cancer Cell* **2013**, *24* (3), 318-30.

484 37. Ryoo, H. D.; Vasudevan, D., Two distinct nodes of translational inhibition in the Integrated Stress Response. *Bmb Rep* **2017**, *50* (11), 539-545.

485 38. Hinnebusch, A. G., Translational regulation of GCN4 and the general amino acid control of yeast. *Annu Rev Microbiol* **2005**, *59*, 407-450.

486 39. Fernandez, J.; Yaman, I.; Sarnow, P.; Snider, M. D.; Hatzoglou, M., Regulation of internal ribosomal entry site-mediated translation by phosphorylation of the translation initiation factor eIF2 alpha. *Journal of Biological Chemistry* **2002**, *277* (21), 19198-19205.

487 40. Kang, M. J.; Vasudevan, D.; Kang, K.; Kim, K.; Park, J. E.; Zhang, N.; Zeng, X. M.; Neubert, T. A.; Marr, M. T.; Ryoo, H. D., 4E-BP is a target of the GCN2 ATF4 pathway during Drosophila development and aging. *Journal of Cell Biology* **2017**, *216* (1), 115-129.

488 41. Thakor, N.; Holcik, M., IRES-mediated translation of cellular messenger RNA operates in eIF2 alpha-independent manner during stress. *Nucleic Acids Res* **2012**, *40* (2), 541-552.

489 42. Holcik, M., Could the eIF2 alpha-Independent Translation Be the Achilles Heel of Cancer? *Front Oncol* **2015**, *5*.

490 43. Bornes, S.; Prado-Lourenco, L.; Bastide, A.; Zanibellato, C.; Iacovoni, J. S.; Lacazette, E.; Prats, A. C.; Touriol, C.; Prats, H., Translational induction of VEGF internal ribosome entry site elements during the early response to ischemic stress. *Circ Res* **2007**, *100* (3), 305-8.

491 44. Braunstein, S.; Karpisheva, K.; Pola, C.; Goldberg, J.; Hochman, T.; Yee, H.; Cangiarella, J.; Arju, R.; Formenti, S. C.; Schneider, R. J., A hypoxia-controlled cap-dependent to cap-independent translation switch in breast cancer. *Mol Cell* **2007**, *28* (3), 501-12.

492 45. Conte, C.; Riant, E.; Toutain, C.; Pujol, F.; Arnal, J. F.; Lenfant, F.; Prats, A. C., FGF2 translationally induced by hypoxia is involved in negative and positive feedback loops with HIF-1alpha. *PLoS One* **2008**, *3* (8), e3078.

528 46. Renaud-Gabardos, E.; Tatin, F.; Hantelys, F.; Lebas, B.; Calise, D.; Kunduzova, O.; Masri, B.; Pujol, F.; Sicard, P.; Valet, P.; Roncalli, J.; Chaufour, X.; Garmy-Susini, B.; Parini, A.; Prats, A. C., Therapeutic Benefit and Gene Network Regulation by Combined Gene Transfer of Apelin, FGF2, and SERCA2a into Ischemic Heart. *Mol Ther* **2018**, *26* (3), 902-916.

529 47. Yang, Y.; Wang, C. F.; Zhao, K. L.; Zhang, G.; Wang, D. C.; Mei, Y. D., TRMP, a p53-inducible long noncoding RNA, regulates G1/S cell cycle progression by modulating IRES-dependent p27 translation. *Cell Death Dis* **2018**, *9*.

530 48. Lee, K. M.; Chen, C. J.; Shih, S. R., Regulation Mechanisms of Viral IRES-Driven Translation. *Trends Microbiol* **2017**, *25* (7), 547-562.

531 49. Thompson, S. R., So you want to know if your message has an IRES? *Wires Rna* **2012**, *3* (5), 697-705.

532 50. Romanelli, M. G.; Diani, E.; Lievens, P. M. J., New Insights into Functional Roles of the Polypyrimidine Tract-Binding Protein. *Int J Mol Sci* **2013**, *14* (11), 22906-22932.

533 51. Carvajal, F.; Vallejos, M.; Walters, B.; Contreras, N.; Hertz, M. I.; Olivares, E.; Caceres, C. J.; Pino, K.; Letelier, A.; Thompson, S. R.; Lopez-Lastra, M., Structural domains within the HIV-1 mRNA and the ribosomal protein S25 influence cap-independent translation initiation. *Febs J* **2016**, *283* (13), 2508-2527.

534 52. Hertz, M. I.; Landry, D. M.; Willis, A. E.; Luo, G. X.; Thompson, S. R., Ribosomal Protein S25 Dependency Reveals a Common Mechanism for Diverse Internal Ribosome Entry Sites and Ribosome Shunting. *Molecular and Cellular Biology* **2013**, *33* (5), 1016-1026.

535 53. Olivares, E.; Landry, D. M.; Caceres, C. J.; Pino, K.; Rossi, F.; Navarrete, C.; Huidobro-Toro, J. P.; Thompson, S. R.; Lopez-Lastra, M., The 5' Untranslated Region of the Human T-Cell Lymphotropic Virus Type 1 mRNA Enables Cap-Independent Translation Initiation. *Journal of Virology* **2014**, *88* (11), 5936-5955.

536 54. Ji, B.; Harris, B. R. E.; Liu, Y. H.; Deng, Y. B.; Gradilone, S. A.; Cleary, M. P.; Liu, J. H.; Yang, D. Q., Targeting IRES-Mediated p53 Synthesis for Cancer Diagnosis and Therapeutics. *Int J Mol Sci* **2017**, *18* (1).

537 55. Bonnal, S.; Pileur, F.; Orsini, C.; Parker, F.; Pujol, F.; Prats, A. C.; Vagner, S., Heterogeneous nuclear ribonucleoprotein A1 is a novel internal ribosome entry site trans-acting factor that modulates alternative initiation of translation of the fibroblast growth factor 2 mRNA. *J Biol Chem* **2005**, *280* (6), 4144-53.

538 56. Cammas, A.; Pileur, F.; Bonnal, S.; Lewis, S. M.; Leveque, N.; Holcik, M.; Vagner, S., Cytoplasmic relocalization of heterogeneous nuclear ribonucleoprotein A1 controls translation initiation of specific mRNAs. *Mol Biol Cell* **2007**, *18* (12), 5048-59.

539 57. Damiano, F.; Rochira, A.; Tocci, R.; Alemanno, S.; Gnoni, A.; Siculella, L., hnRNP A1 mediates the activation of the IRES-dependent SREBP-1a mRNA translation in response to endoplasmic reticulum stress. *Biochem J* **2013**, *449*, 543-553.

540 58. Lewis, S. M.; Veyrier, A.; Hosszu Ungureanu, N.; Bonnal, S.; Vagner, S.; Holcik, M., Subcellular relocalization of a trans-acting factor regulates XIAP IRES-dependent translation. *Mol Biol Cell* **2007**, *18* (4), 1302-11.

541 59. Dobbyn, H. C.; Hill, K.; Hamilton, T. L.; Spriggs, K. A.; Pickering, B. M.; Coldwell, M. J.; de Moor, C. H.; Bushell, M.; Willis, A. E., Regulation of BAG-1 IRES-mediated translation following chemotoxic stress. *Oncogene* **2008**, *27* (8), 1167-1174.

542 60. Lin, J. C.; Hsu, M.; Tarn, W. Y., Cell stress modulates the function of splicing regulatory protein RBM4 in translation control. *P Natl Acad Sci USA* **2007**, *104* (7), 2235-2240.

543 61. Jo, O. D.; Martin, J.; Bernath, A.; Masri, J.; Lichtenstein, A.; Gera, J., Heterogeneous nuclear ribonucleoprotein A1 regulates cyclin D1 and c-myc internal ribosome entry site function through Akt signaling. (vol 283, pg 23274, 2008). *Journal of Biological Chemistry* **2008**, *283* (45), 31268-31268.

544 62. Gao, G.; Dhar, S.; Bedford, M. T., PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1. *Nucleic Acids Res* **2017**, *45* (8), 4359-4369.

545 63. Dorrello, N. V.; Peschiaroli, A.; Guardavaccaro, D.; Colburn, N. H.; Sherman, N. E.; Pagano, M., S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. *Science* **2006**, *314* (5798), 467-71.

546 64. Liwak, U.; Thakor, N.; Jordan, L. E.; Roy, R.; Lewis, S. M.; Pardo, O. E.; Seckl, M.; Holcik, M., Tumor Suppressor PDCD4 Represses Internal Ribosome Entry Site-Mediated Translation of Antiapoptotic Proteins and Is Regulated by S6 Kinase 2. *Molecular and Cellular Biology* **2012**, *32* (10), 1818-1829.

547 65. Wang, Q.; Yang, H. S., The role of Pdcd4 in tumour suppression and protein translation. *Biol Cell* **2018**.

548 66. Wedeken, L.; Singh, P.; Klempnauer, K. H., Tumor suppressor protein Pdcd4 inhibits translation of p53 mRNA. *J Biol Chem* **2011**, *286* (50), 42855-62.

549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581

582 67. Olson, C. M.; Donovan, M. R.; Spellberg, M. J.; Marr, M. T., 2nd, The insulin receptor cellular IRES confers
583 resistance to eIF4A inhibition. *Elife* **2013**, *2*, e00542.

584 68. Suk, F. M.; Lin, S. Y.; Lin, R. J.; Hsine, Y. H.; Liao, Y. J.; Fang, S. U.; Liang, Y. C., Bortezomib inhibits Burkitt's
585 lymphoma cell proliferation by downregulating sumoylated hnRNP K and c-Myc expression. *Oncotarget*
586 **2015**, *6* (28), 25988-6001.

587 69. Lu, J.; Gao, F. H., Role and molecular mechanism of heterogeneous nuclear ribonucleoprotein K in tumor
588 development and progression. *Biomed Rep* **2016**, *4* (6), 657-663.

589 70. Mitchell, S. A.; Spriggs, K. A.; Coldwell, M. J.; Jackson, R. J.; Willis, A. E., The Apaf-1 internal ribosome
590 entry segment attains the correct structural conformation for function via interactions with PTB and unr. *Mol Cell*
591 **2003**, *11* (3), 757-71.

592 71. Pickering, B. M.; Mitchell, S. A.; Spriggs, K. A.; Stoneley, M.; Willis, A. E., Bag-1 internal ribosome entry
593 segment activity is promoted by structural changes mediated by poly(rC) binding protein 1 and
594 recruitment of polypyrimidine tract binding protein 1. *Mol Cell Biol* **2004**, *24* (12), 5595-605.

595 72. Sharathchandra, A.; Lal, R.; Khan, D.; Das, S., Annexin A2 and PSF proteins interact with p53 IRES and
596 regulate translation of p53 mRNA. *RNA Biol* **2012**, *9* (12), 1429-39.

597 73. Grover, R.; Ray, P. S.; Das, S., Polypyrimidine tract binding protein regulates IRES-mediated translation of
598 p53 isoforms. *Cell Cycle* **2008**, *7* (14), 2189-98.

599 74. Meng, Z.; Jackson, N. L.; Choi, H.; King, P. H.; Emanuel, P. D.; Blume, S. W., Alterations in RNA-binding
600 activities of IRES-regulatory proteins as a mechanism for physiological variability and pathological
601 dysregulation of IGFIR translational control in human breast tumor cells. *J Cell Physiol* **2008**, *217* (1), 172-83.

602 75. Lewis, S. M.; Holcik, M., For IRES trans-acting factors, it is all about location. *Oncogene* **2008**, *27* (8), 1033-5.

603 76. Ainaoui, N.; Hantelys, F.; Renaud-Gabardos, E.; Bunel, M.; Lopez, F.; Pujol, F.; Planes, R.; Bahraoui, E.;
604 Pichereaux, C.; Burlet-Schiltz, O.; Parini, A.; Garmy-Susini, B.; Prats, A. C., Promoter-Dependent
605 Translation Controlled by p54nrb and hnRNPM during Myoblast Differentiation. *PLoS One* **2015**, *10* (9),
606 e0136466.

607 77. Liberman, N.; Gandin, V.; Svitkin, Y. V.; David, M.; Virgili, G.; Jaramillo, M.; Holcik, M.; Nagar, B.; Kimchi,
608 A.; Sonenberg, N., DAP5 associates with eIF2beta and eIF4AI to promote Internal Ribosome Entry Site
609 driven translation. *Nucleic Acids Res* **2015**, *43* (7), 3764-75.

610 78. Lin, W.; Wadlington, N. L.; Chen, L.; Zhuang, X.; Brorson, J. R.; Kang, U. J., Loss of PINK1 attenuates HIF-
611 1alpha induction by preventing 4E-BP1-dependent switch in protein translation under hypoxia. *J Neurosci*
612 **2014**, *34* (8), 3079-89.

613 79. Fujimura, K.; Katahira, J.; Kano, F.; Yoneda, Y.; Murata, M., Selective localization of PCBP2 to cytoplasmic
614 processing bodies. *Biochim Biophys Acta* **2009**, *1793* (5), 878-87.

615 80. Colon-Ramos, D. A.; Shenvi, C. L.; Weitzel, D. H.; Gan, E. C.; Matts, R.; Cate, J.; Kornbluth, S., Direct
616 ribosomal binding by a cellular inhibitor of translation. *Nat Struct Mol Biol* **2006**, *13* (2), 103-11.

617 81. Xue, S.; Barna, M., Specialized ribosomes: a new frontier in gene regulation and organismal biology. *Nat
618 Rev Mol Cell Biol* **2012**, *13* (6), 355-69.

619 82. Landry, D. M.; Hertz, M. I.; Thompson, S. R., RPS25 is essential for translation initiation by the
620 Dicistroviridae and hepatitis C viral IRESs. *Genes Dev* **2009**, *23* (23), 2753-64.

621 83. Shi, Z.; Fujii, K.; Kovary, K. M.; Genuth, N. R.; Rost, H. L.; Teruel, M. N.; Barna, M., Heterogeneous
622 Ribosomes Preferentially Translate Distinct Subpools of mRNAs Genome-wide. *Mol Cell* **2017**, *67* (1), 71-83
623 e7.

624 84. Kampen, K. R.; Sulima, S. O.; Verbelen, B.; Girardi, T.; Vereecke, S.; Rinaldi, G.; Verbeeck, J.; Op de Beeck,
625 J.; Uyttebroeck, A.; Meijerink, J. P. P.; Moorman, A. V.; Harrison, C. J.; Spincemaille, P.; Cools, J.; Cassiman,
626 D.; Fendt, S. M.; Vermeersch, P.; De Keersmaecker, K., The ribosomal RPL10 R98S mutation drives IRES-
627 dependent BCL-2 translation in T-ALL. *Leukemia* **2018**.

628 85. Fox, J. T.; Shin, W. K.; Caudill, M. A.; Stover, P. J., A UV-responsive internal ribosome entry site enhances
629 serine hydroxymethyltransferase 1 expression for DNA damage repair. *J Biol Chem* **2009**, *284* (45), 31097-
630 108.

631 86. Zheng, Y.; Miskimins, W. K., CUG-binding protein represses translation of p27Kip1 mRNA through its
632 internal ribosomal entry site. *RNA Biol* **2011**, *8* (3), 365-71.

633 87. Hanson, P. J.; Ye, X.; Qiu, Y.; Zhang, H. M.; Hemida, M. G.; Wang, F.; Lim, T.; Gu, A.; Cho, B.; Kim, H.;
634 Fung, G.; Granville, D. J.; Yang, D., Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral

635 replication and enhances apoptosis by altering translation of IRES-containing genes. *Cell Death Differ* **2016**,
636 23 (5), 828-40.

637 88. Henis-Korenblit, S.; Shani, G.; Sines, T.; Marash, L.; Shohat, G.; Kimchi, A., The caspase-cleaved DAP5
638 protein supports internal ribosome entry site-mediated translation of death proteins. *Proc Natl Acad Sci U
639 S A* **2002**, 99 (8), 5400-5.

640 89. Henis-Korenblit, S.; Strumpf, N. L.; Goldstaub, D.; Kimchi, A., A novel form of DAP5 protein accumulates
641 in apoptotic cells as a result of caspase cleavage and internal ribosome entry site-mediated translation. *Mol
642 Cell Biol* **2000**, 20 (2), 496-506.

643 90. Liberman, N.; Marash, L.; Kimchi, A., The translation initiation factor DAP5 is a regulator of cell survival
644 during mitosis. *Cell Cycle* **2009**, 8 (2), 204-9.

645 91. Marash, L.; Liberman, N.; Henis-Korenblit, S.; Sivan, G.; Reem, E.; Elroy-Stein, O.; Kimchi, A., DAP5
646 promotes cap-independent translation of Bcl-2 and CDK1 to facilitate cell survival during mitosis. *Mol Cell*
647 **2008**, 30 (4), 447-59.

648 92. Nevins, T. A.; Harder, Z. M.; Korneluk, R. G.; Holcik, M., Distinct regulation of internal ribosome entry
649 site-mediated translation following cellular stress is mediated by apoptotic fragments of eIF4G translation
650 initiation factor family members eIF4GI and p97/DAP5/NAT1. *J Biol Chem* **2003**, 278 (6), 3572-9.

651 93. Warnakulasuriyarakchchi, D.; Cerquozzi, S.; Cheung, H. H.; Holcik, M., Translational induction of the
652 inhibitor of apoptosis protein HIAP2 during endoplasmic reticulum stress attenuates cell death and is
653 mediated via an inducible internal ribosome entry site element. *J Biol Chem* **2004**, 279 (17), 17148-57.

654 94. Weingarten-Gabbay, S.; Khan, D.; Liberman, N.; Yoffe, Y.; Bialik, S.; Das, S.; Oren, M.; Kimchi, A., The
655 translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA. *Oncogene* **2014**, 33 (5),
656 611-8.

657 95. Tsai, B. P.; Wang, X.; Huang, L.; Waterman, M. L., Quantitative profiling of in vivo-assembled RNA-protein
658 complexes using a novel integrated proteomic approach. *Mol Cell Proteomics* **2011**, 10 (4), M110 007385.

659 96. Cobbold, L. C.; Spriggs, K. A.; Haines, S. J.; Dobbyn, H. C.; Hayes, C.; de Moor, C. H.; Lilley, K. S.; Bushell,
660 M.; Willis, A. E., Identification of internal ribosome entry segment (IRES)-trans-acting factors for the Myc
661 family of IRESs. *Molecular and Cellular Biology* **2008**, 28 (1), 40-49.

662 97. Woeller, C. F.; Fox, J. T.; Perry, C.; Stover, P. J., A ferritin-responsive internal ribosome entry site regulates
663 folate metabolism. *J Biol Chem* **2007**, 282 (41), 29927-35.

664 98. Malbert-Colas, L.; Ponnuswamy, A.; Olivares-Illana, V.; Tournillon, A. S.; Naski, N.; Fahraeus, R., HDMX
665 folds the nascent p53 mRNA following activation by the ATM kinase. *Mol Cell* **2014**, 54 (3), 500-11.

666 99. Kim, H. J.; Lee, H. R.; Seo, J. Y.; Ryu, H. G.; Lee, K. H.; Kim, D. Y.; Kim, K. T., Heterogeneous nuclear
667 ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation.
668 *Sci Rep* **2017**, 7, 42882.

669 100. Kunze, M. M.; Benz, F.; Brauss, T. F.; Lampe, S.; Weigand, J. E.; Braun, J.; Richter, F. M.; Wittig, I.; Brune,
670 B.; Schmid, T., sST2 translation is regulated by FGF2 via an hnRNP A1-mediated IRES-dependent
671 mechanism. *Biochim Biophys Acta* **2016**, 1859 (7), 848-59.

672 101. Roy, R.; Durie, D.; Li, H.; Liu, B. Q.; Skehel, J. M.; Mauri, F.; Cuorvo, L. V.; Barbareschi, M.; Guo, L.; Holcik,
673 M.; Seckl, M. J.; Pardo, O. E., hnRNPA1 couples nuclear export and translation of specific mRNAs
674 downstream of FGF-2/S6K2 signalling. *Nucleic Acids Res* **2014**, 42 (20), 12483-97.

675 102. Shi, Y.; Frost, P. J.; Hoang, B. Q.; Benavides, A.; Sharma, S.; Gera, J. F.; Lichtenstein, A. K., IL-6-induced
676 stimulation of c-myc translation in multiple myeloma cells is mediated by myc internal ribosome entry site
677 function and the RNA-binding protein, hnRNP A1. *Cancer Res* **2008**, 68 (24), 10215-22.

678 103. Shi, Y.; Yang, Y.; Hoang, B.; Bardeleben, C.; Holmes, B.; Gera, J.; Lichtenstein, A., Therapeutic potential of
679 targeting IRES-dependent c-myc translation in multiple myeloma cells during ER stress. *Oncogene* **2016**, 35
680 (8), 1015-24.

681 104. Siculella, L.; Tocci, R.; Rochira, A.; Testini, M.; Gnoni, A.; Damiano, F., Lipid accumulation stimulates the
682 cap-independent translation of SREBP-1a mRNA by promoting hnRNP A1 binding to its 5'-UTR in a
683 cellular model of hepatic steatosis. *Biochim Biophys Acta* **2016**, 1861 (5), 471-81.

684 105. Christian, K. J.; Lang, M. A.; Raffalli-Mathieu, F., Interaction of heterogeneous nuclear ribonucleoprotein
685 C1/C2 with a novel cis-regulatory element within p53 mRNA as a response to cytostatic drug treatment.
686 *Mol Pharmacol* **2008**, 73 (5), 1558-67.

687 106. Holcik, M.; Gordon, B. W.; Korneluk, R. G., The internal ribosome entry site-mediated translation of
688 antiapoptotic protein XIAP is modulated by the heterogeneous nuclear ribonucleoproteins C1 and C2. *Mol
689 Cell Biol* **2003**, *23* (1), 280-8.

690 107. Kim, J. H.; Paek, K. Y.; Choi, K.; Kim, T. D.; Hahm, B.; Kim, K. T.; Jang, S. K., Heterogeneous nuclear
691 ribonucleoprotein C modulates translation of c-myc mRNA in a cell cycle phase-dependent manner. *Mol
692 Cell Biol* **2003**, *23* (2), 708-20.

693 108. Schepens, B.; Tinton, S. A.; Bruynooghe, Y.; Parthoens, E.; Haegman, M.; Beyaert, R.; Cornelis, S., A role for
694 hnRNP C1/C2 and Unr in internal initiation of translation during mitosis. *EMBO J* **2007**, *26* (1), 158-69.

695 109. Omrus, D. J.; Mehrtens, S.; Ritter, B.; Resch, K.; Yamada, M.; Frank, R.; Nourbakhsh, M.; Reboll, M. R.,
696 JKTBP1 is involved in stabilization and IRES-dependent translation of NRF mRNAs by binding to 5' and 3'
697 untranslated regions. *J Mol Biol* **2011**, *407* (4), 492-504.

698 110. Reboll, M. R.; Oumard, A.; Gazdag, A. C.; Renger, I.; Ritter, B.; Schwarzer, M.; Hauser, H.; Wood, M.;
699 Yamada, M.; Resch, K.; Nourbakhsh, M., NRF IRES activity is mediated by RNA binding protein JKTBP1
700 and a 14-nt RNA element. *RNA* **2007**, *13* (8), 1328-40.

701 111. Evans, J. R.; Mitchell, S. A.; Spriggs, K. A.; Ostrowski, J.; Bomsztyk, K.; Ostarek, D.; Willis, A. E., Members
702 of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment
703 in vitro and in vivo. *Oncogene* **2003**, *22* (39), 8012-20.

704 112. Pickering, B. M.; Mitchell, S. A.; Evans, J. R.; Willis, A. E., Polypyrimidine tract binding protein and poly
705 r(C) binding protein 1 interact with the BAG-1 IRES and stimulate its activity in vitro and in vivo. *Nucleic
706 Acids Res* **2003**, *31* (2), 639-46.

707 113. Notari, M.; Neviani, P.; Santhanam, R.; Blaser, B. W.; Chang, J. S.; Galietta, A.; Willis, A. E.; Roy, D. C.;
708 Caligiuri, M. A.; Marcucci, G.; Perrotti, D., A MAPK/HNRPK pathway controls BCR/ABL oncogenic
709 potential by regulating MYC mRNA translation. *Blood* **2006**, *107* (6), 2507-16.

710 114. Majumder, M.; Yaman, I.; Gaccioli, F.; Zeenko, V. V.; Wang, C.; Caprara, M. G.; Venema, R. C.; Komar, A.
711 A.; Snider, M. D.; Hatzoglou, M., The hnRNA-binding proteins hnRNP L and PTB are required for efficient
712 translation of the Cat-1 arginine/lysine transporter mRNA during amino acid starvation. *Mol Cell Biol* **2009**,
713 *29* (10), 2899-912.

714 115. Peddigari, S.; Li, P. W.; Rabe, J. L.; Martin, S. L., hnRNPL and nucleolin bind LINE-1 RNA and function as
715 host factors to modulate retrotransposition. *Nucleic Acids Res* **2013**, *41* (1), 575-85.

716 116. Seo, J. Y.; Kim, D. Y.; Kim, S. H.; Kim, H. J.; Ryu, H. G.; Lee, J.; Lee, K. H.; Kim, K. T., Heterogeneous nuclear
717 ribonucleoprotein (hnRNP) L promotes DNA damage-induced cell apoptosis by enhancing the translation
718 of p53. *Oncotarget* **2017**, *8* (31), 51108-51122.

719 117. Cho, S.; Park, S. M.; Kim, T. D.; Kim, J. H.; Kim, K. T.; Jang, S. K., BiP internal ribosomal entry site activity
720 is controlled by heat-induced interaction of NSAP1. *Mol Cell Biol* **2007**, *27* (1), 368-83.

721 118. Choi, J. H.; Kim, S. H.; Jeong, Y. H.; Kim, S. W.; Min, K. T.; Kim, K. T., hnRNP Q regulates IRES-mediated
722 fmr1 translation in neurons. *Mol Cell Biol* **2018**.

723 119. Kim, D. Y.; Kim, W.; Lee, K. H.; Kim, S. H.; Lee, H. R.; Kim, H. J.; Jung, Y.; Choi, J. H.; Kim, K. T., hnRNP Q
724 regulates translation of p53 in normal and stress conditions. *Cell Death Differ* **2013**, *20* (2), 226-34.

725 120. Kim, D. Y.; Woo, K. C.; Lee, K. H.; Kim, T. D.; Kim, K. T., hnRNP Q and PTB modulate the circadian
726 oscillation of mouse Rev-erb alpha via IRES-mediated translation. *Nucleic Acids Res* **2010**, *38* (20), 7068-78.

727 121. Kim, T. D.; Woo, K. C.; Cho, S.; Ha, D. C.; Jang, S. K.; Kim, K. T., Rhythmic control of AANAT translation
728 by hnRNP Q in circadian melatonin production. *Genes Dev* **2007**, *21* (7), 797-810.

729 122. Lee, K. H.; Woo, K. C.; Kim, D. Y.; Kim, T. D.; Shin, J.; Park, S. M.; Jang, S. K.; Kim, K. T., Rhythmic
730 interaction between Period1 mRNA and hnRNP Q leads to circadian time-dependent translation. *Mol Cell
731 Biol* **2012**, *32* (3), 717-28.

732 123. Lee, H. R.; Kim, T. D.; Kim, H. J.; Jung, Y.; Lee, D.; Lee, K. H.; Kim, D. Y.; Woo, K. C.; Kim, K. T.,
733 Heterogeneous ribonucleoprotein R regulates arylalkylamine N-acetyltransferase synthesis via internal
734 ribosomal entry site-mediated translation in a circadian manner. *J Pineal Res* **2015**, *59* (4), 518-29.

735 124. Badawi, A.; Biyanee, A.; Nasrullah, U.; Winslow, S.; Schmid, T.; Pfeilschifter, J.; Eberhardt, W., Inhibition
736 of IRES-dependent translation of caspase-2 by HuR confers chemotherapeutic drug resistance in colon
737 carcinoma cells. *Oncotarget* **2018**, *9* (26), 18367-18385.

738 125. Durie, D.; Hatzoglou, M.; Chakraborty, P.; Holcik, M., HuR controls mitochondrial morphology through
739 the regulation of BclxL translation. *Translation (Austin)* **2013**, *1* (1).

740 126. Durie, D.; Lewis, S. M.; Liwak, U.; Kisilewicz, M.; Gorospe, M.; Holcik, M., RNA-binding protein HuR
741 mediates cytoprotection through stimulation of XIAP translation. *Oncogene* **2011**, *30* (12), 1460-9.

742 127. Kullmann, M.; Gopfert, U.; Siewe, B.; Hengst, L., ELAV/Hu proteins inhibit p27 translation via an IRES
743 element in the p27 5'UTR. *Genes Dev* **2002**, *16* (23), 3087-99.

744 128. Meng, Z.; King, P. H.; Nabors, L. B.; Jackson, N. L.; Chen, C. Y.; Emanuel, P. D.; Blume, S. W., The ELAV
745 RNA-stability factor HuR binds the 5'-untranslated region of the human IGFIR transcript and differentially
746 represses cap-dependent and IRES-mediated translation. *Nucleic Acids Res* **2005**, *33* (9), 2962-79.

747 129. Yeh, C. H.; Hung, L. Y.; Hsu, C.; Le, S. Y.; Lee, P. T.; Liao, W. L.; Lin, Y. T.; Chang, W. C.; Tseng, J. T., RNA-
748 binding protein HuR interacts with thrombomodulin 5'untranslated region and represses internal
749 ribosome entry site-mediated translation under IL-1 beta treatment. *Mol Biol Cell* **2008**, *19* (9), 3812-22.

750 130. Gao, W.; Li, Q.; Zhu, R.; Jin, J., La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1) Expression
751 through Internal Ribosome Entry Site (IRES)-Mediated Translation during Cellular Stress Condition. *Int J
752 Mol Sci* **2016**, *17* (7).

753 131. Holcik, M.; Korneluk, R. G., Functional characterization of the X-linked inhibitor of apoptosis (XIAP)
754 internal ribosome entry site element: role of La autoantigen in XIAP translation. *Mol Cell Biol* **2000**, *20* (13),
755 4648-57.

756 132. Kim, Y. K.; Back, S. H.; Rho, J.; Lee, S. H.; Jang, S. K., La autoantigen enhances translation of BiP mRNA.
757 *Nucleic Acids Res* **2001**, *29* (24), 5009-16.

758 133. Gu, L.; Zhu, N.; Zhang, H.; Durden, D. L.; Feng, Y.; Zhou, M., Regulation of XIAP translation and induction
759 by MDM2 following irradiation. *Cancer Cell* **2009**, *15* (5), 363-75.

760 134. Faye, M. D.; Gruber, T. E.; Liu, P.; Thakor, N.; Baird, S. D.; Durie, D.; Holcik, M., Nucleotide composition
761 of cellular internal ribosome entry sites defines dependence on NF45 and predicts a posttranscriptional
762 mitotic regulon. *Mol Cell Biol* **2013**, *33* (2), 307-18.

763 135. Spriggs, K. A.; Cobbold, L. C.; Ridley, S. H.; Coldwell, M.; Bottley, A.; Bushell, M.; Willis, A. E.; Siddle, K.,
764 The human insulin receptor mRNA contains a functional internal ribosome entry segment. *Nucleic Acids
765 Res* **2009**, *37* (17), 5881-93.

766 136. Chen, J.; Guo, K.; Kastan, M. B., Interactions of nucleolin and ribosomal protein L26 (RPL26) in translational
767 control of human p53 mRNA. *J Biol Chem* **2012**, *287* (20), 16467-76.

768 137. Takagi, M.; Absalon, M. J.; McLure, K. G.; Kastan, M. B., Regulation of p53 translation and induction after
769 DNA damage by ribosomal protein L26 and nucleolin. *Cell* **2005**, *123* (1), 49-63.

770 138. Shen, W.; Liang, X. H.; Sun, H.; De Hoyos, C. L.; Crooke, S. T., Depletion of NEAT1 lncRNA attenuates
771 nucleolar stress by releasing sequestered P54nrb and PSF to facilitate c-Myc translation. *PLoS One* **2017**, *12*
772 (3), e0173494.

773 139. Cho, S.; Kim, J. H.; Back, S. H.; Jang, S. K., Polypyrimidine tract-binding protein enhances the internal
774 ribosomal entry site-dependent translation of p27kip1 mRNA and modulates transition from G1 to S phase.
775 *Mol Cell Biol* **2005**, *25* (4), 1283-97.

776 140. Cobbold, L. C.; Wilson, L. A.; Sawicka, K.; King, H. A.; Kondrashov, A. V.; Spriggs, K. A.; Bushell, M.; Willis,
777 A. E., Upregulated c-myc expression in multiple myeloma by internal ribosome entry results from
778 increased interactions with and expression of PTB-1 and YB-1. *Oncogene* **2010**, *29* (19), 2884-91.

779 141. Cornelis, S.; Tinton, S. A.; Schepens, B.; Bruynooghe, Y.; Beyaert, R., UNR translation can be driven by an
780 IRES element that is negatively regulated by polypyrimidine tract binding protein. *Nucleic Acids Res* **2005**,
781 *33* (10), 3095-108.

782 142. Dhar, D.; Venkataramana, M.; Ponnuswamy, A.; Das, S., Role of polypyrimidine tract binding protein in
783 mediating internal initiation of translation of interferon regulatory factor 2 RNA. *PLoS One* **2009**, *4* (9), e7049.

784 143. Ismail, R.; Ul Hussain, M., The up regulation of phosphofructokinase1 (PFK1) protein during chemically
785 induced hypoxia is mediated by the hypoxia-responsive internal ribosome entry site (IRES) element,
786 present in its 5'untranslated region. *Biochimie* **2017**, *139*, 38-45.

787 144. Kim, Y. K.; Hahm, B.; Jang, S. K., Polypyrimidine tract-binding protein inhibits translation of bip mRNA. *J
788 Mol Biol* **2000**, *304* (2), 119-33.

789 145. Schepens, B.; Tinton, S. A.; Bruynooghe, Y.; Beyaert, R.; Cornelis, S., The polypyrimidine tract-binding
790 protein stimulates HIF-1alpha IRES-mediated translation during hypoxia. *Nucleic Acids Res* **2005**, *33* (21),
791 6884-94.

792 146. Spriggs, K. A.; Cobbold, L. C.; Jopling, C. L.; Cooper, R. E.; Wilson, L. A.; Stoneley, M.; Coldwell, M. J.;
793 Poncet, D.; Shen, Y. C.; Morley, S. J.; Bushell, M.; Willis, A. E., Canonical initiation factor requirements of
794 the Myc family of internal ribosome entry segments. *Mol Cell Biol* **2009**, *29* (6), 1565-74.

795 147. Yang, B.; Hu, P.; Lin, X.; Han, W.; Zhu, L.; Tan, X.; Ye, F.; Wang, G.; Wu, F.; Yin, B.; Bao, Z.; Jiang, T.; Yuan,
796 J.; Qiang, B.; Peng, X., PTBP1 induces ADAR1 p110 isoform expression through IRES-like dependent
797 translation control and influences cell proliferation in gliomas. *Cell Mol Life Sci* **2015**, *72* (22), 4383-97.

798 148. Halaby, M. J.; Harris, B. R.; Miskimins, W. K.; Cleary, M. P.; Yang, D. Q., Deregulation of Internal Ribosome
799 Entry Site-Mediated p53 Translation in Cancer Cells with Defective p53 Response to DNA Damage. *Mol
800 Cell Biol* **2015**, *35* (23), 4006-17.

801 149. Khan, D.; Chattopadhyay, S.; Das, S., Influence of metabolic stress on translation of p53 isoforms. *Mol Cell
802 Oncol* **2016**, *3* (1), e1039689.

803 150. Bisio, A.; Latorre, E.; Andreotti, V.; Bressac-de Paillerets, B.; Harland, M.; Scarra, G. B.; Ghiorzo, P.; Spitale,
804 R. C.; Provenzani, A.; Inga, A., The 5'-untranslated region of p16INK4a melanoma tumor suppressor acts
805 as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. *Oncotarget* **2015**, *6*
806 (37), 39980-94.

807 151. Marr, M. T., 2nd; D'Alessio, J. A.; Puig, O.; Tjian, R., IRES-mediated functional coupling of transcription
808 and translation amplifies insulin receptor feedback. *Genes Dev* **2007**, *21* (2), 175-83.

809 152. Miura, P.; Coriati, A.; Belanger, G.; De Repentigny, Y.; Lee, J.; Kothary, R.; Holcik, M.; Jasmin, B. J., The
810 utrophin A 5'-UTR drives cap-independent translation exclusively in skeletal muscles of transgenic mice
811 and interacts with eEF1A2. *Hum Mol Genet* **2010**, *19* (7), 1211-20.

812 153. Morrison, J. K.; Friday, A. J.; Henderson, M. A.; Hao, E.; Keiper, B. D., Induction of cap-independent BiP
813 (hsp-3) and Bcl-2 (ced-9) translation in response to eIF4G (IFG-1) depletion in *C. elegans*. *Translation (Austin)*
814 **2014**, *2* (1), e28935.

815 154. Horos, R.; Ijspeert, H.; Pospisilova, D.; Sendtner, R.; Andrieu-Soler, C.; Taskesen, E.; Nieradka, A.; Cmejla,
816 R.; Sendtner, M.; Touw, I. P.; von Lindern, M., Ribosomal deficiencies in Diamond-Blackfan anemia impair
817 translation of transcripts essential for differentiation of murine and human erythroblasts. *Blood* **2012**, *119*
818 (1), 262-72.

819 155. Vaklavas, C.; Zinn, K. R.; Samuel, S. L.; Meng, Z.; Grizzle, W. E.; Choi, H.; Blume, S. W., Translational
820 control of the undifferentiated phenotype in ERpositive breast tumor cells: Cytoplasmic localization of
821 ERalpha and impact of IRES inhibition. *Oncol Rep* **2018**, *39* (6), 2482-2498.

822 156. Li, M.; Pehar, M.; Liu, Y.; Bhattacharyya, A.; Zhang, S. C.; O'Riordan, K. J.; Burger, C.; D'Adamio, L.;
823 Puglielli, L., The amyloid precursor protein (APP) intracellular domain regulates translation of p44, a short
824 isoform of p53, through an IRES-dependent mechanism. *Neurobiol Aging* **2015**, *36* (10), 2725-36.

825 157. Zhang, C.; Zhang, M.; Wu, Q.; Peng, J.; Ruan, Y.; Gu, J., Hepsin inhibits CDK11p58 IRES activity by
826 suppressing unr expression and eIF-2alpha phosphorylation in prostate cancer. *Cell Signal* **2015**, *27* (4), 789-
827 97.

828 158. Mitchell, S. A.; Brown, E. C.; Coldwell, M. J.; Jackson, R. J.; Willis, A. E., Protein factor requirements of the
829 Apaf-1 internal ribosome entry segment: roles of polypyrimidine tract binding protein and upstream of N-
830 ras. *Mol Cell Biol* **2001**, *21* (10), 3364-74.

831 159. Tinton, S. A.; Schepens, B.; Bruynooghe, Y.; Beyaert, R.; Cornelis, S., Regulation of the cell-cycle-dependent
832 internal ribosome entry site of the PITSLRE protein kinase: roles of Unr (upstream of N-ras) protein and
833 phosphorylated translation initiation factor eIF-2alpha. *Biochem J* **2005**, *385* (Pt 1), 155-63.